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Abstract— Shoreline extraction provides the boundary 

information of land and water, which helps monitor erosions or 

accretions of coastal zones. Such monitoring can be performed 

by using satellite images rather than by using traditional ground 

survey. To date, shorelines can be extracted from satellite 

images with a high degree of accuracy by using satellite image 

classification techniques based on machine learning, which helps 

identify the land and water classes of shorelines.  In this study, 

the results of extracted shorelines of 11 classifiers were validated 

by using a reference shoreline provided by the local authority. 

Specifically, the validation assessment was performed using 

Mean Shoreline Change method to examine the differences 

between the extracted shorelines and the reference shoreline. 

The research findings showed that SVM Linear attained the 

highest number of transects and the lowest mean distances 

between extracted shorelines and reference shoreline, thus 

rendering it as the most effective image classification technique 

in demarcating land and water classes. Furthermore, the 

findings showed that the accuracy of the extracted shoreline was 

not directly proportional to the accuracy of the image 

classification, and smoothing operation using PAEK affected the 

quality of extracted shorelines. Moreover, the tolerance setting 

that was ten times the spatial resolution of satellite images was 

observed to be the most optimal configuration. 

 

Index Terms— Image classification; Medium resolution 

satellite image, Shoreline extraction; Validation assessment. 

 

I. INTRODUCTION 

 

Coastal zones are constantly exposed to natural processes and 

anthropogenic activities that are continually reshaping and 

redefining the coastal areas of countries on a massive, 

unpredictable scale[1].  Thus, the monitoring of coastal zones 

provides important information about prevailing conditions 

of coastal areas resulting from natural and human activities. 

In fact, such conditions can be monitored by examining the 

changes occurring at shorelines of coastal areas. Essentially, 

a shoreline is an interface that physically separates land and 

water, effectively creating a boundary between the two [2]. 

As such, the extraction of shorelines helps provide historical 

records of physical changes that have taken place, which are 

useful for prediction purposes. Irrespective of the nature of 

coastal areas, acquiring a shoreline entails a shoreline 

indicator that represents the true position of a boundary [3]. 

In view of the importance of shorelines in such monitoring, 

this study was carried out to determine and validate the most 

effective machine learning technique for the extraction of 

shoreline of the North West coast of Peninsular Malaysia 

based on a Landsat OLI satellite image. This study was based 

on Syaifulnizam Abd Manaf et al.’s [4] study, but the former 

focused on the use and validation of pixel-based approaches 

to classify land-water classes for the extraction of shorelines 

using 11 different machine learning classifiers. More 

importantly, the extracted shorelines were compared with a 

reference shoreline to identify the most suitable machine 

learning technique for extracting shorelines. Additionally, the 

researchers examined the accuracy of image classifications of 

discriminating classes in the extraction process. 

To facilitate discussion, this paper is structured as follows: 

Section II discusses the related works, Section III details the 

methodology used, Section IV reports the experimental 

results, including the satellite image classifications and the 

validation of the machine learning techniques, Section V 

highlights the main discussion of the paper, and Section VI 

summarizes the main points of the paper. 

 

II. RELATED WORKS 

 

Currently, many techniques have been used to extract 

shorelines from optical multispectral satellite images. Such 

techniques include image processing techniques, image 

classification techniques, and spectral bands techniques, 

which are briefly discussed as follows:  

 

A. Image Processing Techniques 

The image processing techniques include segmentation[5], 

edge detection[6] and wavelet[7] techniques, which are used 

to delineate shorelines from satellite images. 

 

B. Machine Learning 

Fundamentally, the satellite image classification 

techniques based on machine learning can be divided into two 

types of classifications: (i) supervised classification, such as 

Maximum Likelihood, Mahalanobis Distance, Minimum 

Distance, Neural Network and Support Vector 
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Machines[8][9][10] and (ii) unsupervised classification, such 

as ISODATA[9]. 

 

C. Spectral Bands Techniques 

For spectral bands techniques, band rationing[11][12], 

normalized difference vegetation index (NDVI) [13] 

normalized difference water index (NDWI)[14] are some of 

the techniques commonly used to establish boundaries that 

differentiate the land from the water. Given the varying 

extraction techniques, the researchers used a number of 

supervised classifiers to assess extracted shorelines of a 

particular study area by comparing them with a reference 

shoreline.  

For the extracted shoreline vector validation techniques, 

Digital Shoreline Analysis System (DSAS) [9][15] is 

commonly used as the validation tool. In contrast to previous 

studies involving DSAS with single baseline, this research 

used AMBUR with double baselines to validate such 

extraction techniques. Moreover, this research also focused 

on the smoothing process performed on the extracted 

shorelines using different configuration settings.   

 

III. MATERIALS AND METHODS   

 

The method used to extract shorelines from satellite images 

consisted of five phases, namely pre-processing, satellite 

image classification, accuracy assessment, post-processing, 

and validation assessment, as depicted in Figure 1. 

 

 
Figure 1: The five phases of the shorelines extraction method of the study 

A. Pre-processing 

The pre-processing phase involved identifying a specific 

study area and acquiring data before performing other error 

cleaning processes, such as radiometric correction, 

atmospheric correction and geometric correction. In addition, 

mosaicking was performed on the acquired image, which 

formed a subset of the study area.   

 

1) Study Area 

The chosen study area was the Langkawi Island, which is 

located at the North West coast of Peninsular Malaysia, as 

shown in Figure 1. Geographically, this island is located at 6o 

15’N and 6o 29’N latitude and 99o 37’E and 99o 57’E 

longitude, covering a total area of about 47,848 ha. In 1987, 

this island gained a duty-free status, thus propelling it to 

become a major tourist destination [16]. Interestingly, this 

resort island comprises many small islands; however, only the 

main landmass was considered in this study. 

 
Figure 2: The study area of research 

2) Data Acquisition 

In this study, the data used were multispectral 

Landsat-8 Operational Land Imager (OLI) images. The 

images (which were acquired on 4 and 11 March 2016) 

were used because they provided sufficient area for such 

a study. Moreover, the combination of two images helped 

reduce the covering of clouds that obfuscated the study 

area, thus improving the quality of extraction process.  

3) Radiometric Correction 

This process helped calibrate the digital number (DN) 

values of the satellite image to radiance (Lλ), as expressed 

by Equation (1). 

 

𝐿𝜆 =  𝐺𝑎𝑖𝑛 ∗  𝑃𝑖𝑥𝑒𝑙 𝑣𝑎𝑙𝑢𝑒 +  𝑂𝑓𝑓𝑠𝑒𝑡                (1) 

 

The pixel value ranges from “0” to “255”, and the 

radiance for each image band depends on the gain and 

offset values. 

 

4) Atmospheric Correction 

After calibrating the image data, the atmospheric 

correction method converted the image radiance to image 

reflectance. Essentially, the reflectance image is the ratio 

between the reflected energy and the incident energy on a 

surface. In this research, Dark Object Subtraction 

(DOS)[17] method was applied to cancel out the haze 

component caused by atmospheric absorption and 

scattering effects of the satellite image data [18]. This 

process uses the minimum value of a band, which 

represents the background signature of the band.  

5) Mosaicking 

Mosaicking process was then applied to combine two 

images of the same scene of the study area into a single 

large image using a similar coordinate system. In this 

study, the researchers mosaicked the images using global 

WGS1984 coordinate system. 

6) Geometric Correction 

Image registration process was performed using 

image-to-image geometric correction process with 30 

ground control points (GCP) and RMS value of 0.499, as 

depicted in Figure 3. Later, Rectified Skew Orthomorphic 

(RSO) Kertau was used to project the image data of the 

West Coast of Peninsular Malaysia onto a local projection 

system. 



Quantitative Validation Assessment on Shorelines Extracted from Image Classification Techniques of Medium Resolution Satellite Images 

Based on Change Analysis 

 e-ISSN: 2289-8131 Vol. 9 No. 2-12 69 

 

Figure 3: The image-to-image geometric correction process 

7) Image Subset 

Finally, a small portion of the image rather than the 

entire scene was selected for further analysis. The image 

subset was created such that it could fit in with the study 

area. Furthermore, it could use the local coordinate system 

to align data together to form a single map.  

B. Satellite Image Classification 

In the classification phase, pixel-based supervised 

classification approaches were used with Python Scikit-

learn 0.18 machine learning packages to classify land and 

water classes of the satellite images. For this study, 11 

different machine learning classifiers were used, namely 

Decision Tree (DT), Naïve Bayes (NB), k-Neareast 

Neighbour (kNN), Linear Discriminat Analysis (LDA), 

Quadratic Discriminant Analysis (QDA), Logistic 

Regression (LR), SGD Classifier, Multilayer Perceptron 

(MLP), SVM-Linear (SVM-L) , SVM-RBF (SVM-R), and 

SVM-Polynomial (SVM-P).  

 

Figure 4: Training and testing sets of study area 

A training set was created to build the model for which a 

testing set was developed to test its performance. For this 

study, the training and testing sets consisted of 200 

instances, with 100 polygon-format instances generated for 

each land class and each water class, as shown in Figure 4.   

C. Accuracy Assessment 

In the accuracy assessment phase, the overall classification 

accuracy was used as initial measurement indicators. In 

addition, land and water accuracies were assessed to 

determine the most suitable classifier for extracting land class 

or water class or both. Clearly, the selection of machine 

learning classifiers depends on the classification accuracy. As 

such, the overall accuracy was used as the primary 

performance indicator, because it is widely used in the 

evaluation of satellite image classification methods. For cross 

validation, the 10-fold cross-validation method was used to 

address overfitting of classified image. 

D. Post-processing 

In the post-processing phase, the resultant classified image 

underwent a conversion process to GIS vector format using 

ENVI 5.3, which would be further processed using ArcGIS 

10.3. Subsequently, after saving the classified images to a 

hard drive, sieve and clump processes were performed to 

smoothen the resultant polygons of the classified image. 

Then, this image underwent a raster-to-vector conversion 

process to produce an image based on GIS vector format.  

Later, the polygon-to-line conversion process was carried out 

to ensure the image would only consist of lines based. Finally, 

line smoothing using Polynomial Approximation with 

Exponential Kernel (PAEK) method was applied on the final 

shoreline after all erroneous data were removed. 

E. Validation Assessment 

Finally, in the validation phase, AMBUR [19] was used to 

validate the extracted shorelines against a reference shoreline 

(which was acquired in 2016 from the local authority). 

Accordingly, the shorelines were merged with the reference 

shoreline to form a single shoreline data, with which each 

extracted shoreline from machine-learning algorithm was 

analyzed using AMBUR. In fact, screen digitizing was used 

to create two baselines that covered both the interior and the 

exterior of the shorelines. The use of two baselines is better 

than the use of a single baseline as the former helps improve 

transects orientation of curved shorelines [19]. Furthermore, 

the shapes of baselines are important for the calculations of 

changing shorelines that will influence transects orientation 

[19]. Cast transects were then constructed along the border of 

shorelines, which were demarcated by the outer and inner 

baselines. The distances from the transects’ starting points to 

the extracted shorelines’ transecting points were then 

calculated. Lastly, the change between the extracted shoreline 

and the reference shoreline was calculated using Mean 

Shoreline Change[19] or Net Shoreline Movement (NSM) in 

DSAS [20] as shown in Equation (2). 

 

𝑀𝑒𝑎𝑛 𝑆ℎ𝑜𝑟𝑒𝑙𝑖𝑛𝑒 𝐶ℎ𝑎𝑛𝑔𝑒 =  (
𝑦𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒−𝑦𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑

𝑥𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒−𝑥𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑
)  (2) 

 

The numerator is the difference in the distance between the 

reference shoreline and the extracted shoreline in y direction, 

and the denominator is the difference in the distance between 

the reference shoreline and the extracted shoreline in x 

direction. 

The first performance measure of the classifiers was based 

on the total number of transects, with higher numbers 

indicating better performance. The second performance 

measure of the classifiers was based on the mean distance [9], 
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with values approaching zero (“0”) to be indicative of good 

performance. In addition, the mean distance between 

seawater (+ve) and land (–ve) was used as the third 

performance measure, with lower values indicating better 

performance.  

 

IV. EXPERIMENTAL RESULTS 

A. Satellite Image Classification Results 

Table 1 summarizes the results of satellite image 

classification using single classifiers. Clearly, with an overall 

accuracy of 100%, SVM-P was the best classifier; in contrast, 

with an overall accuracy of 99.55%, QDA was deemed the 

least effective classifier. In addition, the remaining classifiers 

attained relatively high overall accuracies, ranging from 

99.71% (for LDA) to 99.97% (for DT). Interestingly, all 

classifiers achieved land and water accuracies of more than 

99%. On closer examination, SVM-P and DT were the two 

most effective classifiers for classifying land, with each 

registering land accuracy of 100%. Table 1 summarizes the 

land, water, and overall accuracies of the 11 classifiers. The 

results of land and water accuracies, as shown Table 1, were 

actually extracted from the confusion matrix table of each 

classifier. For example, Table 2 highlights the confusion 

matrix of QDA.  
Table 1 

The land, water and overall accuracies of satellite image classifications 

using single classifiers 
 

ML  

Classifiers 

Land 

Accuracy 

Water 

Accuracy 

Overall 

Accuracies 

DT 100.00 99.96 99.97 

NB 99.82 99.69 99.73 

KNN 99.92 99.96 99.95 

LDA 99.53 99.78 99.71 

QDA 99.88 99.42 99.55 

LR 99.68 99.82 99.77 

SGD 99.55 99.82 99.74 

SVM-L 99.82 99.78 99.79 

SVM-R 99.98 99.95 99.96 

SVM-P 100.00 100.00 100.00 

MLP 99.84 99.94 99.91 

 

As shown in Table 2, the confusion matrix was used to 

measure the performance of ML classifiers based on their 

16,403 predictions. Evidently, QDA predicted land 4,993 

times and water 11,410 times; out of these, 4,932 predictions 

belonged to the land class, while 11,471 predictions belonged 

to the water class.  

 
Table 2 

The confusion matrix result of QDA Classifier 

 

Predict  
 

Truth 

Land Water Total Accuracy 

Land 4926 6 4932 99.88 

Water 67 11404 11471 99.42 

Total 4993 11410 16403  

 

 

Figure 5: The extracted shorelines, baselines, and transects after the 

validation process 

B. Shoreline Validation Results 

Figure 5 shows the extracted shorelines (of the 11 

machine-learning classifiers), baselines, and transects after 

the validation assessment process. The figure shows the inner 

and the outer baselines distinguishing the extracted shorelines 

from the reference shoreline, as highlighted by various line 

colors. For example, the blue, red, and brown lines represent 

the baselines, shorelines, and transects, respectively. 

a) Validation of Original Extracted Shorelines      

     Table 3 summarizes the results of validation of the original 

extracted shorelines. As shown, SVM-L had the lowest 

number of instances, with 35 instances of vector polylines 

data only, making it as an effective technique (which is based 

on a smooth raster-to-vector post-processing) to achieve 

simple separation of land and seawater classes. On the other 

hand, SVM-R had the highest number of instances, with 87 

instances of vector polylines, establishing it to be the least 

effective technique, given the complex separation of the two 

classes. 

 
Table 3 

The results of the validation assessment of original extracted shorelines 

using 11 ML classifiers without PAEK 

 
ML 

Classifier
s 

No of 

Instances 

Tran

sects 
Mean 

Mean 

(+) 

Mean 

(-) 

DT 51 2,941 13.15 36.62 -22.73 

NB 65 2,937 21.72 43.41 -22.33 

KNN 71 2,947 4.15 30.38 -31.07 

LDA 81 2,917 -9.78 30.84 -41.81 

QDA 67 2,932 27 46.51 -18.43 

LR 60 2,935 -4.82 30.37 -36.57 

SGD 61 2,943 0.97 34.15 -37.35 

SVM-L 35 2,948 2.5 30.96 -31.65 

SVM-R 87 2,946 14.06 35.58 -27.49 

SVM-P 53 2,941 13.16 36.64 -22.73 

MLP 75 2,932 14.66 39.44 -23.68 

 
Table 3 shows the number of transects on the interval of 500 

m generated from the ML classifiers, ranging from 2,917 to 
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2,948. These transects separated the land classes from the 

water classes to form several different boundaries, which are 

known as shorelines.  As shown, SVM-L recorded had the 

highest number with 2,948 transects, while LDA had the 

lowest number with 2,917 transects. As such, the former was 

the most effective classification technique for shoreline 

extraction; in contrast, the latter was the least effective 

classification technique. The result showed SVM-L generated 

2,948 transects, which was closest to the reference shoreline 

that generated 2,959 transects.   

The second and third performance measurements were not 

performed on the original data, as only SVM-L had the 

number of transects closest to the reference shoreline. 

Interestingly, SGD recorded the smallest mean score 

(approaching zero), which might render it as the most 

effective classifier. However, SGD’s number of transects was 

slightly less than SVM-L’s, thus elevating the latter to the top 

spot as the most effective classifier among the 11 classifiers.   

b) Validation of Smoothened Extracted Shorelines with 

PAEK 

Table 4 summarizes the results of validation of extracted 

shorelines after performing the smoothing process using 

PAEK with different tolerance configurations, as shown in 

Figure 6.  

 

Figure 6: The comparison between original and smoothened extracted 

shorelines using SVM-L 

In general, the number of transects of ML classifiers 

increased with increasing tolerance settings, ranging from 30 

m to 300 m. Notably, at the initial setting of 30 m, six 

classifiers, namely DT, NB, QDA, SVM-R, SVM-P and 

MLP, were observed to have slightly lower numbers of 

transects compared with the number of transects of the 

original extracted shorelines. For the remaining classifiers, 

the numbers of transects either remained the same or 

increased slightly at this initial tolerance setting. 

Furthermore, the maximum tolerance setting was 300 m, as 

the numbers of transects of some classifiers tended to 

decrease at this setting and beyond. Obviously, the classifiers 

had reached the optimal tolerance setting at 300 m. Quite 

surprisingly, at this maximum setting, three classifiers failed 

to achieve the maximum number of transects (i.e., 2,959), 

namely DT, LDA and SVM-P.  

  The second and third performance indicators were then 

considered after almost all the classifiers had reached the 

optimal number of transects. In general, the use of PAEK 

helped decrease the mean scores of classifiers with increasing 

tolerance setting. However, such a decreasing trend was not 

observed for two classifiers, namely LDA and LR, as their 

mean scores tended to increase.  

Table 4 
The number of transects of smoothened extracted shorelines using PAEK, 

with different tolerance settings 

 

ML  Original T=30 T=60 T=90 T=150 T=300 

DT 2,941 2,938 2,945 2,952 2,955 2,958 

NB 2,937 2,935 2,938 2,939 2,951 2,959 

KNN 2,947 2,947 2,951 2,954 2,958 2,959 

LDA 2,917 2,920 2,926 2,936 2,949 2,958 

QDA 2,932 2,930 2,931 2,937 2,945 2,959 

LR 2,935 2,942 2,942 2,947 2,956 2,959 

SGD 2,943 2,947 2,947 2,952 2,956 2,959 

SVM-L 2,948 2,949 2,951 2,956 2,959 2,959 

SVM-R 2,946 2,944 2,951 2,956 2,959 2,959 

SVM-P 2,941 2,938 2,945 2,952 2,955 2,958 

MLP 2,932 2,931 2,936 2,939 2,945 2,959 

 
     As shown in Table 8, at the tolerance setting of 300 m, 

SVM-L recorded a mean score of 0.26 m (which was closest 

to zero), thus making it the most effective classifier based on 

this measure. Likewise, KNN and SGD were also deemed 

highly effective based on their relatively low mean scores of 

1.44 m and -1.81 m, respectively. In contrast, NB and QDA 

were least effective, given their low mean scores of 18.04 m 

and 23.97 m, respectively. Surprisingly, DT, LDA and SVM-

P failed to achieve the maximum number of transects 

required, and hence they were not considered for further 

analysis.  

Table 5 
The overall mean scores of the original extracted shorelines and 

smoothened extracted shorelines using PAEK based on different tolerance 
settings 

 

ML  Original T=30 T=60 T=90 T=150 T=300 

DT 13.15 12.36 12.29 11.67 10.77 9.57 

NB 21.72 21.10 20.53 20.65 20.05 18.04 

KNN 4.15 3.67 3.72 3.54 2.44 1.44 

LDA -9.78 -10.11 -10.23 -10.36 -11.63 -13.32 

QDA 27.00 26.28 26.27 25.84 25.11 23.97 

LR -4.82 -5.31 -5.08 -5.19 -6.48 -7.95 

SGD 0.97 0.31 0.39 0.41 -0.59 -1.81 

SVM-L 2.50 2.08 2.26 2.33 1.28 0.26 

SVM-R 14.06 13.57 13.81 13.9 13 11.96 

SVM-P 13.16 12.37 12.30 11.68 10.78 9.57 

MLP 14.66 13.92 13.86 13.28 12.31 11.15 

 
Table 6 shows the overall mean distances between 

seawater (+ve) of the original extracted shorelines and 

smoothened extracted shorelines as generated by the 11 

classifiers with PAEK. Clearly, such mean distances tended 

to decrease with increasing tolerance setting, except for LDA 

and LR that had negative overall mean distances. Evidently, 

at the tolerance setting of 300 m, KNN, LR and SVM-L were 

the top three effective classifiers, as their positive mean 

distances were roughly 30 m, which were far smaller than 

others were. By contrast, QDA, NB, and MLP were deemed 
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least effective classifiers, given their relatively higher mean 

distances of roughly 40 m.  

Table 6 
The overall mean distance between seawater (+ve) of the original extracted 

shorelines and smoothened extracted shorelines using PAEK based on 
different tolerance settings 

 

ML  Original T=30 T=60 T=90 T=150 T=300 

DT 36.62 35.75 35.28 33.63 33.57 33.76 

NB 43.41 42.80 41.61 41.55 41.85 40.69 

KNN 30.38 29.77 29.61 29.02 28.91 29.63 

LDA 30.84 30.37 30.28 29.98 30.28 30.89 

QDA 46.51 45.60 45.22 44.15 44.27 44.91 

LR 30.37 29.85 30.08 29.55 29.95 30.31 

SGD 34.15 33.48 33.55 33.41 33.66 34.83 

SVM-L 30.96 30.34 30.42 30.18 29.97 30.6 

SVM-R 35.58 35.00 34.76 34.53 34.12 34.74 

SVM-P 36.64 35.76 35.29 33.65 33.59 33.76 

MLP 39.44 38.38 38.05 36.39 36.42 37.01 

 
Table 7 shows the overall mean distances between land 

(-ve) of the original extracted shorelines and smoothened 

extracted shorelines as generated by the 11 classifiers with 

PAEK. Clearly, such mean distances tended to increase 

with increasing tolerance setting, except for MLP that 

tended to decrease. Evidently, at the tolerance setting of 300 

m, QDA, NB, and MLP were the top three effective 

classifiers, as their negative mean distances were roughly -

20 m, which were far smaller than others were. On the other 

hand, LDA, LR, and SGD were deemed least effective 

classifiers, given their relatively higher negative mean 

distances of roughly -40 m. 

Table 7 
The overall mean distance between land (-ve) of the original extracted 

shorelines and smoothened extracted shorelines using PAEK based on 
different tolerance settings 

ML  Original T=30 T=60 T=90 T=150 T=300 

DT -22.73 -22.77 -22.24 -22.42 -23.20 -25.03 

NB -22.33 -22.14 -21.98 -21.52 -21.47 -22.4 

KNN -31.07 -30.99 -30.18 -30.1 -30.4 -31.18 

LDA -41.81 -41.7 -41.47 -41.28 -42.12 -43.58 

QDA -18.43 -18.43 -18.02 -17.44 -18.14 -19.24 

LR -36.57 -36.59 -35.59 -35.65 -36.4 -38.02 

SGD -37.35 -37.61 -36.95 -36.68 -37.18 -38.13 

SVM-

L 

-31.65 -31.62 -30.69 -30.17 -30.8 -31.97 

SVM-
R 

-27.49 -27.54 -26.96 -26.43 -27.22 -29.11 

SVM-

P 

-22.73 -22.77 -22.24 -22.42 -23.2 -25.03 

MLP -23.68 -23.59 -22.97 -22.57 -22.8 -23.28 

 

As shown in Table 8, SVM Linear was the most effective 

classification technique for the shoreline extraction based on 

three performance measures. Specifically, it had the highest 

number of transects with 2,959 instances, the lowest mean 

distance of only .25 m, and the third lowest mean +ve 

distance, as compared to other classifiers. Similarly, KNN 

and SGD were also held to be reasonably effective, given 

their relatively low mean distances of 1.44 m and -1.81 m, 

respectively. These mean distances, which were well below 

±5 m from the reference shoreline, are quite acceptable for 

this domain study. 

Table 8 
The results of validation assessment of smoothened extracted shorelines 

using PAEK with tolerance setting of 300 m 

 

ML 

Classifiers 
Transects Mean Mean (+) Mean (-) 

DT 2,958   9.57 33.76 25.03 

NB 2,959 18.04 40.69 22.40 

KNN 2,959   1.44 29.63 31.18 

LDA 2,958 -13.32 30.89 43.58 

QDA 2,959 23.97 44.91 19.24 

LR 2,959   -7.95 30.31 38.02 

SGD 2,959   -1.81 34.83 38.13 

SVM-L 2,959   0.26 30.60 31.97 

SVM-R 2,959 11.96 34.74 29.11 

SVM-P 2,958   9.57 33.76 25.03 

MLP 2,959 11.15 37.01 23.28 

 

By contrast, DT, LDA, and SVM-P were the least 

effective classification techniques, as attested by their low 

numbers of transects that precluded further analysis. In 

addition, QDA was deemed as an ineffective technique, 

because of its high mean distance of 23.97 m. Equally less 

effective were LR, SVM-P, and DT, as evidenced by their 

relatively low mean distances, which were well below ±10 m 

from the reference shoreline. Their mean distances to the sea 

(+ve transects) were recorded between 29.63 m and 44.91 m, 

while their mean distances to the land (-ve transects) were 

recorded between 19.24 m and 43.58 m. 

 

V. DISCUSSIONS  

 

A. Discussions 

In this study, 11 single machine-learning classifiers were 

used to perform a series of validation assessments on 

extracted shorelines. To achieve a precise extracted shoreline, 

the researchers had to perform a change analysis on the 

extracted shorelines with the reference shoreline. There were 

2,959 cast transects used to cover the reference shoreline, 

stretching 163.7 km in length.  Predictably, such 

classification techniques used to compare the distance 

between the extracted shoreline and the reference shoreline 

(which was generated from GPS data of a field survey 

provided by the local authority) had resulted in differences in 

the distance between those shorelines. In fact, the mean 

distance between seawater and land was approximately 30 m 

due to the spatial resolution of Landsat 8, which was 30 m. 

From the analysis carried out, SVM Linear was the most 

effective technique for extracting shorelines, as qualified by 

the high number of transects, the lowest mean distance 

between seawater and land of only .26 m, and the small 

deviations in the measurement of distance to seawater (+ve 

transect) and to land (-ve transect) of ±30 m. Therefore, 

practitioners should use this machine-learning classifier to 

help extract accurate shorelines of islands or landmass.  

 

VI. CONCLUSION 

 

In this study, the researchers carried out a series of 

validation assessments of extracted shorelines based 11 single 
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machine-learning classifiers with PAEK algorithm. This 

algorithm helped smoothen the extracted shorelines that 

would improve the extraction process. To determine the 

effectiveness of the classifiers, a change analysis was 

performed on the extracted shorelines with a reference 

shoreline (which was generated from GPS data of a field 

survey provided by the local authority). The image extraction 

generated 2,959 cast transects to cover the reference shoreline 

that stretched roughly 163.7 km. The analysis revealed that 

SVM Linear was the most effective classifier for extracting 

shoreline; in contrast, QDA was found to be the least effective 

classifier. Such different performances among the classifiers 

were attributed to the different machine-learning algorithms 

used in calculating the difference in distance between land 

and water classes. More specifically, the effectiveness of 

classifiers was based on three criteria, namely the number of 

transects, the mean distance between seawater and land, and 

the deviation in the mean distance. 

For future research, other classification techniques, such as 

DSAS that uses single baseline, could be utilized to perform 

the change analysis. The results of the analysis could then be 

compared with AMBUR that uses double baseline. In 

addition to using supervised satellite image classification 

using machine learning, shoreline extraction could be 

compared with other new techniques, such as ISODATA 

unsupervised classification, and spectral methods, such as 

Normalize Difference Vegetation Index (NDVI) and 

Normalize Difference Water Index (NDWI). 
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