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ABSTRACT

Considerable interest has developed in recent years to
understand transport phenomena in thermally stratified bound-
ary layers. More complete knowledge in this field is needed
to improve the prediction of the diffusion of air pollutants
in the lower atmosphere as well as 1n forecasting air-water
circulation for weather conditions.

The atmospheric boundary layer is modeled using the
equations of continuity, momentum, energy, and concentration.
Closure of this set of partial differential equations is
hindered by the turbulence terms. Using turbulence kinetic
energy, the system of equations 1is closed by internally
determining the exchange coefficients of heat, mass, and
momentum along with other atmospheric parameters. This
approach makes it possible for the history of turbulent
motion to be taken into account. Verification of this
model is made by systematically comparing the numerical
results with available wind tunnel data for neutral, stable,
and unstable conditions. Application of the model is made
to study the formation of advection fogs occurring over
cold sea surfaces. However, the predicted results of liquid
water and water vapor contents have yet to be verified with

actual data obtained from field measurements.
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NOMENCLATURE

coefficient of the general parabolic equation

constant used to relate turbulent shear stress
to turbulence kinetic energy

constant appearing in the dissipation term for
turbulence kinetic energy

empirical constant in van Driest model for ex-
change coefficient of momentum

coefficient of the general parabolic equation
coefficient of the general parabolic equation

maximum concentration, mg/cc

wall concentratien at initlial x lecation, mg/cc

concentration of species

fluctuation of concentration

source term for condensation or evaporation
specific heat of air at constant pressure

empirical constant based upon Kolmogorov model
for turbulence kinetic energy

coefficient of the general parabolic equation

molecular diffusion coefficient
turbulence kinetic energy dissipation, newt/m2~se

dissipation variable for turbulence kinetic
energy in terms of frequency squared

tensor for body forces appearing in the Navier
Stokes equation

constant strength of line source, mg/cm-sec

acceleration due to gravity, m/sec2



total, or stagnation,

static enthalpy, mz/sec

enthalpy fluctuation

X11

enthalpy, mz/sec
5 .

enthalpy generation of species n

diffusional flux for
diffusional flux for

von Karman constant,
Kelvin scale

exchange coefficient
. 2

Km/den51ty, m~/sec

exchange coefficient

exchange coefficie&t
energy, newt-sec/m

exchange coefficient

mean mass absorption

total enthalpy
species, or concentration

.41

of momentum, newt-sec/m2
of heat, newt—sec/m2

of turbulence kinetic

of species, newt-sec/m”

coefficient for fog

pressure gradient coefficient

Monin-Obukhov stability length scale, m

latent heat of condensation

Prandtl mixing length, m

empirical mixing lengths based upon Kolmogorov

model, m

mixing length for the dissipation of turbulence

kinetic energy, m

mass flux at a surface

wall boundary entrainment rate

free boundary entrainment rate
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mass of water vapor
mass of dry air

number of droplets per unit volume
static pressure, newt/m2
fluctuating pressure

partial pressure of water vapor
partial pressure of dry air

turbulence kinetic energy, mz/sec2
heat flux

scalar velocity in second order closure method

radiative flux divergence

universal gas constant for water vapor
universal gas constant for dry air
Reynolds number of turbulence

gradient Richardson number

flux Richardson number

production of species concentration due to
chemical reaction

temperature, °k

(0]

surface temperature °“K

(0]

free stream temperature, K

average absolute temperature of the boundary
layer

friction temperature

time, sec
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fluctuating temperature

mean velocity in the x-direction, m/sec
fluctuating velocity in the x-direction
free stream velocity, m/sec

mean velocity in the j direction, m/sec
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Eulerian velocity
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dimensionless velocity in the x-direction
specific volume

mean velocity in the z-direction, m/sec
liquid water content

terminal velocity of fog droplets

water vapor mixing ratio

coordinate in the main flow direction, m
coordinate lateral to main flow direction, m
coordinate normal to main flow direction, m

distance from source of concentration in the
main flow direction, m

thermal conductivity

power law exponent for velocity profile in
Couette flow region

fraction of radiation emitted from earth's
surface (long wave radiation)

local pressure gradient parameter

blowing fraction
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empirical constants to account for ther-
mal stratification

adiabatic lapse rate, g/Cp

power law exponent for dependent vari-
ables in the Couette flow region

dimensionless grid interval
boundary layer thickness, m

boundary layer thickness at initial x
location, m

thermal boundary layer thickness, m

ratio of Ra/Rv

eddy coefficient of momentum, newt—sec/mz

eddy coefficient of heat
eddy coefficient of concentration

empirical constant used in subgrid scale
method

constant associated with the van Driest
mixing length model

potential temperature, °k
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laminar Schmidt number
turbulent Schmidt number
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energy dissipation function
generalized dependent flow parameter
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1, INTRODUCTION

While turbulent boundary layers in the presence of
heat and mass transfer are quite commonplace in engineering
problems, great interest has developed in recent years to
understand transport phenomena in thermally stratified
boundary layers. Adequate knowledge in this area will be
valuable in predicting the diffusion process of air pollut-
ants in the lower atmosphere as well as in forecasting air-
water circulation for weather conditions.

Many physical parameters are involved in atmospheric
transport processes, such as wind, temperature, and concen-
tration of the diffusing medium as well as the geographical
terrain. Studies of atmospheric motions are hindered by the
turbulence generated from the interactions of all these re-
lated parameters. Moreover, due to the random motion of the
turbulence eddies, field measurements are often not suffi-
ciently adequate for formulating any mathematical model.

Investigations of atmospheric boundary layers are
often accomplished by wind tunnel simulations and numerical
modeling. Many questions have been raised as to whether
atmospheric turbulence can be realistically simulated in a
wind tunnel. No reliable answer is readily available. The
variation of the scale of turbulence throughout the atmos-
phere cannot be modeled in the wind tunnel. However, wind
funnel modeling has provided a means for controlling cer-

tain conditions, allowing important variables to be



collectively analyzed and used as a basis in formulating
analytical models.

The planetary boundary layer consists of two distinct
layers, each governed by its own particular set of flow pa-
rameters. The lower layer, in which most human activity
takes place, depends upon friction forces and is analogous
to turbulent boundary layer flow along a flat plate. The
upper layer is driven predominantly by both Coriolis and
pressure forces. When density stratification in the lower
atmosphere is caused by temperature stratification, the flow
is considered to be thermally stratified. In neutral strat-
ification, the vertical gradient of temperature equals the
adiabatic lapse rate, which corresponds approximately to a
1°C decrease in temperature per 100 meters of height. Un-
stable stratification, or lapse condition, results when the
temperature decreases faster than the adiabatic rate with
height. Consequently, as a parcel of air rises, the air
parcel becomse warmer than its environment, causing the den-
sity to decrease with the result that buoyancy accelerates
it upward. Stable stratification, or inversion, occurs
when the temperature increases faster than the adiabatic
lapse rate with height. This causes the rising air to be-
come cooler and more dense than its surroundings with the
result that the air parcel tends to return to its original
position. Due to the influence of these temperature gradi-
ents, the buoyancy forces on the flow regime therefore

either increase the rate of turbulence diffusion in the



vertical direction, corresponding to lapse conditions, or
impede turbulence diffusion, corresponding to an inversion.
In most engineering heat transfer studies, stratification
effects are negligible.

The source of concentration, or heat, can be either
constant or variable, and is usually approximated by either
a point or line source, located on the ground or at a spe-
cific height. Concentration may either be active, influenc-
ing the flow field by which it is transported, or passive,
independent of the flow field by which it is transported.
Most studies dealing with diffusion of pollutants have
assumed the concentration to be passive. In dealing specif-
ically with the case of marine fog studies, concentrations
corresponding to liquid water content and water vapor con-
tent are considered active.

The objectives of this research have been to develop a
suitable analytical model, using available empirical and
mathematical information, to numerically predict heat, mass,
and momentum transport for both wind tunnel experiments and
field measurements. A numerical scheme was used which
would allow for a wide range of applications suitable to
both engineering and meteorological processes. This study
is to verify the numerical method with available wind
tunnel data and to apply this method to predict the formation

of advection fog.



ITI. REVIEW OF THE LITERATURE

Numerous theories have developed in an effort to de-
scribe transport phenomena in the atmosphere. An adequate
study of atmospheric processes can be accomplished by coup-
ling experimental investigations with analytical theory.
Presentation of the literature in this review is given as a
logical progression consistent with this point of view.

A. Field Measurements

A considerable amount of experimental data has been
taken on atmospheric diffusion from fixed sources in lower
layers of the atmosphere, particularly the dispersion of
gaseous pollutants into the atmosphere. Fay, et al (1)
have complied a 1list of field data from various authors
pertaining to different types of air pollution.

Observation of plumes ejected from smoke stacks has
been analyzed by Briggs (2), who compared plume rise for
buoyant plumes in both stable and neutral air for both calm
and windy conditions. Hoult, et al (3) likewise observed
plume rise trajectories in an effort to simulate laboratory
measurements with empirical parameters. Haagen-Smit (4),
analyzing the presence of smog in the Los Angeles area,
correlated the effect of hydrocarbons and nitrogen oxides
with crop damage, eye irritation, and rubber cracking.
Wyngaard and Cote (5) made direct observations of surface
stress and heat flux over a horizontally uniform site and

compared dissipation and production of turbulence kinetic



energy for both stable and unstable conditions.

Field measurements have also been made over large geo-
graphical regions. Webb (6) studied diabatic mean velocity
and temperature profile forms taken from field data made at
O'Neill, Nebraska and from Kerang and Hay, Australia and
formulated constants used in the log-linear law for flow in
both stable and unstable conditions. Priestly (7) and
Lumley and Panofsky (8) document a considerable number of
field measurements concerning diabatic mean profiles for
heights up to tens of meters. Haugen, et al (9) used data
from Project Prairie Grass for investigating values of pa-
rameters appearing in Sutton's (10) diffusion models.
Sutton (11) likewise documents a number of experiments con-
cerning field measurements.

The oceans of middle and high latitude have a large
maximum frequency of fog in the summer season because of
advection of warm air over cold water. Because very few
advection fogs of this kind occur over land, little study
is available in the literature. However, recent investiga-
tions of the microphysical and micrometeorological proper-
ties of sea fog have been made by the Calspan Corporation
(see "Project Sea Fog") using shipboard procedures. Obser-
vations and measurements of drop size distributions and
visibility were made throughout the life cycle of fogs.

Sea-air interaction produces the environment of mois-
ture and sea salt particles in the lower atmospheric bound-

ary over the ocean surface. Numerous observations of the



sea-air interface have been made by Kraus (12). Wind and
temperature data were obtained by Deacon (13), from observa-
tions over the sea, in an effort to calculate roughness pa-
rameters for the sea surface. Hidy (14) reviewed a substan-
tial number of articles by various authors in an effort to
analyze air-sea interaction phenomena in the atmospheric
boundary layer. Field measurements dealing with the micro-
physics of the marine atmosphere are discussed in detail by
Roll (15).

Unfortunately, these field studies are difficult to com-
pare with one another due to the random nature of the atmos-
phere. Mean wind velocity and temperature gradients change
significantly in a very short time and cannot be controlled
during the long periods of sampling. Moreover, field studies
usually require considerable effort and expense from the in-
vestigator.

B. Wind Tunnel Simulation

Perhaps the most important factor regarding wind tunnel
modeling of the atmospheric boundary layer 1is that the ex-
periment can be controlled under specific conditions, allow-
ing many flow variables to be isolated and studied. The
greatest deterent to wind tunnel modeling 1is the difference
in the physical nature of turbulence between the atmosphere
and the wind tunnel. However, many of the flow parameters
are synonymous. Reynolds number, Richardson number, Prandtl
number, and Schmidt number can be readily applied to either

the wind tunnel or the atmospheric boundary layer. The



surface boundary conditions and certain turbulent character-
istics can be similarly related.

Specifically an atmospheric wind tunnel must develop a
very thick boundary layer and be capable of creating a wide
range of Richardson numbers, i.e., temperature and velocity
gradients. The requirements of such modeling have been re-
ported by Cermak, et al (16). Chuang and Cermak (17),

Plate (18), and Plate and Lin (19) showed that velocity pro-
files in a meteorological tunnel were similar to those ob-
served in the atmospheric surface layer. Schon and Mery

(20) have likewise shown a method for artificially simulating
a neutral atmospheric surface layer using wind tunnel tech-
niques. Presently there exist facilities for meteorological
wind tunnels at Colorado State University, New York Univer-
sity, Calspan Corporation Laboratories, The Ecole Centrale
Lyonnaise, and several others.

Poreh and Cermak (21) studied the diffusion of ammonia
gas from a line source at ground level for ambient veloci-
ties of 2.74, 3.66, and 4.87 m/sec (9, 12, and 16 ft/sec)
in a neutral atmosphere. The downstream diffusion pattern
was divided into four separate zones: 1initial, intermedi-
ate, transition, and final. Poreh intorduced a similarity
parameter, A, defined as the distance from the wall where
the concentration is equal to 50 per cent of the wall val-
ue. Within the intermediate zone, A was found to be ap-
proximately equal to the horizontal distance from the

source, XS, to the 0.8 power, AZX;B, and the maximum ground



concentration was found to vary as Cm «X;’Q/Uw. Velocity

ax
distribution was found to follow the 1/7 power law. The
intermediate zone was defined as that region where
.37<)\/8<.64, 8§ being the boundary layer thickness.

Quraishi (22) experimentally investigated the diffusion
of ammonia gas from a line source located at ground level
and elevated positions under neutral conditions. Flexible
roughness elements were fixed on the floor of the wind tun-
nel test section consisting of plastic strips fastened to
wooden strips. Free stream ambient velocity was 6.10 m/sec
(20 ft/sec). The concentration field was divided into three
zones according to distance from the source and were found
to follow three different universal functions. It was found
that as the elevation of the source increased, the concentra-
tion at ground level for a short distance from the source
was lower than for a ground level source, increasing to a
peak value and then decreasing asymptically as though for a
source at the boundary. Both longitudinal and lateral tur-
bulence intensities and Reynolds shear stress were measured
using hot-wire anemometry.

Davar (23) used a continuous point source with a turbu-
lent boundary layer over a smooth neutral boundary and
studied the characteristics of diffusion plumes at an ambi-
ent air velocity of 1.83 m/sec (6 ft/sec). He varied the
source height over a range of 0 to .127 meters (5 inches),
using anhydrous ammonia as a tracer gas. Bhaduri (24)

likewise used a continuous point source with a turbulent



boundary layer over fixed wooden strips in neutral stability
and ambient air velocity of 3.81 m/sec (12.5 ft/sec). Ele-
vation of the source varied from 0 to .0254 meter (1 inch).

Schon and Mery (20) used the method of injecting air
upstream of a boundary layer in order to simulate a neutral
atmospheric surface layer. A comparison was made with other
laboratory data obtained by using a shear screen device to
artifically thicken the flow regime. Although mean veloc-
ity profiles were similar, the velocity fluctuations did
not represent those of a neutral boundary layer, as in the
case of the air injection method. Good agreement was found
to exist between the laboratory and atmospheric data for
fluctuating spectra. Turbulence intensities in three di-
rections were measured along with Reynolds shear stress at
four different locations for an ambient velocity of 6.5
m/sec. Comparison of turbulence intensity in the simulated
tunnel with that in the real atmosphere showed the turbu-
lence characteristics in the tunnel to be less intense by
5-10 per cent.

Arya (25) experimentally investigated the structure of
a stably stratified thick boundary layer. Unfortunately no
mass diffusion experiments were made, but measurements of
mean velocity, temperature, turbulence intensities in three
directions, Reynolds shear stress, heat fluxes and turbulent
spectra were made at two locations downstream of the lead-
ing edge of the test section. In the logarithmic law of the

wall, empirical constants for mean velocity and temperature



10

were found to be valid for both atmospheric data as well as
wind tunnel data. The ratio of the turbulent exchange co-
efficient of heat to that of momentum was found to be 0.75,
which is in general agreement with Fleagle and Businger (26).
The small scale structure of turbulence remained unaffected
by stability, however the magnitude of turbulence production
and dissipation reduced significantly as stability increased.
Chaudhry and Meroney (27) studied the downwind diffu-
sion of a passive gas in a stably stratified turbulent shear
layer. A micrometeorological wind tunnel was used in which
the air was heated and the wind tunnel floor cooled. Con-
centration characteristics were compared with atmospheric
observations and showed favorable agreement. A summary of
wind tunnel diffusion experiments conducted at Colorado State
University was given for the period prior to their report.
Malhotra (28) investigated the diffusion of ammonia
from a ground level point source within a two dimensional
boundary layer for both neutral and unstable conditions for
ambient velocities of 1. 83, 1.98, and 2.74 m/sec (6, 6.50,
and 9 ft/sec). A synthetic line source was obtained by
numerically integrating the point source data. The concen-
tration distribution for both neutral and unstable condi-
tions were found to follow identical universal dimensionless
curves. A comparison between heat diffusion data of
Wieghardt (29) and mass diffusion data showed that univer-
sal distribution curves were similar for both point and 1line

sources located on the surface of an isothermal boundary
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layer.

Wieghardt (29) measured the temperature distribution
from a point and line source of heat on the bottom of a tur-
bulent boundary layer. Measurements were made at ambient
velocities of 5.40 to 30.9 m/sec at various downstream loca-
tions from the faint source of heat. Line source data
showed that A*, the similarity parameter for heat analogous
to that for concentration could be related by \*=
const.XS/(UwXS/v)'Z, where XS is the horizontal distance
from the source and v the kinematic viscosity. An empirical
relation was likewise derived for the wall temperature as a
function of U_, ¢, XS, and the strength of the heat source
per unit length. Malhotra (28) found that the results of
Wieghardt (29) were similar in behavior to the mass diffu-
sion data of Poreh (30).

While wind tunnel diffusion data exist in detail and
show good qualitative agreement with observations in the
atmosphere, the scale of turbulence and range of variables
still differ. Inconclusive results exist as to the varia-
tion of exchange coefficients for heat and mass from exper-
imental data. A wider range of flow conditions, coupled
with types of sources and driving mechanisms, have yet to
be analyzed. Although these criteria are substantial
detriments to wind tunnel simulation, data can be obtained
which may contribute to an understanding of basic mechan-

isms associated with atmospheric diffusion and turbulent

flow phenomena.
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C. Anayltical Models
Mathematical analysis of the turbulent transport pro-

cesses are discussed extensively by Rao, et al (31) and
Monin and Yaglom (32). Based upon their studies, transport
phenomena occurring in the atmosphere can be classified into
three distinct categories, dependent upon the method used to
describe the diffusion mechanism: 1) exchange coefficient
approach, 2) turbulence kinetic energy approach, and
3) statistical theory.

1. Exchange Coefficient Hypothesis

The equations governing turbulent flow, while similar
in form to laminar equations, involve the added complexity
of turbulent flux terms and prove to be very cumbersome in
obtaining realistic solutions to actual flow phenomena.
Boussinesq (33), assuming that turbulent fluxes are directly
proportional to mean gradients of independent variables,
introduced the concept of an eddy coefficient. He replaced
the double correlation terms appearing in the turbulent
equations by an eddy coefficient term times a mean gradient
tensor. Following the procedure described by Malhotra (28),
the conservation equation for concentration, C, can be

written in terms of mean variables as

2
3X;
j

oC

oC 3 - - ou'cT

where the overbar denotes time averaged quantity, the prime
denotes fluctuating component, and D. the molecular diffu-

sion coefficient. The fluctuating term for mass flux is
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related to the mean concentration gradient through the eddy

coefficient, S such that

pTTET = -c g% (2-2)
J

The eddy coefficient is not considered a real property of

the fluid but is effective only is there is some flow of the

fluid. The problem therefore becomes apparent when attempt-

ing to describe the eddy coefficient in terms of realistic

variables.

Equation (2-1) may be written as

3C 3 _ B Yo
3t * X, L.€) = 8Xj{(Dc * B axj}

(2-3)

The exchange coefficient of concentration, KC, is defined as

KC = DC e The concentration equation is therefore re-

written as

3C 9 _ 3 8 i
3t a‘xj(ch) = axj(Kca'x.) L2-4]

The concept of expressing the mass fluctuations in terms of
the exchange coefficient of concentration, Kes is commonly
referred as the "K-theory'" by meteorologists. Numerous
closed solutions have been obtained using equation (2-4) as-
suming the exchange coefficient to be either constant, vary-
ing with height, or based upon the phenomenological mixing
length theory.

Models dealing specifically with the exchange coeffi-
cient of concentration may be simply described by the Fick-

ian diffusion model, power-law models, and Calder's
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diffusion model, as described in detail by Rao, et al (31).
These models lead to empirical relations in which the ex-
change coefficients are constant throughout the boundary
layer, or a function specifically of height and friction
velocity, u*. Despite their apparent usefulness, their
drawback lies in the fact that the exchange coefficients
vary as a function of the scale of turbulence throughout
the atmosphere. This was pointed out by Richardson (34) in
comparing values for molecular diffusion with diffusion dur-
ing atmospheric storms. Moreover, equating the exchange
coefficients of heat and momentum to the diffusion coeffi-
cient results in a expression mathematically desirable but
not realistic in accounting for the effect of surface
roughness or thermal stratification.

a. Mixing Length Theory

The mixing length concept has been used by many due to
its relative simplicity in obtaining solutions adequate for
engineering problems. Meteorologists have long assumed that
the surface layer of the atmosphere can be regarded as a
constant flux layer. The eddy coefficient of concentration
is assumed to vary linearly with height and to depend upon
the initial value of the friction velocity, u*, at the sur-
face - analogous to the mixing length concept.

Introduction of the mixing length concept was origi-
nally made by Prandtl (35), who experimentally observed
momentum exchange in turbulent flows. He concluded that

the exchange coefficient of momentum for plane flows could
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be written as a product of a mixing-length parameter and the
cross stream gradient of the mean velocity, and assumed the
mixing length proportional to the width of the mixing re-
gion. In theory, a lump of fluid carried a constant amount
of momentum determined by the difference in mean velocity
between adjacent parallel planes. Prandtl (36) later re-
vised his concept by including additional terms containing
the second order derivative of the mean velocity in the
stream direction and a length parameter.

Taylor (37), developing a theory similar to Prandtl
(35), assumed that vorticity might be considered a trans-
ferable quantity for two-dimensional flow. The eddy coeffi-
cient differed from Prandtl's model by a factor of 2.
Further extension of the vorticity-transport theory to three
dimensional flow tended to sacrifice accuracy for simplicity.

Von Karman (38) likewise made the assumption that the
value of the mixing length is determined by local flow con-
ditions described in terms of quantities determined by these
local conditions. Unreasonable results occurred, however,
where the second derivative of the mean flow, appearing in
the denominator, became zero, i.e., the eddy coefficient of
momentum became infinite. Hinze (39) points out that this
particular model does not appear to offer many advantages
over Prandtl's simpler assumption, while all three theories
lack the ability to describe the transport of turbulence in

detail.

Van Driest (40), using a modification of the mixing
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length theory, was concerned with a layer in which the
shear stress was everywhere equal to that at the wall. He
assumed that the eddy coefficient of momentum decayed expo-
nentially to laminar viscosity near the wall, but became
proportional to the distance from the wall in the center
region of the boundary layer.

Patankar (41) slightly modified van Driest's relation
by replacing the wall shear stress with the local shear
stress in the fluid. The Reynolds stress term is defined

by Prandtl's hypothesis as

U, oU
T ETR A R B S B }
pu1u3 pL |3X3l3X3 (2-5)
where p is the fluid density, 2 the mixing length, X3 the

vertical distance normal to the direction of flow, and
|8U1/8X3| the absolute value of the cross-stream velocity

gradient. Combining the laminar viscosity and employing the
assumptions of van Driest (40), the exchange coefficient of

momentum was written as

Km = u + pnzxg[l - exp{-XSV?SV(uA+)}]2|8U1‘ (2-6)

where A, and n are constants, p is the laminar viscosity,
and T is the local shear stress. The exponential term is
seen to be effective only in the region near the wall and
tends to dampen the eddy motion of the fluid as the flow
approaches the wall.

Cebeci, et al (42) formulate an expression for the

eddy coefficient based upon van Driest's (40) hypothesis
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and similar to that originated by Patankar (41), using modi-
fied empirical constants and reintroducing the wall shear
into the exponential term. Two expressions for the eddy
coefficient were used to account for the inner viscous sub-
layer region and the turbulent viscosity in the outer region
of flow. Cebeci and Mosinskis (43), in a later work, again
modify their expression for the eddy coefficient 1in order to
account for the effect of mass transfer in the inner region
of flow.

A number of mathematical models have been developed by
meteorologists based upon a somewhat analogous form of the
mixing length concept in accounting for the exchange coeffi-
cients. Nearly all assume that the exchange coefficient for
momentum, heat, and concentration are identical, and that
they are a function of vertical height and either velocity
or temperature gradient, in the case of thermal stratifica-
tion.

Using the application of dimensional analysis in formu-
lating turbulent diffusion phenomena, Monin and Obukhov (44)
assumed that the flow in an atmospheric boundary layer
could be completely determined by the friction velocity, u¥*,

and a stability length scale, L, defined as
3
*
R b 5 (2-7)
KD (- 5t

m

where k is the von Karman constant, q the turbulent heat

flux, p the density of air, Cp the specific heat, g the
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acceleration of gravity, and Tm the mean absolute temperature
of the surface layer. A temperature scale was likewise de-

fined for a steady, horizontally homogenoeus flow as

t* = = EC—-"qwk—d—*— (2‘8)
P

Ellison (45), considering flow over an infinite rough
plate, assumed that shear stress and heat flux remain con-
stant with height. Neglecting diffusion terms, Ellison re-
placed double correlations in the turbulence equations with
decay times such that, in the absence of production terms,
these quantities would begin to diminish. Ratios for momen-
tum and heat exchange coefficients were obtained as a func-
tion of these decaying time terms, friction velocity, and
flux Richardson number. Townsend (46) analyzed flow in a
stably stratified fluid far from boundary interaction by
assuming homogeneous flow in the direction of shear and
inhomogeniety in the direction of flow. Dissipation terms
were expressed as a function of two length scales.

Yamamoto and Shimanuke (47), using a numerical solution
for a two-dimensional diffusion equation, obtained an expres-
sion for KC based upon a general velocity distribution from
the similarity theory of Monin and Obukhov (44) and a fourth
order equation to describe the variation of XS/L' Later
work by Yamamoto and Shimanuke (48), in extending the above
treatment to three dimensional diffusion from a point source,
assumed the lateral exchange coefficient of concentration to

be a function of u*, k, and empirical functions determined
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from the observation of the lateral spread of smoke at vari-
ous stability conditions.

Estoque (49), numerically modeling transport phenomena
in the atmosphere, assumed that the planetary boundary layer
consisted of three distinct strata: a soil layer; a surface
layer in which the vertical fluxes of heat, momentum, and
moisture were constant with height; and an overlying transi-
tion layer where the influence of turbulent transfer proces-
ses gradually decrease with height. The exchange coeffi-
cient was assumed to be a function of the gradient Richard-
son number, the surface roughness, and the average potential
temperature gradient. The exchange coefficient was assumed
to decrease linearly with height in the transition layer.
Unfortunately the numerical model neglected the effect of
horizontal advection and, coupled with the attempt to de-
scribe the turbulent mixing process in the transition layer
with a linearly decreasing exchange coefficient, resulted
in unrealistic characteristics of the boundary layer.

Fisher and Caplan (50) attempted to predict the forma-
tion of fog and stratus using a slightly modified version
of Estoque's exchange coefficient. An upper and lower value
was imposed upon the coefficient to prevent exaggerated
values. The exchange coefficient of momentum was assumed
to be equal to the coefficients of heat and water vapor.
Although results appeared reasonably valid for simple cases,
the biggest defect of the model was the failure to make the

exchange coefficient an internal parameter of the model.
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A more recent model involving the potential temperature gra-
dient and based primarily upon the Fisher and Caplan (50)
model was made by Mack, et al (51). The exchange coeffi-
cient, while a function of local stability, was deduced from
the Monin-Obukhov (44) similarity theory and a fourth order
equation for XS/L' A modification of the exchange coeffi-
cient was necessary to prevent extreme discontinuity near
the upper boundary of the surface layer.

Blackadar (52), in describing the momentum exchange co-
efficient in a neutral boundary layer, used Heisenberg's
(53) hypothesis of energy dissipation and mixing length re-

lated by

Km = X 2 o (2-9)

with 2, the mixing length, defined by

2 = kXg (1 + kXS/Q)_l (2-10)

where @ is an empirical length parameter and k the von

Karman constant. The energy dissipation term is given as
oU U
_ 1.2 3.2 -1
L= Km{(gyg) ® (gig) }o (2-11)

Using these above relationships, Blackadar obtained as a
general statement for the exchange coefficient

5U Ue 5 4 kX

9
- 1.2 2% 3 2
fn = 1GxD" * G Y i) ° LA~12]
3 3 3
The advantage of this model over previous relations for Km
is the fact that at small heights, the mixing length in-

Creases linearly with height and reaches a fixed value at
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upper limits of the atmospheric surface layer. Zdunkowski
and Trask (54), investigating the effect of nocturnal tem-
perature changes over various soil types for analyzing the
stability of radiation fog, used a variation of Blackadar's
(52) exchange coefficient generalized by Wu (55) to account
for thermal stability. Results using this form of exchange
coefficient showed a numerical discontinuity occurring in
the upper region of the boundary layer and a modification of
the model was necessary in order to extrapolate the momentum
exchange coefficient to zero.

b. Rate Equation Hypothesis

An analytical approach to mass diffusion in a two-
dimensional thermally stratified boundary layer is given by
Rao, et al (31) based on an extension of the nonlocal phe-
nomenological differential theory developed by Nee and
Kovasnay (56). A rate equation is assumed to govern the
momentum exchange coefficient, K$ = v + em/p, in a ther-

mally stratified boundary layer as

* * % * % _
Ulgim * Usgim = ag (K*zim) + ACKY - V)izl - 2l 7 ?
1 3 3 Mofg m 3 X
R; 3U
— o i r@ = — -
hoh (KE - v)ss (2-13)
. 3

where R, is the gradient Richardson number, oy is the tur-
bulent Prandtl number, and the three empiricaltconstants A,
B, and E are given as A = 1., B = 1., and E = 1. The

generation or decay of turbulence due to the effect of

buoyancy is represented by the last term in equation (2-13).
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Although more complicated than the mixing length hy-
pothesis, simulataneous solution of the rate equation with
the equations of motion results in a theory which overcomes
the effect of localness given by the older phenomenological
theories and allows the past history of the flow to influ-
ence the solution.

2. Turbulence Kinetic Energy Approach

A more realistic approach to the modeling of the eddy
coefficient concept is the suggestion made by Kolmogorov
(57) that the eddy coefficient in a turbulent flow might be
expressed as a function of the local kinetic energy of turbu-
lence, Q, in which Q is defined as: Q=%(uiUi). As a result,
a number of empirical models have been developed in an at-
tempt to close the turbulence kinetic energy equation with
the governing equations of motion.

a. One-equation Models

Using the hypothesis by Kolmogorov (57) and Prandtl
(36) of coupling the kinetic energy of turbulence with a
characteristic length scale, 2, Patankar and Spalding (58)

defined the exchange coefficient of momentum as

1
K. = 1w+ 20Q~ (2-14)

where p is the dynamic viscosity and p the density of the

fluid. This relation was also used by Glushko (59). The
L

term, %2pQ*, was used only where the flow was fully turbu-

lent, a condition expressed by a '"local Reynolds number of

turbulence'" given as
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R, = 2pQ%/u (2-15)

Wolfshtein (60), using the Kolmogorov turbulence kinetic
energy hypothesis, obtained numerical solutions for Couette
flow with turbulence augmentation, pressure gradient, and
turbulent duct flow. The characteristic length scales were

defined as functions of X, and the Reynolds number of tur-

3

bulence, R, . The dissipation of turbulence kinetic energy

was defined by

3/ 2
.416p
D, = Ao0pd 2-16
9 T (2-16)
where
B = Hgfl ~ exp(-.263R. )} (=177

An extension of this particular model was made by Wolfshtein
(61) in using the turbulence kinetic energy equation to ob-
tain steady two-dimensional solutions of the elliptic gov-
erning equations for a turbulent impinging jet. In both
cases, the length scale was set equal to the distance from
the wall for regions near the wall. Use of the Kolmogorov
model was further emphasized by Gosman, et al (62) in ana-
lyzing heat and mass transfer in two-dimensional recircu-
lating flows. A differential equation similar to the equa-
tion for turbulence kinetic energy was introduced to account
for the length scale. A generalized set of equations was

given which could be adjusted to any particular flow geome-

try or condition.
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Bradshaw, et al (63), using a linear relationship to re-
late the turbulent shear stress to the turbulence kinetic
energy, as suggested by Nevzglajdov (64), assumed that

—pG§E§ = a;0Q (2-18)
where a; is an empirical constant, p the fluid density, and
Q the turbulence kinetic energy, defined by Bradshaw as Q =
(uiui). By converting the turbulence kinetic energy into a
shear stress equation, a hyperbolic set of equations was de-
veloped to account for the mean momentum, continuity, and
shear stress. Numerical integrations of these equations
were obtained by using the method of characteristics. The
resulting equation for shear stress was written as a function
of three empirical parameters, a, LQ, and G, which depend on

the shape of the shear stress profile and are defined as

a; = 1/0Q
= 3/2 -
LQ (t/p) /DQ (2-19)
T L
- (W' ' mytT
G = (B + qu)/ (5™ —
where D, is given as
Q 3U,3U

Based upon the measurements of Klebanoff (65), a; was found

to be equal to 0.15. The relations for LQ and G were given
as empirical functions related to Q and T the maximum

shear stress in the profile. Evaluation of this model in

analyzing measurements of the turbulent structure in
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equilibrium boundary layers was later discussed by Bradshaw
(66) to account for the influence of pressure gradients.
Using the linear relation suggested by Nevzglajdov (64)
and the initial work of Bradshaw, et al (63), Harsha and Lee
(67) correlated some existing experimental data in jets and
wakes and concluded that a reasonable degree of similarity
existed between free turbulence and fully developed boundary
layers for the constant ag . Byrne (68) investigated the in-
fluence of mass injection and pressure gradient on two-
dimensional turbulent boundary layers using the turbulence
kinetic energy equation as one of the governing equations of
motion with the linear model of Nevzglajdov (64). The dis-

sipation term in the turbulence kinetic energy equation was

defined by

Dy ~ asz3/2/6 (2-21)
where

a, = 1.8 X3 > XSTm

(2~22]}
XSTm

a, = 1.8 XS X3 < XSTm

and XSTm is the location of the maximum shear point. The

value of 1.8 was determined by numerical experiments in con-
junction with the earlier work of Lee and Harsha (69). A
similar study was made by Lee, et al (70) using turbulence
energy to study the transfer of heat, mass, and momentum in

an incompressible self preserved turbulent boundary layer
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along a flat plate for both accelerating and decelerating
flows with suction and blowing. Comparison of results with
atmospheric wind tunnel data of Arya (25) and Malhotra (28)
indicated that the prospects of using the turbulence model
of Nevzglajdov (64) in analyzing atmospheric boundary layers
were good.

By relating the turbulent shear stress to the local val-
ue of turbulence kinetic energy, Glushko (59) simultaneously
solved the continuity, momentum, and turbulence kinetic en-
ergy equations, using an expression containing an empirical
function related to the local value of turbulence kinetic
energy, Q, and a universal function related to distance from
the wall. The production and dissipation of turbulence ki-
netic energy were defined as a function of Q%, characteris-
tic mixing length, and p, the dynamic viscosity of the
fluid. The total diffusion of turbulence kinetic energy was
assumed to be related to the gradient of turbulence kinetic
energy, based on the turbulence measurements of Klebanoff
(65).

b. Two-equation Models

Recent interest has developed in the use of turbulence
models in which one or more turbulence quantities are found
from the solution of two or more transport equations. Jones
and Launder (71) proposed a two-equation model based on the
simultaneous solution of the turbulence kinetic energy and
a turbulence dissipation rate. The equation for turbulence

kinetic energy was written as
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Q

and the equation for turbulence dissipation rate as

2
oD SD oU C,pD
pUjan "X“{(“ * _“)SX‘} * cl__Qe ("XL)Z - 2Q s
Q
ue BZU
+ (“—7—) (2-24)

where DQ is the dissipation of turbulence kinetic energy for

both equations, 0y = 1.0, op = 1.3, C1 = 1.45, C2 = 2.0, and
Q
€ the eddy coefficient of momentum, given as
e = C_pQ%/D (2-25)
m U Q
where
Cu = .09 exp.{—Z.S/(1+Rt/50)} (2-26)

with R, being the turbulent Reynolds number. The dissipa-
tion equation is seen to parallel the turbulence kinetic
energy equation. Each equation assumes that diffusional
transport proceeds at a rate proportional to the product of
the turbulent exchange coefficient and the gradient of the
property in question; the generation and decay terms are
likewise similar.

Gibson and Spalding (72) formulated a two equation
model for turbulence kinetic energy introducing a partial

‘differential equation for F, a variable having dimensions
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of frequency squared, along with an equation for turbulence

kinetic energy, Q. The equations for Q and F are written as
follows:
y3Q . 3 (K_m 9y ., . 3U1)2 c (2-27)
PY33%XT T 3X, ‘G, IX, m 33X,
j 3 "k 3 3
U aF _ 3 (_:K_m aF ) + C e ( ) _ C FZ
PY5EX 3X; 0 9%5 1°m' 2 2P
L oUy
where CD’ Cl’ CZ’ and C3 are emplrical constants. The ex-
change coefficient of momentum, K > is given as
Kp = w ey
(2-29)
-4
€n = CUpQF 2
con-

where € is the eddy coefficient of momentum and Cu

stant. The dissipation exchange coefficient is related to

the momentum exchange coefficient Km through the empirical

parameters o, and o,. The constants in the turbulence model

F

are obtained empirically.

Launder, et al (73) analyzed the performance of three

distinct classes of turbulence models:

1) eddy coefficient

models - length scale found from a partial differential

equation of transport, 2) eddy coefficient models - length

scale found by algebraic formulae, and 3) shear stress

models in which the shear stress is the dependent variable

of a partial differential conservation equation.
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models were discussed within each class and a comparison

made with twenty three different test cases and experimental
data. The turbulence models which determine the length scale
of turbulence from the transport equation for energy dissi-
pation rate were found to give more correct predictions over
a wider range of flow conditions than models using algebraic
relations for the length scale.

c. Second Order Closure Model

An invariant second order closure model was developed
by Donaldson (74) in an effort to numerically predict the
dispersion of pollutants in a thermally stratified atmos-
phere. While mathematically more accurate than the previ-
ously discussed models, the second order closure method is
considerably more complicated, and requires a number of em-
pirical constants.

Following the technique used by Reynolds (75), the
equations for the properties of a turbulent atmospheric
shear layer are expressed as the sum of mean values of the
variables plus fluctuating components corresponding to these
mean values. As an example, the equation of motion, after
time averaging, becomes

80

Py * pUj

= = 3U.
- _ oP pgT 3 1 =
> oUW axj(“axj Pujuz) (2-30)
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where the overbar indicates the average value of that quan-
tity while the prime denotes instantaneous fluctuation. The
Reynolds stress term 1s introduced from the turbulent motion

as pu{ué. An equation for the velocity fluctuation can be



30

obtained by subtracting equation (2-30) from the unaveraged
momentum equation. Multiplication of the resulting equation

by uk and time averaging produces the equation

ou! ou’ 3U au! —5T
+ oTar - _ 1

i = 1 i o 1
Pupse ¥ Q(Ujuiaxj RIS ) oo uk“j?Y;)

[y + 1 2 '

pg Ut 0 us
o ) — (2-31)
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Interchanging i and k in equation (2-31) and adding the re-
sulting equation to (2-31) gives the equation for the Rey-

nolds stress correlation

auiuﬁ Bu{ui auk 8U1 3
— - - 1 1 - [ 1 T
5t * pUj—a—XJT‘ B S k2 SR S k- o Q'B'X'j'(uiujuk)
v T
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where the overbars have been removed from the mean quanti-
ties for simplicity. If the same scheme is applied to the

energy equation, an equation for the heat flux term, puit'

b

can be obtained similar to equation (2-32). Since t'? arises
in the transformed energy equation, an equation for this
second order correlation can be obtained by multiplying the
equation for the temperature fluctuation, t', with 2t', re-
sulting in an equation similar to equation (2-32). Appli-

cation of the Reynolds scheme to the concentration equation

likewise produces equations for c'ui and c'? analogous to
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those for shear and energy. An additional term pc't' ap-
pears in the concentration flux equation which represents
the production of concentration transport in the direction
of gravitational acceleration due to fluctuations in temp-
erature. Closure of the set equations 1is completed by de-
riving an equation for pc't' in the same manner.

The complete set of equations, based upon the second
order closure model, is given by Donaldson (74) as: 1) con-
servation of mass, 2) conservation of momentum, 3) conser-
vation of energy, 4) conservation of species (concentration),

5) equation for puiui, 6) equation for puﬁt', 7) equation

for t'?, 8) equation for puic', 9) equation for pc'™t', and

10) an equation for pc'?Z.

The triple correlation terms appearing in the turbu-
lence flux equations were reduced to second order correla-
tions by introducing a scalar length, Au’ and a scalar ve-

locity, q given as

q, = Yuyu; (2-33)

As an example, the triple correlation appearing in equation

(2-32), uiuﬁuﬁ, is redefined as

1 T¥33733F = . 9 TR ETHE 0 TR ETRE 0 A ETRE _
where the minus sign insures diffusion from regions of high
turbulent intensity to regions of low intensity. The triple
correlation, uéuﬁt', occurring in the equation for puit', is
modified to
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T FET - 0
ujukt = - A q{axj(u ) + BXk(u )} (2-35)

By analogy with equation (2-34), the remaining triple cor-
relations are redefined as a function of length scale,
scalar velocity, and double correlation gradients.

It 1s apparent that in order to perform the numerical
calculations involving the second order correlations, it 1is
necessary to determine the various length scales, Aa’ corre-
sponding to each particular double correlation equation.
Relations for the length scales were i1nitially formulated by
Donaldson (74) in analyzing boundary layer flows by assuming
A, = Caé, where Cu i1s an empirical constant and § is the

boundary layer thickness. An equation for Aa’ similar to
those for the second order correlation terms, was suggested
by Donaldson (74) in an effort to more realistically account
for the variation of Aa' This concept, however, was not
discussed in detail.

Numerical results proved to be quite realistic and pro-
vided some interesting results regarding the contribution of
the double correlation flux terms appearing in the governing
equation to the main motion of the flow. However, comparison
with existing data does not show the second order closure
method in its present state to be significantly better than
some existing eddy transport models; this could perhaps be

due to the simplication procedure in describing the length

scales. Similar application of the second order closure
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method was discussed by Weinstein (76) in analyzing fog for-
mation. Unfortunately, the model was not compared with any
experimental data and the numerical predictions not carried
out in detail.

d. General Circulation Models

Clearly two-dimensional simulation of turbulence 1s not
applicable to the three-dimensional nature of the atmosphere.
While the use of two-dimensional concepts 1in describing the
physical nature of turbulence has produced fairly accurate
approximations with experiments, the two-dimensional descrip-
tions are valid only under certaln restrictions.

A number of investigations have been made in an effort
to numerically simulate three-dimensional flow while retain-
ing two-dimensional modeling techniques, using an exchange
coefficient hypothesis. A review of these methods will not
be given here.

A general numerical technique was developed by Patankar
and Spalding (77) for the calculation of transport processes
in three-dimensional parabolic flows. Because of the basic
assumptions regarding boundary layer flow, the three-
dimensional procedure was related principally to the two-
dimensional work developed earlier by Patankar and Spalding
(58) and Gosman, et al (62). Although dealing specifically
with general flow equations, inclusion of the turbulence
terms into the general scheme along with a closure model for
the second order turbulent flux terms was not investigated.

A considerable amount of research has been undertaken at
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the National Center for Atmospheric Research, NCAR, dealing
with three-dimensional simulation of turbulence in an effort
to predict global circulation phenomena. A numerical study
of three-dimensional turbulent channel flow was made by
Deardorff (78), in which the time dependent equations of
motion were closed by using a subgrid scale averaging tech-
nique, SGS , to account for the exchange coefficient of mo-
mentum, Km. This method used an averaging operator which
was applied to the governing equations in order to filter
out subgrid scale motion. The exchange coefficient, Km, was

related to a length interval, A, as

59Uy 8Ui an i
J 4 1
where ¢z is equal to 0.10. Although clearly analogous to a mix-

ing length hypothesis, application of this meteorological
approach to three-dimensional plane Poiseuille flow proved
to be successful in predicting general shapes and detailed
flow patterns, but did not compare favorably with measured
mean velocity profiles. Profiles were obtained for turbu-
lence intensities and Reynolds shear stress along with en-
ergy balances for the production, diffusion, and dissipation
terms appearing in the turbulence kinetic energy equation.
Results clearly showed the cascading nature of turbulence,
particularly the transport of momentum towards the bound-
aries.

Recent work by Kasahara and Washington (79) has lead

E0 numerical simulation of the atmosphere to include the
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effects of orography, radiation, and surface temperature.
The earth's surface was divided into three regions: oceanic
regions, snow and ice free continents, and snow-ice regions
where surface temperature is at or below the freezing point.
The atmosphere was divided into 6 increment layers, each
layer being 3 km in height. Exchange coefficients were
solved by the SGS method to account for the horizontal dif-
fusion of momentum, water vapor, and heat. Unfortunately,
the surface boundary layer level was given as boundary con-
ditions with minor alterations due to the presence of moun-
tains. Complimentary work by Deardorff (80) in parame-
terizing the surface boundary layer for use in this general
circulation model, has been recently developed in an effort
to include boundary fluxes of momentum, heat and stability
conditions. Such large scale modeling of the earth's general
circulation shows promising results in numerically fore-
casting weather and climate conditions. A comprehensive re-
view of meteorological efforts to account for the closure of
the governing equations of turbulence is given by Lilly (81).
While investigations into the three-dimensional charac-
ter of atmosphere turbulence are still rather primitive, ex-
haustive studies are currently being made concerning the na-
ture of turbulence and the formulation of more accurate the-
ories pertaining to three-dimensional modeling. For three-
dimensional atmospheric turbulence, present-day computer
technology does not permit a straightforward mathematical

analysis to be made as yet.
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3. Statistical Theory

The exchange coefficient hypothesis and turbulence ki-
netic energy hypothesis are based upon an Eulerian descrip-
tion of the fluid motion, i.e., the flow is viewed passing
a fixed point in space such that a variable, say U, can be
described by U(xit), with X5 being the spatial coordinates.
Transport phenomena, however, 1s difficult to interpret ac-
curately in Eulerian terms. A more convenient method is to
use the Lagrangian description of the flow, i.e., following
the motion of fixed '"fluid particles' beginning at some spec-
ified time rather than the velocities of the fluid at some
specified point, X - Following the analysis presented by
Monin and Yaglom (35), a "'fluid particle" is regarded as an
identifiable volume of fluid having dimensions which are
very large compared to the average distance between mole-
cules, but with linear dimensions so small that the velocity
and pressure inside the volume are essentially constant.
This allows the volume to be governed by the equations of
fluid mechanics. The Lagrangian description relates to the
motions of these individual fluid elements which produce, in
sum, the entire flow phenomena. While physically more nat-
ural than the Eulerian description, the use of Lagrangian
form turns out to be much more awkward analytically. Al-
though the use of viscous Lagrangian equations in turbulent
theory is still a matter for the future, some progress has
been made in formulating expressions for the mechanism of

turbulent diffusion.
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The Lagrangian characteristics are described by Monin
and Yaglom (35) for an incompressible fluid as Xi(xft) which
describes, for any time t, the coordinate Xi of all the "flu-
id particles' given by the values of some parameter X, - The
velocity corresponding to one of these point elements can be
related to the Eulerian velocity as

8Xi(xi,t)

ui{Xi(xi,t),t} wE

(2-37)

Transformation from Eulerian to Lagrangian equations re-
quires the replacement of (xi,t) variables by (Xi,t) and
%ﬁxi,t) to %in’t)‘ Likewise, xi==xi(xi¢), which describe
all possible trajectories of the fluid particles at all pos-
sible points X - This allows the '"fluid particles', actu-
ally mathematical points flowing with the fluid, to describe
the fluid motion by a family of trajectories, each differing
by X, - The incompressible Navier-Stokes equation is transf-

ormed by Monin and Yaglom (32) from

ou . Bui 1 a3p 3 ou.

_ 1
3t * “jEYE " T o ExX ¥ axj(vﬁxg) (2-38)

to the equation

BZXi 1 BXi
—_3_;7 = - ‘D'(ijxksp) + Vv {XZ’XS’(XZ’XS’W)}
BXi BXi
+ {xs,xl,(xs,xl,s?—a} + {Xl’xz’(xl’X2’5?“)} (2-39)

with the unknown variables being Xi(xi,t) and P(xi,t),
i=1, 2, 3.

The statistical description of turbulence arises from
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the Lagrangian variables being described by a probability

distribution, such that

X; (X;,t) = x; + étui{Xi(xi,T),T}dT (2-40)

Subsequent sets of variables produce joint probability dis-
tributions, giving rise to Lagrangian autocorrelations, and
space-time correlation tensors, i.e., see Lumley and Panofsky
(8), which describe the variances of the "fluid particles"

as a function of time. Integration of the spatial correla-
tion coefficient gives the scale of turbulence, or character-
istic size of the eddies. For homogeneous turbulence the
variances are equal, reducing the equations to simple mathe-
matical relations.

Present-day statistical theories of turbulent diffusion
in the atmosphere are based primarily on the works of Taylor
(82), Frenkiel (83) and Sutton (11), all of whom assume homo-
geneous and isotropic conditions for the statistical proper-
ties of turbulence. Frenkiel (83) and Sutton (10) similarly
assumed that mean concentrations within a diffusion cloud
were distributed according to a three-dimensional Gaussian
law from an instantaneous point source. Unfortunately, ap-
plication of this particular approach to boundary layer flow
phenomena proved to be quite difficult.

Gifford (84) applied the concepts of Lagrangian simi-
larity with the Monin-Obukhov theory in investigating turbu-
lent diffusion from a point source in a thermally stratified

boundary layer at ground level. Prediction of a centerline
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of marked particles released from a fixed source, and axial
concentration values using field observations obtained dur-
ing Project Prairie Grass, showed successful agreement be-
tween theory and field data. Klug (85) points out, however,
that the Lagrangian theory implies that the vertical and
lateral spreads of concentration are determined by the same
feature, irrespective of stratification, while experimental
data show that the variation of point source concentration
does not occur with change in stability. Batchelor (86),
using Lagrangian similarity, assumed that the velocity of a
marked particle was dependent only upon u* and time after
release from ground level, and successfully obtained ground
concentrations for a fixed sourée in a neutral atmosphere.
Due to the absence of reliable methods for measuring
Lagrangian statistical characteristics of turbulence, partic-
ularly the correlation coefficients, along with the restric-
tion of the theory to homogeneous turbulence, makes this
theory difficult to apply to transport phenomena in the at-
mosphere at the present time. Further mathematical refine-
ment of this approach, coupled with more sophisticated ex-
perimental methods, could eventually lead to a complete

understanding of the basic mechanisms of turbulent transport.
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III. THEORETICAL ANALYSIS

The basic reason for seeking analytical solutions to
turbulence problems is to provide insight into the mecha-
nisms of turbulence with mathematical and economic concise-
ness. Unfortunately, analytical treatment of the basic
field equations is complicated by the irregularity of motion
due to the cascading nature of turbulence. However, certain
conclusions can be drawn from previous efforts in attempting
to describe turbulent processes in the atmosphere.

A large amount of experimental data exists on atmos-
pheric diffusion from both field and wind tunnel measure-
ments. Due to the irregularity of the field data, meteoro-
logical wind tunnel modeling has provided adequate informa-
tion pertinent to analytically investigating transport
phenomena in an atmospheric boundary layer. A considerable
degree of similarity has been found to exist between the
atmospheric surface layer and aerodynamic flow over a flat
plate.

Because of this similarity to turbulent flow over a
flat plate, a number of mathematical models have been de-
veloped; most have been based upon a Prandtl mixing length
hypothesis. Nearly all meteorological methods assumed that
exchange coefficients were synonymous with the momentum ex-
change coefficient and a function of friction velocity, von
Karman constant, and either velocity or temperature gradi-

ent. Modification of these models was necessary near the
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upper limit of the atmospheric boundary layer to realisti-
cally account for the variation of the exchange coeffi-
cients. The effect of advection on solution to atmospheric
flow phenomena was usually neglected.

A parabolic solution of the governing equations is
simple and easily adaptable in dealing with various bound-
ary layer problems. The numerical finite difference method
of Patankar and Spalding (58) has been shown to be very
effective in accurately predicting various flow phenomena
with a minimum of computational effort; specifically attrac-
tive was the ability of the boundary layer height to be
allowed to develop and act as the upper boundary condition
for the numerical model. The method was also found to be
easily modified to accept any number of dependent variables.

The influence of buoyancy in a thermally stratified
atmosphere is significant in atmospheric boundary layers,
but does not become important in most engineering situa-
tions. Meaningful investigations of transport phenomena in
the atmospheric boundary layer can only be accomplished by
realistically modeling the actual conditions.

Simultaneous solution of turbulence kinetic energy with
the governing equations of motion appears to be a more sen-
sible approach than mixing length concepts for analyzing
turbulent exchange processes. Based upon the Kolmogorov
hypothesis of a turbulence kinetic energy-shear stress cor-
relation, various phenomenological models have been devel-

oped which appear to effectively close the governing



42

equations and adequately account for the history of the
flow.
A. Approach

Much of the analysis to be presented here has been pre-
viously developed. Modification of existing theories was
kept to a minimum in order to maintain the flexibility of
the technique for extension to a wide range of flow prob-
lems. Basically the method must: (i) maintain generality
in dealing with a wide range of problems, (ii) use a mini-
mum of empiricism, (iii) be capable of long term objectivi-
ty, i.e., not easily outdated, (iv) retain its ability to
be easily modified for any specific hypothesis, and (v) be
computationally inexpensive.

The computational scheme developed by Patankar and
Spalding (58) has been chosen along with the Nevzglajdov
(64) model for the shear stress as modified by Lee and
Harsha (69). The turbulence kinetic energy is introduced
into the set of governing equations and simultaneously
solved with the momentum, continuity, and concentration.
Under the assumption that no reverse flow exists, the gen-
eral elliptic equations are truncated to parabolic form.
The Patankar-Spalding method allows a set of equations to
be easily introduced into the program and solved with a
high degree of computational efficiency.

Boundary layer flow in this work will be considered as
any flow in which there exists a predominant direction of

flow; shear stresses, heat fluxes, and diffusional fluxes



are caused only by gradients in the direction normal to the
direction of flow; and upstream conditions can influence
downstream flow properties but not vice versa. Modification
of these generalized conditions for atmospheric boundary
layer flows requires several minor alterations to the gov-
erning set of equations; however, many of the assumptions
used by Byrne (68) in analyzing non-equilibrium boundary
layers have been used.

B. Basic Equations

The conservation equations for two dimensional,
steady turbulent boundary layers are: continuity, momentum,
energy, turbulence kinetic energy, and concentration or
species. The derivation of these equations will not be
given here but can be found in detail in Byrne (68) and
Patankar (41).

The coordinate system used throughout this study em-
ploys the orthogonal coordinates x and z, X being the dis-
tance along which the boundary layer is developing and z the
distance normal to the direction of flow. Figure 1 shows
the coordinate system which will be used. The symbols used
throughout this chapter are defined in the Nomenclature.

The equation of continuity expresses the fact that for
a unit volume there exists a balance between masses enter-
ing and the masses leaving per unit time and change in den-
sity. Steady state turbulent flow leads to the equation

for continuity, given by Schlichting (87), as
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