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ABSTRACT 

Considerable interest has developed in recent years to 

understand transport phenomena in thermally stratified bound-

ary layers. More complete knowledge in this field is needed 

to improve the prediction of the diffusion of air pollutants 

in the lower atmosphere as well as in forecasting air-water 

circulation for weather conditions. 

The atmospheric boundary layer 1s modeled using the 

equations of continuity, momentum, energy, and concentration. 

Closure of this set of partial differential equations is 

hindered by the turbulence terms. Using turbulence kinetic 

energy, the system of equations is closed by internally 

determining the exchange coefficients of heat, mass, and 

momentum along with other atmospheric parameters. This 

approach makes it possible for the history of turbulent 

motion to be taken into account. Verification of this 

model is made by systematically comparing the numerical 

results with available wind tunnel data for neutral, stable, 

and unstable conditions. Application of the model is made 

to study the formation of advection fogs occurring over 

cold sea surfaces. However, the predicted results of liquid 

water and water vapor contents have yet to be verified with 

actual data obtained from field measurements. 
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1. INTRODUCTION 

While turbulent boundary layers ln the presence of 

heat and mass transfer are quite commonplace in engineering 

problems, great interest has developed in recent years to 

understand transport phenomena in thermally stratified 

boundary layers. Adequate knowledge in this area will be 

valuable in predicting the diffusion process of air pollut­

ants in the lower atmosphere as well as in forecasting air­

water circulation for weather conditions. 

Many physical parameters are involved in atmospheric 

transport processes, such as wind, temperature, and concen­

tration of the diffusing medium as well as the geographical 

1 

terrain. Studies of atmospheric motions are hindered by the 

turbulence generated from the interactions of all these re­

lated parameters. Moreover, due to the random motion of the 

turbulence eddies, field measurements are often not suffi­

ciently adequate for formulating any mathematical model. 

Investigations of atmospheric boundary layers are 

often accomplished by wind tunnel simulations and numerical 

modeling. Many questions have been raised as to whether 

atmospheric turbulence can be realistically simulated in a 

wind tunnel. No reliable answer is readily available. The 

variation of the scale of turbulence throughout the atmos­

phere cannot be modeled in the wind tunnel. However, wind 

tunnel modeling has provided a means for controlling cer­

tain conditions, allowing important variables to be 



collectively analyzed and used as a basis 1n formulating 

analytical models. 

The planetary boundary layer consists of two distinct 

layers, each governed by its own particular set of flow pa-

rameters. The lower layer, in which most human activity 

takes place, depends upon friction forces and is analogous 

to turbulent boundary layer flow along a flat plate. The 

upper layer is driven predominantly by both Coriolis and 

pressure forces. When density stratification in the lower 

2 

atmosphere is caused by temperature stratification, the flow 

is considered to be thermally stratified. In neutral strat­

ification, the vertical gradient of temperature equals the 

adiabatic lapse rate, which corresponds approximately to a 

1°C decrease in temperature per 100 meters of height. Un­

stable stratification, or lapse condition, results when the 

temperature decreases faster than the adiabatic rate with 

height. Consequently, as a parcel of air rises, the air 

parcel becomse warmer than its environment, causing the den­

sity to decrease with the result that buoyancy accelerates 

it upward. Stable stratification, or inversion, occurs 

when the temperature increases faster than the adiabatic 

lapse rate with height~ This causes the rising air to be­

come cooler and more dense than its surroundings with the 

result that the air parcel tends to return to its original 

position. Due to the influence of these temperature gradi­

ents, the buoyancy forces on the flow regime therefore 

either increase the rate of turbulence diffusion in the 



vertical direction, corresponding to lapse conditions, or 

impede turbulence diffusion, corresponding to an inversion. 

In most engineering heat transfer studies, stratification 

effects are negligible. 

3 

The source of concentration, or heat, can be either 

constant or variable, and is usually approximated by either 

a point or line source, located on the ground or at a spe­

cific height. Concentration may either be active, influenc­

ing the f~ow field by which it is transported, or passive, 

independent of the flow field by which it is transported. 

Most studies dealing with diffusion of pollutants have 

assumed the concentration to be passive. In dealing specif­

ically with the case of marine fog studies, concentrations 

corresponding to liquid water content and water vapor con­

tent are considered active. 

The objectives of this research have been to develop a 

suitable analytical model, using available empirical and 

mathematical information, to numerically predict heat, mass, 

and momentum transport for both wind tunnel experiments and 

field measurements. A numerical scheme was used which 

would allow for a wide range of applications suitable to 

both engineering and meteorological processes. This study 

is to verify the numerical method with available wind 

tunnel data and to apply this method to predict the formation 

of advection fog. 



II. REVIEW OF THE LITERATURE 

Numerous theories have developed in an effort to de­

scribe transport phenomena in the atmosphere. An adequate 

study of atmospheric processes can be accomplished by coup­

ling experimental investigations with analytical theory. 

Presentation of the literature in this review is given as a 

logical progression consistent with this point of view. 

A. Field Measurements 

A considerable amount of experimental data has been 

taken on atmospheric diffusion from fixed sources in lower 

layers of the atmosphere, particularly the dispersion of 

gaseous pollutants into the atmosphere. Fay, et al (1) 

have complied a list of field data from various authors 

pertaining to different types of air pollution. 

Observation of plumes ejected from smoke stacks has 

been analyzed by Briggs (2), who compared plume rise for 

buoyant plumes in both stable and neutral air for both calm 

and windy conditions. Hoult, et al (3) likewise observed 

plume rise trajectories in an effort to simulate laboratory 

measurements with empirical parameters. Haagen-Smit (4), 

analyzing the presence of smog in the Los Angeles area, 

correlated the effect of hydrocarbons and nitrogen oxides 

with crop damage, eye irritation, and rubber cracking. 

Wyngaard and Cote (S) made direct observations of surface 

stress and heat flux over a horizontally uniform site and 

compared dissipation and production of turbulence kinetic 

4 



energy for both stable and unstable conditions. 

Field measurements have also been made over large geo­

graphical regions. Webb (6) studied diabatic mean velocity 

and temperature profile forms taken from field data made at 

O'Neill, Nebraska and from Kerang and Hay, Australia and 

formulated constants used in the log-linear law for flow in 

both stable and unstable conditions. Priestly (7) and 

Lumley and Panofsky (8) document a considerable number of 

field measurements concerning diabatic mean profiles for 

heights up to tens of meters. Haugen, et al (9) used data 

from Project Prairie Grass for investigating values of pa­

rameters appearing in Sutton's (10) diffusion models. 

Sutton (11) likewise documents a number of experiments con­

cerning field measurements. 

The oceans of middle and high latitude have a large 

maximum frequency of fog in the summer season because of 

advection of warm air over cold water. Because very few 

advection fogs of this kind occur over land, little study 

is available in the literature. However, recent investiga­

tions of the microphysical and micrometeorological proper­

ties of sea fog have been made by the Calspan Corporation 

(see "Project Sea Fog") using shipboard procedures. Obser-

vations and measurements of drop size distributions and 

visibility were made throughout the life cycle of fogs. 

5 

Sea-air interaction produces the environment of mois­

ture and sea salt particles in the lower atmospheric bound-

ary over the ocean surface. Numerous observations of the 



sea-air interface have been made by Kraus (12). Wind and 

temperature data were obtained by Deacon (13), from observa­

tions over the sea, in an effort to calculate roughness pa­

rameters for the sea surface. Hidy (14) reviewed a substan­

tial number of articles by various authors in an effort to 

analyze air-sea interaction phenomena in the atmospheric 

boundary layer. Field measurements dealing with the micro­

physics of the marine atmosphere are discussed in detail by 

Ro 11 ( 15) . 

6 

Unfortunately, these field studies are difficult to com­

pare with one another due to the random nature of the atmos­

phere. Mean wind velocity and temperature gradients change 

significantly in a very short time and cannot be controlled 

during the long periods of sampling. Moreover, field studies 

usually require considerable effort and expense from the in­

vestigator. 

B. Wind Tunnel Simulation 

Perhaps the most important factor regarding wind tunnel 

modeling of the atmospheric boundary layer is that the ex­

periment can be controlled under specific conditions, allow­

ing many flow variables to be isolated and studied. The 

greatest deterent to wind tunnel modeling is the difference 

in the physical nature of turbulence between the atmosphere 

and the wind tunnel. However, many of the flow parameters 

are synonymous. Reynolds number, Richardson number, Prandtl 

number, and Schmidt number can be readily applied to either 

the wind tunnel or the atmospheric boundary layer. The 
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surface boundary conditions and certain turbulent character-

istics can be similarly related. 

Specifically an atmospheric wind tunnel must develop a 

very thick boundary layer and be capable of creating a wide 

range of Richardson numbers, i.e., temperature and velocity 

gradients. The requirements of such modeling have been re-

ported by Cermak, et al (16). Chuang and Cermak (17), 

Plate (18), and Plate and Lin (19) showed that velocity pro-

files in a meteorological tunnel were similar to those ob-

served in the atmospheric surface layer. Schon and Mery 

(20) have likewise shown a method for artificially simulating 

a neutral atmospheric surface layer using wind tunnel tech-

niques. Presently there exist facilities for meteorological 

wind tunnels at Colorado State University, New York Univer-

sity, Calspan Corporation Laboratories, The Ecole Centrale 

Lyonnaise, and several others. 

Poreh and Cermak (21) studied the diffusion of ammonia 

gas from a line source at ground level for ambient veloci-

ties of 2.74, 3.66, and 4.87 m/sec (9, 12, and 16 ft/sec) 

in a neutral atmosphere. The downstream diffusion pattern 

was divided into four separate zones: initial, intermedi-

ate, transition, and final. Poreh intorduced a similarity 

parameter, A, defined as the distance from the wall where 

the concentration is equal to 50 per cent of the wall val­

ue. Within the intermediate zone, A was found to be ap­

proximately equal to the horizontal distance from the 

source, X , to the 0.8 power, A~x· 8 and the maximum ground 
s s ' 
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concentration was found to vary as C ~x-· 9 ;u . Velocity max s ~ 

distribution was found to follow the 1/7 power law. The 

intermediate zone was defined as that region where 

.37<A/8<.64, 8 being the boundary layer thickness. 

Quraishi (22) experimentally investigated the diffusion 

of ammonia gas from a line source located at ground level 

and elevated positions under neutral conditions. Flexible 

roughness elements were fixed on the floor of the wind tun-

nel test section consisting of plastic strips fastened to 

wooden strips. Free stream ambient velocity was 6.10 m/sec 

(20ft/sec). The concentration field was divided into three 

zones according to distance from the source and were found 

to follow three different universal functions. It was found 

that as the elevation of the source increased, the concentra-

tion at ground level for a short distance from the source 

was lower than for a ground level source, increasing to a 

peak value and then decreasing asymptically as though for a 

source at the boundary. Both longitudinal and lateral tur-

bulence intensities and Reynolds shear stress were measured 

using hot-wire anemometry. 

Davar (23) used a continuous point source with a turbu­

lent boundary layer over a smooth neutral boundary and 

studied the characteristics of diffusion plumes at an ambi-

ent air velocity of 1.83 m/sec (6ft/sec). He varied the 

source height over a range of 0 to .127 meters (5 inches), 

using anhydrous ammonia as a tracer gas. Bhaduri (24) 

likewise used a continuous point source with a turbulent 
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boundary layer over fixed wooden strips in neutral stability 

and ambient air velocity of 3.81 m/sec (12.5 ft/sec). Ele­

vation of the source varied from 0 to .0254 meter (1 inch). 

Schon and Mery (20) used the method of injecting air 

upstream of a boundary layer in order to simulate a neutral · 

atmospheric surface layer. A comparison was made with other 

laboratory data obtained by using a shear screen device to 

artifically thicken the flow regime. Although mean veloc­

ity profiles were similar, the velocity fluctuations did 

not represent those of a neutral boundary layer, as in the 

case of the air injection method. Good agreement was found 

to exist between the laboratory and atmospheric data for 

fluctuating spectra. Turbulence intensities in three di­

rections were measured along with Reynolds shear stress at 

four different locations for an ambient velocity of 6.5 

m/sec. Comparison of turbulence intensity in the simulated 

tunnel with that in the real atmosphere showed the turbu­

lence characteristics in the tunnel to be less intense by 

5-10 per cent. 

Arya (25) experimentally investigated the structure of 

a stably stratified thick boundary layer. Unfortunately no 

mass diffusion experiments were made, but measurements of 

mean velocity, temperature, turbulence intensities in three 

directions, Reynolds shear stress, heat fluxes and turbulent 

spectra were made at two locations downstream of the lead­

ing edge of the test section. In the logarithmic law of the 

wall, empirical constants for mean velocity and temperature 
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were found to be valid for both atmospheric data as well as 

wind tunnel data. The ratio of the turbulent exchange co-

efficient of heat to that of momentum was found to be 0.75, 

which is in general agreement with Fleagle and Businger (26). 

The small scale structure of turbulence remained unaffected 

by stability, however the magnitude of turbulence production 

and dissipation reduced significantly as stability increased. 

Chaudhry and Meroney (27) studied the downwind diffu­

sion of a passive gas in a stably stratified turbulent shear 

layer. A micrometeorological wind tunnel was used in which 

the air was heated and the wind tunnel floor cooled. Con­

centration characteristics were compared with atmospheric 

observations and showed favorable agreement. A summary of 

wind tunnel diffusion experiments conducted at Colorado State 

University was given for the period prior to their report. 

Malhotra (28) investigated the diffusion of ammonia 

from a ground level point source within a two dimensional 

boundary layer for both neutral and unstable conditions for 

ambient velocities of 1. 83, 1.98, and 2.74 m/sec (6, 6.50, 

and 9ft/sec). A synthetic line source was obtained by 

numerically integrating the point source data. The concen­

tration distribution for both neutral and unstable condi­

tions were found to follow identical universal dimensionless 

curves. A comparison between heat diffusion data of 

Wieghardt (29) and mass diffusion data showed that univer­

sal distribution curves were similar for both point and line 

sources located on the surface of an isothermal boundary 
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layer. 

Wieghardt (29) measured the temperature distribution 

from a point and line source of heat on the bottom of a tur-

bulent boundary layer. Measurements were made at ambient 

velocities of 5.40 to 30.9 m/sec at various downstream loca-

tions from the faint source of heat. Line source data 

showed that A*, the similarity parameter for heat analogous 

to that for concentration could be related by A*= 

const.X /(U X jv)· 2 , where X is the horizontal distance s 00 s s 

from the source and v the kinematic viscosity. An empirical 

relation was likewise derived for the wall temperature as a 

function of U , o, X , and the strength of the heat source 
00 s 

per unit length. Malhotra (28) found that the results of 

Wieghardt (29) were similar in behavior to the mass diffu-

sion data of Poreh (30). 

While wind tunnel diffusion data exist in detail and 

show good qualitative agreement with observations in the 

atmosphere, the scale of turbulence and range of variables 

still differ. Inconclusive results exist as to the varia-

tion of exchange coefficients for heat and mass from exper­

imental data. A wider range of flow conditions, coupled 

with types of sources and driving mechanisms, have yet to 

be analyzed. Although these criteria are substantial 

detriments to wind tunnel simulation, data can be obtained 

which may contribute to an understanding of basic mechan-

isms associated with atmospheric diffusion and turbulent 

flow phenomena. 



C. Anayltical Models 

Mathematical analysis of the turbulent transport pro­

cesses are discussed extensively by Rao, et al (31) and 
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Monin and Yaglom (32). Based upon their studies, transport 

phenomena occurring in the atmosphere can be classified into 

three distinct categories, dependent upon the method used to 

describe the diffusion mechanism: 1) exchange coefficient 

approach, 2) turbulence kinetic energy approach, and 

3) statistical theory. 

1. Exchange Coefficient Hypothesis 

The equations governing turbulent flow, while similar 

in form to laminar equations, involve the added complexity 

of turbulent flux terms and prove to be very cumbersome 1n 

obtaining realistic solutions to actual flow phenomena. 

Boussinesq (33), assuming that turbulent fluxes are directly 

proportional to mean gradients of independent variables, 

introduced the concept of an eddy coefficient. He replaced 

the double correlation terms appearing in the turbulent 

equations by an eddy coefficient term times a mean gradient 

tensor. Following the procedure described by Malhotra (28), 

the conservation equation for concentration, C, can be 

written in terms of mean variables as 

ac a a ac 
p{at + ax.CUJ.C)}= ax.{Dcax. - pu!c'} 

J J J J 
(2-1) 

where the overbar denotes time averaged quantity, the prime 

denotes fluctuating component, and D the molecular diffu­c 

sion coefficient. The fluctuating term for mass flux is 



13 

related to the mean concentration gradient through the eddy 

coefficient, Ec' such that 

pu!c' 
J 

ac 
-E -­c8X. 

J 
( 2- 2) 

The eddy coefficient is not considered a real property of 

the fluid but is effective only is there is some flow of the 

fluid. The problem therefore becomes apparent when attempt-

ing to describe the eddy coefficient in terms of realistic 

variables. 

Equation (2-1) may be written as 

ac + __ a_cu.c) = __ a_{(D + c: )~} at ax. J ax. c c ax. 
J J J 

(2-3) 

The exchange coefficient of concentration, K , is defined as 
c 

K = D + E . c c c The concentration equation is therefore re-

written as 

(2-4) 

The concept of expressing the mass fluctuations in terms of 

the exchange coefficient of concentration, Kc, is commonly 

referred as the "K-theory" by meteorologists. Numerous 

closed solutions have been obtained using equation (2-4) as-

suming the exchange coefficient to be either constant, vary-

ing with height, or based upon the phenomenological mixing 

length theory. 

Models dealing specifically with the exchange coeffi­

cient of concentration may be simply described by the Fick-

ian diffusion model, power - law models, and Calder's 
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diffusion model, as described in detail by Rao, et al (31). 

These models lead to empirical relations in which the ex­

change coefficients are constant throughout the boundary 

layer, or a function specifically of height and friction 

velocity, u*. Despite their apparent usefulness, their 

drawback lies in the fact that the exchange coefficients 

vary as a function of the scale of turbulence throughout 

the atmosphere. This was pointed out by Richardson (34) ln 

comparing values for molecular diffusion with diffusion dur­

ing atmospheric storms. Moreover, equating the exchange 

coefficients of heat and momentum to the diffusion coeffi­

cient results in a expression mathematically desirable but 

not realistic in accounting for the effect of surface 

roughness or thermal stratification. 

a. Mixing Length Theory 

The mixing length concept has been used by many due to 

its relative simplicity in obtaining solutions adequate for 

engineering problems. Meteorologists have long assumed that 

the surface layer of the atmosphere can be regarded as a 

constant flux layer. The eddy coefficient of concentration 

is assumed to vary linearly with height and to depend upon 

the initial value of the friction velocity, u*, at the sur­

face - analogous to the mixing length concept. 

Introduction of the mixing length concept was origi­

nally made by Prandtl (35), who experimentally observed 

momentum exchange in turbulent flows. He concluded that 

the exchange coefficient of momentum for plane flows could 
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be written as a product of a mixing-length parameter and the 

cross stream gradient of the mean velocity, and assumed the 

mixing length proportional to the width of the mixing re-

gion. In theory, a lump of fluid carried a constant amount 

of momentum determined by the difference in mean velocity 

between adjacent parallel planes. Prandtl (36) later re­

vised his concept by including additional terms containing 

the second order derivative of the mean velocity in the 

stream direction and a length parameter. 

Taylor (37), developing a theory similar to Prandtl 

(35), assumed that vorticity might be considered a trans­

ferable quantity for two-dimensional flow. The eddy coeffi­

cient differed from Prandtl's model by a factor of 2. 

Further extension of the vorticity-transport theory to three 

dimensional flow tended to sacrifice accuracy for simplicity. 

Von Karman (38) likewise made the assumption that the 

value of the mixing length is determined by local flow con­

ditions described in terms of quantities determined by these 

local conditions. Unreasonable results occurred, however, 

where the second derivative of the mean flow, appearing in 

the denominator, became zero, i.e., the eddy coefficient of 

momentum became infinite. Hinze (39) points out that this 

particular model does not appear to offer many advantages 

over Prandtl's simpler assumption, while all three theories 

lack the ability to describe the transport of turbulence in 

detail. 

Van Driest (40), using a modification of the mixing 
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length theory, was concerned with a layer in which the 

shear stress was everywhere equal to that at the wall. He 

assumed that the eddy coefficient of momentum decayed expo-

nentially to laminar viscosity near the wall, but became 

proportional to the distance from the wall in the center 

region of the boundary layer. 

Patankar (41) slightly modified van Driest's relation 

by replacing the wall shear stress with the local shear 

stress in the fluid. The Reynolds stress term is defined 

by Prandtl's hypothesis as 

-pu'u' 1 3 (2-5) 

where p is the fluid density, £ the mixing length, x3 the 

vertical distance normal to the direction of flow, and 

1au 1;ax 3 1 the absolute value of the cross-stream velocity 

gradient. Combining the laminar viscosity and employing the 

assumptions of van Driest (40), the exchange coefficient of 

momentum was written as 

(2-6) 

where A+ and n are constants, ~ is the laminar viscosity, 

and T is the local shear stress. The exponential term is 

seen to be effective only in the region near the wall and 

tends to dampen the eddy motion of the fluid as the flow 

approaches the wall. 

Cebeci, et al (42) formulate an expression for the 

eddy coefficient based upon van Driest's (40) hypothesis 
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and similar to that originated by Patankar (41), using modi-

fied empirical constants and reintroducing the wall shear 

into the exponential term. Two expressions for the eddy 

coefficient were used to account for the inner viscous sub-

layer region and the turbulent viscosity in the outer region 

of flow. Cebeci and Mosinskis (43), in a later work, again 

modify their expression for the eddy coefficient in order to 

account for the effect of mass transfer in the inner region 

of flow. 

A number of mathematical models have been developed by 

meteorologists based upon a somewhat analogous form of the 

mixing length concept in accounting for the exchange coeffi-

cients. Nearly all assume that the exchange coefficient for 

momentum, heat, and concentration are identical, and that 

they are a function of vertical height and either velocity 

or temperature gradient, in the case of thermal stratifica-

tion. 

Using the application of dimensional analysis in formu-

lating turbulent diffusion phenomena, Monin and Obukhov (44) 

assumed that the flow in an atmospheric boundary layer 

could be completely determined by the friction velocity, 

and a stability length scale, L, defined as 

*3 

u* 
' 

L u (2-7) 
k c¥ ) c- pt-) 

m p 

where k is the von Karman constant, q the turbulent heat 

flux, p the density of air, C the specific heat, g the 
p 
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acceleration of gravity, and T the mean absolute temperature m 

of the surface layer. A temperature scale was likewise de-

fined for a steady, horizontally homogenoeus flow as 

t* q 
pC ku* p 

(2-8) 

Ellison (45), considering flow over an infinite rough 

plate, assumed that shear stress and heat flux remain con-

stant with height. Neglecting diffusion terms, Ellison re-

placed double correlations in the turbulence equations with 

decay times such that, in the absence of production terms, 

these quantities would begin to diminish. Ratios for momen-

tum and heat exchange coefficients were obtained as a func-

tion of these decaying time terms, friction velocity, and 

flux Richardson number. Townsend (46) analyzed flow in a 

stably stratified fluid far from boundary interaction by 

assuming homogeneous flow in the direction of shear and 

inhomogeniety in the direction of flow. Dissipation terms 

were expressed as a function of two length scales. 

Yamamoto and Shimanuke (47), using a numerical solution 

for a two-dimensional diffusion equation, obtained an expres-

sion for K based upon a general velocity distribution from 
c 

the similarity theory of Monin and Obukhov (44) and a fourth 

order equation to describe the variation of X3 /L. Later 

work by Yamamoto and Shimanuke (48), in extending the above 

treatment to three dimensional diffusion from a point source, 

assumed the lateral exchange coefficient of concentration to 

be a function of u*, k, and empirical functions determined 
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from the observation of the lateral spread of smoke at vari­

ous stability conditions. 

Estoque (49), numerically modeling transport phenomena 

in the atmosphere, assumed that the planetary boundary layer 

consisted of three distinct strata: a soil layer; a surface 

layer in which the vertical fluxes of heat, momentum, and 

moisture were constant with height; and an overlying transi­

tion layer where the influence of turbulent transfer proces­

ses gradually decrease with height. The exchange coeffi­

cient was assumed to be a function of the gradient Richard­

son number, the surface roughness, and the average potential 

temperature gradient. The exchange coefficient was assumed 

to decrease linearly with height in the transition layer. 

Unfortunately the numerical model neglected the effect of 

horizontal advection and, coupled with the attempt to de­

scribe the turbulent mixing process in the transition layer 

with a linearly decreasing exchange coefficient, resulted 

in unrealistic characteristics of the boundary layer. 

Fisher and Caplan (SO) attempted to predict the forma­

tion of fog and stratus using a slightly modified version 

of Estoque's exchange coefficient. An upper and lower value 

was imposed upon the coefficient to prevent exaggerated 

values. The exchange coefficient of momentum was assumed 

to be equal to the coefficients of heat and water vapor. 

Although results appeared reasonably valid for simple cases, 

the biggest defect of the model was the failure to make the 

exchange coefficient an internal parameter of the model. 
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A more recent model involving the potential temperature gra-

client and based primarily upon the Fisher and Caplan (SO) 

model was made by Mack, et al (51). The exchange coeffi-

cient, while a function of local stability, was deduced from 

the Monin-Obukhov (44) similarity theory and a fourth order 

equation for X3/L. A modification of the exchange coeffi­

cient was necessary to prevent extreme discontinuity near 

the upper boundary of the surface layer. 

Blackadar (52), in describing the momentum exchange co-

efficient in a neutral boundary layer, used Heisenberg's 

(53) hypothesis of energy dissipation and mixing length re-

lated by 

1 /3 4 I 3 

~1 = l: Q, p (2-9) 

with Q,, the mixing length, defined by 

(2-10) 

where ~ is an empirical length parameter and k the von 

Karman constant. The energy dissipation term is given as 

(2-11) 

Using these above relationships, Blackadar obtained as a 

general statement for the exchange coefficient 

K m (2-12) 

The advantage of this model over previous relations for K 
m 

is the fact that at small heights, the mixing length in-

creases linearly with height and reaches a fixed value at 
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upper limits of the atmospheric surface layer. Zdunkowski 

and Trask (54), investigating the effect of nocturnal tern-

perature changes over various soil types for analyzing the 

stability of radiation fog, used a variation of Blackadar's 

(52) exchange coefficient generalized by Wu (55) to account 

for thermal stability. Results using this form of exchange 

coefficient showed a numerical discontinuity occurring in 

the upper region of the boundary layer and a modification of 

the model was necessary in order to extrapolate the momentum 

exchange coefficient to zero. 

b. Rate Equation Hypothesis 

An analytical approach to mass diffusion in a two­

dimensional thermally stratified boundary layer is given by 

Rao, et al (31) based on an extension of the nonlocal phe-

nomenological differential theory developed by Nee and 

Kovasnay (56). A rate equation is assumed to govern the 

momentum exchange coefficient, K* = v + s /p, in a ther-m m 

mally stratified boundary layer as 

R. au 1 - E~ (K* - v)~x 
ah m a 3 t 

(2-13) 

where R. is the gradient Richardson number, ah is the tur-
1 t 

bulent Prandtl number, and the three empirical constants A, 

B, and E are given as A= 1., B = 1., and E = 1. The 

generation or decay of turbulence due to the effect of 

buoyancy is represented by the last term in equation (2-13). 
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Although more complicated than the mixing length hy-

pothesis, simulataneous solution of the rate equation with 

the equations of motion results in a theory which overcomes 

the effect of localness given by the older phenomenological 

theories and allows the past history of the flow to influ-

ence the solution. 

2. Turbulence Kinetic Energy Approach 

A more realistic approach to the modeling of the eddy 

coefficient concept is the suggestion made by Kolmogorov 

(57) that the eddy coefficient in a turbulent flow might be 

expressed as a function of the local kinetic energy of turbu-

lence, Q, in which Q is defined as: Q=~(u!u!). As a result, 
l l 

a number of empirical models have been developed 1n an at-

tempt to close the turbulence kinetic energy equation with 

the governing equations of motion. 

a. One-equation Models 

Using the hypothesis by Kolmogorov (57) and Prandtl 

(36) of coupling the kinetic energy of turbulence with a 

characteristic length scale, £, Patankar and Spalding (58) 

defined the exchange coefficient of momentum as 

K m 
!-:.: 

lJ + £ pQ 2 (2-14) 

where ~ is the dynamic viscosity and p the density of the 

fluid. This relation was also used by Glushko (59) . The 

term, 
!-:.: 

£pQ 2
, was used only where the flow was fully turbu-

lent, a condition expressed by a "local Reynolds number of 

turbulence" given as 
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(2-15) 

Wolfshtein (60), using the Kolmogorov turbulence kinetic 

energy hypothesis, obtained numerical solutions for Couette 

flow with turbulence augmentation, pressure gradient, and 

turbulent duct flow. The characteristic length scales were 

defined as functions of x
3 

and the Reynolds number of tur-

bulence, Rt. The dissipation of turbulence kinetic energy 

was defined by 

~D 
(2-16) 

where 

(2-17) 

An extension of this particular model was made by Wolfshtein 

(61) in using the turbulence kinetic energy equation to ob-

tain steady two-dimensional solutions of the elliptic gov-

erning equations for a turbulent impinging jet. In both 

cases, the length scale was set equal to the distance from 

the wall for regions near the wall. Use of the Kolmogorov 

model was further emphasized by Gosman, et al (62) in ana-

lyzing heat and mass transfer in two-dimensional recircu-

lating flows. A differential equation similar to the equa-

tion for turbulence kinetic energy was introduced to account 

for the length scale. A generalized set of equations was 

given which could be adjusted to any particular flow geome­

try or condition. 
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Bradshaw, et al (63), using a linear relationship tore-

late the turbulent shear stress to the turbulence kinetic 

energy, as suggested by Nevzglajdov (64), assumed that 

-pu!u! = a
1

pQ 
l J 

(2-18) 

where a
1 

is an empirical constant, p the fluid density, and 

Q the turbulence kinetic energy, defined by Bradshaw as Q = 

(u!u!). By converting the turbulence kinetic energy into a 
l l 

shear stress equation, a hyperbolic set of equations was de-

veloped to account for the mean momentum, continuity, and 

shear stress. Numerical integrations of these equations 

were obtained by using the method of characteristics. The 

resulting equation for shear stress was written as a function 

of three empirical parameters, a 1 , LQ, and G, which depend on 

the shape of the shear stress profile and are defined as 

G 

where DQ is given as 

al -r/pQ 

LQ (-r/p)3/2/DQ 

T E'W' 
+ Qw' ) I ( __!!!_) ( p p 

3U. au. 
l l 

D = \) ( 3 X . a--x-:-) 
Q J J 

~ 
T --p 

(2-19) 

(2-20) 

Based upon the measurements of Klebanoff (65), a
1 

was found 

to be equal to 0.15. The relations for LQ and G were given 

as empirical functions related to Q and Tm' the maximum 

shear stress in the profile. Evaluation of this model 1n 

analyzing measurements of the turbulent structure in 
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equilibrium boundary layers was later discussed by Bradshaw 

(66) to account for the influence of pressure gradients. 

Using the linear relation suggested by Nevzglajdov (64) 

and the initial work of Bradshaw, et al (63), Harsha and Lee 

(67) correlated some existing experimental data in jets and 

wakes and concluded that a reasonable degree of similarity 

existed between free turbulence and fully developed boundary 

layers for the constant a 1 . Byrne (68) investigated the in-

fluence of mass injection and pressure gradient on two-

dimensional turbulent boundary layers using the turbulence 

kinetic energy equation as one of the governing equations of 

motion with the linear model of Nevzglajdov (64). The dis-

sipation term in the turbulence kinetic energy equation was 

defined by 

where 

a = 2 

1. 8 

X 
1.8 ~-rm 

3 

(2-21) 

(2-22) 

and x3 is the location of the maximum shear point. The 
Till 

value of 1.8 was determined by numerical experiments ln con-

junction with the earlier work of Lee and Harsha (69). A 

similar study was made by Lee, et al (70) using turbulence 

energy to study the transfer of heat, mass, and momentum in 

an incompressible self preserved turbulent boundary layer 
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along a flat plate for both accelerating and decelerating 

flows with suction and blowing. Comparison of results with 

atmospheric wind tunnel data of Arya (25) and Malhotra (28) 

indicated that the prospects of using the turbulence model 

of Nevzglajdov (64) in analyzing atmospheric boundary layers 

were good. 

By relating the turbulent shear stress to the local val­

ue of turbulence kinetic energy, Glushko (59) simultaneously 

solved the continuity, momentum, and turbulence kinetic en-

ergy equations, using an expression containing an empirical 

function related to the local value of turbulence kinetic 

energy, Q, and a universal function related to distance from 

the wall. The production and dissipation of turbulence ki-
1 

netic energy were defined as a function of QYz, characteris-

tic mixing length, and ~' the dynamic viscosity of the 

fluid. The total diffusion of turbulence kinetic energy was 

assumed to be related to the gradient of turbulence kinetic 

energy, based on the turbulence measurements of Klebanoff 

(65). 

b. Two-equation Models 

Recent interest has developed ln the use of turbulence 

models in which one or more turbulence quantities are found 

from the solution of two or more transport equations. Jones 

and Launder (71) proposed a two-equation model based on the 

simultaneous solution of the turbulence kinetic energy and 

a turbulence dissipation rate. 

kinetic energy was written as 

The equation for turbulence 
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aq a . . Em)~} . aul 2 
-pD -2~(~) ~ (2-23) pUjaX. = 8X{(l.l + + Em(ar:-) ak X 3 Q ax 3 J 3 3 

and the equation for turbulence dissipation rate as 

E aDQ ~ aul 2 
2 

anQ a c2 pDQ 
pUjaX. ax:-{(l.l + ___!!!)ax-:} + ClQ Em ( "IT3) Q 0 D 3 J 3 

Q 
2 

~Em a ul 2 
(2-24) + 2-( -::.-::r) 

P ax 3 

where DQ is the dissipation of turbulence kinetic energy for 

both equations, ak= 1.0, aD 
Q 

1.3, c1 = 1.45, c2 = 2.0, and 

E the eddy coefficient of momentum, given as m 

where 

E 
m 

(2-25) 

c~ = .09 exp.{-2.5/(l+Rt/50)} (2-26) 

with Rt being the turbulent Reynolds number. The dissipa­

tion equation is seen to parallel the turbulence kinetic 

energy equation. Each equation assumes that diffusional 

transport proceeds at a rate proportional to the product of 

the turbulent exchange coefficient and the gradient of the 

property in question; the generation and decay terms are 

likewise similar. 

Gibson and Spalding (72) formulated a two equation 

model for turbulence kinetic energy introducing a partial 

~ifferential equation for F, a variable having dimensions 
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of frequency squared, along with an equation for turbulence 

kinetic energy, Q. The equations for Q and F are written as 

follows: 

(2-27) 

(2-28) 

where CD, c1 , c2 , and c 3 are empirical constants. The ex­

change coefficient of momentum, Km' 1s given as 

-~ s = C pQF 2 

m ~ 

(2-29) 

where sm lS the eddy coefficient of momentum and C~ a con­

stant. The dissipation exchange coefficient is related to 

the momentum exchange coefficient K through the empirical 
m 

parameters ak and oF. The constants in the turbulence model 

are obtained empirically. 

Launder, et al (73) analyzed the performance of three 

distinct classes of turbulence models: 1) eddy coefficient 

models - length scale found from a partial differential 

equation of transport, 2) eddy coefficient models - length 

scale found by algebraic formulae, and 3) shear stress 

models in which the shear stress is the dependent variable 

of a partial differential conservation equation. Two 
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models were discussed within each class and a comparison 

made with twenty three different test cases and experimental 

data. The turbulence models which determine the length scale 

of turbulence from the transport equation for energy dissi-

pation rate were found to give more correct predictions over 

a wider range of flow conditions than models using algebraic 

relations for the length scale. 

c. Second Order Closure Model 

An invariant second order closure model was developed 

by Donaldson (74) in an effort to numerically predict the 

dispersion of pollutants in a thermally stratified atmos-

phere. While mathematically more accurate than the previ-

ously discussed models, the second order closure method is 

considerably more complicated, and requires a number of em-

pirical constants. 

Following the technique used by Reynolds (75), the 

equations for the properties of a turbulent atmospheric 

shear layer are expressed as the sum of mean values of the 

variables plus fluctuating components corresponding to these 

mean values. As an example, the equation of motion, after 

time averaging, becomes 

au. au. 
1 - 1 

Pa:t + pUj~ 
J 

ap 
ax. 

J 

+ _e_gi 
T m 

a aDi 
+ ax. c~ax. - pu!u!) 

J J 1 J 
(2-30) 

where the overbar indicates the average value of that quan­

tity while the prime denotes instantaneous fluctuation. The 

Reynolds stress term is introduced from the turbulent motion 

as pu!u!. An equation for the velocity fluctuation can be 
1 J 
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obtained by subtracting equation (2-30) from the unaveraged 

momentum equation. Multiplication of the resulting equation 

by uk and time averaging produces the equation 

'\2 ' a u. 
+ l-lU' l 

kax.ax. 
J J 

(2-31) 

Interchanging 1 and k in equation (2-31) and adding the re­

sulting equation to (2-31) gives the equation for the Rey-

nolds stress correlation 

auj_uk auj_uk_ , , auk au. 
a c ' ' ') pU. ' ' l p + pu.u.~ pukuj~ - Par uiujuk at J ax. l J . 

J J J J 

a c t ') a ( t t ) 
8u! au' 

' c l 
k 

~(giukt' -8X. P uk - 8Xk P ui + p 8X + 8X.) + 
l k l 

(2-32) 

where the overbars have been removed from the mean quanti-

ties for simplicity. If the same scheme is applied to the 

energy equation, an equation for the heat flux term, pu!t', 
l 

can be obtained similar to equation (2-32). Since t' 2 arises 

in the transformed energy equation, an equation for this 

second order correlation can be obtained by multiplying the 

equation for the temperature fluctuation, t', with 2t', re-

suiting in an equation similar to equation (2-32). Appli-

cation of the Reynolds scheme to the concentration equation 

likewise produces equations for c'ui and c' 2 analogous to 



31 

those for shear and energy. An additional term pc't' ap-

pears in the concentration flux equation which represents 

the production of concentration transport in the direction 

of gravitational acceleration due to fluctuations in temp-

erature. Closure of the set equations is completed by de-

riving an equation for pc't' in the same manner. 

The complete set of equations, based upon the second 

order closure model, is given by Donaldson (74) as: 1) con-

servation of mass, 2) conservation of momentum, 3) conser-

vation of energy, 4) conservation of species (concentration), 

5) equation for pulu~, 6) equation for pu~t', 7) equation 

for t' 2
, 8) equation for puke', 9) equation for pc't', and 

10) an equation for pc' 2
• 

The triple correlation terms appearing in the turbu-

lence flux equations were reduced to second order correla-

tions by introducing a scalar length, A , and a scalar ve­a 

locity, q given as 

q = v'u'u' 
s m m 

(2-33) 

As an example, the triple correlation appear1ng 1n equation 

(2 32) f t f • - , u. u. uk, 1 s 
1 J 

redefined as 

(2-34) 

where the minus sign insures diffusion from regions of high 

turbulent intensity to regions of low intensity. The triple 

correlation, ujukt', occurring in the equation for pukt', is 

modified to 
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uJ!uk't' = - A q{--
8
-(u't') + --8-(~)} 

a s axj k axk J 
(2-35) 

By analogy with equation (2-34), the remaining triple cor-

relations are redefined as a function of length scale, 

scalar velocity, and double correlation gradients. 

It is apparent that in order to perform the numerical 

calculations involving the second order correlations, it is 

necessary to determine the var1ous length scales, A , corre­
cx 

sponding to each particular double correlation equation. 

Relations for the length scales were initially formulated by 

Donaldson (74) in analyzing boundary layer flows by assuming 

Aa = Cao, where Ca is an empirical constant and 8 is the 

boundary layer thickness. An equation for A , similar to a 

those for the second order correlation terms, was suggested 

by Donaldson (74) in an effort to more realistically account 

for the variation of A . a 

discussed in detail. 

This concept, however, was not 

Numerical results proved to be quite realistic and pro-

vided some interesting results regarding the contribution of 

the double correlation flux terms appearing in the governing 

equation to the main motion of the flow. However, comparison 

with existing data does not show the second order closure 

method in its present state to be significantly better than 

some existing eddy transport models; this could perhaps be 

due to the simplication procedure in describing the length 

scales. Similar application of the second order closure 
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method was discussed by Weinstein (76) in analyzing fog for-

mation. Unfortunately, the model was not compared with any 

experimental data and the numerical predictions not carried 

out in detail. 

d. General Circulation Models 

Clearly two-dimensional simulation of turbulence 1s not 

applicable to the three-dimensional nature of the atmosphere. 

While the use of two-dimensional concepts in describing the 

physical nature of turbulence has produced fairly accurate 

approximations with experiments, the two-dimensional descrip­

tions are valid only under certain restrictions. 

A number of investigations have been made in an effort 

to numerically simulate three-dimensional flow while retain­

ing two-dimensional modeling techniques, using an exchange 

coefficient hypothesis. A review of these methods will not 

be given here. 

A general numerical technique was developed by Patankar 

and Spalding (77) for the calculation of transport processes 

in three-dimensional parabolic flows. Because of the basic 

assumptions regarding boundary layer flow, the three­

dimensional procedure was related principally to the two­

dimensional work developed earlier by Patankar and Spalding 

(58) and Gosman, et al (62). Although dealing specifically 

with general flow equations, inclusion of the turbulence 

terms into the general scheme along with a closure model for 

the second order turbulent flux terms was not investigated. 

A considerable amount of research has been undertaken at 
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the National Center for Atmospheric Research, NCAR, dealing 

with three-dimensional simulation of turbulence in an effort 

to predict global circulation phenomena. A numerical study 

of three-dimensional turbulent channel flow was made by 

Deardorff (78), in which the time dependent equations of 

motion were closed by using a subgrid scale averaging tech-

nique, 

mentum, 

SGS , to account for the exchange coefficient of mo-

K . 
m 

This method used an averaging operator which 

was applied to the governing equations in order to filter 

out subgrid scale motion. The exchange coefficient, Km, was 

related to a length interval, ~' as 

2 
au. au. au. 1 

Km = Cc~) {ax~Cax~ + ax~)} ~ p (2-36) 
J J l 

where C is equal to 0.10. Although clearly analogous to a mix-

ing length hypothesis, application of this meteorological 

approach to three-dimensional plane Poiseuille flow proved 

to be successful in predicting general shapes and detailed 

flow patterns, but did not compare favorably with measured 

mean velocity profiles. Profiles were obtained for turbu-

lence intensities and Reynolds shear stress along with en-

ergy balances for the production, diffusion, and dissipation 

terms appearing in the turbulence kinetic energy equation. 

Results clearly showed the cascading nature of turbulence, 

particularly the transport of momentum towards the bound-

aries. 

Recent work by Kasahara and Washington (79) has lead 

to numerical simulation of the atmosphere to include the 
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effects of orography, radiation, and surface temperature. 

The earth's surface was divided into three regions: oceanic 

regions, snow and ice free continents, and snow-ice regions 

where surface temperature is at or below the freezing point. 

The atmosphere was divided into 6 increment layers, each 

layer being 3 km in height. Exchange coefficients were 

solved by the SGS method to account for the horizontal dif­

fusion of momentum, water vapor, and heat. Unfortunately, 

the surface boundary layer level was given as boundary con­

ditions with minor alterations due to the presence of moun­

tains. Complimentary work by Deardorff (80) in parame­

terizing the surface boundary layer for use 1n this general 

circulation model, has been recently developed in an effort 

to include boundary fluxes of momentum, heat and stability 

conditions. Such large scale modeling of the earth's general 

circulation shows promising results in numerically fore­

casting weather and climate conditions. A comprehensive re­

view of meteorological efforts to account for the closure of 

the governing equations of turbulence is given by Lilly (81). 

While investigations into the three-dimensional charac­

ter of atmosphere turbulence are still rather primitive, ex­

haustive studies are currently being made concerning the na­

ture of turbulence and the formulation of more accurate the-

ories pertaining to three-dimensional modeling. For three-

dimensional atmospheric turbulence, present-day computer 

technology does not permit a straightforward mathematical 

analysis to be made as yet. 
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3. Statistical Theory 

The exchange coefficient hypothesis and turbulence ki-

netic energy hypothesis are based upon an Eulerian descrip-

tion of the fluid motion, i.e., the flow is viewed passing 

a fixed point in space such that a variable, say U, can be 

described by U(x-t), with X- being the spatial coordinates. 
1 1 

Transport phenomena, however, is difficult to interpret ac-

curately in Eulerian terms. A more convenient method is to 

use the Lagrangian description of the flow, i.e., following 

the motion of fixed "fluid particles" beginning at some spec-

ified time rather than the velocities of the fluid at some 

specified point, X- • 
1 

Following the analysis presented by 

Monin and Yaglom (35), a "fluid particle" is regarded as an 

identifiable volume of fluid having dimensions which are 

very large compared to the average distance between mole-

cules, but with linear dimensions so small that the velocity 

and pressure inside the volume are essentially constant. 

This allows the volume to be governed by the equations of 

fluid mechanics. The Lagrangian description relates to the 

motions of these individual fluid elements which produce, in 

sum, the entire flow phenomena. While physically more nat-

ural than the Eulerian description, the use of Lagrangian 

form turns out to be much more awkward analytically. Al­

though the use of viscous Lagrangian equations in turbulent 

theory 1s still a matter for the future, some progress has 

been made in formulating expressions for the mechanism of 

turbulent diffusion. 
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The Lagrangian characteristics are described by Monin 

and Yaglom (35) for an incompressible fluid as X. (x.~) which 
l l 

describes, for any time t, the coordinate X. of all the "flu­
l 

id particles" given by the values of some parameter x .. The 
l 

velocity corresponding to one of these point elements can be 

related to the Eulerian velocity as 

a X. (x. , t) 
u. {X. (x . , t) , t} = 

1 a~ ( 2- 3 7) 
l l l 

Transformation from Eulerian to Lagrangian equations re-

quires the replacement of (xi,t) variables by (Xi,t) and 

u. c xi , t) to x. c xi , t) . Likewise, x. =X. (x.,t), which descri b e 
l l l l l 

all possible trajectories of the fluid particles at all pos-

sible points X .• 
l 

This allows the "fluid particles", actu-

ally mathematical points flowing with the fluid, to describe 

the fluid motion by a family of trajectories, each differing 

by x .. 
l 

The incompressible Navier-Stokes equation is trans£-

ormed by Monin and Yaglom (32) from 

au. au. 
l l 
~ + u . "'dX":"" 

J j 

1 aP a aui 
p ax. + ~Cv~) 

J J J 

to the equation 

2 a .x. 
l 1 

-(X. , Xk, P) 
p J 

ax . 
+ v {X2,X3,(X2,X3'at

1
)} 

ax. ax. 
+ {X3,xl,cx3,xl'at

1
)} + {Xl,xz,CXl,x2'at

1
)} 

with the unknown variables being X. (x. ,t) and P(x . ,t), 
l l l 

· i = 1, 2, 3. 

(2 - 38) 

(2-39) 

The statistical description of turbulence arises from 



the Lagrangian variables being described by a probability 

distribution, such that 

38 

t x. (x. ,t) = x. + r u{X. (x. ,T),T}dT 
l l l bill 

(2-40) 

Subsequent sets of variables produce joint probability dis-

tributions, giving rise to Lagrangian autocorrelations, and 

space-time correlation tensors, i.e., see Lumley and Panofsky 

(8), which describe the variances of the "fluid particles" 

as a function of time. Integration of the spatial correla-

tion coefficient gives the scale of turbulence, or character-

istic size of the eddies. For homogeneous turbulence the 

variances are equal, reducing the equations to simple mathe-

matical relations. 

Present-day statistical theories of turbulent diffusion 

1n the atmosphere are based primarily on the works of Taylor 

(82), Frenkiel (83) and Sutton (11), all of whom assume homo-

geneous and isotropic conditions for the statistical proper-

ties of turbulence. Frenkiel (83) and Sutton (10) similarly 

assumed that mean concentrations within a diffusion cloud 

were distributed according to a three-dimensional Gaussian 

law from an instantaneous point source. Unfortunately, ap-

plication of this particular approach to boundary layer flow 

phenomena proved to be quite difficult. 

Gifford (84) applied the concepts of Lagrangian simi­

larity with the Monin-Obukhov theory in investigating turbu­

lent diffusion from a point source in a thermally stratified 

~oundary layer at ground level. Prediction of a centerline 
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of marked particles released from a fixed source, and axial 

concentration values using field observations obtained dur­

ing Project Prairie Grass, showed successful agreement be­

tween theory and field data. Klug (85) points out, however, 

that the Lagrangian theory implies that the vertical and 

lateral spreads of concentration are determined by the same 

feature, irrespective of stratification, while experimental 

data show that the variation of point source concentration 

does not occur with change in stability. Batchelor (86), 

using Lagrangian similarity, assumed that the velocity of a 

marked particle was dependent only upon u* and time after 

release from ground level, and successfully obtained ground 

concentrations for a fixed source in a neutral atmosphere. 

Due to the absence of reliable methods for measuring 

Lagrangian statistical characteristics of turbulence, partic­

ularly the correlation coefficients, along with the restric­

tion of the theory to homogeneous turbulence, makes this 

theory difficult to apply to transport phenomena in the at­

mosphere at the present time. Further mathematical refine­

ment of this approach, coupled with more sophisticated ex­

perimental methods, could eventually lead to a complete 

understanding of the basic mechanisms of turbulent transport. 
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I I I . THEORETICAL ANALYSIS 

The basic reason for seeking analytical solutions to 

turbulence problems is to provide insight into the mecha­

nisms of turbulence with mathematical and economic concise­

ness. Unfortunately, analytical treatment of the basic 

field equations is complicated by the irregularity of motion 

due to the cascading nature of turbulence. However, certain 

conclusions can be drawn from previous efforts in attempting 

to describe turbulent processes in the atmosphere. 

A large amount of experimental data exists on atmos­

pheric diffusion from both field and wind tunnel measure­

ments. Due to the irregularity of the field data, meteoro­

logical wind tunnel modeling has provided adequate informa­

tion pertinent to analytically investigating transport 

phenomena in an atmospheric boundary layer. A considerable 

degree of similarity has been found to exist between the 

atmospheric surface layer and aerodynamic flow over a flat 

plate. 

Because of this similarity to turbulent flow over a 

flat plate, a number of mathematical models have been de­

veloped; most have been based upon a Prandtl mixing length 

hypothesis. Nearly all meteorological methods assumed that 

exchange coefficients were synonymous with the momentum ex­

change coefficient and a function of friction velocity, von 

Karman constant, and either velocity or temperature gradi­

.ent. Modification of these models was necessary near the 
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upper limit of the atmospheric boundary layer to realisti­

cally account for the variation of the exchange coeffi­

cients. The effect of advection on solution to atmospheric 

flow phenomena was usually neglected. 

A parabolic solution of the governing equations is 

simple and easily adaptable in dealing with various bound­

ary layer problems. The numerical finite difference method 

of Patankar and Spalding (58) has been shown to be very 

effective in accurately predicting various flow phenomena 

with a minimum of computational effort; specifically attrac­

tive was the ability of the boundary layer height to be 

allowed to develop and act as the upper boundary condition 

for the numerical model. The method was also found to be 

easily modified to accept any number of dependent variables. 

The influence of buoyancy in a thermally stratified 

atmosphere is significant in atmospheric boundary layers, 

but does not become important in most engineering situa­

tions. Meaningful investigations of transport phenomena in 

the atmospheric boundary layer can only be accomplished by 

realistically modeling the actual conditions. 

Simultaneous solution of turbulence kinetic energy with 

the governing equations of motion appears to be a more sen­

sible approach than mixing length concepts for analyzing 

turbulent exchange processes. Based upon the Kolmogorov 

hypothesis of a turbulence kinetic energy-shear stress cor­

relation, various phenomenological models have been devel­

oped which appear to effectively close the governing 
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flow. 

A. Approach 
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Much of the analysis to be presented here has been pre-

viously developed. 

kept to a minimum 

Modification of existing theories was 

in order to maintain the flexibility of 

the technique for extension to a wide range of flow prob­

lems. Basically the method must: (i) maintain generality 

in dealing with a wide range of problems, (ii) use a mini­

mum of empiricism, (iii) be capable of long term objectivi­

ty, i.e., not easily outdated, (iv) retain its ability to 

be easily modified for any specific hypothesis, and (v) be 

computationally inexpensive. 

The computational scheme developed by Patankar and 

Spalding (58) has been chosen along with the Nevzglajdov 

(64) model for the shear stress as modified by Lee and 

Harsha (69). The turbulence kinetic energy is introduced 

into the set of governing equations and simultaneously 

solved with the momentum, continuity, and concentration. 

Under the assumption that no reverse flow exists, the gen­

eral elliptic equations are truncated to parabolic form. 

The Patankar-Spalding method allows a set of equations to 

be easily introduced into the program and solved with a 

high degree of computational efficiency. 

Boundary layer flow in this work will be considered as 

any flow in which there exists a predominant direction of 

flow; shear stresses, heat fluxes, and diffusional fluxes 
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are caused only by gradients in the direction normal to the 

direction of flow; and upstream conditions can influence 

downstream flow properties but not vice versa. Modification 

of these generalized conditions for atmospheric boundary 

layer flows requires several minor alterations to the gov­

erning set of equations; however, many of the assumptions 

used by Byrne (68) in analyzing non-equilibrium boundary 

layers have been used. 

B. Basic Equations 

The conservation equations for two dimensional, 

steady turbule~t boundary layers are: continuity, momentum, 

energy, turbulence kinetic energy, and concentration or 

species. The derivation of these equations will not be 

given here but can be found in detail in Byrne (68) and 

Patankar (41). 

The coordinate system used throughout this study em­

ploys the orthogonal coordinates x and z, x being the dis­

tance along which the boundary layer is developing and z the 

distance normal to the direction of flow. 

the coordinate system which will be used. 

Figure 1 shows 

The symbols used 

throughout this chapter are defined in the Nomenclature. 

The equation of continuity expresses the fact that for 

a unit volume there exists a balance between masses enter­

ing and the masses leaving per unit time and change in den­

sity. Steady state turbulent flow leads to the equation 

for continuity, given by Schlichting (87), as 
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(3-1) 

The momentum equation is obtained from the Navier-

Stokes equations, using the method of Reynolds (75) in 

which instantaneous velocities are divided into mean and 

fluctuating components. If time averages are taken, the 

momentum equation can be written as 

8P 
-- + F. 8X . 1 

l 

where pu!u! is the turbulent contribution to the shear 
l J 

stress, known as the Reynolds stress term. 

(3-2) 

The conservation of species n ' or concentration equa-

tio~, is normally written in the form 

a en 
d 

8Cn 
sn pU j 8"x." 8X. (ll3r pu!c') + (3-3) 

l 
J J J 

where sn is the rate of generation of the chemical species 

n. The concentration equation is written in terms of this 

generalized species equation since a fluid may consist of 

more than one constituent. The source term sn must be cor-

rectly defined for each particular concentration, i.e., 

when dealing specifically with the atmosphere, a species 

equation for water vapor content contains a latent heat of 

vaporization or condensation source term while an equation 

for liquid water content contains an additional term to 

account for the terminal fallout of water drops (51). Pol -

lutant diffusion has been assumed to be passive in this 

study. csn = 0); a test case involving the formation of fog, 
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using water vapor content and liquid water content, is 

assumed to be active since the release of latent heat in-

fluences the flow field. 

Recent use of the turbulence kinetic energy as a gov-

erning equation by several investigators has lead to an 

understanding of its development and its significance in 

effectively describing the nature of turbulent flow. Cur-

rent state of the art seems directed toward tying the tur-

bulence kinetic energy equation to a suitable empirical 

model for the eddy coefficient of momentum. While in most 

engineering situations the effect of buoyancy is normally 

neglected in the turbulence kinetic energy equation, the 

effect of buoyancy in atmospheric boundary layers must be 

included. 

The atmosphere is taken as being a perfect gas of con-

stant composition. Using the hypothesis of Arya (25) and 

Plate (19), the density will be regarded as being non-

uniform but with the fluid being incompressible, i.e., 

changes in density are due to changes in temperature and not 

due to change in pressure. The variations in p can be 

neglected if the temperature gradients are small. 

The dynamic behavior of the flow is described by means 

of the equations of motion for U. and U .. 
l J 

Subtracting the 

average values from these equations produces two equations 

for the fluctuating components, u! and u!. Multiplying the 
l J 

equation for u! by u! and the equation for u! by u!, adding 
l J J l 

~he two equations, and time averaging, produces an equation 
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for u!u!. 
1 J 

A contraction of this equation produces the tur-

bulence kinetic energy, Q, normally defined as Q = ~Cuiui). 

The form of the turbulence kinetic energy most often 

found in the literature is written as 

a u! (~ + Q) -ax. 1 p 
1 

au. a au! au! 
u--=-,-u--=-' __ J + u ! ( --1 + ___1_) 

i jax. vax. J ax. ax. 
1 1 J 1 

au! au! au! u!t'g 
\) (--1 + ___1_) _J_ + J 0. 

ax. ax. ax. T J3 J 1 l 

(3-4) 

in which the term (g/T)u!t'o. reflects the effect of buoy-
J J3 

ancy, obtained from the body force source term, F., exist-
1 

ing only in the vertical direction. Buoyancy is normally 

referred to as a production term in which fluctuating com-

ponents of velocity and heat draw energy from the mean 

motion. Consequently, if the heat flux is upward, this term 

serves as a source of energy while if the flux is downward, 

the term acts as an energy sink. 

For a medium with a non-uniform temperature distribu-

tion, turbulent mixing causes temperature fluctuations to 

occur, in addition to velocity fluctuations. As a conse-

quence, the presence of these velocity and temperature 

fluctuations generate supplementary heat flux terms analo-

gous to the Reynolds stresses. The energy equation is ex-

pressed here in terms of the static enthalpy, where 

dh = c dT. 
p 

The form most commonly found is given as 

a (a ah 'h') - aP ax. C dX.-pui + ll¢ + UjaX. + R 
J p J J 

(3-5) 
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where ~¢ represents the instantaneous dissipation of kinetic 

energy into heat, usually expressed as 

(3-6) 

and R the heat added instantaneously by radiation. The po-

tential temperature is normally used when describing tern-

perature distribution throughout the atmosphere. This is 

related to the static temperature as 

(3-7) 

where g/c is defined as the adiabatic lapse rate. 
p 

Since 

excessive heights were not considered in analyzing wind 

tunnel simulation studies, the potential temperature gradi-

ent was represented by 

38 3T 1 3h (3-8) 3X 
~ 

3X 3 
~ 

3X 3 c 3 p 

Equation (3-7) was used by Pepper and Lee (88) in nurneri-

cally modeling the formation of advection fog. In this 

case, the adiabatic lapse rate was important since minute 

changes in temperature could produce significant variations 

in moisture content. 

C. Closure 

Because of the addition of the fluctuating terms, the 

governing equations in their present form are not amenable 

to solution. In an effort to obtain solutions to these 

fluctuating terms, Boussinesq (33) introduced the concept of 

an eddy coefficient. Specifically, this involved the 
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assumption that the turbulence flux terms could be directly 

related to corresponding mean gradients. Although physi­

cally somewhat inexact, solutions for turbulent flow at 

least become ·possible. 

Dealing with the momentum equation, the advantage of 

defining an eddy coefficient for momentum, € , is that if m 

€m can be numerically determined, this apparent form of 

shear stress can be substituted into the momentum equation, 

reducing the number of dependent variables. This was per-

formed by Boussinesq (33) in which 

()U. ()U. 
-pu!u~ = € D .. = € (()X 1 

+ ~) 
1 J m lJ m j 1 

(3-9) 

where D .. is known as the deformation tensor of the fluid 
l] 

due to shear stress. Although -pu!u~ is not a stress term 
l J 

but an inertia term, coming from the convective part of the 

momentum equation, it is normally referred to as a stress 

component because it enters into the equation in the same 

way as the laminar stress term. 

A nearly complete survey of existing empirical models 

for the eddy coefficient of momentum was made by Harsha (89) 

for analyzing engineering problems. Similar investigations 

by Harsha and Lee (67) using data for two-dimensional jets 

and wakes showed that a linear correlation existed between 

the turbulent shear stress and the turbulence kinetic 

energy, as was previously suggested by Nevzglajdov (64), 

such that 

-pu!u~ 
l J 

(3-10) 



so 

where a 1 = 0.3. 

Based upon this hypothesis, available meteorological 

wind tunnel data and the data of Klebanoff (65) for flow 

over a flat plate were used to ascertain the validity of 

using a linear relation between the shear stress and the 

turbulence kinetic energy. The models to be discussed are 

the Prandtl mixing length, the Kolmogorov model, and the 

Nevzglajdov relationship. The first model is well known and 

involves only a mixing length concept; the other two deal 

specifically with the kinetic energy-shear stress relation-

ship. 

1. Prandtl Mixing Length Model 

The Prandtl m1x1ng length model 1s given by the rela-

tion 

(3-11) 

where 2 has the dimension of length and is determined ex-

perimentally for each particular case. The experimental 

data of Schon and Mery (20) and Klebanoff (65) is shown in 

Figure 2 with T/pU: as the ordinate and the nondimensional 

scissa, where U is the free stream velocity and 8 is the 
00 

boundary layer thickness. The Prandtl mixing length can best 

be represented by letting £ = .168. The disarray of data 

points indicates that the mixing length value requires modi-

fication for each particular problem. 
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2. Kolmogorov Model 

Based upon the suggestion made by Kolmogorov (64), the 

turbulent shear stress can be related to the turbulence ki-

netic energy by the relation 

-pu!u! = 
l J 

where Q is the turbulence kinetic energy defined as 

(3-12) 

Q = ~(u!u!) (3-13) 
l l 

and ~k is similar to the Prandtl mixing length. The log­

log plot of the non-dimensional turbulent shear stress 
~ 

versus (Q 2 /U
00

){8(U 1 /U
00

)/8(X 3 /o)} is shown in Figure 3. 

There is a decisive advantage in using the kinetic energy 

over the Prandtl mixing length model in that the general 

trend of data appears to approach a somewhat constant linear 

relation similar to that obtained by Tai (90) for Klebanoff's 

(65) data 

(3-14) 

This is understandable since the Klebanoff (65) and 

Schon and Mery (20) data were obtained under neutral condi-

tions, i.e., without thermal stratification. Equation 

(3-14) represents the data reasonably well only in the 
!,:; 

region where (Q 2 /U
00

){8(U 1 /U
00

)/3(X 3/o)} is small. 

A slight modification of this model was used by 

Wolfshtein (60) such that 

- pu 'u' = 1 3 
1 3Ul 
~ . zz~ pQ a-x 

l.l 3 
(3-15) 



Klebanoff 
0 X =6.08m s 

=8.20m 

=9.20m 
Schon f. Mery 

Figure 3. The Kolmogorov Model 

53 



54 

where 

(3-16) 

with 

being the "turbulent'' Reynolds number. A similar expression 

for the length scale was used by Wolfshtein (60) in formu-

lating an empirical model for the dissipation of turbulence 

kinetic energy, DQ. Further modifications of the Kolmogorov 

concept were used in several two-equation eddy coefficient 

models (71, 72). 

3. Nevzglajdov Model 

The Nevzglajdov model, given by equation (3-10), uses 

the rather simple relation that the shear stress is linearly 

proportional to the turbulence kinetic energy through the 

constant a 1 . As shown in Figure 4, the correlation between 

the non-dimensional shear and turbulence kinetic energy is 

best satisfied by the 45° straight line where a 1 = 0.3 for 

the neutral case, which is identical to the value obtained 

previously by Harsha and Lee (67) and Byrne (68). This 

relation represents a comparatively wider range of accuracy 

than equation (3-11) or equation (3-12) and will be used in 

this study. 

It is interesting to note that the model develops dis-

crepancies near the wall and at the outer edge of the 

boundary layer. Because the shear becomes very low near the 
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outer portion of the boundary layer, the inaccuracy of the 

model in predicting the shear force in this region is in-

significant in influencing the balance of momentum. As 

pointed out by Byrne (68), the greatest difficulty in using 

this model comes from the region of high shear flow near the 

wall, where the shear forces approach a maximum value at the 

wall while the turbulence kinetic energy approaches zero, or 

in a region where the shear stress is zero while the turbu-

lence kinetic energy is not, such as near an axis of symme-

try in free mixing. Lee and Harsha (69) modified the pro-

portionality constant, a
1

, for the latter case by assuming 

that 

(3-18) 

where lau 1 ;ax 3 1max is the mean velocity gradient at the 

point of maximum shear, in the region between the axis of 

symmetry and the point of maximum shear. For the region be­

tween the maximum velocity gradient and the external bound-

ary of the mixing region, the relation 

a = 
1 (3-19) 

was used. These relations did not prove very successful, 

however, in dealing with wall generated turbulence (68). 

In this study, equation (3-10) is assumed to be valid 

throughout the entire boundary layer. This results in a 

fictitious value for the kinetic energy at the wall, al­

though in reality the turbulence kinetic energy is known to 
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be zero. In the lower 10-15 per cent of the boundary layer, 

the turbulence kinetic energy approaches a maximum value, 

then sharply reduces to zero in the laminar sublayer region. 

As a consequence, the model modifies this region of intense 

turbulence such that a maximum value occurs at the wall, 

corresponding to a maximum wall shear, when dealing specifi-

cally with zero pressure gradient cases. A non-dimensional 

turbulence kinetic energy profile is plotted from the data 

obtained by Klebanoff (65) in Figure 5. The approach then 

is to use available turbulence kinetic energy values except 

near the wall (10-15 per cent) and to substitute a "slip" 

value consistent with equation (3-10) using a law of the 

wall formulation. 

The concentration flux term, -pu!c 1 , appearing in equa­
l 

tion (3-3), is related to the mean concentration gradients, 

following the method by Boussinesq (33), as 

-pu!c' 
1 

acn acn 
E (-- + "X 

0

) c ax. a 
J 1 

where E is the eddy coefficient of concentration. c 

(3-20) 

Sub-

stantial difficulty still exists, however, in accounting for 

the newly obtained eddy coefficient relation for concentra-

tion. Using the turbulent Schmidt number, a , the eddy co­
ct 

efficient of concentration can be related to Em' the eddy 

coefficient of momentum, as 

E c 
(3-21) 



58 

1.0 

.8 

.6 

.4 

.2 

Figure 5. Distribution of Turbulence Kinetic Energy in 
a Turbulent Boundary Layer Measured by Kleb­
anoff 
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Likewise, use of this procedure in describing the tur-

bulence flux term, -pu!h', appearing in the energy equation, 
l 

results in 

(3-22) 

where sh is the eddy coefficient of heat. 

the turbulent Prandtl number, oh , yields 
t 

Introduction of 

(3-23) 

producing an expression synonymous with that for concentra-

tion. 

The turbulence kinetic energy equation, equation (3-4), 

contains several double correlation flux terms, in addition 

to gradient forms of the fluctuation velocity. Three im-

portant terms are seen to arise which require simplifica-

tion; these are: -a{u! (p'/p + Q)}/aX., -gu!t'<S . 3 /T, and the 
l l J J 

gradient fluctuation terms containing the kinematic vis-

cosity, \J. 

a. Diffusion 

The term containing the pressure and velocity fluctua-

tion gradients, known as the convective diffusion term, 

shows no similarity in relation to local or overall flow 

conditions. Naudascher (91) and Hinze (39) make a simpli-

fication by assuming the combined terms to be proportional 

to the local gradient of turbulence kinetic energy, since it 

leads to a mathematically simple form which appears to be 

physically plausible. Consequently, 
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(3-24) 

where sQ is the eddy coefficient for turbulence kinetic 

energy. Lee and Harsha (69) introduce the empirical func-

tion, ok, such that 

(3-25) 

This results in the need of calculating only the eddy co-

efficient of momentum, s , throughout the set of equations 
m 

by a suitable phenomenological model. For most cases, sm is 

different for each flow condition and cannot be regarded as 

being constant for any given flow. 

The empirical constant, ok, appearing in equation 

(3-25), was chosen as being similar to the turbulent Prandtl 

number and given a value, ok = .7. Lee, et al (92) found 

this relation to be reasonable for two-dimensional wakes. 

Byrne (68) found that solutions were relatively insensitive 

to the value of ok and concluded that the diffusion of tur­

bulence kinetic energy is insignificant in boundary layer 

development. Gibson and Spalding (72) use a value of 

ok = 1.0 for their two-equation model of turbulence, indi­

cating that the eddy coefficient for momentum is synonymous 

with the diffusional transport coefficient for turbulence 

kinetic energy for high Reynolds number flow. For want of 

a better value, ok in this study is assumed to be repre­

sented by ok = .7. 
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b. Production 

The buoyancy term, -pgu!t'/T, can be redefined as a 
l 

function of Eh' the eddy coefficient of heat, such that 

-pgll'T' 
3 

T 

Further simplification yields 

(3-26) 

(3-27) 

The additional double correlation term, -pu!u!, appearing in 
l J 

equation (3-4), is termed the production of turbulence ki-

netic energy due to the transfer of energy from the mean 

motion to the fluctuating motion and is normally expressed 

as 

au
1 - pu' u • 

1 3 ax 
3 

(3-28) 

The Richardson number is used as a gross parameter to 

describe the stability of the atmospheric boundary layer, 

·signifying the effect of buoyancy on turbulent motion. The 

flux Richardson number is defined as the ratio of the two 

production terms, equations (3-26) and (3-28), 

(3-29) 

This relation gives an indication of the importance of 

buoyancy as compared to production due to turbulent stresses. 

The production by shear stresses adds primarily to the 

longitudinal component of turbulence, while buoyancy acts 

only in the vertical direction. The flux Richardson 
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number therefore acts as a local measure of the anisotropy 

of the turbulence, 1.e., both buoyancy and shear cause tur-

bulence to become less homogeneous. 

Because the flux Richardson number requires the simul-

taneous measurements of both heat and momentum flux, a more 

useful quantity to use in analyzing stability is the gradi-

ent Richardson number, R., defined as 
l 

R. 
l 

The flux Richardson number, Rf, is related to R. by 
l 

(3-30) 

(3-31) 

As Plate (18) points out, it is important to note that both 

Richardson numbers are not synonymous. The flux Richardson 

number describes the effect of local stability on turbulence. 

The gradient Richardson number determines stability in a stra-

tified fluid without perturbations of turbulence, i.e., it 

is identified as the ratio of the buoyancy to inertia forces 

and serves as a measure of the onset of turbulence in the 

fluid. 

Using equations (3-26), (3-28), and (3-30), the two 

production terms can be combined to g1ve 

R. 
_l_) 
oh 

t 

(3-32) 

1n which the gradient Richardson number, R., accounts for 
l 
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the production of turbulence due to buoyancy. 

c. Dissipation 

The dissipation of turbulence kinetic energy appears in 

equation (3-4) as the term 

au! au! au! 
u = -v---L(--1 + --L) Q ax. ax. ax. 

1 J l 

(3-33) 

The viscous terms, appearing in equation (3-4), can be re-

written as 

"\ au! au! 
0 ' ( 1 --L) vax. uj ax. + ax. 

1 J 1 

au! au! au! 
\) ( __ l + __L) ___l_ 

ax. ax. ax. 
J 1 1 

au!au! 
- J J) (3-34) ax.ax. 

1 1 

with DQ = -v(au!au~/ax.ax.) and Q = ~(u~u~). 
J J 1 l J J 

Because of the difficulty involved in measuring the 

dissipation rate, DQ' as it appears in equation (3-33), an 

auxiliary relation is used based upon dimensional analysis. 

Following the suggestions of Patankar and Spalding (58), 

Byrne (68) defines the dissipation term as 

D = a pQ 3 1 2 ;o Q 2 
(3-35) 

where o is the boundary layer thickness and a 2 an empirical 

constant defined, for X3/o>.25, as 

1.8X 3 -rm a = 2 0 

(3-36) 

x3 < x3 - -rm 

where x 3 is the location of maximum shear; when no shear -rm 

peak occurred for x 3 ;o~.25, a 2 was calculated from 
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a 2 = 1.8 

1.8<5 
LfZ 

(3-37) 
a = 2 

The empirical value of 1.8 was heuristically chosen after 

comparing with the free mixing work of Lee and Harsha (69) 

and Bradshaw's (66) boundary layer model. This value was 

also used in this study. 

D. Governing Equations 

Assuming two-dimensional, steady, boundary layer flow, 

the tensor form of the basic equations can be expressed as 

the orthogonal set of coordinates, x and z, shown in Figure 

1. Further modification of these equations can be made by 

using boundary layer assumptions, resulting in parabolic 

partial differential equations. The end result of this sim-

plification process produces a set of equations which can 

be easily solved by numerical means. The pertinent equa-

tions and corresponding assumptions used to numerically sim-

ulate atmospheric boundary layer flow are written as follows: 

1. Conservation of Mass 

d d ax (pU) + az-CpW) = 0 (3-38) 

where U is the velocity parallel with the x direction and W 

the cross stream velocity in the z direction. 

2. Conservation of Momentum 

Since the boundary layer is assumed to develop predomi-

nantly in the x direction, only the longitudinal momentum 

equation is needed to describe the flux of momentum. Equa-

tion (3-2) is therefore reduced, with the help of equation 
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(3-9), to 

pU~~ + pW~~ (3-39) 

or 

dP 
- dX (3-40) 

where K = 11 + c m m· This allows K to adjust to either lami­
m 

nar or turbulent flow. 

3. Conservation of Species 

The concentration equation can be written in boundary 

layer form as 

n "'Cn E: n 
Uac wo ___ a {(--11- + _m )ac} 

P "X + p "'Z o o az a a az 
cl ct 

(3-41) 

where a 1s 
n 

the laminar Schmidt number and S the rate of 
cl 

production of concentration by chemical reaction. Introduc-

ing the exchange coefficient of momentum, the concentration 

equation becomes 

( 3- 4 2 ) -~ .. 

where a is the mixed Schmidt number, which reduces to the 
c 

laminar Schmidt number in the sublayer region or to the tur-

bulent Schmidt number in the outer region of flow. 

4. Turbulence Kinetic Energy 

It is a simple matter to rewrite the turbulence ki-

netic energy equation into a general, parabolic two-

dimensional form. The form of the turbulence kinetic 

energy equation most often used in the literature is written 

~· .. • ... 
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as 

pU~ + pW~~ - D 
Q (3-43) 

where DQ is defined by equation (3-35). When the flow is 

unstable, the gradient Richardson number is negative. This 

leads to an increase in the production of turbulence through 

the increasing effect of buoyancy, i.e., increasing insta-

bility diminishes the effect of shear until the shear be-

comes insignificant in driving the flow field. At this 

point, the flow is influenced entirely by buoyancy and be-

comes a free-convection flow. This increase in turbulence 

production accounts for the rapid dispersion of pollutants 

under lapse conditions. 

For stable flows, the gradient Richardson number is 

positive. This causes a decrease in the production of tur-

bulence since buoyancy tends to draw energy from the turbu-

lence. Under inversion conditions, the temperature in-

creases with height such that the buoyancy forces impede 

turbulent mixing in the vertical direction, causing turbu-

lent diffusion to proceed slowly. 

In neutral stratification, the temperature remains con-

stant with height, causing the gradient Richardson number to 

vanish. Under actual conditions, the vertical gradient of 

temperature is equal to the adiabatic lapse rate; however, 

in this study the former condition for neutrality is 

assumed. 
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5. Conservation of Energy 

The conservation of stagnation enthalpy is introduced 

at this point instead of static enthalpy in order to sim-

plify the governing energy equation. This permits a much 

wider range of flow situations to be solved with no altera-

tion of the resulting equation. 

The total energy of the fluid consists of thermal 

energy due to heat transfer, the turbulence kinetic energy 

due to the velocity fluctuations, the chemical energy due to 

species production, and the kinetic energy due to the fric-

tion generated by the mean flow. The total enthalpy of the 

fluid can be written as being composed of these four compo-

nents: 

u2 n n 
H = h + 2 + Q + Lh c (3-44) 

n 

where h is the static enthalpy, U the mean velocity, Q the 

turbulence kinetic energy, hn the enthalpy of production of 

species n, and en the concentration of species n. If chemi-

cal reactions do not occur, the production of energy appear-

ing in the summation term can be neglected. The equation 

for static enthalpy is obtained from equation (3-5) and 

equation (3-6) as 

Uah + ah a a + sh 3h au 2 dP 
Pax pWaz: = az{C c )az} + smCaz) + ucrx + R (3-45) 

p 
where a is the thermal conductivity of the fluid, sh is the 

eddy coefficient of heat transfer, and R the radiation term. 

Following the procedure discussed by Lin (93), the ratio of 
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the eddy coefficient of friction to that of heat transfer 

can be expressed as 

c K 
0 = p m 

h a + sh (3-46) 

where oh is designated as the mixed Prandtl number, which 

reduces to the molecular Prandtl number for the sublayer 

region at the surface and to the turbulent Prandtl number in 

the outer region of the turbulent boundary layer. Introduc-

tion of the stagnation enthalpy along with the kinetic 

energy of turbulence and chemical energy of the species 

alters the static enthalpy equation to 

pU~~ + pW~~ a [ Km a H a U 
2 0 h a Q 

87 oh { az + C0h - l)az-Cz-) + (0k - l) az 

(3-47) 

where ok is the empirical constant for the turbulence ki-

netic energy, 0 the mixed Schmidt number, c 
sn the produc-

tion of chemical species n due to chemical reaction, DQ the 

dissipation of turbulence kinetic energy, and PQ the produc­

tion of turbulence kinetic energy given as 

au 2 Ri 
p = E (-) ( 1 - -) Q m az 0h 

(3-48) 

The stagnation enthalpy equation, equation (3-47), can be 

simplified by neglecting the additional source terms on the 

right-hand side to an equation containing only advection and 

diffusional terms, using an order of magnitude analysis. 
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Conversion of the stagnation enthalpy to static or potential 

temperature can be easily made by use of the thermodynamic 

relation: c ah/aT. 
p 

The radiation term, R, appearing in equation (3-47)' is 

included in the energy equation to account for long-wave 

radiation from the surface of the earth. Following the hy-

pothesis of Plate (18), the effect of radiation on tempera-

ture distribution is usually small when the humidity in the 

atmosphere is low. In addition, the effect of radiative 

heat fluxes over land is ignored since it is usually negli-

gible and complicates the energy equation. However, when 

dealing with flow over water surfaces, the atmospheric air 

is normally more moist, allowing the long-wave radiation to 

become trapped in the lower regions of the atmosphere. This 

is due to an increase in the absorption characteristics of 

air as moisture content increases. As a result, the effect 

of radiation cannot be neglected over water. In this study, 

the radiation source term, R, was neglected for all test 

cases except for the case of advection fog formation over 

the ocean. 

The radiation term, R, was modeled after the relation 

for radiative flux divergence given by Mack, et al (51) as 

R 
4 n zt...Jl 

s'oT (O)l.6K pC exp{-1.6K pf L (z')dz'} w w z 
0 

(3-49) 

where B' = .25, the fraction of blackbody radiation from the 

earth's surface at temperature T(O), o is the Stefan-

Boltzmann constant, K the mean mass absorption coefficient w 
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of fog for infrared radiation, Cn the liquid water mixing 

ratio, and zt the top of the fog. In spite of this simple 

treatment, results obtained by Mack, et al (51) showed that 

this relation did simulate the net upward radiation flux at 

the surface. 

E. Boundary Conditions 

Solutions to the boundary layer equations depend upon 

information available from initial profiles and along bound­

aries, or solid surfaces. This information is normally 

given as values or as gradients of dependent variables. 

Particularly important in dealing with turbulent boundary 

layers over wall boundaries are those boundary conditions 

specifying flow in the vicinity of the wall. Usually very 

steep gradients of velocity and other variables exist near a 

wall along with a decreasing of the eddy coefficient to a 

laminar viscosity relation. Because of ensuing difficulties 

associated with this phenomenon, many proposals have been 

made in the literature regarding exchange coefficients near 

walls. As a result, a universal law of the wall has been 

formulated in this study to account for turbulence kinetic 

energy at the wall along with Couette flow relations to 

account for the remaining dependent variables. 

1. Law of the Wall 

The equivalent law of the wall for velocity in a ther­

mally stratified flow field is used to calculate the fric­

tion velocity, u*, at the wall, which in turn is used to 

calculate the wall shear stress and wall turbulence kinetic 
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energy value. This relationship is not used as a wall con-

straint for the mean velocity but is used expressly for the 

purpose of approximating a fictitious "slip" value for the 

kinetic energy in order to validate equation (3-10); the 

velocity, along with the stagnation enthalpy and concentra-

tion, are based upon Couette flow analysis. 

Based upon the Monin-Obukhov (44) similarity theory, a 

non-dimensional wind shear can be written as 

¢(§) = ~~ ~~ (3-50) 

where§= Z/1, with L being defined by equation (2-5), u* 

the friction velocity, and k being the von Karman constant, 

defined by k = .41. For the case of a neutral atmosphere, 

§ ~ 0, equation (3-50) can therefore be rewritten as 

au u* az = kz <PCO) (3-51) 

where ¢(0) = 1. Representing ¢(§) in a Taylor series and 

eliminating second order terms, since § is assumed to be 

small, equation (3-51) is expressed as 

au 
az = }(~Cl + s~z) 

where 6* is a constant determined from experiments. 

clueing non-dimensional coefficients 

equation (3-52) becomes 

+ 
u 

u 
U* 

Zu* --
\) 

(3-52) 

Intra-

(3-53) 
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*2 * + + 3(u u*) 
+ 

u (1 + s vz ) 
kvZ+ Lu* 

(3-54) 
3(Z v/u*) 

The diffusion of fluid particles is assumed to proceed lin-

early over a short distance, Z. Since the region of in-

terest is sufficiently close to the wall, simplification 

produces 

(3-55) 

Integration of equation (3-55) yields 

(3-56) 

where k is the von Karman constant, S* an empirical con-

stant, L the stability length given by Lumley and Panofsky 

(8) as 

L 
ahu*(3U/3Z)T 

kg(3T/3Z) (3-57) 

and c1 determined from experiments as being equal to 4.9. 

A modification of equation (3-57) was made by Lee, et 

al (70) to account for pressure gradients and mass injec-

tion. Using the data obtained by Julien, et al (94) and 

ThieJbahr, et al (95), equation (3-56) was rewritten as 

+ 
u (3-58) 

where the subscripts B and oo designate the blowing and free 

stream conditions respectively, W the cross stream velocity 

normal to U, ah the mixed Prandtl number, Ri the gradient 

Richardson number, and the S coefficients given as 
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40. (3-59) 

5.2 stable 

s3 0 neutral 

4.5 unstable 

The values for s
3 

are deduced from Webb's (6) results for 

stratified atmospheric flow. The local pressure-gradient 

parameter, s1 , is derived from an analysis of the flow at 

the outer edge of the boundary layer where 

dU 
00 

pooUoo ~ 

Multiplying both sides by v/p 00U~, 
dU v 00 

u2 ~ 
00 

or 

dP -crx 

dU 
\) 00 

dP 
ax 

K 
p LJZCIX 

00 

(3-60) 

(3-61) 

(3-62) 

where K is assumed to cover a particular range of constants 
p 

for accelerating or decelerating flows. The blowing frac-

tion, s2 , is based principally upon the data of Julien (96) 

and Julien, et al (94). 

It should be remembered that this law of the wall for-

mulation is used only to provide a means for determining the 

shear stress at the wall, under condition of thermal strati-

fication, which in turn is used in creating an acceptable 

turbulence kinetic energy wall boundary condition as given 
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by equation (3-10). A Couette flow analysis has not been 

developed for the turbulence kinetic energy using this model 

because of instabilities in using equation (3-10); the mean 

velocity, U, and the remaining dependent variables can be 

effectively treated as being one-dimensional near the wall. 

2. Couette Flow Relations 

Because of the success obtained by Patankar (41) in 

regarding the near wall region as being one-dimensional, a 

similar hypothesis has been used in this study. The pri-

mary reason for using this concept is that the flow problem 

reduces to the solution of ordinary rather than partial dif-

ferential equations. Consequently, these equations can be 

expressed in terms of algebraic relationships that can be 

used as asymptotes or boundary conditions for the partial 

differential equations. This results in a substantial sav-

ings in computational time with a minimum loss of accuracy. 

More conventional forms of finite difference techniques 

require an excessive amount of computational effort and 

storage capacity in order to overcome instability normally 

generated within this narrow region. 

Since the velocity, U, is small and the x-wise convec-

tion negligible near a wall, the governing equations can be 

written as one-dimensional conservation equations expressed 

by 

au 
pW az dP 

ax (3-63) 
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aH 
pW IT (3-64) 

(3-65) 

where the source terms are neglected in the stagnation en-

thalpy and concentration equations. The flux relations, JH 

and JC, are defined as 

fhe 

K 2 crh 
l)aQ} JH ~{aH + ( crh - l)au /2 + (- -

oh az az crk az 

K ac 
Jc = m 

cr az c 

one-dimensional equations can be integrated 

+ ill u + zdP 
w ax 

+ m (H - H) w w 

+ ill ( C - C) w w 

(3-66) 

to give 

(3-67) 

(3-68) 

(3-69) 

where the subscript w denotes wall value and ~w = pWwall" 

These relations can be reduced to simple expressions, fol-

lowing the non-dimensional procedure of Patankar (41), for 

shear stress, T, and dependent variable flux, J, based upon 

shear stress and flux values at the wall. 

In order to overcome the inaccuracy of the Nevzglajdov 

model in this region, an alternate exchange model must be 

used. The model proposed by van Driest (40), and later 

modified by Patankar (41), was found to provide adequate 
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results 1n describing the steep gradients of the dependent 

variables in the near wall region. The exchange coeffi­

cients near the wall are given by van Driest's (40) formula 

as 

K m 
a 

m 
(3-70) 

where a 1 and at denote laminar and turbulent Schmidt or 

Prandtl numbers respectively, amis the mixed Schmidt or 

Prandtl number, and n and A+ are constants. Subsequent non-

dimensionalizing and algebraic manipulation produces ex-

pressions for the gradients of velocity, concentration, and 

heat. This in turn leads to fictitious, or "slip", values 

for the dependent variables with regard to the boundary con-

ditions. A false or "slip" value for the dependent variable 

is used in order to give a better representation for the in-

terval near the boundary. This concept of employing fie-

titious values near the surface was initially designed by 

Patankar (41) in handling boundary conditions in which the 

gradients of the dependent variables were used at a bound-

ary. 

The velocity profile near the wall lS assumed to vary 

according to the power law 

Ua: I z - z I s 
w (3-71) 

where the subscript w denotes the wall, or surface, and 8 

the power law coefficient. Matching the slope at a point 

halfway between the wall and the first grid point along with 
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the velocity at the first grid point produces 

(3-72) 

A similar expression for ¢ can be obtained as 

C¢ - ¢ )a:lz - z ly (3-73) w w 

where y is the power law coefficient. The slip value of ¢ 

can be written as 

(3-74) 

A slip value for the Z coordinate (physical dimension) can 

be obtained from equation (3-74) by letting y = 1. This 

produces 

(3-75) 

A similar analysis can be obtained for a region near a free 

boundary. 

The values of S and y are found from the Couette flow 

relations, in conjunction with the van Driest (40) hypothe-

sis, where 

s 

and 

y 

( .£ .:E._) 
U K 

m 
(3-76) 

(3-77) 

From the Couette flow equations, equations (3-67), (3-68), 

and (3-69), the resulting expressions for Sandy become 
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(3-78) 

and 

where 

y 

2 s = T /pU w 

(3-79) 

R pUZ/~ (3-80) 

F Z(dP/dX)/pU 2 

Couette flow relationships were derived by Wolfshtein 

(60) for turbulence flow, based on the Kolmogorov model. 

This hypothesis was found to be applicable to both the lami-

nar sublayer and the fully turbulent region of one-

dimensional flow. However, the turbulence kinetic energy 

equation could not be reduced to a simple first order equa-

tion; a numerical iterative method had to be used in con-

junction with an excessive number of empirical constants to 

solve the second order equation. In describing the length 

scale, Wolfshtein used an expression similar to that used by 

van Driest (40). A comparison between this technique and 

the Couette flow-law of the wall technique employed in this 

study proved to be inconsequential. 
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3. Initial and Boundary Conditions 

If the mean velocity profile is not given from measure-

ments, a power law representation is employed such that 

u 
uoo 

(3-81) 

where Uoo is the free stream velocity and 6 the boundary 

layer thickness obtained from measurements or arbitrarily 

estimated. This empirical relation gives a good approxima-

tion for the velocity profile in a fully developed boundary 

layer. 

The initial temperature profile, which is easily con-

verted to stagnation enthalpy, can be obtained from experi­

mental data or specified by the semi-empirical relation 

Tw - T 
T - T (3-82) 

w 00 

where Tw is the temperature at the wall, T
00 

the free stream 

temperature, and 6t the thermal boundary layer thickness. 

Because the two power law relations give a good average 

representation of the flow conditions over the whole bound-

ary layer, meteorologists have employed the use of these 

equations extensively. Plate (18) correlated the exponent 

appearing in equation (3-81) with various surface roughness 

and types of terrain along with corresponding average bound-

ary layer thicknesses. 

The initial concentration profile is normally obtained 

from experimental data. If no data exists, or concentration 

is not considered, the concentration is initially assumed to 
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be zero everywhere. In the case of fog formation studies, 

species concentration is generated through the source term, 

Sn, for condensation and evaporation. 

In the case of the turbulence kinetic energy, the ini­

tial profile is obtained from experimental data, which is 

usually scarce, or estimated from a non-dimensional turbu­

lence kinetic energy profile based upon the flat plate data 

of Klebanoff (65), as shown in Figure 5. The turbulence 

kinetic energy near the wall has been modified in order to 

validate equation (3-10). Agreement between the measured 

data of Klebanoff (65) and the computational results ob­

tained from equation (3-10) is very good within as close as 

10 per cent of the wall region. The remaining 10 per cent 

is obtained by extrapolating the computed kinetic energy to 

the wall. 

The boundary conditions are specified as follows: 

Wall (Z = 0) 

u 0 

T T w 

Q Tw/alp 

ac;az = 0 

Free Stream (Z -+ 00) 

u u 
00 

T T 
00 

Q 0 

c = 0 
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The concentration for a ground level source has a maxi­

mum value at the surface. Since the wall boundary condition 

implies that the vertical flux of concentration is zero, 

ac;az = 0, the concentration near the wall is obtained from 

a Couette flow relation for total flux specified at the sur­

face. 

F. Solution to the Finite Difference Equations 

The numerical technique employed in this study is based 

principally upon the method developed by Patankar (41). The 

procedure allows an arbitrary number of non-linear parabolic 

partial differential equations to be simultaneously solved 

us1ng an implicit technique and a variable grid size. Be­

cause of the simplicity of the method, combined with the use 

of variable grid size and the Couette flow wall functions, 

substantial savings in computer time for large scale calcu­

lations are achieved. In this study, the simultaneous solu­

tion of momentum, stagnation enthalpy, concentration, and 

turbulence kinetic energy required approximately 2~ minutes 

on an IBM 360/50 to solve three different cases of atmos­

pheric flow (neutral, stable, and unstable) using a 25 point 

lateral grid. The general nature of the solution allows any 

number of different data sets to be run in succession with a 

minimum of computation. 

Modifications to the Patankar (41) method were made by 

Harsha (89), Byrne (68), and Tai (90) in order to accommodate 

the Nevzglajdov model into the general numerical scheme. 

Patankar and Spalding (58) incorporated the Kolmogorov model 
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into Patankar's (41) original method in a similar manner. 

An additional modification to the original program was made 

by Harsha (89) in order to more accurately control the vari-

ation of grid size in free mixing studies; however, this 

proved to be limited to free mixing problems and could not 

be applied to wall turbulence situations. 

1. Coordinate Transformations 

To insure computational efficiency, the system of gov-

erning equations is converted from the physical coordinate 

system (X, Z) to the von Mises stream-function coordinate 

system (X, ~) . The stream function ~ is defined by the 

relations 

pU 

8\jl 
-pW = 8X 

(3-83) 

The X-direction momentum equation (3-40) can be transformed 

to 

1 dP 
pu ax (3-84) 

The stagnation enthalpy, turbulence kinetic energy, and con-

centration can be transformed in the same manner; their de-

velopment will not be given here. 

In order to limit the computation region to the outer 

edge of the boundary layer, i.e., within the region of s1g-

nificant gradients, a dimensionless stream function lS de-

fined as 
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w = 
lJJE - lJJI 

(3-85) 

where lJl I is the stream 1 in e a 1 o ng the surface , or '' intern a 1 '' 

edge, and ~E the stream line on the outer edge of the bound­

ary layer. Consequently, the value of w varies as O<w<l. 

From equation (3-83), 

(3-86) 

where mi and mE denote mass flow rate entrained through the 

boundaries. The X-momentum equation is therefore altered 

by equations (3-85) and (3-86) to 

'"' pUK '"'U _a_{ m __ a } 
aw (~ _ lJl ) 2 aw 

E I 

1 dP 
pu ax (3-87) 

The remaining governing equations, equations (3-24), 

(3-35), and (3-39), can be similarly transformed so that all 

convert to a standard form which can be written as 

where 

~~ + (a + bw)~! a a¢ -(c-) + d aw aw 

a = m I I ( lJJE - ~I) 

b 

c = 

(mE - mi)/(~E - ~I) 

2 
pUKm/o<P(lJJE - lJJI) 

The values for ¢, o¢, and d are given in Table I. 

(3-88) 

(3-89) 

The 



84 

TABLE I: COEFFICIENTS IN THE GENERALIZED PARABOLIC EQUATION 

0¢ d 

u 1 
1 <;lP 

pu-- dX 

1 
DQ + ffl R) H oh puCPQ - + 

0 _1_~ 
c pU 

UK R. DQ 
Q 

P m {(au)z 2.}-ok -
pU 2 aw oh 

(l}JE-l}JI) 



85 

general nature of equation (3-88) allows the governing equa­

tions to be solved using the same basic coefficients. 

The coupling of the equations occurs in the coeffi­

cients c and d. The exchange coefficient is related to the 

turbulence kinetic energy while the source terms are re-

lated to the longitudinal momentum, thus securing closure of 

the equations. 

2. Entrainment 

Prediction of the entrainment rate of fluid between the 

longitudinal steps conserves a considerable amount of compu-

tation time by excluding the inviscid flow region. Conse-

quently, the problem of entrainment arises when attempting 

to evaluate m1 and mE in equation (3-89). Using the axial 

momentum equation applied along the edge of the boundary 

layer, the momentum equation can be expressed (60) as 

dU 
ax 

1 dP 
-pu ax (3-90) 

which 1s synonymous with the inviscid Bernoulli equation. 

If it is assumed that this relation holds just inside the 

boundary layer, equation (3-90) can be expressed as 

(3-91) 

where use has been made of equations (3-83) and (3-85). As 

w -+ 1' 

(3-92) 

Similarly, as w-+ 0, 
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(3-93) 

If the exchange coefficient of momentum is assumed to be 

proportional near the boundaries to au;az, the Prandtl mix­

ing length model can be employed and the limits in equations 

(3-92) and (3-93) become finite. 

An equation can be written for the entrainment rate, 

providing that the free boundary at the outer edge of the 

boundary layer obeys the mixing length hypothesis, using 

equations (3-92) and (3-11) as 

(3-94) 

A similar expression can be obtained for the wall boundary 

entrainment rate. In the case of laminar flow, K does not m 

vanish with au;az at the outer edge of the boundary layer. 

Consequently, an infinite entrainment rate occurs. This 

difficulty can be overcome by applying equation (3-91) away 

from the external boundary such that O<w<l; this procedure 

is explained by Patankar (41) in detail. 

It is important to note that the entrainment across a 

free boundary is arbitrary; an entrainment rate has been 

similarly developed by Harsha (89) using the momentum inte-

gral to evaluate ewE - WI) along with equation (3-92). The 

entrainment rates control the coefficients a, b, and c in 

equation (3-88) and influence the downstream integration 

step, along with (WE -WI), given by equation (3-86). An 
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entrainment rate should be estimated which will produce an 

adequate amount of flow to account for all dependent vari­

able gradients. Equation (3-94) has been used in this study 

because of its simplicity. 

3. Finite Difference Procedure 

The numerical technique employed ln this study was 

originally developed by Patankar (41). Because of the wide-

spread popularity of this method, a brief introduction to 

the formulation will be given here; the details can be found 

in references (68) and (41). 

Figure 6 shows the numerical grid and nomenclature used 

in formulating the finite difference elements, where the 

subscripts U and D indicate upstream conditions and down-

stream conditions respectively. Since the generalized para-

bolic equation is non-linear with respect to w, the equation 

is quasi-linearized by assuming that the dependent variable 

¢ varies linearly with w. Along the X-coordinate, the value 

of ¢ is ¢ 0 except at X = XD' where ¢ immediately assumes the 

value ¢D. 

In order to formulate the difference equation, the 

derivatives of the dependent variables are evaluated as mean 

values integrated over the control volume, indicated in 

Figure 6 by the crosshatching. The dotted lines indicate 

midpoint locations with respect to w. The principle gradi-

ents appearing in the convection terms in equation (3-88) 

can be expressed as 
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w 

U ~----------------~ D + + 

u D 
--------~------------------~--------------~x 

Figure 6. Finite Element Grid for X-w Coordinates 
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!XD!wD++ acp dwdX 
acp xu WD-- ax 

~ 

ax (XD - Xu) (wD++ - WD--) 
(3-95) 

and 

fwD++ a¢ dw 
acp WD-- aw 

~ 

aw (wD++ - WD--) 
(3-96) 

Assuming linear profiles between the grid points, equations 

(3-95) and (3-96) can be rewritten as 

acp 
ax 

and 

+ fwD++ (<PD - <Pu)dw} 
WD 

(3-97) 

(3-98) 

Integration of equations (3-97) and (3-98), along with 

some algebraic manipulation, leads to the two expressions 

for the convection terms 

(3-99) 

where 



pl -

P2 -

p3 -

and 

where 

Q -

Rl -

4(XD 

3 
4(XD 

4(XD 

a 
WD+ -

b WD+ 
4 WD+ 

b 
4 

90 

WD+ - WD 
- Xu) (wD+ - WD_) 

xu) (3-100) 

WD - WD-
- Xu)CwD+ - WD- ) 

(3-101) 

WD-

+ 3wD 
(3-102) - WD-

The expression for the flux term 1n equation (3-88) can 

be expressed in a similar manner as 

2 
w - w ( cuu 

D+ D- + - w D-
- c 

UU-

(3-103) 

Using the nomenclature of Patankar (41), equations (3-99), 

(3-101), and (3-103) can be expressed as 
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(3-104) 

and 

(3-105) 

where 

(3-106) 

The expressions for the g's are in terms of known values, 

i.e., upstream conditions at X= XU. 

The source term, d, may not be linear in ¢ over the in-

terval XD - x0 . Consequently, d 1s linearized according to 

the formula 

(3-107) 

As an example, the source term in the momentum equation, 

equation (3-87), can be evaluated from 



or 

d ~ 
1 

- UX=X )}dw 
u 

92 

d ~ (3-108) 

(3-109) 

Since d = -(1/pU) (dP/dX), the momentum source term, after 

some algebra, becomes 

where 

s = 4 

u 2 
Pu- u-

dP _ X ) ( pl + p2 
- 2a:x(XD U U -u-

Pu+ u++ Pu U 

(3-110) 

(3-111) 

The complete difference equation can be compiled into 

one equation as 

(3-112) 
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which conveniently reduces to 

(3-113) 

where 

gs - gl 
A 

g2 + gs + g6 - (3d/3¢)u 

g6 - g3 
B (3-114) 

g2 + gs + g6 - (3d/3¢)u 

The particular significance of equation (3-113) is seen from 

the fact that the governing equations can all be reduced to 

an expression containing three unknowns in a particular 

order. Use of tri-diagonal successive substitution formu-

lae, discussed by Richtmyer (97), allows the solution pro-

cedure to be computationally time dependent upon the number 

of equations to be solved, and not to its square as in the 

standard matrix-inversion technique. 

The calculation of the stream function interval 

~E - ~I' which is used in controlling the normal distance Z, 

to give the physical thickness of the boundary layer, is 

obtained from equation (3-86): 

(3-115) 

where the entrainment rates are evaluated at the upstream 

locations. 

Because the downstream step length is unknown in 
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equation (3-115), the next step length is calculated by 

assuming that a given fraction of the total mass flow is 

entrained from the upstream step, providing that the growth 

of the layer thickness is slow. Since the entrainment rates 

are defined, the step length can be expressed as 

(XD - XU) = .05(WE - w1)u/Cm 1 - mE)U 

with the value of .05 being empirically obtained by 

Patankar (41). 

(3-116) 
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IV. RESULTS AND DISCUSSION 

Because of the general nature of the numerical model 

described in the preceeding sections, a systematic progres­

sion of increasingly difficult flow situations has been ana­

lytically solved, using a minimum of modification. The par­

ticular technique employed in this model has been found ln 

the past to adequately predict a wide range of turbulent 

boundary layer situations dealing specifically with 

engineering-type problems. Additional inputs into the pre-

sent system include thermal stratification effects, surface 

temperature distribution, and concentration distributions 

associated with atmospheric diffusion phenomena. In the pre­

sent investigation, all flow parameters have been assumed to 

be two-dimensional and steady state. Passive concentration 

fields are considered to be generated from continuous ground 

level line sources. 

The calculations made in this study were first analyzed 

by comparing with theoretical models used to describe atmos­

pheric boundary layer phenomena. While comparison with the­

ory cannot be considered conclusive, it at least affords the 

theoretician an opportunity to ascertain the feasibility of 

his model. Once this is achieved, a more systematic ap­

praisal of the model is necessary. 

Further verification of the present model was made by 

using available experimental data. Comparisons with wind 

tunnel data were made under conditions similar to neutral, 
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stable, and unstable atmospheric boundary layers. 

The last section to be discussed involves the formation 

of an advection fog occurring over a cold sea surface. While 

this study has intrinsic value, no available data exists 

with which the model can be properly evaluated. While sev­

eral numerical models exist, each tends to predict somewhat 

irregular results. Using previous mathematical analysis 

based upon these schemes, the present model incorporates the 

effect of advection upon the formation of fog along with a 

more realistic model for the turbulent exchange coefficients. 

A. Comparison With Theory 

While many theoretical investigations have been con­

ducted using various models to describe the exchange coeffi­

cients, very few provide enough information to adequately 

compare with the model used in this study. Successful re­

sults were obtained by Rao, et al (31) using a rate equation 

to govern the exchange coefficient of momentum in thermally 

stratified boundary layers. A comparison of the turbulence 

kinetic energy model with the rate equation was made in 

order to verify the ability of the numerical scheme to sim­

ulate atmospheric diffusion phenomena. 

For the purpose of comparing theoretical results with 

those of the present analysis, calculations were made for a 

hypothetical atmospheric boundary layer based upon the flow 

configurations used by Rao, et al (31) in simulating the 

data of Poreh (30) and Malhotra and Cermak (98). Netrual, 

· stable, and unstable stratifications were analyzed by 
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comparing prediction for velocity, temperature, and concen-

tration. 

1. Neutral Atmosphere 

Rao, et al (31) used the experimental data of Poreh 

(30) to numerically simulate ground level line source diffu-

sion in a neutral atmosphere. The initial velocity and con-

centration profiles used by Rao, et al (31) were likewise 

used in the present model as initial conditions. 

The computed velocity profiles for the neutral case are 

shown in Figure 7 at four downstream locations, ranging from 

X = 2.74 meters to 10.8 meters, 
s 

from the source of concen-

tration. The source strength of concentration at X = 0 was s 

equal to 0 .66 mg/cm-sec. Both models appear to simulate 

relatively identical profiles. Slight discrepancies occur 

near the wall; however, this is felt to be due to the use of 

Couette flow relations in the turbulence kinetic energy mod-

el. A universal law of the wall formula is used in the rate 

equation model to describe the variation of mean velocity in 

the near ·wall region. 

Using the concentration measured by Poreh (30) at Xs = 

.91 meter as initial conditions, both models show reasonable 

success in Figure Sa, Sb, and Sc in predicting the diffusion 

of concentration at the remaining downstream locations. The 

more signigicant underprediction by the turbulence kinetic 

energy model at X = 1.52 meters is caused by readjustment s 

of the turbulence kinetic energy at the wall to comply with 

the Nevglajdov model and the initial u* value. While both 
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models begin to overpredict the concentration in the near 

wall region at X = 2.74 meters, the rate equation model is s 

seen to be slightly more significant. Both models show 

their predicted concentration profiles to be almost identi-

cal at X > 6.40 meters. s 

2. Thermally Stratified Atmosphere 

Flow conditions similar to those measured by Malhotra 

and Cermak (98) were used in the calculation of thermally 

stratified flows. The temperature of the wall and free 

stream were maintained at 277.45°K and 322°K respectively 

for stable stratification, and vice versa for unstable 

stratification. The concentration source strength was as-

sumed to be equal to that used in the neutral case, C = 
s 

.66 mg/cm-sec. The free stream velocity was likewise as-

sumed to be the same as for the neutral case, U 
00 

5.15 m/sec. 

Comparisons of mean velocity profiles are shown in 

Figure 9 between the two models for the stable case. Both 

appear to predict nearly equal mean velocity distributions 

for the four locations, with only slight deviations in the 

near wall region of the boundary layer. Boundary layer growth 

and general shape of the profiles are essentially identical. 

Figure 10 shows the non-dimensional temperature distri-

bution as a function of Z/o , where o 1s the boundary 
0 0 

layer thickness obtained from the initial velocity profile. 

Little variation is seen to exist between the profiles. 

The rate equation model and the turbulence kinetic energy 
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model both appear capable of predicting realistic temperature 

distributions characteristic of a stable atmosphere. 

Mean velocity profiles predicted by the two models are 

shown in Figure 11 for an unstable condition. The distribu-

tions of mean velocity are seen to deviate slightly near the 

vicinity of the wall, but tend to become similar in value as 

the upper region of the boundary layer is approached. Bound-

ary layer growth and thickness likewise appear to be equal. 

Distributions of mean temperature in Figure 12 for the 

unstable case show similar deviations in the region near the 

wall for the velocity profiles, with subsequent alteration 

to nearly equal values in the upper region. This slight 

variation is attributed to the use of different mixed 

Prandtl numbers for the two models. 

Concentration profiles are shown ln Figures 13a and 

13b for both unstable and stable conditions. The effect of 

buoyancy is seen to be quite significant in controlling the 

rate of diffusion of concentration. This is due principally 

to an increase of turbulence production in the unstable case, 

resulting in a more rapid dispersion of concentration, as 

compared to a decrease in production associated with a 

stable atmosphere. This can be seen in the turbulence ki-

netic energy equation, equation (3-43) where the gradient 

Richardson number, R., is negative for unstable conditions, 
l 

and positive for stable conditions. Only minor variations 

are seen to exist in the predictions when using either mod-

el for the exchange coefficient. Readjustment of the 
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mixed Schmidt number leads to slightly closer approximat­

tions to the surface values for concentrations obtained from 

the rate equation model. However, since the adjustment 

provided only minor improvement, the concept of maintaining 

a constant mixed Schmidt number for all flow conditions 

seemed reasonable. 

Significant differences in the predictions were ex­

pected because of the dissimilarity of the two models in 

describing the exchange coefficient of momentum. However, 

both produce almost exact results. The concept of using a 

very simple model related to the turbulence kinetic energy, 

as compared to the more complicated rate equation model, 

appears to be quite advantageous. However, additional ver­

ification of the model is needed. Consequently, a series 

of comparisons are made with wind tunnel data. 

A summary of experimental investigations used 1n this 

study is given in Table II with regard to stratification 

conditions. 

each case. 

The experimentally measured data are listed for 

B. Comparison With Experiment 

A number of experimental tests have been made under 

neutral flow conditions in atmospheric wind tunnels, but 

only a few cases contain turbulence kinetic energy data 

pertinent to the eddy coefficient model employed here. 

Similar investigations of experimental work in thermally 

stratified flows disclose even less available data. While 

one case contained turbulence kinetic energy and shear 
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TABLE II: SUMMARY OF WIND TUNNEL EXPERIMENTS 

Condition Reference Method of Simulation Data Measured 

Schon & Mery air injection U,Q,T 

Neutral Malhotra initial rough surface u,c 

Poreh & Cermak long test section u,c 

Stable Arya long test section U,T,Q,T 

Reynolds, et aJ * U,T 

Unstable Malhotra initial rough surface U,T,C 

Wieghardt * U,T 

* wind tunnels were not altered to simulate atmospheric 
boundary layers 
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stress data for stable conditions, it did not contain any 

concentration results. Unstable atmospheres, while investi­

gated more extensively than the stable case, did not provide 

any turbulence data. The consequence of these investiga­

tions leads to the development of a numerical model which 

appears to be adequate in analyzing neutral atmospheric 

phenomena, but essentially unverified in thermally strati­

fied flow. In those cases where turbulence kinetic energy 

is not present, an initial turbulence kinetic energy profile 

was assumed by using the friction velocity, u*, and the non­

dimensional Klebanoff (65) turbulence kinetic energy profile, 

Figure 5. Verification of results could only be tested by 

comparing downstream velocity and turbulence kinetic energy 

profiles, if available, with the experimental data. 

1. Neutral Atmosphere 

Preliminary investigations were made in neutrally strat­

ified flows by comparing the numerical results with the ex­

perimental work of Schon and Mery (20), Poreh and Cermak 

(21), and Malhotra (28). 

The measurements made by Schon and Mery (20) were ob­

tained by injecting air upstream of a boundary layer 1n 

order to artificially increase the layer thickness. At a 

certain distance downstream of the injection zone, the 

boundary layer was found to represent a natural boundary 

layer but with its thickness altered. Maintaining a free 

stream velocity of Uoo = 6.50 m/sec, mean velocity, turbu­

lence intensities, and Reynolds stress profiles were 
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reported for downstream locations ranging from 5 to 9 meters 

from the injection zone. The velocity profiles were found to 

nearly represent seventh root velocity distributions. Be-

cause of this similarity, the initial velocity distribution 

in the numerical prediction scheme was represented by the 

seventh root power relation at X = 5.08 meters. s Figure 14 

shows the comparison between the predicted velocity profiles 

and the experimental data. The agreement appears to be very 

good, particularly in terms of the boundary layer development 

and shape of the profiles. 

The turbulence kinetic energy profiles are compared 1n 

Figure 15. A non-dimensional Klebanoff (65) profile, as 

shown in Figure 5, was used to generate the initial turbu-

lence kinetic energy at X = 5.08 meters based upon an ex­s 

trapolated wall value from Schon and Mery (20). An addition-

al case was run using the measured data, but proved to be 

only slightly more accurate than the assumed profile for the 

three succeeding downstream locations. The initially as-

sumed turbulence kinetic energy profile is considerably 

different from the measured data; this is due to the fact 

that the assumed profile 1s based upon a fully developed 

turbulent boundary layer profile. The measured data appears 

to still show the influence of injection at X = 5.08 meters, s 

but begins to dampen rapidly at X = 6.08 meters, appearing s 

to adjust to the numerically simulated profiles. 

The turbulence kinetic energy is conserved throughout 

the entire boundary layer; therefore, the gain or loss of 
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turbulence kinetic energy by convection and diffusion, plus 

the gain due to production, must balance the loss due to 

dissipation. Figure 16 shows the energy balance for two 

downstream locations. A positive value of a quantity repre-

sents a gain of energy while a negative value denotes a loss. 

The main contribution to the energy balance is made by the 

production and dissipation terms as the wall region is ap­

proached. The unusually high values for the convection and 

diffusion at X = 6.08 meters is due to the initial starting 
s 

conditions obtained from the non-dimensional Klebanoff (65) 

profile for turbulence kinetic energy. Farther downstream 

the contribution of convection and diffusion is negligible, 

except near the outer edge of the layer where the gain by 

turbulence diffusion counterbalances the loss by convection. 

This implies that a transfer of energy occurs by turbulence 

diffusion from the inner part of the boundary layer towards 

the outer part. This was similarly discussed by Hinze (39) 

in analyzing boundary layer flow along a smooth wall with 

zero pressure gradient. 

The diffusion of passive concentration from a steady 

line source within a neutral, two-dimensional turbulent 

boundary layer was investigated using measurements reported 

by Poreh and Cermak (21) for mean velocity and mean concen-

tration. The initial data obtained at X .91 meter was s 

used to produce profiles at four downstream locations rang-

i~g from 1.5 to 6.4 meters for an ambient velocity of 

2.74 m/sec. The non-dimensional velocity profiles are shown 
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in Figure 17. The results of the predicted velocity profiles 

appear to be in excellent agreement with the measured data. 

Anhydrous ammonia gas was used as the diffusing quan-

tity, with mean concentration profiles being measured at the 

same downstream locations from the source as the velocity 

field. Figure 18 shows the predicted concentration profiles 

in comparison with the experimental results. The concentra-

tion field is non-dimensionalized by the wall concentration 

value at X s .91 meter, where the subscript, W , denotes 
0 

initial wall value . Beginning with the initial data meas-

ured at X s . 91 meter, the numerical results appear to ad-

just to the correct shape and magnitude of the experimental 

data with reasonably good accuracy. The slight variation in 

attenuation of the ground concentration is due in part to 

the assumption of a constant mixed Schmidt number, 0 c 

Limted turbulence intensity measurements were made at sev-

eral locations, but did not prove to be sufficient in detail 

for analyzing the turbulence kinetic energy. 

The synthetic line source data obtained by Malhotra 

(28) was used as an additional reference in order to verify 

the existing assumptions regarding neutral atmospheric flow. 

Although the turbulent diffusion of ammonia gas was meas-

ured from a point source, numerical integration by Malhotra 

(28) showed the concentration distributions to be very 

similar to actual line source data. The mean velocity and 

concentration profiles were measured at four downstream 

locations from the source using constant temperature hot 
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wire anemometry and gas sampling probes. 

The comparison between the numerical results and the 

mean velocity profile data is shown in Figure 19. The 

starting condition for the numerical velocity profile was 

obtained from a 1/5.5 power law relation for the mean vel-

ocity field, which closely approximated the data of Malhotra 

( 2 8) . Agreement is good between the measured and predicted 

profiles, especially in calculating the boundary layer thick-

ness and velocity profiles near the wall. 

The concentration data at X = .30 meter was used as s 

the initial condition for the concentration field, as shown 

in Figure 20, where Cw is the initial wall concentration. 
0 

A slight underprediction of concentration occurs at X 
s 

.61 meter, but then begins to readjust to where the concen-

tration is overpredicted at Xs = 2.13 meters. 

An energy balance, similar to that made in Figure 16 

for Schon and Mery (20), is shown in Figure 21 for two down-

stream locations. In this case the production and dissipa-

tion appear to be the significant terms in maintaining the 

energy balance throughout the boundary layer. Convection 

and diffusion are negligible except near the outer region 

where the diffusion contributes to a gain of turbulence 

kinetic energy, balancing the loss due to convection. The 

energy balance at X 
s 

2.13 meters shows only a small change 

in magnitude from that at Xs = .61 meter, indicating that 

the boundary layer is nearly fully developed. A closer 

approximation to the actual starting conditions accounts for 



z 
~ 

1.4 

1.2 

1.0 

.8 

.6 

.4 

.2 

0 Malhotra 
Present Results 

o =.086rn 
0 

U =1.83m/sec 
00 

X =.30m s 

0 

0 '---L---1.-.--.1....--.J..-.../ 

X =.6lm s 

U/Uoo 

X =1.22rn s X = 2. 13m s 

Figure 19. Comparison between Predicted Velocity and Experiment in a Neutrally 
Stratified Turbulent Boundary Layer 

f--.1 
N 
N 



.9 
I 

0 Malhotra 

.Br- Present Results 

6 =.086m 
0 

-6 ,7 r C =11328mg/cc X 10 w 
0 I 

.5 r Q 

,5l \ z o-
0 .4 

.3r ct ~ 
X =.6lm s 

.2 ~ ~ \() 

.5 1. 
L_ ___ L'----'~Ero-'~- ., 

o\ 
'2\ 

l 
\ \=l.ZZm 

II I I I I I f\1 I Q 

C/Cw 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0\ X=2.13m 
0 s 
0 
0 0 
0 
0 
0 

Figure 20. Comparison between Predicted Concentration and Experiment in a Neutrally 
Stratified Turbulent Boundary Layer 

f--J 
N 
VI 



10-2 

6xlo-3 

GAIN 

2xlo-3 

0 

-2xlo-3 

LOSS 

-6xlo-3 

GAIN 

LOSS 

-6xlo-3 

\ 
\ 

\ 
\ 

I 

" ...... 
X =.6lrn 

5 

z 
____0------~6 .8 1.~ 

124 

{ 
pU aq;u;, w aq;u

2 
} 

/ ----- (p 0 ax;o + ~ az/om)convection 
m m 0 Poo oo 0 

1 { a K aq;u; } I ---- 18 ( U 8 
0 

az/ 8 )diffusion 
az 0 pm 00 0 k 0 

I 
\ 

\ 

( 
/ 

I 

{ 
Ern au;um 2 R. } 

--- P u 0 c8278 ) (1 -
0

h
1 

)production 
oo m 0 0 t 

2 3;2 

{

a 2 (Q/U )p ( 
---- p""R./O: dissipationf 

X = 2. 13m 
5 

U =1.83rn/sec 
00 

Figure 21. Balance of Turbulence Kinetic Energy in a 
Neutrally Stratified Turbulent Boundary 
Layer 



125 

the minimal change in the energy balance, as compared with 

the results from Schon and Mery (20). 

2. Thermally Stratified Atmosphere 

Based upon the results obtained from the neutral cases, 

the phenomenological model was used in an effort to predict 

flow phenomena in thermally stratified atmospheric boundary 

layers. The investigation was divided into two categories: 

stable and unstable stratified flows. Although buoyancy has 

an influential effect upon the turbulence kinetic energy, 

the relations formulated in the neutral case were used 

throughout in order to ascertain the feasibility of using a 

constant set of empirical data to avoid continuous altera-

tions of the governing formulae. 

a. Stable Atmosphere 

Only one reference proved to be of any value in ana-

lyzing stably stratified flow data with the present numerical 

model. Using the Colorado State meteorological wind tunnel 

facilities, Arya (25) measured mean velocities, temperatures, 

and turbulence kinetic energy data at two downstream loca-

tions. Unfortunately, no concentration data was measured. 

A comparison between the experimentally measured veloc-

ity profiles and the predictions are shown in Figure 22. A 

1/7 power law assumption was used at Xs = 12.2 meters to 

estimate the velocity profile in the numerical scheme, and 

allowed to progress downstream to the two locations reported 

by Arya (25). Even though the initial boundary layer thick-

ness, o , was relatively large, the predicted velocity 
0 
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profiles show very good approximations as to shape and bound-

ary layer thickness at X = 21.3 meters and X = 23.7 meters. s s 

Figure 23 shows the non-dimensional temperature as a 

function of the hydrodynamic boundary layer thickness at 

X = 12.2 meters for both Arya's data and the predicted s 

temperature profile. The initial temperature distribution 

was given by TW at Z = 0 and T for Z greater than 0. 
00 

The 

thermal boundary layer began developing at X = 12.2 meters. 
s 

Comparison of the experimental data with the numerical re-

sults at the two downstream locations appear to be good. 

Prediction of the thermal boundary layer thickness, although 

indicated by Z/6 , is seen to be reasonable from the shape 
0 

of the temperature profile. Arya (25) assumed 6t/6
0 

= .65, 

while the numerical model gave 6t/6
0 

= .70 at Xs = 23.7 

meters. 

The most noticeable comparison between experiment and 

prediction is seen in Figure 24 for the turbulence kinetic 

energy. Klebanoff's (65) turbulence kinetic energy profile 

was used to start the numerical solution at X = 12.2 meters s 

with a 1 = 0.3 for the eddy coefficient of momentum. The wall 

value for the turbulence kinetic energy was extrapolated 

from the measured data at X = 21.3 meters. The underpre­s 

diction of turbulence kinetic energy occurring within 10 per 

cent of the wall, at X = 21.3 meters and X 
s s 23.7 meters, 

is to be expected since the eddy coefficient model is based 

upon a linear assumption for the wall value of turbulence 

kinetic energy. Once outside the region of maximum turbulence 
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kinetic energy, the predicted profiles begin to closely ap-

proximate the experimental data. The slight underestimation 

of the profiles for Z/8
0 

greater than .SO is due to the as­

sumption that the outer edge of the boundary layer is free 

of any turbulence, hence causing the turbulence kinetic ener-

gy to approach zero for Z/o greater than 1. Accurate ap­o 

proximations for the turbulence kinetic energy under ther-

mally stratified conditions using the Nevzglajdov model may 

become more feasible as additional data becomes available. 

Energy balances at X = 21.3 meters and X = 23.7 
s s 

meters are shown in Figure 25. A very slight decrease lS 

seen to exist in the production and dissipation terms as the 

flow progresses downstream from X = 21.3 meters. This fact, 
s 

along with the negligible contribution of the diffusional and 

convection terms and the similarities in the velocity pro-

files, indicate that the boundary layer is well developed. 

This condition was similarly observed by Arya (25). 

Because the gradient Richardson number serves as a 

quantitative measure of the thermal stability, the distribu-

tion of R. is plotted as a function of Z/8 
l 

in Figure 26. 

Agreement is good between the numerical predictions and the 

experimental data, especially within the region Z/o less 

than 0.1. Since experimental data was not available for 

Z/o greater than 0.5, the variation of R. with Z/o was 
l 

plotted only to Z/o 0.5. A comparison of the local 

Richardson number with Z/L, the universal function de-

scribed by the Monin-Obukhov (44) similarity theory, lS 
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made with Arya's (25) data and the atmospheric data of 

Gurvich, as reported by Arya (25). Figure 27 shows 

Gurvich's curve to fit the data of Arya and the numerical 

results reasonable well. 

b. Unstable Atmosphere 

133 

The data of Reynolds, et al (99), Malhotra (28), and 

Wieghardt (29) were used to verify the ability of the numer­

ical model to predict flow phenomena in an unstable atmos­

phere. The data of Reynolds, et al (99) and Wieghardt (29), 

while not obtained from atmospheric wind tunnels, proved to 

be significant in formulating the numerical scheme and 

served as test cases for analyzing more general engineering 

situations. The experiments by Malhotra (28) were performed 

in an atmospheric wind tunnel for both neutral and unstable 

conditions for a ground level point source. Integration of 

the point source, as in the neutral case, was made in order 

to obtain synthetic line source plumes. 

The experimental results of Reynolds, et al (99) were 

used to confirm the ability of the numerical scheme to ac­

curately predict temperature and velocity profiles over an 

isothermal heated plate. Comparison between the analytical 

and experimental results for mean velocity at three loca­

tions is shown in Figure 28. The initial velocity profile 

was assumed to vary as a 1/5.6 power formula for the numer­

ical model; this relation was found by Reynolds, et al (99) 

to adequately describe the experimental results. Predicted 

velocity distributions appear to be in excellent agreement 
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with the experimental data. 

Temperature surveys were made at three locations on the 

plate, as shown in Figure 29. The initial temperature dis-

tribution in the numerical scheme was represented by a 1/5.6 

power relation. This was similarly found by Reynolds, et al 

(99) to provide a best fit for the experimental data. The 

dimensionless temperature profiles predicted by the numeri-

cal model agree with the measured results throughout the 

entire boundary layer. The effect of the Richardson number 

in this case was found to be insignificant; this is to be 

expected since the boundary layer is too thin to reasonably 

approximate an atmospheric boundary layer. 

An extensive amount of data was measured by Malhotra 

(28) in simulating unstable stratified flow in an atmos-

pheric wind tunnel. Other works dealing with unstable strat-

ification used elevated sources, or proved insufficient in 

supplying necessary data relevant to this study. Concentra-

tions from a simulated point source were measured using 

ammonia as the diffusing gas for five downstream locations 

ranging from X .30 meter to X = 1.83 meters. Synthetic 
s s 

line source distribution is obtained by assuming that the 

tranverse profile for a point source has a Gaussian form. 

Comparisons with the neutral line source data of Poreh and 

Cermak (21) were found by Malhotra (28) to be very good, 

particularly for the variation of surface concentration. 

Unfortunately, no actual line source data were available for 

comparison with the synthetic results for an unstable 
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atmosphere. 

The analytical results are compared with the measured 

mean velocity values in Figure 30. A mean free velocity of 

U
00 

= 2.74 m/sec was used in conjunction with a 1/5.5 power 

law relationship for velocity distribution as the initial 

conditions in the numerical program; this power law relation 

was empirically determined by Malhotra (28) from his experi-

mental data. The numerical scheme can be seen to accurately 

predict downstream velocity profiles even in the near wall 

reg1on. Use of the measured data for the initial profile 

showed minimal improvement over the initial power law as-

sumption at succeeding downstream locations. 

The isothermal heated surface was maintained at a con­

stant difference of 64°K with the free stream temperature. 

Using the initial temperature measured at X 
s .30 meter, 

non-dimensional temperature distributions are shown to be in 

good agreement with the experimental results in Figure 31. 

The slight deviation from the measured data in the lower 

15 per cent of the boundary layer is due, in part, to the 

constant mixed Prandtl number, oh' used throughout this 

study. Although lacking sufficient data near the outer par-

tion of the boundary layer, prediction of the thermal bound-

ary layer development appears to be reasonably accurate. 

Non-dimensional concentration profiles are shown 1n 

Figure 32 for both experimental and numerical results as a 

function of Z/o . 
0 

Measured data at Xs = .30 meter was 

used to generate the initial concentration distribution 1n 
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the numerical model. Very rapid dissipation occurs within 

the first downstream location, X .61 meter. The underpre-s 

dieted values of the numerical results occurring at X .61 . s 

meter and X .91 meter result from an overestimation of the s 

turbulence kinetic energy and friction velocity, u*. An 1n-

crease in turbulence kinetic energy produces an increase in 

diffusion rates. Readjustment of the turbulence kinetic en-

ergy to more accurately simulate the first few concentration 

profiles results in substantial overprediction of the con-

centration at X = 1.83 meters. s 
Regardless of the initial 

starting conditions, overprediction begins to occur at X 
s 

1.22 meters. Reasonable prediction of the surface values 

for concentration, CW, show the flux-Couette flow relation­

ships to be adequate in establishing a suitable boundary con-

dition. 

An energy balance is shown in Figure 33 for two loca-

tions, X = .61 meter and X = 1.83 meters. The large con-
s s 

tribution of convection and diffusion at X .61 meter in s 

the lower 50 per cent of the boundary layer is attributed to 

the assumed Klebanoff (65) turbulence kinetic energy profile 

as the starting conditions. At X = 1.83 meters, the produc­s 

tion and dissipation completely dominate the energy balance, 

except near the outer region of the boundary layer where the 

diffusion becomes significant in balancing the negative con-

tribution by convection and dissipation. Comparison of 

Figure 33 with the neutral datain Figure 21 shows the pro­

duction of turbulence kinetic energy to be significantly 
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larger for the unstable case. 

The variation of the Richardson number is shown in 

Figure 34 for three downstream locations. The initial 

Richardson number distribution at X = .61 meter is seen to s 

reach a maximum near Z/8 = .SO, and then diminish to zero 
0 

as the outer region of the boundary layer is approached. 

This is due to the initially assumed power law distribution 

for the velocity profile in lieu of using the measured data 

of Malhotra (28). Since the Richardson number is calculated 

from the local temperature gradient divided by the square o f 

the velocity gradient, any slight inaccuracy in calculating 

the velocity gradient results in a significant alteration in 

the Richardson number. Flattening of the Richardson number 

profiles at X = 1.22 meters and X = 1.83 meters are simi-s s 

larly seen in the data by Ayra (25), Figure 26. The increase 

in the Richardson number for Z/8 greater than .80 is caused 
0 

by the velocity gradient approaching zero, i.e., the mean 

velocity is attempting to produce nearly vertical profiles 

in an effort to satisfy the free stream velocity boundary 

condition in the numerical model. A similar effect is ob-

served in the temperature distribution. No actual Richard-

son number data were available from Malhotra (28). 

Based upon the results obtained from the mass diffusion 

data of Malhotra (28) in an unstable atmospheric boundary 

layer, the numerical model was modified to analyze the dif-

fusion of heat from a line source in an isothermal turbulent 

boundary layer. The numerical results are compared with the 
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experimental heat diffusion data of Wieghardt (29) for mean 

velocity and temperature distributions at six locations down-

stream of a faint heat source. The mean velocity distribu-

tions predicted by the numerical scheme are compared with a 

1/7 power law distribution used by Wieghardt (29) to approx-

imate the measured velocity data. The boundary layer thick­

ness was found by Wieghardt to vary as 8 = .37X/(U
00

X/v)· 2 , 

where X is the horizontal distance from the leading edge of 

the test plate. Wieghardt's results are plotted in Figures 

35a and 35b as a function of the 1/7 power distribution and 

the empirical relation for 8. The numerical results are seen 

to deviate substantially in the near wall region within the 

first two downstream locations, X s .25 meter and X 
s .375 

meter, but does not change significantly from X s .50 meter 

to X = 1.00 meter. s For Z/8 greater than .20, the calcu­o 

lated values are in excellent agreement with the assumed 

power law profiles. The numerically calculated profiles are 

probably more realistic in describing actual flow conditions 

than the power law relation, since flow over a heated surface 

is altered in the near wall region by the steep temperature 

gradients. 

A constant line source of heat was used to create the 

temperature field. The surface in this case is assumed to 

be adiabatic. The boundary condition for the temperature 

h 1 · · b h fl 1 · h · aT o at t e wa 1 lS g1ven y t e no UX re atlons lp, ax= . 
This results in a heat diffusion model exactly analogous to 

a mass diffusion case. The non-dimensional temperature is 
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shown in Figure 36 as a function of the measured wall tern-

perature at X 
s 

.125 meter, i.e., TW = 310°K. Ambient tern-

perature was assumed to be constant, T
00 

= 293°K. The cal-

culated temperature distributions depend upon the ability of 

the flux relations to accurately predict surface values for 

the temperature. Considerable underpredictions are seen to 

occur immediately downstream of the initial conditions. This 

may be due to a neglect of the conduction of heat along the 

plate in evaluating the experimental data. However, the re-

lative spread and shape of the predicted heat diffusion pro-

files are very similar to the experimental results. Compar-

ison of Wieghardt's (29) heat diffusion data with line 

source mass diffusion data was found by Malhotra (28) to be 

similar. 

The numerical model appears to predict experimental re-

sults with reasonable accuracy in both neutral and thermally 

stratified atmospheric boundary layer flows. Based upon 

these preliminary test cases, a more realistic case was in-

vestigated dealing with the formation of advection fogs over 

a cold sea surface. 

C. Advection Fog Formation 

Because of insufficient information regarding ocean 

fogs, few studies are available in the literature. However, 

a considerable amount of theoretical analysis has been done 

in attempting to model fog. Specifically the numerical work 

done by Mack, et al (51), Fischer and Caplan (SO), and 

Zdunkowski and Trask (54) have proved to be instrumental 1n 
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developing the model used in this study. 

The formation of advection fog is a combined phenomen a 

of hydrodynamics and microphysics. Sea-air interaction pro-

duces the environment of moisture and sea salt particles in 

the lower boundary layer over the ocean surface. The micro-

physics of clouds regulate the condensation and coagulation 

of small water droplets at various atmospheric conditions 

which govern the formation and dissipation of advection fogs. 

The principle mechanism used in this study to numeri­

cally simulate fog was to advect warm moist air over a cold 

surface with continuously decreasing temperature, as shown 

in Figure 37. Due to the continuously decreasing sea sur f ace 

isotherms, the ambient temperature of the air is lowered un-

til the dew point temperature is reached. This results in 

the condensation of water vapor into small liquid water drop-

lets. In addition to the conventionally used equation of 

state and hydrostatics of the atmosphere, equations for water 

vapor content and liquid water content were used to satis fy 

the conservation of species. These equations take into con-

sideration the balance of species concentration that re­

sults from advection, diffusion, condensation ( or evapora-

tion), and sedimentation of liquid water droplets. An addi-

tional source term has been added to the potential tempera -

ture equation to account for latent heat of phase change and 

heat addition by radiation. Formulation of these governing 

equatioffiwas based upon the numerical model developed by 

Mack, et al (51). 
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A saturation adjustment procedure, developed by 

McDonald (100), has been used to account for the condensa­

tion of water vapor or the evaporation of liquid water. 

Since the air is heated by the release of latent heat of con­

densation, supersaturated water vapor at a grid point is con­

verted into liquid water until saturation is achieved. 

Likewise, if the air is cooled, liquid water at a grid point 

is evaporated into unsaturated vapor until saturation occurs 

or the liquid water is exhausted. The vapor pressure compu-

tation at saturated conditions is obtained from an empirical 

formula derived by Murray (101). Barker (102) also makes 

use of these adjustment procedures in numerically predicting 

fog formation over the ocean. 

Figure 38 shows the effect of wind velocity on fog 

development. Wind velocities of 3 and 6 m/sec were used in 

creating a hydrodynamic boundary layer with a thickness of 

943 meters. Previous numerical models dealing with fog 

prediction usually neglected the effect of advection or used 

a simple expression for the velocity distribution in conjunc-

tion with the exchange coefficient of momentum. Qualitative-

ly, the results shown here indicate that an increase in wind 

velocity results in a decrease of the fog layer height. The 

dark lines depicted by w1 from .10 to .30 in Figure 38 are 

lines of constant liquid water content. Liquid water con­

tent did not get much greater than .30 gm/m 3 over the hori­

zontal distance of 7000 meters. 

During the early stages of sea fog formation, advection 
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of warm moist a1r over decreasing isotherms is the dominant 

mechanism. When there is a temperature inversion near the 

ocean surface, fog particles can not move upward so long as 

moisture continues to be supplied through evaporation to the 

warmer air from a colder surface. Consequently, visibility 

begins to decrease. Radiation cooling of the warm fog par­

ticles and latent heat absorption of the ocean surface even­

tually overcome a temperature inversion. As the air tem­

perature becomes equal or lower than the ocean surface tem­

perature, the supply of moisture is stopped. The fog layer 

then becomes a stratus and gradually lifts from the surface. 
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V. CONCLUSION AND RECOMMENDATION 

An analytical investigation of turbulent diffusion in 

thermally stratified boundary layers has been made by 

using a local phenomenological theory based upon the turbu­

lence kinetic energy. This formulation specifies the eddy 

coefficient of momentum as a function of the turbulence 

kinetic energy, thus allowing the past history of the flow 

to be considered. This model also proved to be quite advan-

tageous in terms of versatility and flexibility for various 

applications as well as simple in concept. Based upon the 

results of this investigation, the following conclusions 

have been reached: 

1. Use of wind tunnel modeling in simulating actual atmos­

pheric motion is still questionable. Although surface 

effects and thermal stratification can be modeled, the 

scale of turbulence is still a decided disadvantage to 

laboratory simulation. However, because of the random 

scattering of field data, well controlled laboratory 

modeling of the atmosphere has been found to provide 

suitable results for understanding the basic mechanisms 

of atmospheric diffusion. Undoubtedly more field data 

should be taken in an effort to correlate with experi­

mental wind tunnel testing and numerical modeling. 

2. A linear correlation between local turbulent shear stress 

and local turbulence kinetic energy has been found to 

exist in neutral atmospheres by analyzing atmospheric 
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wind tunnel data. Only one case, dealing with stable 

stratification, contained any turbulence data for a 

thermally stratified boundary layer, but did not contain 

any concentration data. A thorough investigation of 

thermally stratified flow should be experimentally under­

taken in order to effectively establish a more realistic 

eddy coefficient model. Because of this lack of experi­

mental data, the exchange coefficient of momentum used 

throughout this study was based upon data obtained from 

neutral cases. 

3. The basic equations for the conservation of mass, momen­

tum, stagnation enthalpy, species, and turbulence kinetic 

energy are needed to adequately describe atmospheric 

boundary layer flow. Closure of the governing equations 

is obtained from empirical models used to account for: 

production of turbulence kinetic energy, dissipation of 

turbulence kinetic energy, diffusion of turbulence kinet­

lC energy, and the eddy coefficients. 

4. The governing equations can be reduced to a generalized 

parabolic differential equation. The implicit finite 

difference scheme developed by Patankar and Spalding 

(58) is found to be very efficient with a minimum of 

computational inaccuracy. The use of algebraic Couette 

flow relations prove to be adequate in establishing near 

wall values for the independent variables. 

5. A law of the wall expression is developed which can be 

applied to general engineering applications as well as 
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to thermally stratified atmospheric flow in order to 

calculate friction velocity, u*, at the surface. The 

shear stress and "slip" turbulence kinetic energy can be 

calculated as a function of the friction velocity and 

eddy coefficient model. 

6. Use of constant mixed Schmidt and Prandtl numbers in 

accounting for exchange coefficients of heat and concen-

tration reduce the need of empirically correlating re-

lations for various flow conditions. Comparison with 

available experimental data show these parameters to be 

adequately represented by 0 = 0 h c • 7 5 • 

7. The use of the turbulence kinetic energy model and the 

numerical program appears to be an effective tool for 

solving atmospheric boundary layer phenomena. The di f-

fusion of matter from a ground level line source can be 

reasonably predicted along with the effect of buoyancy 

by the numerical scheme. 

8. Investigation of the formation of fogs over aequous sur-

faces shows the numerical scheme to give qualitative 

predictions pertaining to the shape and development of 

the liquid water content profiles. The basic equations 

of momentum, heat, and turbulence kinetic energy must be 

coupled with the species equation for liquid water con-

tent and water vapor content to describe marine fogs. 

9. A saturation adjustment procedure can be performed upon 

the predicted temperature values to account for the for-

mation or dissipation of liquid water content and water 
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vapor content under saturated atmospheric conditions. 

10. The dominant _ growth mechanism during the early stages of 

sea fog development is the influence of wind velocity 

coupled with a continuously decreasing cold surface. 

An increase in wind velocity results in a decrease in 

height of the fog boundary. 

Results obtained by using the turbulence kinetic energy 

approach in analyzing heat and mass diffusion in thermally 

stratified boundary layers, along with the ability of the 

numerical scheme to predict realistic fog development over 

an ocean surface, leads to the following recommendations: 

1. There is an obvious need for more experimental data, par­

ticularly field measurements, in order to form any mean­

ingful correlation between actual physical processes 

occurring in the atmosphere and either numerical or lab­

oratory modeling techniques. In this particular study, 

a considerable amount of data was found to exist from 

atmospheric wind tunnel tests in which the atmospheric 

boundary layer had been carefully simulated and measured. 

Unfortunately, either turbulence kinetic energy data was 

available and no concentration measurements made, or 

vice versa. Without a complete set of data, only syn­

thetic comparisons could be made between experiment and 

theory. In the case of fog formation studies, the ana­

lytical schemes far outweigh experimental studies 

because of physical limitations or economic reasons. 

This causes empirical relations to be extrapolated from 
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seemingly similar natural occurrances, resulting in gross 

estimations of the physical processes. A joint effort 

should be made by coordinating measurements of atmos­

pheric phenomena with numerical analysis if a realistic 

model for describing atmospheric motion is to be 

achieved. 

2. More extensive research should be made in accounting for 

the turbulence kinetic energy near wall regions. Elimi­

nation of any mixing length hypothesis in accounting for 

entrainment rates and Couette flow relations could re­

sult in more substantial relationships for describing 

the nature of turbulence without the need of establish­

ing empirical formulae unique to only their specific 

application. A more thorough study should also be under­

taken to investigate the use of variable mixed Prandtl 

and Schmidt relations to account for the exchange coeffi­

cients of heat and mass. 

3. Comparisons between the experimental distributions of 

production and dissipation of turbulence kinetic energy 

are needed in an effort to better define the empirical 

models used to account for these terms. Recent use of 

partial differential equations to describe these two 

terms may prove to be a substantial improvement over 

existing one-equation models, providing that the addi­

tional empiricism necessary in formulating these equa­

tions can be kept to a minimum. 

4. Since almost all boundary layers are three-dimensional 
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in reality, attempts to confine these flows to two­

dimensional prediction procedures have met with some 

success, but only at the expense of gross simplifica­

tions or empirical relations common to only one set of 

experimental data. Development of a general numerical 

model for the calculation of transport processes in 

three-dimensional flows would give rise to more accurate 

predictions of flow phenomena occurring in the atmos­

phere as well as give insight into the general nature 

of turbulent flow. 
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APPENDIX A: FOG FORMATION ANALYSIS 

Fogs are normally classified into three types: radia­

tion fog, advection fog, and combined-process fog. A fog 

occurring over the ocean is predominantly an advection fog, 

resulting either from warm humid air passing over a cold 

ocean surface or cold air passing over a warm surface (steam 

fog) . Fogs resulting from warm air blowing over a cold sur-

face occur frequently over the North Atlantic Ocean during 

the summer, often lasting for days or weeks. 

A. Governing Equations 

In order to understand the physics of the air-sea 

system, the conservation equations for continuity, momentum, 

species, and energy have been coupled with the turbulence 

kinetic energy equation. Closure of the set of equations is 

obtained by using the phenomenological model of Nevzglajdov. 

The governing equations are given in terms of the X-Z co-

ordinate system for atmospheric boundary layer flow as 

follows: 

1. Conservation of Mass 

d d 
axCpU) + az-CPW) 0 

2. Conservation of Longitudinal Momentum 

dP 
CIT 

(A-1) 

(A- 2) 
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3. Conservation of Potential Temperature 

(A- 3) 

where e is the potential temperature given by the adiabatic 

relation 

(A-4) 

The cross stream gradient of potential temperature is ex-

pressed as 

ae = ~CaT + r) CA-5) az T az 

where r = g/Cp' the adiabatic lapse rate. The term LhCs is 

the latent heat of condensation for water vapor (592 cal/gm) 

times the source function for condensation or evaporation; 

C represents the specific heat of air at constant pressure 
p 

(.24 cal/gm - °K). The radiation flux divergence term, 

aR/aZ (cal/cc), is defined by the relation 

~~ = 1. 6S'crT!KwpW1 expt 1. 6Kwp ~ z \ 1 ( z ') dz ~ (A- 6) 

where s', the fraction of longwave radiation emitted from the 

earth's surface, is given as s' = .25, K = 1.5 x 10 3 cm 2/gm w 

for the mass absorption coefficient for fog, a the Stefan-

Boltzmann constant, T the surface temperature of the earth, w 

w1 the liquid water mixing ratio, p the density of air, and 

zt the height of the fog layer. 

The treatment of radiation 1n this model is based upon 

the previous work by the Calspan Corporation regarding the 



175 

numerical simulation of advection fog. Infrared radiation 

at the earth's surface, R , is given by the relation w 

' 4 R = SoT w w (A-7) 

where s' = .25, signifying that the net upward flux of radia-

tion is 25 per cent of the blackbody radiation emitted from 

the earth's surface at temperature T . The radiation flux w 

at a height, Z, is subsequently written as 

R ~ s'oT!ex{l.6Kwp ~zt W1 (z')dz] (A- 8) 

where the exponential term represents the presence of fog. 

The resulting expression for the radiative flux divergence, 

equation (A-6), is valid for a fog which has droplet radii 

less than 10lJm. 

4. Conservation of Turbulence Kinetic Energy 

~ ~n - '"' Krn ~a ) '"'U 2 R. p ( U ~ + W ~) 0 
( 

0 + E (-
0 
-) ( 1 - _2) 

0 az - az ok m az oh - D 
Q 

(A- 9 ) 

where E 1s the eddy coefficient of momentum, K = ll + m m 

DQ the dissipation of turbulence kinetic energy, given as 
!-:;; 

a2pQ 2 

DQ = <5 

and R., the gradient Richardson number, given as 
1 

where T = !<: (T + T ) . m 2 w oo 

R. 
1 

== g ae;az 
Tm (3U/3Z) 2 

5. Conservation of Species 

(A - 10) 

(A- 11) 

The conservation of species is given by the equations 



for water vapor mixing ratio, W , and liquid water mixing 
v 
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ratio, w
1

. The conservation of water vapor mixing ratio is 

expressed as 

c s (A-12) 

The conservation of liquid water mixing ratio is written as 

+ c s (A-13) 

where C
5 

in both equations represents the source function for 

condensation or evaporation and Wt is the terminal velocity 

of fog drops. The mean terminal velocity, Wt' is based upon 

the Calspan expression, for droplet radii less than 20~m, 

(A-14) 

where N is the number of drops per unit volume and w1 the 

liquid water mixing ratio. Assuming a constant drop con-

centration of N ~ 50/cc, equation (A-14) becomes 

2/3 Wt = 400W1 (em/sec) (A-15) 

If W = 2.44 x 10- 4 , corresponding to a liquid water content 
L 

of 0.30 gm;m 3 , wt ~ 1.5 em/sec. 

B. Saturation Adjustment 

Appropriate computations at each grid point yield 

values forT, Wv, and w1 according to equations (A-3), 

(A-12), and (A-13). The source term, C, allows for contri­
s 

butions to these independent variables of the heating or 

cooling of the air, evaporation of liquid water content, 
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and condensation of water vapor. 

Following the procedure outlined by McDonald (100) and 

Mack, et al (51), values for T, Wv' and w1 are calculated 

at each horizontal step increment, neglecting condensation 

or evaporation. A saturation adjustment procedure is then 

applied to these three variables, external to the solution 

procedure for the governing equations. By considering the 

heating of the air due to the release of latent heat of con-

densation, supersaturated water vapor at a grid point is 

converted into liquid water until saturation is achieved. 

Likewise, if the air is in a subsaturated state, liquid 

water at a grid point is evaporated into water vapor until 

saturation is obtained or the liquid water becomes exhausted. 

The following derivation of the saturation adjustment pro-

cedure is based principally upon the method of McDonald 

(100). 

Water vapor content can be described by either mixing 

ratio, which is the ratio of the mass of water vapor to the 

mass of dry air, or vapor pressure. Vapor pressure will be 

used here in keeping with McDonald's formulation. The deri-

vation will be described for the case where the vapor pres-

sure, p , exceeds the saturation vapor pressure, p , cor-a s 
0 

responding to a temperature, T
0

. The final relations are 

the same for either supersaturation or subsaturation, except 

for sign changes. 

A parcel of air attains a temperature, T , correspond­a 

ing to a point at a vapor pressure, p . 
0 

After accounting 
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for all the terms appearing in the governing equations ex-

cept C, the saturation adjustment is performed. This is 

shown in Figure A-1, where p lies above the saturation 
0 

vapor pressure curve, p (T). The adjustment procedure must s 

therefore condense excess vapor onto the existing fog drops. 

This condensation creates a release of latent heat, which 

tends to raise T, causing the characteristic points (p, T) 

and (ps' T) to mutually approach each other. 

In a saturation adiabatic process, condensation pro-

duces a release of latent heat within the system, but no 

heat is added to or removed from the system. As an air 

parcel lifts adiabatically, the temperature of the parcel 

decreases at the adiabatic lapse rate until saturated. 

Further lifting results in the release of latent heat by the 

parcel. This process can be expressed by the First Law of 

Thermodynamics as 

-Ldw = C dT + pdv s v 

where L is the latent heat of vaporization and 

of water vapor condensed per unit mass of air. 

w s 

(A-16) 

the mass 

Equation 

(A-16) can be combined with the equation of state to give 

-Ldw = C dT - vdp 
s p (A-17) 

The heating, dT, resulting from a small amount of 

adiabatic-isobaric condensation can be represented by 

-Ldw s C dT 
p (A-18) 
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Since ws = m /m , where m denotes the mass of water vapor v a v 

and m the mass of dry air, the mixing ratio can be re­a 

written, with the use of the equation of state, as 

w 

or 

w 

m 
v 

m 
a 

p v/R T s v 
p v/R T a a 

(A-19) 

(A- 2 0) 

where the subscripts v and a denote vapor and a1r respec-

tively. The total pressure of the mixture of water vapor 

and air, p, can be introduced 1n equatibn (A-20) 

(A-21) 

where E = .622 and p = Pa + Pv· Equation (A-21) 1s nor-

mally referred to as specific humidity. 

For saturated conditions, ws ~ E ps/p. 

(A-18) can be rewritten as 

Since p>>pv' 

(A-22) 

Therefore, equation 

(A-23) 

Equation (A-23) specifies the line along which condensational 

heating takes place, shown in Figure A-1 passing through the 

p o in t s ( p , T ) and ( p ' , T ' ) . 
0 0 s As the vapor pressure de-

creases, temperature rises, causing the saturation vapor 

pressure to increase. The final saturated state occurs at 
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The Clausius-Clapeyron equation is normally written as 

dp s L dT 
Rv TL 

Ls 

RTL (A-24) 

a 

which describes the variation in saturated water vapor pres-

sure with T. This can be rewritten to a good approximation 

for the saturation vapor pressure curve as 

(p ' - p ) 
s so 
T' - T 

0 R T z 
a o 

However, equation (A-23) implies that 

Po-Ps' 
T 1 - T 

0 

c p 
p 

€1 

Inspection of Figure A-1 shows that 

= (p - p ) - (p ' 
0 s s 

0 

(A- 2 5) 

(A-26) 

(A-27) 

Substituting equation (A-27) into equation (A-26), and mak-

ing use of equation (A-25), yields the relation 

(T' - T )sLp 
o s

0 
+ pCP(T' - T

0
) 

-------R-T~~----- sL 
0 

(A-28) 

Rearrangement of equation (A-28) for the adjusted tempera-

ture, T', gives 

T' = T 
0 

+ 

2 (p - p ) sLRT 
0 so 0 

2 2 2 pC RT + s L p p 0 s 

(A-29) 

0 

which is the govern1ng equation in the saturation adjust-

ment procedure for the temperature, equation (A-3). Once 

T( is known, equation (A-29) can be used to determine the 



final vapor pressure, ps', 

p ' s 

sLp 
so 

+ 
RT z 

0 
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(T' - T ) 
0 

(A- 3 0) 

The amount of condensate portioned among the fog drops is 

governed by equation (A-26), where 

c p 
P = p ' + _E_ (T' - T ) 

0 s EL 0 
(A- 31) 

The total pressure, p, is solved by using equation (A-22). 

The only unknown appearing throughout equations (A-29), 

(A-30), and (A-31) is Ps , the saturation vapor pressure for 
0 

water at T
0

. This is calculated at every grid point by the 

relation 

17.269(T - 273.16) 
Pso = 6.1078 exp {---rro _o35.86) } (A- 3 2) 

Equation (A-32), derived by Murray (101), gives reasonably 

accurate results, over a wide range of temperatures. 

C. Vertical Grid Control 

An expanding vertical grid system 1s employed which 

provides high resolution near the surface where the inde-

pendent variables change significantly with height. A total 

of 55 grid intervals are used with the vertical grid spacing 

expanding by 1.2 per level, beginning at 1 em above the sur­

face. This places the upper boundary at a distance of 943 m 

above the surface; sufficiently far enough away so that the 

upper boundary does not influence the steep gradient region. 

This essentially reduces the need of Couette flow relations 

to account for the near wall region; however, they need not 
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be removed from the computer program. Although liquid 

water content does not necessarily begin to appear at the 

1 em level, the fog does attempt to settle to the surface 

as the flow proceeds downstream. The radiation flux diver­

gence from the surface influences the heat flux within the 

first few levels. Since the radiation effect quickly 

dampens with height, use of a more coarse grid network may 

lead to a total neglect of radiation in the model. 

D. Boundary and Initial Conditions 

The boundary conditions are specified as follows: 

Surface (Z = 0) 

Free 

u 0 

T T - .OOOlX w 

WL = 0 

awv 
0 ar 

Q = Tw/alp 

Stream 

Q = 0 

w = 0 
v 

(Z -+ oo) 

The initial conditions for the dependent variables are 

specified at X = 0 by the relations: 



U = U
00

(Z/o) 1 / 5 · 5 , o = 943 if U is not known 

T 

Q 

w v 

T (Z/o ) 115 · 5 o ~ .78 if T is not known 
00 t ' t 

2 Tw/a1 p = u* /a1 

= Wv at saturation, if Wv is not known 
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