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ABSTRACT

An investigation is made of the linear stability of the
developing flow of an incompressible fluid in the entrance
region of annular ducts, circular tubes, and parallel-plate
channels. Small axisymmetric disturbances for annular duct
and tube flows and small two-dimensional disturbances for
channel flow are considered in the analysis. In formulating
the stability problems, account is taken of the transverse
velocity component of the mainflow. This results in the
modified Orr-Sommerfeld equations, one for annular duct and
tube flows and the other for channel flow. The mainflow
velocity fields utilized in the stability analysis are those
from the solutions of the linearized momentum equations.

The governing equation for the disturbances and the
boundary conditions for each of the flow configurations
constitute an eigenvalue problem. The eigenvalue problems
for the annular duct and circular tube flows are solved by
a fourth order Runge-Kutta integration scheme along with a
differen%ial correction iteration technique. An orthonor-
malization process is used to remove the "parasitic error"
inherent in the numerical integration of the disturbance
equations. For flow in the parallel-plate channels, the
eigenvalue problem is solved by a finite difference method
and the differential correction iteration scheme is employed

to obtain the eigenvalues.
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Neutral stability characteristics and critical Reynolds
numbers at various axial locations are obtained for the
developing flow in the annular ducts with radius ratios of
2.0 and 3.33, in the circular tubes, and in the parallel-
plate channels, using the modified Orr-Sommerfeld equations.
These stability results for the annular duct flow are also
computed using the conventional Orr-Sommerfeld equation.
Representative eigenfunctions are also presented for the
annular duct flow. Comparisons of the results from the
modified Orr-Sommerfeld equations are made with those from
the conventional equations for all three flow configurations.

The main findings of the present study are: (1) laminar
flow in the entrance region of annular ducts, circular tubes,
and parallel-plate channels is unstable to small axisym-
metric or two-dimensional disturbances; (2) the critical
Reynolds number for the developing flow in the annular ducts
and parallel-plate channels decreases monotonically as the
axial distance increases; (3) the flow in the annular ducts
becomes more stable as the ratio of the outer to inner radius
increases; (4) the minimum critical Reynolds numbers for
annular duct flow occur in the fully developed flow region
and have the values of 9720 and 40530, respectively, for
radius ratios of 2.0 and 3.33; (5) the minimum critical
Reynolds number for tube flow is about 19780 and occurs in

the entrance region; (6) the modified Orr-Sommerfeld
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equation provides critical Reynolds numbers that differ
somewhat from those obtained from the conventional equation;
and (7) the effect of non-parallelism of the mainflow (that
is, the effect of the mainflow transverse velocity) on the
stability characteristics of the developing flow in ducts is

of significance only in the range of small Reynolds numbers.
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I. INTRODUCTION

A. General Background

It is well known that there are two types of motions of
a viscous fluid, namely, laminar and turbulent flow. In
laminar flow, the fluid moves in parallel layers, one layer
of fluid sliding over the other and each fluid particle
following a smooth and continuous path. The fluid particles
in each layer remain in an orderly sequence without passing
one another. In turbulent flow, the path of any individual
particle is zigzag and irregular, but on a statistical basis
the over-all motion of the aggregate of fluid particles is
regular and predictable. Turbulence can be generated by
fluid flow past a solid surface or by the flow of layers of
fluids at different velocities past or over one another.

For the problem of linear hydrodynamic stability, the
question is whether the flow is stable or unstable to infin-
itesimally small disturbances. To achieve this goal, small
disturbances are superimposed onto a given laminar flow. The
undisturbed laminar flow is called the mainflow or primary
flow. If the disturbances decay, the flow remains laminar
and is said to be stable. If the disturbances grow, the flow
is called unstable. If the disturbances neither grow nor
decay, then the flow is said to be neutrally stable.

To analyze the behavior of disturbances, one can study



the timewise or spacewise stability of the mainflow. 1In
formulating the stability problem for tube or annular duct
flow with coordinates (x*,r*,¢*), the general three-
dimensional disturbance velocities are represented in the
form of u+(x*,r*,¢*,t*)=u(r*)exp[i(a*x*+n¢*—a*c*t*)] where
o* is an axial wave number, c* is phase speed and n is an
azimuthal wave number (the case of axisymmetric disturbances
corresponds to n=0). In general, o* and c* are complex
numbers. If a* is taken to be real and c* to be complex,
then the stability is solved in the timewise sense or as a
temporal stability problem. If c* is taken to be real and
a* to be complex, then a spacewise (spatial) stability
problem results. The latter problem is more closely related
to experimental work. The majority of the analytical work
appearing in the literature deals with timewise stability
problems. Gill (1965) concluded that there is no spatial
growth of rotationally symmetric disturbances in a circular
tube.

There are no exact solutions known to exist in the
study of hydrodynamic stability problems. The solutions
are, therefore, obtained by approximate methods. Of the
approximate methods of solutions, there are two basic types,
the asymptotic and the numerical methods. The asymptotic
method is based on the condition that the parameter a*R
(where R is the Reynolds number) is large. In the past, the

asymptotic method developed by Heisenberg (1924), Tollmien



(1929,1947) and Lin (1945,1967) were applied to boundary
layer flow, pipe flow, and plane Poiseuille flow. In these
problems, one needs to consider only one critical layer
(where the phase velocity equals the mainflow velocity) in
the analysis. This is due to the symmetric nature of the
mainflow velocity profiles in these flows. For an annular
duct, due to the lack of the symmetry of the main velocity
profiles, there are two critical layers. With some minor
modifications, Mott (1966) extended the asymptotic method of
Lin to cover two critical layers and studied the stability
characteristics of the fully developed annular duct flow.

In the numerical methods of solution, there are several
different techniques which have been employed. They include
the finite difference method by Thomas (1953), the method of
weighted residuals by Finlyson (1966), the method of matched
initial value problems by Nachtsheim (1964), the filter inte
gration method by Kaplan (1964), and the orthonormalization
method by Wazzan, Okamura, and Smith (1967,1968). A very
complete review and comparison of all these methods is given

by Gersting (1970).

B. A Brief Review of the Previous Work

Many investigations on the linear stability of duct
flows have appeared in the literature. The fact that fully
developed flow in a parallel-plate channel (i.e. the plane

Poiseuille flow) dis unstable for large Reynolds numbers is



well established. The fully developed flow in an annular
duct has been shown to be unstable for large Reynolds numbers
when subjected to small axisymmetric disturbances (Mott
1966). For flow in a circular tube, it has been found that
the fully developed Hagen-Poiseuille flow is stable when
subjected to either small axisymmetric disturbances (Leite
1959, Schensted 1960, Gill 1965, Corcos and Sellars 1959,
Davey and Drazin 1969) or small non-axisymmetric disturbances
(Lessen, Sadler and Liu 1968, Burridge 1970, Salwen and
Grosch 1972, Gary and Rouleau 1972).

The stability characteristic of hydrodynamically devel-
oping flow in the entrance region of a parallel-plate channel
was investigated by Chen and Sparrow (1967). They found that
the developing flow is unstable at large Reynolds numbers.
For the developing flow in a pipe, Huang (1973) has shown
that the flow is unstable to either small axisymmetric
disturbances or small non-axisymmetric disturbances at large
Reynolds numbers. The instability of the developing tube
flow subject to axisymmetric disturbances was also verified
by Tatsumi (1952).

The stability analysis for the developing flow in ducts
discussed above are based on the assumption that the main
flow can be regarded locally as a parallel flow consisting
only of the streamwise velocity component, with the trans-
verse velocity component being zero. Such a model is exact

for fully developed duct flows, whereas for the entrance



region flow it is an approximation. Presently, there are
only a few studies on linear stability available in the
literature which account for the transverse velocity com-
ponent in the mainflow. These include the work of Chen,
Sparrow, and Tsou (1971), Chen and Huang (1972), Barry and
Ross (1970), Haaland (1972), and Ling and Reynolds (1971).
However, these investigators concerned themselves with the
boundary layer flows. To the best knowledge of the present
author, no work has been done on the stability of the de-
veloping duct flows in which the mainflow transverse veloci-

ty is included in the analysis.

C. The Present Investigation

In the present investigation, the stability character-
istics of several duct flows in which the velocity profile
is developing, is investigated by the linearized method.

The purpose is to determine whether small disturbances super-
imposed on the developing laminar flow would grow or decay
with time. The fluid is assumed to be Newtonian and incom-
pressible.

The governing equations for the disturbed flow include
the continuity equation and the Navier-Stokes equations,
which are non-linear, coupled partial differential equations.
Thus, the stability problem is a non-linear problem.

However, for small disturbances, we assume that the equations

may be linearized; that is, terms that are quadratic or



higher in the disturbances and their derivatives can be neg-
lected. In the present investigation, a modified version of
the Orr-Sommerfeld equation for circular tube and annular
duct flows is derived in which account is taken of the trans-
verse velocity component in the mainflow. The corresponding
equation for plane flow has been given eisewhere (see, for
example, Chen, Sparrow, and Tsou, 1971).

The problems covered in this dissertation are:

(1) The stability of the developing laminar flow in
the entrance region of annular ducts, subjected to axisym-
metric small disturbances using both the conventional and
the modified Orr-Sommerfeld equations.

(2) The stability of the developing laminar flow in
the entrance region of a circular tube, subjected to axisym-
metric small disturbances using the modified Orr-Sommerfeld
equation.

(3) The stability of the developing laminar flow in
the entrance region of a parallel-plate channel, subjected
to two-dimensional small disturbances using the modified
Orr-Sommerfeld equation.

The reasons that axisymmetric or two-dimensional dis-
turbances are considered in these problems are as follows.

For problem (1), Gersting (1970) has shown that for the
fully developed annular duct flow, it is sufficient to con-
sider only axially symmetric disturbances rather than axi-

ally non-symmetric disturbances. He proved that the



"¢-component" of the disturbances will decay. Since in the
hydrodynamic development region, the duct flow is basically
a boundary layer flow, it can be expected from Squire's
theorem (1933) that the axisymmetric disturbances will be
more unstable than the non-axisymmetric disturbances for the
developing flow.

For problem (2), Huang (1973) has shown that axisym-
metric disturbances are more unstable than non-axisymmetric
disturbances for the developing flow in the immediate
neighborhood of the inlet of a circular tube.

For channel flow in problem (3), it has been shown as
a direct result of Squire's theorem that two-dimensional
disturbances are more unstable than three-dimensional dis-
turbances.

To the best knowledge of the author, the first problem
has never been investigated. This problem constitutes the
main bulk of the present dissertation. 1In all three con-
figurations, the timewise stability characteristics are
studied using numerical methods of solution. The numerical
methods used are the integration method for problem (1) and
(2) and the finite difference method for problem (3). To
remove the "parasitic error" inherent in the numerical inte-
gration of the disturbance equation, an orthonormalization
process (Dettman 1962) was employed.

Neutral stability curves at different axial locations

in the entrance region of annular ducts and circular tubes



are generated. The critical Reynolds numbers at various
locations are obtained and presented for all three flow con-
figurations. Representative results of eigenfunctions for
the annular duct flow are also presented. Finally, the sta-
bility results from the non-parallel flow model are compared
with those obtained from the parallel flow model for all the

problems investigated.



IT. THE MAINFLOW

For a fully developed flow in a duct, the velocity
solution can be expressed in an exact form. However, for
the developing flow in the entrance region, the velocity
field, even for laminar flow, does not yield an exact so-
lution. This is due to the nonlinearity of the inertia
terms which appear in the equations of motion. Various ap-
proximate methods have been developed by different investi-
gators to obtain the velocity solutions in the entrance
region of ducts. Among them are the Karman-Pohlhausen inte-
gral method (Siegel 1953, Campbell and Slattery 1963), the
method of patching of the upstream and downstream solutions
at some intermediate location (Goldstein 1938, Roidt and
Cess 1962, Collins and Schowalter 1962), and the linear-
ization method by Sparrow and Lin (1964). Of these methods,
the linearization method appears to be the most useful in
the stability analysis, because in this method the velocity
solutions can be represented in closed form.

In the linearization method of solution, the non-linear
inertia terms in the axial momentum equation are linearized
by introducing a stretched axial coordinate and a function
which includes the pressure gradient and the residual of the
inertia terms. With application of the principle of conser-
vation of mass, this function may be eliminated from the

axial momentum equation. The velocity solution then can be
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written as the sum of the fully developed velocity and a
difference velocity which approaches zero at large downstream
distances.

To investigate the stability of the flow in the
entrance region of an annular duct, a circular tube, and a
parallel-plate channel, it is necessary to obtain the main-
flow expression for each flow configuration. The mainflows
for these three configurations will be considered separately
in the following sections. The mainflows are assumed to be

steady, laminar, Newtonian, and incompressible.

A. Annular Ducts

For the conditions of incompressible flow and axial

symmetry, the continuity and x*-momentum equations are

9 (r*u*) . 3 (r*v*) _ (2.1)
axX¥* or*
au® ou* _ _1 dp* ,v ) xou*

u*ﬁx* ¢ V*Sr* T p dx* trF 5r*(r §r*) (2.2)

where x* is the axial coordinate, r* is the radial coordinate,
u* and v* are the velocity components in the x* and r* di-
rections, p is the density and v is the kinematic viscosity.
In writing (2.2), use is made of the boundary layer as-
sumptions p*=p* (x*) and 32u*/d0x*?<<3/dr* (r*du*/3r*).

Equations (2.1) and (2.2) are to be solved subject to the no-

slip condition and the inlet condition.



11

u*=v*=0 at r*=r* and r*=r*
1 2 (2.3)

u*=u* at x*=0
0

where rf and r: are, respectively, the inner radius and
outer radius of the duct. In addition, u: is assumed to be
uniform (i.e., u:=ﬁ*) across the entrance section at x*=0.
Due to the nonlinearity of the inertia terms there
exists a difficulty in solving for flow development from

equations (2.1) and (2.2). Sparrow and Lin (1964) introduced

the following linearized form for (2.2)

£ (x*) T* %‘;1; = A(x*) + 7 r?(r %E;) (2.4)
in which e(x*) is a yet undetermined function of x* which
weights the average velocity u*, while A(x*) is a second
undetermined function which includes the pressure gradient
dp*/dx* and the residual of the inertia terms. The function
A(x*) may be eliminated from (2.4) by integrating it over

the cross-section

*
r% e(x*)u* %%;r*dr* j/%%A(x*)r*dr* + ./%2 v——w(r g—w)dr*

(2.5)

Using the law of mass conservation

%;; E/%g 2rr*u*dr*] = 0 (2.6)
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the left-hand side of (2.5) is identically equal to zero.

This results in

_ v Ju* _ du*
AEm = - ey F R ey T TG (e L 2u)

It is also convenient at this point to introduce the

dimensionless variables
x=(x*/r:)/(ﬁ*r:/v), U=u*/u*, n=r*/r:, M=1/K=rf/r: (2.8a)

and also a stretched axial coordinate £* defined as

dx*=edf*, x*=(g*/r¥) /(ﬁ*r’:/v) (2.8Db)
2
With these dimensionless variables and the use of (2.7),

equation (2.4) becomes

3U _ _ 2n . ,dU, _. .3U 33U
o - CTemz L E) | MR IM] * 3 (n5y) (2.9)

n

The introduction of the stretched axial coordinate g£*
temporarily puts aside the need to determine the weight
function €. The flow development may now be solved from
(2.9) as a function of y* and n. To complete the solution,
it is necessary to relate £* to the physical coordinate x*;
this will be carried out later.

Let the velocity solution U(yx*,n) be the sum of the
fully developed velocity Ucq(n) and a difference velocity

U* (x*,n) which approaches zero for large values of y*.
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U(x*,n) = de(n) + U*(yx*,n) (2.10a)

The solution as obtained by Sparrow and Lin (1964) is

2[1-n2%+2A 2n(n)] o Zy (1)
U = + I Cil- Z3(M) + Zy(n)Jexp(-aix*)
1+M?-2A i=1 7 Z5(1)
(2.10b)
where
M2-1
A = ——mo (2.11a)
2 2n (M)
2[MJ (a.M)-J (o.)]
Zy(n) = J(ayn) + L i i (2.11b)
° o (1-M2?)
J
2[MY (o.M) =Y. (az)]
Zy(n) = Y (agn) + - e (2.11c)

0’"| (l"'Mz)

The J and Y functions are Bessel Functions of the first kind

and second kind. The eigenvalues aj are the roots of
ZJ(M)Z§1)-ZJ(1)ZY(M) =0 (2+12)

The first 30 eigenvalues uj along with aj(l-M) for the
parametric values M=1/2 and 1/3.33 are listed in Table 1.
The expression for the series coefficients Cj is derived as
(see Appendix A)

2(F;-2AF,)

(l+M2-2A)[F3(l)—F3(M)]

where
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F o= -[2y(1)/25(1)]1G3 + Gy + 0.25(1-M")E (2.13b)
F o= -[24(1)/2;(1)]H; + Hy + 0.25[M*-2M*4n (M) -1]E
{2« L3C)
= 2.2 2 2 2 2
Fa(n) = 0.5[2,(1)/25(1)]"n [Jo(ujn)+J1(ajn)] + 0.5 [Yo(ajn)

+ ¥2(agm)] + 0.5n"E* -[2y(1)/25(1)In* [T (ayn)¥ (ayn)
+ Jl(ujn)Yl(ujn)] + (2E/aj){n2Y1(ajn)
- [241)/25(1) Ind (oyn)} (2.134)
aG; = (a§-4)J1(uj) - (a§M2-4)MJ1(Maj) + 2053 (ag)
- ZajMzJo(Muj) (2.13e)
a’H; = -a MJ (Mog) An(M) + J (ay) - J | (Moy) (2.13f)

M2 = - -
aj(l M?)E 2{ [ZY(l)/ZJ(l)][MJl(Maj) Jl(aj)]

+ MY (May) - Yr(aj)} (2.139)

Y Y J
J by Y. In the velocity solution (2.10b), the first term

The terms G, and H, are obtained from G, and HJ by replacing

corresponds to the fully developed velocity Uegr while the

series corresponds to the difference velocity U*. The flow
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is essentially fully developed at x*/[l—(rt/r*)]2=0.lo

2
The stretched axial coordinate £* (or x*) is related to the
physical axial coordinate x* (or y) by the relation

e g*
X =f e(x*)dy* or x* =/ e(E*)dE* (2.14a)
0

0

where the weight function € is given by

/;,[ n (20-1.5U02) (3U*/3y*)dn
€(x*) =Y—

: (2.14b)
(E)U/an)1--1"1(3U/3T1)N1 t/; n (3U/3n) 2dn

The numerical results for x*, € and X are given in Table B-1,
Appendix B.

Eguations (2.10b), (2.14a), and (2.14b) fully specify
the velocity development expressed as U=u*/u* as a function
of ¥ and n. 2s x* or x approaches infinity, (2.10b) reduces

to the velocity solution for the fully developed flow.

B. Circular Tubes

The mainflow velocity solution for the developing flow
in a circular tube can also be obtained by the linearization
method. For uniform inlet velocity, it is given by Sparrow,

Lin, and Lundgren (1964) as

U = u*/u* = 2(1-n2) + =z{4[J (a:n)/J (as)-1]1/02}texp(-a2x*)
j=1 o J o J J j

(2.15)

in which the eigenvalues aj are the roots of

Jl(aj) = O.5aon(aj) (2.16)
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where J0 and J1 are Bessel Functions of the first kind.

In (2.15), the dimensionless variables are
n = r*/r: y X = (X*/r:)/(ﬁ*r:/v) r X* = (E*/r:)/(ﬁ*r:/v)
U = u*/u* (2.17)

in which r* is the radial coordinate, r: is the tube radius,
and u* is the average velocity.

The first 30 eigenvalues aj are listed in Table 2. 1In
the velocity solution (2.15), the first term corresponds to
the fully developed velocity Uy, while the series term
corresponds to the difference velocity U*. The flow is
essentially fully developed at X*=0.20 . The stretched
axial coordinate &* (or X*) is related to the physical axial

coordinate x* (or X) by the relation

X* g*
X =f e(X*)dX* or x* =/0 e (E*)dE* (2.18a)

0

where the weight function € is given by

/}, (2U=-1.5U02) (3U/3X*) ndn
) (3U/3n) | +/; (3U/31n) ?ndn

e (X*) (2.18Db)
The numerical results of X*, € and X are given in Table B-2,
Appendix B.

Equations (2.15), (2.18a), and (2.18b) give a complete

velocity solution U as a function of X and n.



Table 1

Eigenvalues for Annular Duct Flow

M=r}/r¥=1/2.0 M=r)/r3=1/3.33

OWoOoOJOUTLd&s WN -

el
N HO

=
OWOoo~JOoOYU bW

NN NN
o> w N HO

NN N
O~Joy W

w N
[@ JiNe]

aj aj(l M) ey uj(l M)
12.51052 6.25526 8.86562 6.20327
17.98511 8.99256 12.86147 8.99918
25.10464 12.55233 17.90129 12.52553
30.90770 15.45385 22.09186 15.45767
37.68036 18.84018 26.90041 18.82221
43.62122 21.81061 31.17526 21.81332
50.25142 25. 12571 35.88995 25.11218
56.26845 28.13423 40.21199 28.13632
62.82059 31.41030 44.87565 31.39948
68.88603 34.44302 49.22788 34.44473
75.38881 37.69441 53.85938 37.68539
81.48778 40.74389 58.23260 40.74533
87.95653 43.97827 62.84200 43.97053
94.07997 47.03999 67.23063 47.04125

100.52393 50.26197 71.82394 50.25519
106.66603 53.33302 76.22444 53.33419
113.09108 56.54504 80.80538 56.53950
119.24809 59.62405 85.21520 59.62505
125.65810 62.82905 89.78652 62.82360
131.82712 65.91356 94.20391 65.91445
138.22491 69.11247 98.76744 69.10755
144.40390 72.20196 103.19108 72.20277
150.79160 75.39580 107.74817 75.39136
156.97900 78.48950 112.17704 78.49024
163.35844 81.67922 116.72875 81.67507
169.55282 84.77641 121.16214 84.77711
175.92518 87.96259 125.70920 87.95869
182.12568 91.06284 130.14652 91.06348
188.49178 94.24589 134.68958 94.24226
194.69757 97.34879 139.13029 97.34942



Table 2

Eigenvalues for Parallel-Plate Channel
and Circular Tube Flows

Parallel-Plate Channel Circular Tube

OCoOJOUTdEdWNH .

A o,
J J

4.49341 5.13562

7.72525 8.41724
10.90412 11.61984
14,06619 14.79595
17.22075 17.95982
20.37129 21.11700
23.51944 24.27011
26.66605 27.42057
29.81160 30.56920
32.95638 33.71652
36.10062 36.86286
39.24443 40.00845
42,38791 43,15345
45.53113 46.29800
48.67413 49.,44216
51.81697 52.58602
54,95967 55.72963
58.10225 58.87302
61.24472 62.01622
64.38712 65.15927
67.52943 68.30219
70.67168 71.44499
73.81387 74.58769
76.95602 77.73030
80.09813 80.87283
83.24019 84.01529
86.38222 87.15768
89.52422 90.30003
92.66618 93.,44232
95.80814 96.58456
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C. Parallel-Plate Channels

The mainflow velocity solution for the developing flow
in a parallel-plate channel with uniform inlet velocity can

also be obtained from the boundary layer equations

u* ov*
xx t ogyx = 0 (2.19)
du* du* 1 dp* d2u*
* * = =
u P + v -8—37? 5 a%- + \)W (2.20)

by the linearization method. Equations (2.19) and (2.20)
are the continuity and x*-momentum equations, respectively.
The solution is given by Sparrow, Lin, and Lundgren (1964) as

U = u*/u* = 1.5(1-y2) +
3

o1 8

(2/a§){[cos(ajy)/cos(aj)]—l}exp(
1

_aéx*) (2.21)

in which the eigenvalues aj are the roots of

tan(a.) = a. (2.22)
J J

In (2.21) the dimensionless variables are defined as

y = y*/L* , X = (x*/L*)/(u*L*/v) , X* = (g*/L*)/(u*L*/v) ,

G
Il

u*/u* (2.23)

in which L* is the half-spacing between the plates, y* is
the transverse coordinate as measured from the centerline of

the channel, x* is the axial coordinate as measured from the
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entrance, and u* is the average velocity.
The first 30 eigenvalues aj are listed in Table 2. 1In
the velocity solution (2.21), the first term corresponds to

the fully developed velocity U_.., while the series corre-

fd
sponds to the difference velocity U*. Obviously, U* will be
of significance only in the entrance region and will approach
zero at large downstream distances. At X*=0.20, the flow is
essentially fully developed. The stretched axial coordinate

£* (or X*) is related to the physical axial coordinate x* (or

X) by the relation

X* *
X =/° e (X*)dX* or x* =f§ e (E*)dE* (2.24a)

where the weight function € is given by

/:1) (2U-1.502%) (3U/3X*)dy

e (X*) d
(aU/ay)1 +ﬁ (3U/3y) *dy

(2.24Db)
The numerical results of X*, e, and X are given in Table B-3,
Appendix B.

Equations (2.21) and (2.24) together constitute a

complete velocity solution U as a function of X and y.
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ITII. FORMULATION OF THE STABILITY PROBLEM

A. The Modified Orr-Sommerfeld Equations

The linear stability equations in terms of the amplitude
function ¢, in which the mainflow transverse velocity com-
ponent is included, are derived in this section. They are
referred to as the modified Orr-Sommerfeld equations.

1. Annular Ducts

The modified Orr-Sommerfeld equation for the annular
duct flow is derived in this section. The continuity

equation and the Navier-Stokes equations for axisymmetric

flow are

34 3¢ <

xx Vg P = 0 (3.1)
3 ~ 910 3 _ 1 3P 324 1 o4 324

5ex T UgxE T Oar* T o ax* + v[ax*i P rEoaeE Y 8r*2] (3.2)
37 30 A4 1 9p 329 1 3¢ 4 32%
5ex 0 5% T V5w = 5 3 T ViggFz * TF 5r* T 7wz t 3pwr]

(3.3)

vhere t* is time; P is static pressure; x* and r* denote,

respectively, the axial and radial coordinates; and O , and

¢ denote the velocity components, respectively, in the x¥*

and r* directions. If u*, v*, p* denote mainflow quantities

+ + + : .
and u , v , p are the corresponding disturbances, then
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A(r*,x*,t*) = u*(r*,x*) + ut(r*, x*,t*) (3.4a)
O (r*,x*,t*) = v*(r*,x*) + v (r*, x*, t*) (3.4Db)
P(r*,x*,t*) = p*(r*,x*) + pt(r*,x*,t*) (3.4c)

Substitution of (3.4) into equations (3.1) through (3.3),
followed by subtraction of the mainflow and neglect of the

squares of the disturbance quantities, gives

+ + +
au 3V v
3x* T orF T w0 {3+5)
+ + - +
ou ou +ou* ou +0u* 19
SEF * W U gpw o+ Vigpw o+ viegw = -5 e
52ut  32ut 1 aut
t vigxxz t 5r*z Y TF 3T¢F) (3.6)
+ + + +
ov %0V +ov* %0V +3v* _ _1 9p
pex T WgxE T U axE ar* TV oarE T o or*
+ +
32vt 3wt 1 v v
+ v[ﬁx;Z t 5%zt TE FrF T r*z] (3.7)

The pressure term p+ may be eliminated from (3.6) and
(3.7) by cross differentiation and subtraction. The result-
ing equation is then simplified by using the continuity

equation and the boundary layer assumptions

dv* __ du* S92y e 32v* 5 d2u* e d2u*
IXF 3r* , 9x¥Z ar¥z , and Jx¥z7 r¥z
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After simplification, the resulting equation is

4 +
52y 22y Lo82u vt L 2ut eyt
SEFsr¥* ~ StFex* T Ur(5xFspE - ax*z) t VY (3TET - 3xF5TE

1 v 1 du +,32v* 1 Jv*  y* +,92%2u*
tTE Gx* T T* ar*) - (ar*Z * 3r* w%z) t v (ar*Z
1 3u* 3 d%ut 1 3 . oaut 3 .32v"

- % 3¢F) = \){5r;°[8x;z + % 3pE(r* 57w ] - 3xFlyxee

e
H|I——'
*
QO
[a}
*
]
*
QO
a]
*
H
*
N
—
—

(3.8)

When this equation is compared with the corresponding equation
from the derivation of the conventional Orr-Sommerfeld
equation for parallel flow, the terms involving v* and its
derivatives are seen as the additional terms.

The disturbance velocities are related to the stream

function of the disturbance ¢+ by the relations

e
<
+

(3.9)

1oy’
ut = I 5%; ¥ e

Hin

H

3

b
*

where V' satisfies the continuity equation (3.5) and is

assumed to be of the form
PP (x*,rx,t*%) = ¢T(r*) exp[ia* (x*-c*t*)] (3.10)

In (3.10) ¢+ is the amplitude function of stream function,

c* = ci+ict is the complex wave velocity, and a* is the
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wave number. If c; is less than zero, the disturbance will
decay and the flow is stable; if c; is greater than zero,

the disturbance will grow and the flow is unstable. For the
neutral stability c; is equal to zero. Upon substitution of

+

u and v+

from (3.9) to (3.8), there will result a fourth
order differential equation for the disturbance amplitude

¢+(r*) in dimensional form.

Next, one introduces the following dimensionless vari-

ables
r=r*/Lé ; U=u*/ué " V=v*/ué ; c=c*/u; 7 a=a*L; .
—+ * * * —1 kT * = + *T %2
t=t*/(u¥/L%) , R uch/v o 0=0 /(ucLc ) (3.11)

where Lé is the characteristic length and ué is the charac-
teristic velocity. For the annular duct flow, the ué and Lé
are taken to be ué=ﬁ*, Lé=(K—1)r:/2K, K=1/M=r:/rt , with rt
and r: denoting, respectively, the inner radius and outer
radius. In dimensionless form, one arrives at the following

modified Orr-Sommerfeld equation

o"" = 20""/r + 3¢"/r® - 3¢'/r® + a?(-2¢" + 2¢'/r + a?¢)

+ iaR{ (c-U) (¢"-¢'/r-a?¢) +[32U/9r*-(3U/dr)/r]¢} + R{[-¢"'
+3¢"/x=6" (4/r%-0%)=(202/1) 0]V + ¢' (3V/3r)/xr + ¢'(3°V/3x*)}= 0

(3,12)

where the primes denote differentiation with respect to r.

When this equation is compared with the conventional
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Orr-Sommerfeld equation, the terms involving V and its
partial derivatives are seen as the additional terms. That
is, these additional terms are zero under the parallel flow
assumption.

The terms 3U/dr, 52U/3r?%, V, 3V/dr, and 32V/or? will
now be evaluated from the mainflow solution of Chapter II.
From the mainflow solution, equation (2.10b), and with appli-

cation of the continuity equation, one obtains

3U/dr = [(K-1)/2K]{2(-2n+2A/n)/(1+M?=2A) + &

; cjaj[{zY(l)

1

- _~ 2
/ZJ(l)}Jl(ajn) Yl(ajn)] exp ( ujx*)} (3.13a)

32U/9r? = [(K-1)/2K]2%{-4(1+A/n?)/(1+M2-2A) +

I ™ 8

Cjaj [{ZY(]-)

j=1

/ZJ(l)}{—J1(ajn)/n+ajJ°(ajn)} - {—Yl(ajn)/n

2
+an0(ajn)}] exp ( ajx*)} (3.13b)

= - C - l l . "M .
\Y [ (K-1) /(2KeR) ] jil jaj{ [ZY( )/ZJ( )]{[Jl(ajn) Jl(ajM)

/nl + Bgoy (n®-M*)/2n} + {[Y (o n)-MY (o M)/n]

+ BYaj(nz-Mz)/Zn}} eXp(-ugx*) (3.13c)
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oV/3r ={[(K—l)/(ZK)]2/(gR)}jilcjaj{—[ZY(l)/ZJ(l)]{—Jl(ajn)/n
2 2 2
+ajJ°(ajn)+MJ1(ajM)/n +BJaj[l+(M /n“)1/2}
B 2
+ { Yl(ajn)/n+anO(ajn)+MY1(ajM)/n

+BYaj[1+(M2/n2)]/2}} exp(—agx*) (3.13d)

2 2 - 3 =
32v/9r? ={[(K-1)/(2K)] /(eR)}jEICjaj{ [ZY(l)/ZJ(l)]

- - 2 3
{aon(ujn)/n ule(ajn) [2MJ1(ajM)+BJajM 1/n3%}

+ 24 . -0 s - M) +
{a] 0(oejn)/n a Yl(ajn) [ZMYI(aJP) B0

g .M2]/n%}}

J

exp(—ugx*) (3.13e)

where

By 2[MJ1(ajM)—Jl(aj)]/[aj(l—Mz)]

(3.14)

B
Y

2[MY (o, M)-Y (o.)]/[a, (1-M?)]
1] 1] J

Note that n=r(K-1) /2K and that the relationships

. d -o.J .
dJO(aJn)/ n aJ 1(oc]n)

dJl(ajn)/dn = -Jl(ajn)/n + uon(ajn)

have been used in the derivation of equations (3.13a) through

(2,13d) .
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2. Circular Tubes

The modified Orr-Sommerfeld equation for the tube flow
is the same as for the annular duct flow and is given by
equation (3.12). However, in this case, the tube radius r:
is used as the characteristic length Lé. The mainflow U is
given by equation (2.15).

Use of equation (2.15) along with the continuity
equation yields the mainflow velocities and their partial

derivatives appearing in the disturbance equation as

0

3U/or = -4r - 4j£1{Jl(ajr)/[aon(aj)]} exp(-agx*) (3.15a)
2 2 _ _ o _ . ) - . .
3°U/or? = -4 + 4j£1{J1(aJr)/[aero(dj)] Jo(ajr)/Jo(aj)}

exp(—a%X*) (3.15b)

V ={-2/(eR)} % {r-27 (a.r)/[o.J (0,)]} exp(-a?X*) (3.15¢c)
=1 o 3 j oo 3 3

av/or ={-2/(eR) } .2 {1427 (a.r)/J (o.)} exp(-aiX*) (3.154)
Jj=1 1] o ] J

32v/ar? = {-4/(eR)}j_Z__l{—Jl(ocjr)/[rJo(aj)]

-y 2% %
+aon(ujr)/Jo(uj)} exp ( qu ) (3.15e)
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3. Parallel-Plate Channels

The modified Orr-Sommerfeld equation for plane flow has
been derived by Chen, Sparrow, and Tsou (1971). For con-
venience, the highlights of their work will be given. The
starting point of the analysis is the Navier-Stokes equations
for incompressible, two-dimensional, time-dependent fluid
motion. Consider a parallel-plate flow with velocity com-
ponents I and ¢ in the streamwise and transverse directions
(x* and y*, respectively) and with static pressure distri-

bution p. If u*, v*, p* denote mainflow quantities and u+,

-

v*t, p* the corresponding disturbances, then

A(x*,y*,t*) = u*(x*,y*) + u+(x*,y*,t*) ,
O (x*,y*,t*) = vk(x*,y*) + v'(x*,y*, t¥) , (3.16)
ﬁ(X*IY*zt*) = p*(x*,y*) + p+(X*0y*lt*) .

The continuity equation and the Navier-Stokes equations for

two-dimensional plane flow are

af 9%

v o = 0 (3.17)
30, 20 5% _ _1 239 A S

aex T Uow * V9yw T 5 axw T V(gEr * gy (3.18)

1
gex * Oxx * Yoyw = o 5,7 Ve o gpE) (3.19)
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Substitution of (3.16) into equations (3.18) and (3.19),
followed by subtraction of the mainflow and linearization

of the disturbance quantities, gives

du’ Lout o our Lout o jaux 1 9pt 92ut  3%ut
5ex t Whnxw f Wingw f VLRt VIRgw T o5 axx f Vv (sxeTr foagEr)

(3.20)
av’t ovt LoV avt Lov¥ apt 32vh 2yt

FEF fOUNGRE f uTHxE T VIGyE Y Vigyw < -

Equations (3.20) and (3.21) keep all of the terms
involving sut/ox*, v*t, 3vt/sx*, and dvt/5y* that are normally
neglected in the derivation of the conventional Orr-Sommerfeld
equation. The pressure p+ may now be eliminated from
equations (3.20) and (3.21) by cross differentiation and sub-
traction. The resulting equation is then simplified by using
the continuity equation for mainflow and the conditions
32u*/9x*2 << 32u*/3y*2 and 32v*/3x*? << 3%y*/3y*?. This
results in

~n2..+ 2.,+ 2.+ 32v+ 82u+ 32V+
o u i x + u*( B*u * = ¥7) T V¥ (SoEr - g
dy*ot* ox*ot oy*ot X oy ox*dy

92u* d2v* 3 ,a2ut | 32ut 3 ,92vt a2yt
- v+§§§7 - u+§§;7 = V{ay*(ax*z + By*z) T ACTT T 3y§2)}

(3.22)

Compared with the corresponding equation from the derivation
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of the conventional Orr-Sommerfeld equation, equation (3.22)
contains additional terms v*32ut/3y*2?, v*32vt/ox*3y*, and
uto2u*/oy*2,

The disturbance velocities are related to the stream

function of the disturbance ¥' by the relations

+

ut = svt/oy* , vt = —3vt/ox* . (3,.23)

where ¥t satisfies the continuity equation and is assumed to

be of the form

YF(x*,y*,t*) = ¢T(y*) exp{ia*(x*-c*t*)} (3.24)

+

Upon substitution of u’ and vt and (3.24) into (3.22),

there results a fourth order differential equation for the
disturbance amplitude ¢t (y*). With the introduction of the

following dimensionless variables,
y=y*/L* , U=u*/u* , V=v*/u* , c=c*/u* , oa=o*L* ,
t=t*/(L*/u*) , R=u*L*/v , ¢=¢7/(L*2T*) (3.25)
one obtains the modified Orr-Sommerfeld equation
o""=202¢"+a"¢+ioR{ (c=U) (¢"=a2d)+(22U/3y2) ¢

+(i/a) [V(¢"'-a2¢")-(32V/3y2) ]} = 0 (3.26)

in which the primes denote differentiation with respect to y.
For parallel flow, V=32V/3y?=0, and equation (3.26) reduces

to the conventional Orr-Sommerfeld equation.
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The terms 92U/3y?, V, and 3%V/3y? can be readily
evaluated from the mainflow solution (2.19) and the conti-

nuity equation. They are given by

(o]

3%2u/dy? = -3 - 2 .Zl{cos(ujy)/cos(uj)} exp(—u?X*) (3.27a)
J:

V=2R; j . . o.)]-y} —-a2x* 3.27b

(2/€R) j=1{31n(ajy)/[ajcos(aj)] v} exp( aj ) ( )

32V/ay?% = -(2/¢€R) j‘_Z_l{ajsin(ajy)/cos(aj)} exp(—a;x*) (3.27c¢)

B. The Boundary Conditions

The disturbances are subject to physical constraints at
the bounding walls (or at the bounding wall and center) of
the ducts. These constraints give rise to boundary con-
ditions for different flow configurations are discussed sepa-

rately in the following sub-sections.

l. Annular Ducts

The four boundary conditions for equation (3.12) for

annular duct flow are obtained by requiring that the dis-

turbance velocities u’ and v’ be zero at the inner and outer

walls. In terms of ¢ (r), they can be expressed as

2 - 42y 0 2K, _ 4 ,2K | _
olgmp) =o' (gD =0, 0GEID =R =0 (3,28
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2. Circular Tubes

For axisymmetric disturbances in a circular tube flow,

the disturbance velocities at the tube wall vanish. That is

$(1) =¢'(1) =0 (3.29a)

The other two boundary conditions are that the disturbance

velocities must be axisymmetric and finite at the center of

the tube. This gives

lim (¢/xr) = 0 , lim (¢'/xr) = finite (3.29b)
r>0 r+0

3. Parallel-Plate Channels

The boundary conditions for equation (3.26) are derived
from the condition that the disturbance velocities vanish at

the channel walls. In terms of ¢(y), one has

$(1) = ¢'(1) =0 (3.30a)

¢(=1) = ¢'(-1) =0 (3.30Db)

However, for the present problem, the velocity profiles are
symmetric with respect to the centerline of the channel.
Therefore, it is more convenient to consider only half of
the channel in the stability calculations. The boundary
conditions (3.30b) corresponding to the bottom wall can be
replaced by those at the centerline of the channel. Since

the mainflow is an even function of y=y*/L*, the solution
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for ¢(y) can be decomposed into even and odd modes, of which
the even mode ¢(y) has been found to lead to a more unstable
flow. For the even mode, the boundary conditions at the

bottom wall are replaced with those at the centerline

¢'(0) = ¢"'(0) =0 (3.30c)

C. The Eigenvalue Problems

The mathematical systems consisting of equations (3.12)
and (3.28) for the annular duct flow, equations (3.12) and
(3.29) for the tube flow, and equations (3.26) and (3.30)
for the channel flow form the linear stability problems of
interest. Since each system consists of a homogeneous fourth
order linear differential equation and four boundary con-
ditions, each is an eigenvalue problem. The general solution
¢ {r) (note that for the parallel-plate channels the notation

¢(y) is used instead) is of form
¢{r) = a ¢ (r) +a ¢ (xr) + a ¢ (r) + a ¢ (x) (3.31)
11 22 33 Loy

where ¢1(r), ¢2(r), ¢3(r), and ¢h(r) are the four independent

solutions of the fourth order equation and a , a , a , a are
1 2 3 4

the constants to be determined by applying the four boundary
conditions for ¢(r). This will result in four homogeneous
algebraic equations for a , a , a , and a . A non-trivial

1 2 3 4

solution to these equations exists if and only if the de-

terminant of the coefficient matrix is zero; that is
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|D(a,R,cr,ci)| = 0, which leads to a secular equation
f(a,R,cr,ci) = 0 (3.32)

which gives a relationship among a, R, C_ v and c, -

In order to obtain a non-trivial solution for ¢, it is
necessary to impose a normalizing condition. Since this
normalization fixes only the scale of the solution, any
choice will suffice (for example, a1=1). The eigenvalue
problem then represents ten real boundary conditions on the
eight first-order real system, equation (3.12) or (3.26).
Therefore, two of the four real parameters o, R, cr , and ci
have to be eigenvalues. By assigning any two of the four
parameters, the other two can be found as the eigenvalues.

The eigenvalue problems were solved numerically using
two different numerical methods, a direct numerical inte-
gration scheme and a finite difference scheme. The eigen-
values were then obtained by an iteration scheme. The
details of the numerical methods used will be presented in

Chapter IV.
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IV. NUMERICAL METHODS OF SOLUTION

A. General Discussion

There are several methods which can be employed in the
numerical solution of differential equations. These methods
can be classified into two categories; that is, algebraic and
differential. In the algebraic methods, the original differ-
ential eigenvalue problem is replaced with an algebraic
eigenvalue problem. These include a finite difference method
and the method of weighted residuals. In the differential
methods, the differential system is integrated directly,
using, for example, the filter technique (Kaplan 1964) or the
orthonormalization method (Dettman 1962) to remove the "para-
sitic error". A very complete review and comparison of all
these methods is given by Gersting (1970).

In the integration process of a differential system
that has general solution with vastly different growth
rates, the répidly growing solution introduces a portion of
its solution into the more slowly growing solution. If the
rapidly growing solution dominates the slowly growing so-
lution, then the linear independence of the two solutions
for the initial value problem is lost. In order to preserve
the linear independence, an orthonormalization is used after
each step of integration. That is, after each step of inte-
gration the old basis is replaced by a new orthonormal basis.
This process repeats after each integration process. The

Gram-Schmidt process (Dettman 1962) has been used for
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performing the orthonormalization process.

In his work, Gersting introduced an additional method
known as the method of near-orthonormalized integration.
This method differs from the orthonormalization method in
that the orthonormalization is not carried at every step of
integration. Gersting pointed out that "Since it is not
expected that orthonormalization will be required at each
mesh point, a criterion for deciding whether or not ortho-
normalization is required at a particular mesh point is
needed". The "angle criterion" was used in his work. He
also pointed out that the number of orthonormalizations
increases as the Reynolds number becomes large. For the
plane Poiseuille flow at a Reynolds number of 2500 and using
101 mesh points in the region of interest, he used 90 ortho-
normalizations. For the tube and annular duct flow problems
considered, the Reynolds numbers for the instability of flow
are in the order of 10" and orthonormalization is required
at almost every mesh point. Thus, the complete ortho-
normalization method was used for these flow configurations
in conjunction with the Runge-Kutta integration scheme in
this investigation. A computer program was written for the
orthonormalization method which worked better for the present
problems than the near-orthonormalization program of Gersting.

For the parallel-plate channel flow, a finite difference
method is used which closely follows the work of Chen (1966)

and Chen, Sparrow, and Tsou (1971).
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B. The Orthonormalization Method

To solve the eigenvalue problem by a direct numerical
integration scheme, one needs to transform the eigenvalue
problem into an initial value problem. Due to the nature of
the stability problems involved in the present investigation,
in which instability of flow occurs at very high Reynolds
numbers, the differential equations for ¢ become very singu-
lar at these high Reynolds numbers. This gives rise to
"parasitic error" during the numerical integration of the
equation. To keep the sets of numerical solutions for ¢
independent, this "parasitic error" has to be removed during
the integration process. Finally, the eigenvalues can be
determined by an iteration scheme. These numerical aspects

of the problem are discussed in this section.

1. Transformation of the Eigenvalue Problem into an

Initial Value Problem

In order to apply the numerical procedure to be dis-
cussed, it is more convenient to transform the differential
equation (3.12) into the form

¢"" + L(d,0',0",¢"") =0 (4.1)

where
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L(dsd'y0",0"") = =20""'/xr + 3¢"/r? -3¢'/r® + a®(-2¢"
+ 2¢'/r + a?¢) + iaR{(c-U) (¢"-¢'/r-a?¢) + [32U/dr?
-(3U/3r) /x]1d} + R{[-¢"'+3¢"/xr-(4/r%-a?) "= (202 /x)$]V
+(3V/9xr) (¢ /r)+(3%V/3r*)¢'} (4.2)

The boundary conditions for annular duct flow and for circu-
lar tube flow are given, respectively, by equations (3.28)
and (3.29).

The first step of the transformation is to transform the
differential eigenvalue problem to a boundary value problem.
As explained in Section C, Chapter III, any two of the four
parameters o, R, Cy and c; can be assigned and the other
two found as eigenvalues. By assigning the values for the
parameters and then selecting values for the eigenvalues, the
eigenvalue problem is transformed into a boundary value
problem. However, the eigenvalues are yet to be determined
in this problem. Therefore two things must be done in order
to use this direct integration method. First, an estimate
of the eigenvalues is to be made. Secondly, an iteration
scheme must be available to obtain the eigenvalues which
approach close to the exact eigenvalues within a prescribed
convergence criterion. These two things can be accomplished
and will be discussed in Sub-sections 5 and 6.

In the analysis to follow, we shall use the annular duct
flow as an example, because it applies to the tube flow as
well. The only difference in the analysis between these two

flows appears in the boundary conditions.
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Let
yl(r) = ¢ (r)
y (r) = ¢'(x)
2 (4.3)
ys(r) = ¢"(r)
y, (¥) = ¢"" (z)
then the governing system (4.1) becomes
y;(r) = yz(r)
y'(r) =y (xr)
z 3 (4.4a)
y'(r) =y (r)
3 4
YL(r) = -L(¢,0",0",0¢"")
=Ey +Ey +Ey +Ey
171 27 2 37 3 47y
where
E1 = —o"* + ioR[(c-U)a2+32U/3r2-(3U/3xr)/r] + 202%RV/r
E2 = 3/r® - 2a%/r + ioR(c-U)/r + R[(4/r?-a?)V
+(3V/9r) /r+3%V/3r?]
E = -3/r? -202 - iaR(c-U) - 3RV/r
Eh = 2/r + RV
The boundary conditions (3.28) become
yl(r=r1=2/(K—l)) = yz(r=r1=2/(K—l)) =0 (4.4Db)

yl(r=r2=2K/(K—l)) = yz(r=r2=2K/(K—l)) =0 (4.4c)
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In matrix form, equation (4.4a) may be written as

Fy;’ (0 1
y; 0 0
y' 0 0

3
' E BE
. yu ’ \ 1 2

0 0
1 0
o 1
EE]

2 (4.5a)

and the boundary conditions (4.4b) and (4.4c), respectively,

as
1 0 0 0
L\ 0 1 0 0
and
1 0 0 0
0 1 0 0

In a compact form, equations (4.5a)

expressible as

y'(r)
and
By(rl)

By (r )
2

where

( h
yl(rl)
yz(rl)

y (r )
3 1

] Yk(rl) )

2

.
yl(rz)

y (r )
2 2

ya(rz)

Ly (r ) |
v 2

Ay (r)

(4.5Db)

(4.5c)

through (4.5c) are

(4.6a)

(4.6Db)

(4.6c¢)
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[y ) [ v ) [0 1 0 0
1 1
y' y 0 0 1 0O
y; Y, 0 0 0 1
Ly L) B, E E_E |

B = (4.6e)

The operator L is linear and the boundary conditions
are also linear. The boundary value problem (4.6) can,
therefore, be solved directly in terms of a set of initial
value problems.

To numerically integrate a fourth order differential
equation for ¢ by the initial value technique, one needs to
specify the initial values of ¢, ¢', ¢", and ¢"' at the
starting point. Since ¢(r1) and ¢'(r1) are known (boundary
conditions), the values ¢"(rl) and ¢"'(r1) have to be speci-
fied. This can be done by assigning ¢"(r1)=0 and ¢"'(r1)=l,
and ¢"(r1)=1 and ¢"'(r1)=0, which gives rise to two inde-
pendent solutions ¢1 and ¢2 for ¢. Let y(l) and y(z) be the

corresponding two independent solutions. Then

y(r) = Bly(l)(r) + ezy‘“m (4.7a)
[ yl(r)7 ( yfl)(r) ) ( yfz)(r) )
y (1) v (x) v (2) (1)
or 2 =B ?1) + B ?2) (4.7b)
ya(r) ’ Y, (r) 2 Y, (r)
(1) (2)
Ly, (o)) Ly @ Ly @ )
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In matrix form, this gives

y(r) = Y(xr) B (4.7¢)
where
( y, (r) | ( yl(l) (r) yfz) (r)
y (r) y(l)(r) y(z)(r)
Y(r) = 2 Y(r) = (1) %2)
Y3(r) y, "(¥) vy  (x)
Ly () |, Ly(l)(r) y ) (x) J
L I
(4.74)

and B is a constant matrix

B = 1 (4.7e)

In order to assure that y(r) in (4.7c) is a solution to
(4.6a), the matrices Y(r) and B in (4.7c) must be chosen such

that

Y'(r) = A Y(r) (4.8a)
with the initial condition

B Y(rl) =0 (4.8Db)

Equations (4.8a) and (4.8b) determine the two initial value

problems, one for each column of Y(r). With the boundary

condition

B y(rz) =B Y(rz) B =0 (4.9a)
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the constants B8 and 8 can then be determined, as (4.9a)
1 2

can be written as

(o (1) (2) 1
¥, (rz) Y, (rz)
1 0 0 0)| vy )y v@®(r) B
21 2 22 4 i | =0 (4.9}3)
Lo 1 0 0| yMe@y y®) || 8
TSR 7S ‘
A (rz) Y, (r,) J
oxr
y(l)(r) y(z) (r ) 8
1 2 1 2 1
=0 (4.9¢c)
y(l)(r) Y(Z) (r ) B
2 2 2 2 2

Thus, there exists a non-trivial solution for B and B if
1 2

and only if the determinant of (4.9c) vanishes, that is,

(1) (2)
Y (rz) Y (rz)

= 0 (4.10)
(1) (2)
Y, (rz) Y, (rz)

The analysis presented above is an exact algorithm.
However, in the actual computation it has a so called para-
sitic error in the numerical integration of the disturbance
equation. The Runge-Kutta integration scheme was employed
in the present study. The problem of the parasitic error

will be examined next.
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2. The Parasitic Error

As pointed out earlier, in a differential system that
has general solutions with vastly different growth rates,
there exists a parasitic error during the course of the nu-
merical integration process. The error introduced by
portions of the rapidly growing solution into the more slowly
growing solution is called the parasitic error. When the
parasitic error develops, the slowly growing solution is
dominated by the rapidly growing solution and the linear
independence of the solutions of the initial value problem
is lost. The following technique is used to remove the para-
sitic error.

In the solution of the modified or conventional Orr-
Sommerfeld equation by a numerical method, it has been found
that one of the initial value problems produces only a slowly
growing solution and the other produces only a rapidly
growing solution, rather than each solution having a combi-
nation of the slowly growing solution and the rapidly growing
solution. Let ¢S be the slowly growing solution and ¢g the
rapidly growing solution. By the definition of parasitic
error, the slowly growing solution is being influenced by the
rapidly growing solution, but ¢g cannot be affected by the
parasitic error.

Let the integration interval be divided into N equal
subintervals and let integers in brackets 0,1,2,...,N be the

end points of these subintervals. Then, the initial
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conditions (4.8b) for the initial value problems assume the

form
( ¢, 10] ¢ ,10] ’
{1000]%[0] $'[0] {o o]
g - (4.11)
01 0 0 $n[0] ¢;[o1 0 o0
[ o2'[0] ¢r'[O]

Q

and the condition (4.10) from which eigenvalues are de-

termined becomes

6 N1 o N]

=0 (4.12)
04 IN] 9! ]

where [0] and [N] are the left-side end point and right-side

end point, respectively. The terms ¢ [N],¢'[N], ¢ [N], and
S s g
¢é[N] are from the exact algorithm.

Let ¢ [i] and ¢ [i] be the numerical approximations to
S

g9
the exact solutions ¢ [i] and ¢ [i] at the ith point. Since
S g
¢ [1] is not affected by the parasitic error, we have
g9

E(j)[i]=¢‘j)[i] j=0,1,2,3; i=0,1,2,...,N  (4.13a)
g g

where the superscript (j) denotes the order of differenti-

ation. But for the slowly growing solution E , it contains

s
a parasitic error from the rapidly growing solution at every

integratjon step. After an integration step from the point
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[0] to point [1], 33)[1] becomes
S

30311 = 911 + 6 9031 (4.13b)
s s g

where G 1is a constant. If the parasitic error is not
1

removed and the integration is carried on to the point [N],

then the term G ¢(j)[N] will finally dominated ¢(j)[N];
s

N g
that is
3Ny = ¢3N] + 6 () N2 6 ¢(3) [N (4.13c)
s s N g N g
and equation (4.12) therefore becomes
¢ [N] ¢ [N] G ¢ [N] ¢ [N]
S °) N g g
_ = =0 (4.14)
¢'[N] ¢'[N] G ¢'[N] ¢'[N]
5 g N g g

Equation (4.14) is identically zero for any choice of eigen-
values , so the parasitic error has to be removed or the con-
dition (4.12) will not be satisfied.

To remove the parasitic error from the integrated so-

lution ¢ , an auxiliary solution ¢§ is chosen such that ¢

S S g
is not contained in § . Let
s
301 = 39 4] - B ¢ [4] (4.15a)
s s ig

To remove ¢ from (4.15a), ¢ is made orthogonal to ¢
g9 S g

4

that is
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< $éj)[i] , 5éj)[i] > =0

or
<o) [i1 , ¢[i] > - B < ¢ (i1 , ¢(3)[i] > = 0
s g i g g
Thus
<5311, 6P >
B = = <
o<y, o@Dy >
g g
and (4.15a) becomes
. i <3 ay, 9Py > .
30141 =9 4] - 5 L 677 4]
y ° <oy, 6P iy > 9
g g
(4.15b)
A normalization of equations (4.13a) and (4.15b) yield
¢ [i] = g (4.16a)
gn (5) ..
Il ¢ " 141 ||
and
) <70y, 6Py >
.74 - —=- = 0.7 14]
3) . <oy, 6P e >
[ [i] = g g
sn . .
o IR ES P SELE £5 RE AN
3/ 141 s g ¢ “I’[4]
s () rer a3 rea o
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After each integration, a Gram-Schmidt orthonormalization

process is performed, and with the use of (4.16) the para-

sitic error can then be removed. The Gram-Schmidt ortho-

normalization process is discussed next.

3. The Gram-Schmidt Orthonormalization Process

The Gram-Schmidt orthonormalization process is given

by Dettman (1962). The linearly independent vector y(l)(ri)

and y(Z)(ri) in (4.7a) are related to their respective

orthonormal sets x(l)(ri) and x(z)(ri) defined by

¢ x(l)(r ) )

( )(r )
2

x(M(r ) = x(*)(r,) =
i < £ )(r.) i
3 i
(1)
L x) x| ,
through the relation
y(l)
(2] =
I
and
) o), 2 ()

(2 ) )
“’(r)
x( )(r.)
Lx(z)(r)

(4.17a)

(4.17b)
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If the relationship between y(ri) and x(r,) is expressed
i
through a constant matrix P(l) by
x(r.,) = y(r:) p(1) (4.18a)
i i :

where

x(r)=xM () xP ), yeEp=FMa) y®Ep) .,

o _ (4.18b)

a comparison among equations (4.17a), (4.17b), and (4.18)

gives
P,, = 11 (4.19a)
1y 1
Py, = ! = = (4.19Db)
W22 l, y(z) - <X(1) ’ y(2)> x(l) ‘I
and
o,y
“aE = 11 (4.19¢)
W
22

By comparing (4.16a) with (4.17a) and (4.16b) with
(4.17b) it is clear that



(1)
X (ri)

y(l)(r.)
1

Substituting

and (4.19c),

¢ [i]
gn
o' [i]
gn
o" [i]
gn
¢ll 1 [i]
gn

¢ [1]
g 0
¢'[1]

o
d)ll[i]

g
®™[1]
g

these results into equations (4.19a),

one obtains

x(2)(r ) =

y(z)(r.)
1

(3 [i]
sn

' [i]
sn

6" [l]
sn

3" 'I4]

\ sn

S

e |
-
e

S

o e

[i]
_S

$™[i]

1
'
"
S

\

Py,
2 1)y 2 ny 2 nwiry271/2
[(¢g) +(¢g) +(¢g) +(¢g )“1]
Bi = <X(1), y(2)>
- ' U n n wygn 1/2
(®gn®g*gnPetégng™dgnty ")
- 2) 1
W= |y (]
= [(0g B 0g,) *+(85-B o) *+(95-B o0 )2+ (3" ~B
P = 1/W
22 22
(1) (2) _
P12 B X ¥ > P 1/W22 BiPll/WZZ

)
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(4.20a)

(4.20Db)

(4.19b),

(4.21a)

(4.21Db)

nwry271/2
ML

(4.21c)

(4.214)

(4.21e)
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With P(l) determined, equation (4.18) relates x(ri) to y(ri).
This completes the orthonormalization process at each step

of the integration.

4. The Runge-Kutta Method

This numerical integration scheme was employed in the
present study. The highlights of this method is described

here. Consider a fourth order differential equation

y"" = £(x,y.y"y"y" ") (4.22a)
which is to be integrated with the initial conditions

yV = yOx ) (v=0,1,2,3) (4.22b)

at the point X=X . The approximate values of y, y', y", and
y"' at the next point one step ahead, x1=xo+h, are given by

the following expressions (Collatz, 1966)

X Yy hy'=v1

X ‘ \4
0 YO 10

x +h/2 y +v /2+v /4+v /8+k /16 v +v +3v J4+k /2
0 0 10 20 30 1 10 20 30 1

= + + - +
xo+h/2 Y, V10/2 Vzo/4 V30/8 k1/16 Vie Va0 3v3°/4+k1/2

X +h y tv +v +v +k v +2v  +3v +4k
0 20 3 20 30 3

10 30 10

X =x +h y =y +v  +v +v +k v =v +2v +3v +k'
1 0 10 20 30 11 10 20 30
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hzy"/2=v2 h3yu '/6=V kv=(h4/24) f(x,y,y' ,yu ’yu |)
3
v A4 k
20 30 1
v +3v /2+3k /2 v +2k k
20 30 1 30 1 2
v +3v /2+3k /2 v +2k k
20 30 1 30 2 3
v +3v +6k v  +4k k
20 30 3 30 3 A
v =v +3v +k" v =v +k"!
21 20 30 31 30
where

k = (8k +4k +4k -k )/15 ,
1 2 3 4

k' = (9k +6k +6k -k )/5 ,
1 2 3 b

k" = 2(k +tk +k ) ,
1 2 3

k"' = 2(k +2k +2k +k )/3 .
1 2 3 4

The integration process is continued from one end of the

region to the other.

5. The Differential Correction Iteration Scheme

To obtain the eigenvalues of the stability problem, one
needs an iteration scheme. Of the various schemes available,
the different%al correction iteration scheme was found to be
very efficient and used in the present study. Let F=Fr+iFi
be a complex function of the two real variables X and X -

Then, one can write
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3F _(x ,x ) oF (x ,x )
r 2 r 1 2
dFr (x ,x )= dx + dx (4.23a)
r 1 2 1 2
oF (x ,x ) oF (x ,x )
i 1 2 i 1 2
dFi(X1’x2)= dx1+ dx2 (4.23b)
0X, X,

Replacing the differential operators by the forward differ-

ence operator A, equations (4.23a) and (4.23b) become

AF (x ,x ) AF (x ,x )
r T1'72 r 172
AFr(xl,x2)= Ax1+ AX, (4.24a)
Ax1 X, sz x1
AP (% :;x ) AF (x ,x )
i 1 2 i 1 2
AF (x. ,x )= Ax1+ sz
§ @ (4.24Db)
Ax1 X, sz X,

If one applies (4.24) to the problem under consideration, it
is seen that x1 and x2 are the eigenvalues and F is the de-
terminantal value of (4.10). Let cl and §2 be the eigenvalues
that satisfy F(cl,§2)=0, and x1 and x2 be the first estimate
for the eigenvalues such that F(xl,xz)# 0. Then the iter-
ation scheme is performed in the following manner.

(a) Chosse the values of x1 and x2 » perform the
orthonormalization process and compute the determinantal
values Fr1(x1'x2) and Fi (xl,xz).

1

(b) Perturb x and x2 such that x =x (l1l+¢ ) and
1 1p 1 1
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x2p=x2(1+sz), where el and 82 are small numbers. Compute

F (x ,x),F, (x ,x),F (x,x ),and F, (x x ).
r2 1p 2 iz 1p 2 rs 1 2p i3 1 2p

Steps (a) and (b) provide three determinantal values corre-
sponding to three sets of estimated eigenvalues in the vicini-
ty of ¢ and ¢ .
1 2
(c) Apply steps (a) and (b) to equation (4.24). Since
the values of F (x +Ax ,x +Ax ) and F.(x +Ax ,xX +Ax ) at the
r , & i | A -]

new trial point are approximated to be zero, this yields

F_-F F -F
F =0=F + e Lilpy 4+ L3 _Elzy (4.25a)
r &1 1 2
X € X €
1 1 2 2
Fi -Fi Fi —Fi
F. =0=F., + =22 ZLlpy + —23_2LIpy (4.25b)
1 11 1 . 2
X € X €
1 1 2 2

Solve equation (4.25) for Ax1 and sz.
(d) The new estimated values of x and x for step (a),
1 2
1sBsy X and x , are then given by
1n 2n

b d =x + Ax , X =x + Ax
1n 1 1 2n 2 2

(e) Repeat the process until the determinantal values
Fr(gl,cz) and Fi(cl,gz) are vanishingly small (within the
set criterion). This gives the desired eigenvalues cl and
Cz'

This iterative scheme requires three passes through the

integration for each iteration. However, this disadvantage
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is offset by the use of partial derivatives in the iteration,

resulting in a more rapid convergence for the iteration.

6. Method to Obtain Eigenvalues

The eigenvalue problem is solved as follows. An esti-
mate of the eigenvalues is first made. Equation (4.8a) is
then integrated, using the initial condition (4.8b) at r=r1 ’
up to r=r,k and the determinant (4.10) evaluated. If the de-
terminant is equal to zero, then the chosen eigenvalues are
the correct eigenvalues of the problem. The condition that
the determinant (4.10) be equal to zero is the core of the
iteration scheme for finding the eigenvalues of the original
system (3.12) or (4.1) with the boundary conditions (3.28).
Once the eigenvalues have been found, equation (4.9) may
be used to determine a relationship between B1 and 82; one
of the B's may be assigned an abritary value of, say, 1.
This fixes the amplitude of the eigenfunction
y(r) = Bly(l)(r) - Bzy(z)(r).

In summary, the procedure for solving the system (3.12)
and (3.28) or (4.8) and (4.10) consists of the following
steps:

a) Assign any two of the parameters o, R, S and

c for example, assign o and cy -

if

b) Choose an initial estimate for the eigenvalues,
the two of the o, R, C, + and c; not selected in step a)
that is, R and CL

c) Integrate the initial value problem consisting of



56

equations (4.8a) and (4.8b) from r=r1 to r=r2.

d) Compute the value of the determinant (4.10).

e) If the value of the determinant is not zero,
adjust the initial estimate for the eigenvalues (R and Cr)
systematically and repeat the process in steps c) and 4d).
The differential correction iteration scheme is used to
refine the estimate of the eigenvalues. This scheme was
described in Section 5 of this chapter.

f) If the value of the determinant is zero, then the
eigenvalue problem is solved. These eigenvalues R and cr
along with the assigned values of o and c, are then used
to compute the eigenfunction. This is done by choosing an
arbitrary value of one of the Bg's, e.g., Blr=l’ and using
(4.9¢c) to determine B ., B , and 82 . The eigenfunctions

1i 2y i
y(r) are then computed with (4.7a).

7. Generation of the Neutral Stability Curves

Mott (1966) has obtained the neutral stability results

for the fully developed flow in annular ducts. In his

work, Mott used the maximum velocity u;ax' as the character-
istic velocity. However, in the entrance region flow, the
average velocity u* was chosen as the characteristic veloci-
ty. This choice was made because the u$ax depends on y*,
while u* contains no y*-dependent quantities. With the

neutral stability results available for the fully developed

flow (x*=«), the eigenvalues at a smaller y* value can be
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obtained by the iteration scheme, using those values at
x¥=» as the initial estimates.

Once a point on the stability curve at this smaller
value is obtained, the neutral stability curve can be gener-
ated. This is done as follows. One can increase or de-
crease o, using R and c, from that point as the initial

estimates to find the new values of R and c, for which c;=0,

r
and so on. This choice is usually done in the nose area
(i.e. in the neighborhood of the critical point where R is a
minimum) . One can also find o and c, for given values of R
and cj=0. This latter approach is quite efficient in mapping
out the upper branch of the neutral curve, where the change
in o with respect to R is slow. After the neutral curve for
this smaller y* is obtained, the neutral curve for the next
smaller x* is obtained by repeating the same process, and so
on. The critical Reynolds numbers (R)c (that is, the minimum
Reynolds number on the neutral curve) for each value of x*
can be readily obtained by examining the neutral curves along
the nose region.

For the tube flow, Huang (1973) has obtained a set of
results of (R)C at various axial locations X* under the
parallel flow assumption, that is, the results are from the
solution of the conventional Orr-Sommerfeld equation. These
results were used as the initial estimates of the eigenvalues

in the stability calculations for the non-parallel tube flow

using the modified Orr-Sommerfeld equation.
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The neutral stability curves and the critical Reynolds
numbers from both parallel and non-parallel flow assumptions
for annular ducts and circular tubes are presented in

Chapter V.

8. Eigenfunctions

Once the eigenvalues have been obtained with sufficient
accuracy, the eigenfunctions can be obtained by the Gram-
Schmidt orthonormalization process described in Section 3 of
this chapter.

If Q(ry) = [Q(l)(ri), Q(Z)(ri)] is a set of the two
independent solutions of the initial value problem after
the integration, then by the Gram-Schmidt process, it is

related to the orthonormal set Z(ri) by

Z(r,) = Q(ri)P(i) (4.26)

where P(l) is a constant matrix given by (4.18a) and the two
independent solutions Q(l)(ri) and Q(z)(ri) are given by
(4.20Db) .
The eigenfunction y(rm) is obtained from
y(r ) =8 2 (x ) + 8 2(2)(r)
m 1 m 2 m (4.27a)
where 2z(!) (r ) and z(?) (r ) are given by (4.20a), and r =r ,
m m m 2

the outer radius, is the last point. In matrix form, this

equation can be written as
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(m)

y(rm) = Z(rm)s (4.27b)

where B(m), the constant matrix (see equation (4.%9a)), is to

be found from
BZ(rm)B(m) =0 (4.27c)

in which B is given by (4.6e). Note that one of the B's is
to be specified, for example, real(61)=81r=l. The super-
script on B(i) indicates the matrix at the mesh point .
The eigenfunction at the point next to the last point
I=ry=r,6 may be obtained by the backward substitution (Conte,

1966) as follows. Combining equations (4.27b) and (4.26)

yields

y(r )=z(r )8™=g(r ypM g _g(r )gm-1) (4.28a)

m m m m
where g (M=1)—p(m)g(m) = gimjlarly, at the next point ro,
one obtains
y(r )=Z(r g™ Vg r ypm-2) (4.28b)
- F =} m-

with g (m=2)=p(m-1)g(m-1) = angd so on.
In general,

y(rj) = Q(rj)B(j_l) ; J=m,m-1,...,1 (4.29a)

where

p(371) — pgd) o o -1, ... ,1 (4.29b)
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Thus, the entire procedure for finding the eigenfunction
consists of two processes. First, a forward integration
(Runge-Kutta integration) is performed during which Q(rj) is
retained at each point and p(3) s retained at each point of
orthonormalization. Second, a backward calculation is made,
using (4.29) to calculate the constants B(j) and the eigen-
function y(x).

The representative eigenfunctions for the developing

flow in the annular ducts are presented in Chapter V.

C. The Finite Difference Method

This method was employed in the stability calculations
for the parallel-plate channel. The method has proven accu-
racy and was conveniently available (Chen 1966) .

In the finite difference method, the differential
equation and the boundary conditions are transformed into a
system of linear algebraic equations. The flow field is
subdivided into N equal subintervals with (N+1l) discrete
points. The differential operator is then replaced by a
suitable difference operator, e.g. the forward difference
operator, the backward difference operator or the central
difference operator. A further transformation is carried
out to reduce the relatively large truncation error. The
boundary conditions are included in the transformation.
This gives a system of (N+1l) algebraic equations. For a

non-trivial solution to exist, an algebraic eigenvalue
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problem with a secular equation in the form of (3.32), i.e.,
f(R,a,cr,ci)=0, must be solved. An iteration scheme is then
applied to determine the eigenvalues. The details of this
method can be found, for example, in Chen (1966). 1Its

highlights will be given here.

1. Formulation of the Finite Difference Eguations

The expressions in equations (3.27a), (3.27b), and

(3.27¢c) can be put in the form

?2u/3y? = A (4.30a)
vV = Q/R (4.30b)
32v/3y? = ¥/R (4.30c)
where
A=-3 - 273 {cos(a.y)/cos(o.)}<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>