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ABSTRACT 

An investigation is made of the linear stability of the 

developing flow of an incompressible fluid in the entrance 

region of annular ducts, circular tubes, and parallel-plate 

channels. Small axisymmetric disturbances for annular duct 

and tube flows and small two-dimensional disturbances for 

channel flow are considered in the analysis. In formulating 

the stability problems, account is taken of the transverse 

velocity component of the mainflow. This results in the 

modified Orr-Sommerfeld equations, one for annular duct and 

tube flows and the other for channel flow. The mainflow 

velocity fields utilized in the stability analysis are those 

from the solutions of the linearized momentum equations. 

The governing equation for the disturbances and the 

boundary conditions for each of the flow configurations 

constitute an eigenvalue problem. The eigenvalue problems 

for the annular duct and circular tube flows are solved by 

a fourth order Runge-Kutta integration scheme along with a 
~· 

differential correction iteration technique. An orthonor-

malization process is used to remove the "parasitic error" 

inherent in the numerical integration of the disturbance 

equations. For flow in the parallel-plate channels, the 

eigenvalue problem is solved by a finite difference method 

and the differential correction iteration scheme is employed 

to obtain the eigenvalues. 
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Neutral stability characteristics and critical Reynolds 

numbers at various axial locations are obtained for the 

developing flow in the annular ducts with radius ratios of 

2.0 and 3.33, in the circular tubes, and in the parallel

plate channels, using the modified Orr-Sommerfeld equations. 

These stability results for the annular duct flow are also 

computed using the conventional Orr-Sommerfeld equation. 

Representative eigenfunctions are also presented for the 

annular duct flow. Comparisons of the results from the 

modified Orr-Sommerfeld equations are made with those from 

the conventional equations for all three flow configurations. 

The main findings of the present study are: (1) laminar 

flow in the entrance region of annular ducts, circular tubes, 

and parallel-plate channels is unstable to small axisym

metric or two-dimensional disturbances; (2) the critical 

Reynolds number for the developing flow in the annular ducts 

and parallel-plate channels decreases monotonically as the 

axial distance increases; (3) the flow in the annular ducts 

becomes more stable as the ratio of the outer to inner radius 

increases; (4) the minimum critical Reynolds numbers for 

annular duct flow occur in the fully developed flow region 

and have the values of 9720 and 40530, respectively, for 

radius ratios of 2.0 and 3.33; (5) the minimum critical 

Reynolds number for tube flow is about 19780 and occurs in 

the entrance region; (6) the modified Orr-Sommerfeld 
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equation provides critical Reynolds numbers that differ 

somewhat from those obtained from the conventional equation; 

and (7) the effect of non-parallelism of the mainflow (that 

is, the effect of the mainflow transverse veloci~y) on the 

stability characteristics of the developing flow in ducts is 

of significance only in the range of small Reynolds numbers. 
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I. INTRODUCTION 

A. General Background 

It is well known that there are two types of motions of 

a viscous fluid, namely, laminar and turbulent flow. In 

laminar flow, the fluid moves in parallel layers, one layer 

of fluid sliding over the other and each fluid particle 

following a smooth and continuous path. The fluid particles 

in each layer remain in an orderly sequence without passing 

one another. In turbulent flow, the path of any individual 

particle is zigzag and irregular, but on a statistical basis 

the over-all motion of the aggregate of fluid particles is 

regular and predictable. Turbulence can be generated by 

fluid flow past a solid surface or by the flow of layers of 

fluids at different velocities past or over one another. 

For the problem of linear hydrodynamic stability, the 

question is whether the flow is stable or unstable to infin

itesimally small disturbances. To achieve this goal, small 

disturbances are superimposed onto a given laminar flow. The 

undisturbed laminar flow is called the mainflow or primary 

flow. If the disturbances decay, the flow remains laminar 

and is said to be stable. If the disturbances grow, the flow 

is called unstable. If the disturbances neither grow nor 

decay, then the flow is said to be neutrally stable. 

To analyze the behavior of disturbances, one can study 
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the timewise or spacewise stability of the mainflow. In 

formulating the stability problem for tube or annular duct 

flow with coordinates (x*,r*,¢*), the general three

dimensional disturbance velocities are represented in the 

form of u+(x*,r*,¢*,t*)=u(r*)exp[i(a*x*+n¢*-a*c*t*)] where 

a* is an axial wave number, c* is phase speed and n is an 

azimuthal wave number (the case of axisymmetric disturbances 

corresponds to n=O). In general, a* and c* are complex 

numbers. If a* is taken to be real and c* to be complex, 

then the stability is solved in the timewise sense or as a 

temporal stability problem. If c* is taken to be real and 

a* to be complex, then a spacewise (spatial) stability 

problem results. The latter problem is more closely related 

to experimental work. The majority of the analytical work 

appearing in the literature deals with timewise stability 

problems. Gill (1965) concluded that there is no spatial 

growth of rotationally symmetric disturbances in a circular 

tube. 

There are no exact solutions known to exist in the 

study of hydrodynamic stability problems. The solutions 

are, therefore, obtained by approximate methods. Of the 

approximate methods of solutions, there are two basic types, 

the asymptotic and the numerical methods. The asymptotic 

method is based on the condition that the parameter a*R 

(where R is the Reynolds number) is large. In the past, the 

asymptotic method developed by Heisenberg (1924) , Tollmien 



(1929,1947) and Lin (1945,1967) were applied to boundary 

layer flow, pipe flow, and plane Poiseuille flow. In these 

problems, one needs to consider only one critical layer 

3 

(where the phase velocity equals the mainflow velocity) in 

the analysis. This is due to the symmetric nature of the 

mainflow velocity profiles in these flows. For an annular 

duct, due to the lack of the symmetry of the main velocity 

profiles, there are two critical layers. With some minor 

modifications, ~1ott (1966) extended the asymptotic method of 

Lin to cover two critical layers and studied the stability 

characteristics of the fully developed annular duct flow. 

In the numerical methods of solution, there are several 

different techniques which have been employed. They include 

the finite difference method by Thomas (1953) , the method of 

weighted residuals by Finlyson (1966), the method of matched 

initial value problems by Nachtsheim (1964), the filter inte

gration method by Kaplan (1964), and the orthonormalization 

method by Wazzan, Okamura, and Smith (1967,1968). A very 

complete review and comparison of all these methods is given 

by Gersting (1970). 

B. A Brief Review o·f the Previous Work 

Many investigations on the linear stability of duct 

flows have appeared in the literature. The fact that fully 

developed flow in a parallel-plate channel (i.e. the plane 

Poiseuille flow) is unstable for large Reynolds numbers is 
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well established. The fully developed flow in an annular 

duct has been shown to be unstable for large Reynolds numbers 

when subjected to small axisymmetric disturbances (Mott 

1966). For flow in a circular tube, it has been found that 

the fully developed Hagen-Poiseuille flow is stable when 

subjected to either small axisymmetric disturbances (Leite 

1959, Schensted 1960, Gill 1965, Corcos and Sellars 1959, 

Davey and Drazin 1969) or small non-axisymmetric disturbances 

(Lessen, Sadler and Liu 1968, Burridge 1970, Salwen and 

Grosch 1972, Gary and Rouleau 1972). 

The stability characteristic of hydrodynamically devel

oping flow in the entrance region of a parallel-plate channel 

was investigated by Chen and Sparrow (1967). They found that 

the developing flow is unstable at large Reynolds numbers. 

For the developing flow in a pipe, Huang (1973) has shown 

that the flow is unstable to either small axisymmetric 

disturbances or small non-axisymmetric disturbances at large 

Reynolds numbers. The instability of the developing tube 

flow subject to axisymmetric disturbances was also verified 

by Tatsumi (1952) . 

The stability analysis for the developing flow in ducts 

discussed above are based on the assumption that the main 

flow can be regarded locally as a parallel flow consisting 

only of the streamwise velocity component, with the trans 

verse velocity component being zero. Such a model is exact 

for fully developed duct f lows, whereas for the entrance 
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region flow it is an approximation. Presently, there are 

only a few studies on linear stability available in the 

literature which account for the transverse velocity com

ponent in the mainflow. These include the work of Chen, 

Sparrow, and Tsou (1971), Chen and Huang (1972), Barry and 

Ross (1970), Haaland (1972), and Ling and Reynolds (1971). 

However, these investigators concerned themselves with the 

boundary layer flows. To the best knowledge of the present 

author, no work has been done on the stability of the de

veloping duct flows in which the mainflow transverse veloci

ty is included in the analysis. 

c. The Present Investigation 

In the present investigation, the stability character

istics of several duct flows in which the velocity profile 

is developing, is investigated by the linearized method. 

The purpose is to determine whether small disturbances super

imposed on the developing laminar flow would grow or decay 

with time. The fluid is assumed to be Newtonian and incom

pressible. 

The governing equations for the disturbed flow include 

the continuity equation and the Navier-Stokes equations, 

which are non-linear, coupled partial differential equations. 

Thus, the stability problem is a non-linear problem. 

However, for small disturbances, we assume that the equations 

may be linearized; that is, terms that are quadratic or 
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higher in the disturbances and their derivatives can be neg

lected. In the present investigation, a modified version of 

the Orr-Sommerfeld equation for circular tube and annular 

duct flows is derived in which account is taken of the trans

verse velocity component in the mainflow. The corresponding 

equation for plane flow has been given elsewhere (see, for 

example, Chen, Sparrow, and Tsou, 1971). 

The problems covered in this dissertation are: 

(1) The stability of the developing laminar flow in 

the entrance region of annular ducts, subjected to axisym

metric small disturbances using both the conventional and 

the modified Orr-Sommerfeld equations. 

(2) The stability of the developing laminar flow in 

the entrance region of a circular tube, subjected to axisym

metric small disturbances using the modified Orr-Sommerfeld 

equation. 

{3) The stability of the developing laminar flow in 

the entrance region of a parallel-plate channel, subjected 

to two-dimensional small disturbances using the modified 

Orr-Sommerfeld equation. 

The reasons that axisymmetric or two-dimensional dis

turbances are considered in these problems are as follows. 

For problem {1) , Gersting (1970) has shown that for the 

fully developed annular duct flow, it is sufficient to con

sider only axially symmetric disturbances rather than axi

a lly non-symmetric d isturbances. He p roved that the 
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"$-component" of the disturbances will decay. Since in the 

hydrodynamic development region, the duct flow is basically 

a boundary layer flow, it can be expected from Squire's 

theorem (1933) that the axisymmetric disturbances will be 

more unstable than the non-axisymmetric disturbances for the 

developing flow. 

For problem (2), Huang (1973) has shown that axisym

metric disturbances are more unstable than non-axisymmetric 

disturbances for the developing flow in the immediate 

neighborhood of the inlet of a circular tube. 

For channel flow in problem (3), it has been shown as 

a direct result of Squire's theorem that two-dimensional 

disturbances are more unstable than three-dimensional dis

turbances. 

To the best knowledge of the author, the first problem 

has never been investigated. This problem constitutes the 

main bulk of the present dissertation. In all three con

figurations, the timewise stability characteristics are 

studied using numerical methods of solution. The numerical 

methods used are the integration method for problem (1) and 

(2) and the finite difference method for problem (3). To 

remove the "parasitic ~rror" inherent in the numerical inte

gration of the disturbance equation, an orthonormalization 

process (Dettman 1962) was employed. 

Neutral stability curves at different axial locations 

in the entrance region of annular ducts and circular tubes 
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are generated. The critical Reynolds numbers at various 

locations are obtained and presented for all three flow con

figurations. Representative results of eigenfunctions for 

the annular duct flow are also presented. Finally, the sta

bility results from the non-parallel flow model are compared 

with those obtained from the parallel flow model for all the 

problems investigated. 



9 

II. THE MAINFLOW 

For a fully developed flow in a duct, the velocity 

solution can be expressed in an exact form. However, for 

the developing flow in the entrance region, the velocity 

field, even for laminar flow, does not yield an exact so

lution. This is due to the nonlinearity of the inertia 

terms which appear in the equations of motion. Various ap

proximate methods have been developed by different investi

gators to obtain the velocity solutions ·in the entrance 

region of ducts. Among them are the Karman-Pohlhausen inte

gral method (Siegel 1953, Campbell and Slattery 1963), the 

method of patching of the upstream and downstream solutions 

at some intermediate location (Goldstein 1938, Reidt and 

Cess 1962, Collins and Schowalter 1962), and the linear

ization method by Sparrow and Lin (1964). Of these methods, 

the linearization method appears to be the most useful in 

the stability analysis, because in this method the velocity 

solutions can be represented in closed form. 

In the linearization method of solution, the non-linear 

inertia terms in the axial momentum equation are linearized 

by introducing a stretched axial coordinate and a function 

which includes the pressure gradient and the residual of the 

inertia terms. With application of the principle of conser

vation of mass, this function may be eliminated from the 

axial momentum equation. The velocity solution then can be 
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written as the sum of the fully developed velocity and a 

difference velocity which approaches zero at large downstream 

distances. 

To investigate· the stability of the flow in the 

entrance region of an annular duct, a circular tube, and a 

parallel-plate channel, it is necessary to obtain the main-

flow expression for each flow configuration. The mainflows 

for these three configurations will be considered separately 

in the following sections. The mainflows are assumed to be 

steady, laminar, Newtonian, and incompressible. 

A. Annular Ducts 

For the conditions of incompressible flow and axial 

symmetry, the continuity and x*-momentum equations are 

a(r*u*) + a(r*v*) = 0 
ax* ar* 

( 2 .1) 

( 2. 2) 

where x* is the axial coordinate, r* is the radial coordinate, 

u* and v* are the velocity components in the x* and r* di-

rections, p is the density and v is the kinematic viscosity. 

In writing (2.2), use is made of the boundary layer as

sumptions p*=p*(x*) and a 2 u*/ax* 2 <<a/ar*(r*au*/ar*). 

Equations (2.1) and (2.2) are to be solved subject to the no-

slip condition and the inlet condition. 



u*=v*=O at r*=r* and r*=r* 

u*=u* 
0 

at x*=O 

1 2 

where r* and r* are, respectively, the inner radius and 
1 2 

11 

( 2. 3) 

outer radius of the duct. In addition, u* is assumed to be 
0 

uniform (i.e., u*=u*) across the entrance section at x*=O. 
0 

Due to the nonlinearity of the inertia terms there 

exists a difficulty in solving for flow development from 

equations (2.1) and (2.2). Sparrow and Lin (1964) introduced 

the following linearized form for (2.2) 

au* v a au* 
E(x*}U* ~ = A(x*) + ~ ~(r*~} (2.4) 

in which E (x*) is a yet undetermined function of x* \vhich 

weights the average velocity ~*, while A(x*) is a second 

undetermined function which includes the pressure gradient 

dp*/dx* and the residual of the inertia terms. The function 

A(x*) may be eliminated from (2.4) by integrating it over 

the cross-section 

Using the law of mass conservation 

[ frt Jrr 2nr*u*dr~] = 0 

( 2. 5) 

( 2. 6) 
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the left-hand side of (2.5) is identically equal to zero. 

This results in 

1\(x*) = 

It is also convenient at this point to introduce the 

dimensionless variables 

x=(x*/r*)/(u*r*/v), U=u*/u*, n=r*/r*, r-1=1/K=r*/r* (2.8a) 
2 2 2 1 2 

and also a stretched axial coordinate ~* defined as 

dx*=Ed~*, x*=(~*/r*)/(u*r*/V) ( 2. 8b) 
2 2 

With these dimensionless variables and the use of (2.7), 

equation (2.4) becomes 

( 2. 9) 

The introduction of the stretched axial coordinate ~* 

temporarily puts aside the need to determine the weight 

function E. The flow development may now be solved from 

(2.9) as a function of x* and n. To complete the solution, 

it is necessary to relate ~* to the physical coordinate x*; 

this will be carried out later. 

Let the velocity solution U(x*,n) be the sum of the 

fully developed velocity ufd(n) and a difference velocity 

U*(x*,n) which approaches zero for large values of x*· 
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u(x*,n) = ufd(n) + U*(x*,n) (2.10a) 

The solution as obtained by Sparrow and Lin (1964) is 

oo Zy ( 1) 
+ L c.[- ZJ(n) + Zy(n)]exp(-ajx*) 

j=1 J ZJ(l) 
u = 

where 

A = 
2 £n(M) 

2 (MY (a . M) -Y 
1 

(a J. ) ] 
= Y (a.n) + -----1---J--------~---

o J 2 a· (1-M ) 
J 

(2.10b) 

(2.lla) 

(2.llb) 

(2.llc) 

The J and Y functions are Bessel Functions of the first kind 

and second kind. The eigenvalues a. are the roots of 
J 

(2.12) 

The first 30 eigenvalues aj along with aj(l-M) for the 

parametric values M=l/2 and 1/3.33 ar~ listed in Table 1. 

The expression for the series coefficients Cj is derived as 

(see A.ppendix A) 

where 

C· = 
J (l+M 2 -2A) (F (1) -F (H)] 

3 3 

(2.13a) 
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(2.13b) 

F
2 

= -[Zy(l)/ZJ(l)]HJ + Hy + 0.25[M2 -2M2 1n(M)-1]E 

(2.13c) 

+ J (a . n) Y (a-. n) ] + ( 2E/ aJ. ) { n 2 Y ( aJ. n) 
1 J 1 J 1 

(2.13d) 

= (a~-4)J (a.) - (a~M2 -4)MJ (Ma.) + 2a.J (a.) 
J 1 J J 1 J J 0 J 

- 2a . M2 J (Ma . ) 
J 0 J 

(2.13e) 

a 2 HJ = -a.MJ (Ma.) 1n(M) + J (a.) - J (Ma.) 
J 1 J 0 J 0 J 

(2 .13f) 

a . ( 1-M2 
) E = 2 { - [ Z Y ( 1 ) I Z J ( 1) ] [ MJ ( Ma . ) -J ( a . ) ] 

J 1 J 1 J 

+MY (MaJ·) - Y (aJ·)} 
1 I' 

(2.13g) 

The terms GY and HY are obtained from GJ and HJ by replacing 

J by Y. In the velocity solution (2.10b), the first term 

corresponds to the fully developed velocity Ufd' while the 

series corresponds to the difference velocity U*. The flow 
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is essentially fully developed at x*/[l-(r*/r*)] 2 =0.10 . 
1 2 

The stretched axial coordinate ~* (or x*) is related to the 

physical axial coordinate x* (or x) by the relation 

f
x* 

x = 
0 

s(x*)dx* or (2.14a) 

where the weight function s is given by 

s(x*) 
=J[~ n(2U-1.5U 2 l (dU*/dx*ldn 

(2.14b) 
< au;an) -H <au; an) + n <au; an) 2 dn 

1 M 

The numerical results for x*, s and x are given in Table B-1 , 

Appendix B. 

Equations (2.10b), (2.14a), and (2.14b) fully specify 

the velocity development expressed as U=u*/u* as a function 

of x and n. As x* or x approaches infinity, (2.10b) reduces 

to the velocity solution for the fully developed flow. 

B. Circular Tubes 

The mainflow velocity solution for the developing flow 

in a circular tube can also be obtained by the linearization 

method. For uniform inlet velocity, it is given by Sparrow, 

Lin, and Lundgren (1964) as 

00 

in which the eigenvalues a. are the roots of 
J 

J (a].) = 0.5a.J (a.) 
1 J 0 J 

( 2.15) 

(2.16) 
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where J and J are Bessel Functions of the first kind. 
0 1 

In (2.15), the dimensionless variables are 

n = r*/r* X = (x*/r*)/(u*r*/v) X* = (E;,*/r*)/(u*r*/v) 
0 0 0 0 0 

u = u*/u* (2.17) 

in which r* is the radial coordinate, r* is the tube radius, 
0 

and u* is the average velocity. 

The first 30 eigenvalues a. are listed in Table 2. In 
J 

the velocity solution (2.15), the first term corresponds to 

the fully developed velocity Ufd' while the series term 

corresponds to the difference velocity U*. The flow is 

essentially fully developed at X*=0.20 . The stretched 

axial coordinate E;,* (or X*) is related to the physical axial 

coordinate x* (or X) by the relation 

! X* 
X= 

0 
s(X*)dX* 

where the weight function s is given by 

s(X*) 
_fJ (2U-1.5U 2

) (dU/dX*)ndn 

- (au/an) +j 1 
( au;an > 2 ndn 

1 0 

(2.18a) 

(2 .18b) 

The numerical results of X*, s and X are given in Table B-2, 

Appendix B. 

Equations (2 .15), (2 .18a), and (2 .18b) give a complete 

velocity solution u as a function of X and n. 
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Table 1 

Eigenvalues for Annular Duct Flow 

* * * * M=r 1/r 2=1/2.0 M=r 1/r 2=1/3.33 
j a j a j (1-M) a j a j(l-M) 

1 12.51052 6.25526 8.86562 6.20327 
2 17.98511 8.99256 12.86147 8.99918 
3 25.10464 12.55233 17.90129 12.52553 
4 30.90770 15.45385 22.09186 15.45767 
5 37.68036 18.84018 26.90041 18.82221 
6 43.62122 21.81061 31.17526 21.81332 
7 50.25142 25.12571 35.88995 25.11218 
8 56.26845 28.13423 40.21199 28.1 3632 
9 62.82059 31.41030 44.87565 31.39948 

10 68.88603 34.44302 49.22788 34.44473 
11 75.38881 37.69441 53.85938 37.68539 
12 81.48778 40.74389 58.23260 40.74533 
13 87.95653 43.97827 62.84200 43.97053 
14 94.07997 47.03999 67.23063 47.04125 
15 100.52393 50.26197 71.82394 50.25519 
16 106.66603 53.33302 76.22444 53.33419 
17 113.09108 56.54504 80.80538 56.53950 
18 119.24809 59.62405 85.21520 59.62505 
19 125.65810 62.82905 89.78652 62.82360 
20 131.82712 65.91356 94.20391 65.91445 
21 138.22491 69.11247 98.76744 69.10755 
22 144.40390 72.20196 103.19108 72.20277 
23 150.79160 75.39580 107.74817 75.39136 
24 156.97900 78.48950 112.17704 78.49024 
25 163.35844 81.67922 116.72875 81.67507 
26 169.55282 84.77641 121.16214 84.77711 
27 175.92518 87.96259 125.70920 87.95869 
28 182.12568 91.06284 130.14652 91.06348 
29 188.49178 94.24589 134.68958 94.24226 
30 194.69757 97.34879 139.13029 97.34942 



j 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

Table 2 

Eigenvalues for Parallel-Plate Channel 
and Circular Tube Flows 

Parallel-Plate Channel Circular Tube 

a. a. 
J J 

4.49341 5.13562 
7.72525 8.41724 

10.90412 11.61984 
14.06619 14.79595 
17.22075 17.95982 
20.37129 21.11700 
23.51944 24.27011 
26.66605 27.42057 
29.81160 30.56920 
32.95638 33.71652 
36.10062 36.86286 
39.24443 40.00845 
42.38791 43.15345 
45.53113 46.29800 
48.67413 49.44216 
51.81697 52.58602 
54.95967 55.72963 
58.10225 58.87302 
61.24472 62.01622 
64.38712 65.15927 
67.52943 68.30219 
70.67168 71.44499 
73.81387 74.58769 
76.95602 77.73030 
80.09813 80.87283 
83.24019 84.01529 
86.38222 87.15768 
89.52422 90.30003 
92.66618 93.44232 
95.80814 96.58456 

18 
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The mainflow velocity solution for the developing flow 

in a parallel-plate channel with uniform inlet velocity can 

also be obtained from the boundary layer equations 

au* av* 
ax* + ay* = 0 (2.19) 

(2. 20) 

by the linearization method. Equations (2.19) and (2.20) 

are the continuity and x*-momentum equations, respectively. 

The solution is given by Sparrow, Lin, and Lundgren (1964) as 

00 

u = u*/u* = 1.5(1-y2
) + .E (2/aj){[cos(ajy)/cos(aj)]-l}exp( 

J=l 

in which the eigenvalues a. are the roots of 
J 

(2.21) 

(2.22) 

In (2.21) the dimensionless variables are defined as 

y = y*/L* x = (x*/L*)/(u*L*/v) X* = (~*/L*)/(u*L*/v) 

U = u*/u* (2 . 23) 

in which L* is the half-spacing between the plates, y* is 

the transverse coordinate as measured from the centerline of 

the channel, x* is the axial coordinate as measured from the 
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entrance, and u* is th~ average velocity. 

The first 30 eigenvalues a. are listed in Table 2. In 
J 

the velocity solution (2.21), the first term corresponds to 

the fully developed velocity Ufd' while the series corre

sponds to the difference velocity U*. Obviously, U* will be 

of significance only in the entrance region and will approach 

zero at large downstream distances. At X*=0.20, the flow is 

essentially fully developed. The stretched axial coordinate 

;* (or X*) is related to the physical axial coordinate x* (or 

X) by the relation 

! X* 
X= 

0 
e:(X*)dX* or 

where the weight function e: is given by 

e: (X*) 
_1 (2U-L.SU 2

) (dU/dX*)dy 

- ( au;ay) + fi ( au;ay) 2 dy 
1 J 0 

(2.24a) 

(2.24b) 

The numerical results of X*, e:, and X are given in Table B-3, 

Appendix B. 

Equations (2.21) and (2.24) together constitute a 

complete velocity solution U as a function of X and y. 
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III. FORMULATION OF THE STABILITY PROBLEM 

A • The Modified· ·orr·- ·s-omme·r ·f ·e·ld Equ·a·t :i ·o·ns 

The linear stability equations in terms of the amplitude 

function ¢, in which the mainflow transverse velocity com-

ponent is included, are derived in this section. They are 

referred to as the modified Orr-Sommerfeld equations. 

The modified Orr-Sommerfeld equation for the annular 

duct flow is derived in this section. The continuity 

equation and the Navier-Stokes equations for axisymmetric 

flow are 

= 0 ( 3 .1) 

( 3. 2) 

( 3. 3) 

where t* is time; P is static pressure; x* and r* denote, 

respeetively, the axial and radial coordinates; and ft , and 

0 denote the velocity components, respectively, in the x* 

and r* directions. If u*, v*, p* denote mainflow quantities 

+ + + and u , v , p are the corresponding disturbances, then 
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fi(r*,x*,t*) = u* (r*,x*) + u+ (r*,x*,t*) ( 3. 4a) 

~(r*,x*,t*) = v*(r*,x*) + v+(r*,x*,t*) ( 3. 4b) 

P<r*,x*,t*) = p* (r*,x*) + p+(r*,x*,t*) ( 3. 4c) 

Substitution of (3;4) into equations (3.1) through (3.3), 

followed by subtraction of the mainflow and neglect of the 

squares of the disturbance quantities, gives 

( 3. 5) 

1 a + p** 
( 3. 6) 

+ + + 
av + *~ + +av* *~ + +av* = 
at* u ax* u ax* + v ar* v ar* 

+ 
1 2.£_ 
p ar* 

( 3. 7) 

The pressure term p+ may be eliminated from (3.6) and 

(3.7) by cross differentiation and subtraction. The result-

ing equation is then simplified by using the continuity 

equation and the boundary layer assumptions 

av* au* 
ax* << ar* ' and 



After simplification, the resulting equation is 

+ + + 3 2 u a2 v . . a·2 . 

at*ar* - at*ax* + u*Cax*~t* 

1 au+ 
r* ar*) 
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( 3. 8) 

When this equation is compared with the corresponding equation 

from the derivation of the conventional Orr-Sommerfeld 

equation for parallel flow, the terms involving v* and its 

derivatives are seen as the additional terms. 

The disturbance velocities are related to the stream 

function of the disturbance ~+ by the relations 

1~ 
= r* ar* ' v+ 

( 3. 9) 

where ~+ satisfies the continuity equation (3.5) and is 

assumed to be of the form 

~+(x*,r*,t*) = ¢+(r*) exp[ia*(x*-c*t*)] (3.10) 

In (3.10) ¢+ is the amplitude function of stream function, 

c* = c~+ic! is the complex wave velocity, and a* is the 
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wave number. If c~ is less than zero, the disturbance will 
l. 

decay and the flow is stable; if c* is greater than zero, 
i 

the disturbance will grow and the flow is unstable. For the 

neutral stability c~ is equal to zero. Upon substitution of 
l. 

u+ and v+ from (3.9) to (3.8), there will result a fourth 

order differential equation for the disturbance amplitude 

~+(r*) in dimensional form. 

ables 

Next, one introduces the following dimensionless vari-

r=r*ILc* , U=u*lu* V=v*lu* 
c ' c ' 

t=t*l(u*IL*) c c 

c=c*lu* a=a*L* 
c ' c ' 

( 3. 11) 

where L~ is the characteristic length and u~ is the charac

teristic velocity. For the annular duct flow, the u* and L* c c 

are taken to be u*=u*, L*=(K-l)r*I2K, K=liM=r*lr* , with r* 
c c 2 2 1 1 

and r* denoting, respectively, the inner radius and outer 
2 

radius. In dimensionless form, one arrives at the following 

modified Orr-Sommerfeld equation 

~""- 2~"'1r + 3~"lr 2 - 3~'1r 3 + a 2 (-2~" + 2~ 1 lr + a. 2 ~) 

+ ia.R{ (c-u) (~"-~ 'lr-a. 2 ~) +[a 2 ular 2
- (aular) lr] ~} + R{ [-~" 1 

+ 3 ~ " I r- ~ 1 
( 4 I r 2 

- o. 2 
) - ·! 2 a 2 I r) ¢ ] V + ¢ 1 

( a VI a r) I r + ~ 1 
( a 2 VI a r 2 

) } = 0 

(3.12) 

where the primes denote differentiation with respect to r. 

When this equation is compared with the conventional 
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Orr-Sommerfeld equation, the terms involving V and its 

partial derivatives are seen as the additional terms. That 

is, these additional terms are zero under the parallel flow 

assumption. 

now be evaluated from the mainflow solution of Chapter II. 

From the mainflow solution, equation (2.10b), and with appli-

cation of the continuity equation, one obtains 

00 

au1ar = [CK-l)I2K]{2(-2n+2Ain>ICl+M2 -2A) + L c.a.({z (1) 
j=l J J y 

IZJ(l)}J (a.n)-Y (a.n)] exp(-aJ~x*)} 
1 J 1 . J 

(3.13a) 

00 

IZJ(l)}{-J (a.n)ln+a.J (a.n)}- {-Y (a.n)ln 
1 J J 0 J 1 J 

+a.Y (a.n) }] exp(-aJ~x*)} 
J 0 J 

(3.13b) 

00 

v = [ ( K -1 ) I ( 2 K £ R) ] L c . a . { - [ z ( 1) I z ( 1 ) ] { [ J (a . n ) - MJ ( a . M) 
j=1 J J y J 1 J 1 J 

In] + BJa. (n 2 -M 2 )12n} + {[Y (a.n)-MY (a.M)In] 
J 1 J 1 J 

(3.13c) 
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00 

av;ar ={ [(K-l)/(2K)] 2 /(e:R)} .2: c.a.{-[Zy(l)/ZJ(l)]{-J (a.n)/n 
. J=l J J 1 J 

+ {-Y (a.n)/n+a.Y (a.n)+MY (a.M)/n 2 

1 J J 0 J 1 J 

00 

a2 V/()r 2 ={ [(K-l)/(2K)] 3 /(e:R)} .2: C.a.{-[Zy(l)/ZJ(l)] 
]=1 J J 

(3.13d) 

· {a.J (a.n)/n-a.J (a.n)-[2MJ (a.M)+BJa.M 2 ]/n 3 } 
J 0 J J 1 J 1 J J 

+ {a.Y {a.n)/n-a.Y {a.n)-[2MY (a.M)+Bya.M 2 ]/n 3 }} 
J 0 J J 1 J 1 J J 

where 

exp (-a~ X* ) 
J 

B = 2 [MY (a .M) -Y (a.)]/ [a. (l-Iv1 2
)] 

y 1 J 1 J J 

Note that n=r(K-l)/2K and that the relationships 

dJ (a.n)/dn = -a.J (a.n) 
0 J J 1 J 

dJ (a.n)/dn = -J (a.n)/n + a.J (a-n) 
1 J 1 J J 0 J 

(3.13e) 

(3 .14) 

have been used in the derivation of equations (3.13a) through 

( 3 .13d) • 
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2. Circular Tubes 

The modified Orr-Sommerfeld equation for the tube flow 

is the same as for the annular duct flow and is given by 

equation (3.12). However, in this case, the tube radius r* 
0 

is used as the characteristic length L*. The mainflow U is 
c 

given by equation (2.15). 

Use of equation (2.15) along with the continuity 

equation yields the mainflow velocities and their partial 

derivatives appearing in the disturbance equation as 

00 

8U/8r = -4r- 4.L {J (aJ.r)/[aJ.J (aJ.)]} exp(-a~X*) 
]=1 1 0 J 

(3.15a) 

00 

-4 + 4.L {J (a.r)/[a.rJ (a.)]- J
0

(aJ.r)/J
0

(aJ.)} 
]=1 1 J J 0 J 

exp (-a ~X*) 
J 

00 

V ~{-2/(sR)} E · {r-2J (a.r) / [a.J (a,)]} exp(-a~X*) 
j= 1 0 J J 0 J J 

00 

8V/ar ~{-2/(sR) }.E {1+2J (a.r)/J (a.)} exp(-a~X*) 
J=l 1 J 0 J J 

00 

8 2 V/8r 2 = {-4/(sR)} L {-J (a.r)/[rJ (a.)] 
j=1 1 J 0 J 

+a.J (a.r)/J (a.)} exp(-a~X*) 
J 0 J 0 J J 

{3.15b) 

(3.15c) 

(3.15d) 

(3.15e) 
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3. Parallel-Plate Channels 

The modified Orr-Sommerfeld equation for plane flow has 

been derived by Chen, Sparrow, and Tsou {1971). For con-

venience, the highlights of their work will be given. The 

starting point of the analysis is the Navier-Stokes equations 

for incompressible, two-dimensional, time-dependent fluid 

motion. Consider a parallel-plate flow with velocity com-

ponents a and ~ in the streamwise and transverse directions 

(x* andy*, respectively) and with static pressure distri

bution p. If u*, v*, p* denote mainflow quantities and u+, 

v+, p+ the corresponding disturbances, then 

fi(x*,y*,t*) = u*(x*,y*) + u+(x*,y*,t*) , 

~(x*,y*,t*) = v*(x*,y*) + v+(x*,y*,t*) {3.16) 

p(x*,y*,t*) = p*{x*,y*) + p+(x*,y*,t*) 

The continuity equation and the Navier-Stokes equations for 

two-dimensional plane flow are 

au a~ 
0 (3.17) a;(*· + ay* = 

afi "afi + ~~ 1 ~+ a 2tl a21l 
at* + uax* = v<ax*2 + ay*z > (3.18) ay* p ax* 

a~ a~ a~ 1 ap a 2" a 2v 
at* + 11 ax* + "ay* = ~+ \) <axn- + ay*z > (3.19) p y 
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Substitution of (3.16) into equations (3.18) and (3.19), 

followed by subtraction of the mainflow and linearization 

of the disturbance quantities, gives 

(3.20) 

av+ av+ av* av+ ~av* 
at* + u*ax* + u+ax* + v*ay* + v ay* = 

(3.21) 

Equations (3.20) and (3.21) keep all of the terms 

involving au+;ax*, v+, av+;ax*, and av+;ay* that are normally 

neglected in the derivation of the conventional Orr-Sommerfeld 

equation. The pressure p+ may now be eliminated from 

equations (3.20) and (3.21) by cross differentiation and sub-

traction. The resulting equation is then simplified by using 

the continuity equation for mainflow and the conditions 

a 2 u*/ax* 2 < < a 2 u*/ay* 2 and a 2v*/ax* 2 << a 2 v*/ay* 2
• This 

results in 

{3.22) 

Compared with the corresponding equation from the derivation 
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of the conventional Orr-Sommerfeld equation, equation (3.22) 

contains additional terms v*3 2 u+lay* 2 , v*3 2v+lax*3y*, and 

u+a 2 u*lay* 2
• 

The disturbance velocities are related to the stream 

function of the disturbance '.F by the relations 

u + = a r-1 ay * , v+ = - a r-I ax* (3.23) 

where ~+ satisfies the continuity equation and is assumed to 

be of the form 

~(x*,y*,t*) = ~+(y*) exp{ia*(x*-c*t*)} (3.24) 

Upon substitution of u+ and v+ and {3.24) into (3.22), 

there results a fourth order differential equation for the 

disturbance amplitude ~+(y*). With the introduction of the 

following dimensionless variables, 

y=y*IL* , U=u*lu* , V=v*lu* , c=c*lu* , a=a*L* , 

(3.25) 

one obtains the modified Orr-Sommerfeld equation 

(3. 26) 

in which the primes denote differentiation with respect to y. 

For parallel flow, V=3 2VI3y 2 =0, and equation (3.26) reduces 

to the conventional Orr-Sommerfeld equation. 
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evaluated from the mainflow solution (2.19) and the conti-

nuity equation. They are given by 

00 

a 2 ujay 2 = -3- 2 ,L {cos(a.y)/cos(a.)} exp{-a~X*) (3.27a) 
J=l J J J 

00 

V = (2/ER) .I {sin{a.y)/[a.cos{a.)]-y} exp(-a~X*) 
J=l J J J J 

(3.27b) 

00 

a 2 V/ay 2 = -{2/ER) .I {a.sin(a.y)/cos(a,)} exp(-a~X*) (3 . 27c) 
J=l J J J J 

B. The Boundary Conditions 

The disturbances are subject to physical constraints a t 

the bou nding walls (or at the bounding wall and center) of 

the ducts. These constraints give rise to boundary con-

d itions for different flow configurations are discussed sepa-

rately in the fol l owing sub-sections. 

1. Annular Ducts 

The fou r boundary conditions for equation (3.12) for 

annular duct flow are obtained by requiring that the dis

turbance velocities u+ and v+ be zero at the inner and outer 

walls. In terms of ¢{ r ), they can be expressed as 

¢ (K~l) = ¢ 1 (K~1) = O ¢ ( 2K) = ~ , ( 2K ) = O 
K-1 'i' K-1 (3.28) 
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2. Circular Tubes 

For axisymmetric disturbances in a circular tube flow, 

the disturbance velocities at the tube wall vanish. That is 

¢(1) = cp• (1) = 0 (3.29a) 

The other two boundary conditions are that the disturbance 

velocities must be axisymmetric and finite at the center of 

the tube. This gives 

lim (¢/r) = 0 , 
r+o 

lim (¢'/r) =finite 
r+ 0 

3. Parallel-Plate Channels 

{3.29b) 

The boundary conditions for equation (3.26) are derived 

from the condition that the disturbance velocities vanish at 

the channel walls. In terms of cp{y), one has 

<P (1) = cp' (1) = 0 (3.30a) 

cJ>{-1) = cl>' (-1) = 0 (3.30b) 

However, for the present problem, the velocity profiles are 

symmetric with respect to the centerline of the channel. 

Therefore, it is more convenient to consider only half of 

the channel in the stability calculations. The boundary 

conditions (3.30b) corresponding to the bottom wall can be 

replaced by those at the centerline of the channel. Since 

the mainflow is an even function of y=y*/L*, the solution 
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for ¢(y) can be decomposed into even and odd modes, of which 

the even mode ¢(y) has been found to lead to a more unstable 

flow. For the even mode, the boundary conditions at the 

bottom wall are replaced with those at the centerline 

¢I ( 0) = ¢ 11 
I ( 0) = 0 (3.30c) 

c. The Eigenvalue Problems 

The mathematical systems consisting of equations (3.12) 

and (3.28) for the annular duct flow, equations (3.12) and 

(3.29) for the tube flow, and equations (3.26) and (3.30) 

for the channel flow form the linear stability problems of 

i nterest. Since each system consists of a homogeneous fourth 

order linear differential equation and four boundary con-

ditions, each is an eigenvalue problem. The general solution 

.¢{r) (note that f or the parallel-plate channels the notation 

¢(y) is used instead) is of form 

¢ {r) = a ¢ (r) + a ¢ (r) + a cp (r) + a ¢ (r) 
1 1 2 2 3 3 4 4 

(3.31) 

where¢ {r), ¢ {r), ¢ (r), and~ (r) are the four independent 
1 2 3 4 

solutions of the fourth order equation and a , a , a , a are 
1 2 3 4 

the constants to be determined by applying the four boundary 

conditions for ~ { r). This will result in four homogeneous 

algebraic equations for a , a , a , and a . A non-trivial 
1 2 3 4 

solution to these equations exists if and only if the de-

terminant of the coefficient matrix is zero; that is 



ID(a,R,c ,c.) I = 0, which leads to a secular equation r 1 
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f(a,R,c ,c.) = 0 
r 1 

(3.32) 

which gives a relationship among a, R, c , and c .• 
r 1 

In order to obtain a non-trivial solution for¢, it is 

necessary to impose a normalizing condition. Since this 

normalization fixes only the scale of the solution, any 

choice will suffice (for example, a =1·). The eigenvalue 
1 

problem then represents ten real boundary conditions on the 

eight first-order real system, equation {3.12) or (3.26}. 

Therefore, two of the four real parameters a, R, c , and c. 
r 1 

have to be eigenvalues. By assigning any two of the four 

parameters, the other two can be found as the eigenvalues. 

The eigenvalue problems were solved numerically using 

two different numerical methods, a direct numerical inte-

gration scheme and a finite difference scheme. The eigen-

values were then obtained by an iteration scheme. The 

details of the numerical methods used will be presented in 

Chapter IV. 
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IV. NUMERICAL METHODS OF SOLUTION 

A. General Discussion 

There are several methods which can be employed in the 

numerical solution of differential equations. These methods 

can be classified into two categories; that is, algebraic and 

differential. In the algebraic methods, the original differ

ential eigenvalue problem is replaced with an algebraic 

eigenvalue problem. These include a finite difference method 

and the method of weighted residuals. In the differential 

methods, the differential system is integrated directly, 

using, for example, the filter technique (Kaplan 1964) or the 

orthonormalization method (Dettman 1962) to remove the "para

sitic error". A very complete review and comparison of all 

these methods is given by Gersting (1970) • 

In the integration process of a differential system 

that has general solution with vastly different growth 

rates, the rapidly growing solution introduces a portion of 

its solution into the more slowly growing solution. If the 

rapidly growing solution dominates the slowly growing so

lution, then the linear independence of the two solutions 

for the initial value problem is lost. In order to preserve 

the linear independence, an orthonormalization is used after 

each step of integration. That is, after each step of inte

gration the old basis is replaced by a new orthonormal basis. 

This process repeats after each integration process. The 

Gram-Schmidt process (Dettman 1962) has been used for 



performing the orthonormalization process. 

In his work, Gersting introduced an additional method 

known as the method of near-orthonormalized integration. 

This method differs from the orthonormalization method in 
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that the orthonormalization is not carried at every step of 

integration. Gersting pointed out that "Since it is not 

expected that orthonormalization will be required at each 

mesh point, a criterion for deciding whether or not ortho

normalization is required at a particular mesh point is 

needed". The "angle criterion" was used in his work. He 

also pointed out that the number of orthonormalizations 

increases as the Reynolds number becomes large. For the 

plane Poiseuille flow at a Reynolds number of 2500 and using 

101 mesh points in the region of interest, he used 90 ortho

normalizations. For the tube and annular duct flow problems 

considered, the Reynolds numbers for the instability of flow 

are in the order of 10 4 and orthonormalization is required 

at almost every mesh point. Thus, the complete ortho

normalization method was used for these flow configurations 

in conjunction with the Runge-Kutta integration scheme in 

this investigation. A computer program was written for the 

orthonormalization method which worked better for the present 

problems than the near-orthonormalization program of Gersting. 

For the parallel-plate channel flow, a finite difference 

method is used which closely follows the work of Chen (1966) 

and Chen, Sparrow, and Tsou (1971). 
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B. The Orthonormalization Method 

To solve the eigenvalue problem by a direct numerical 

integration scheme, one needs to transform the eigenvalue 

problem into an initial value problem. Due to the nature of 

the stability problems involved in the present investigation, 

in which instability of flow occurs at very high Reynolds 

numbers, the differential equations for ¢ become very singu

lar at these high Reynolds numbers. This gives rise to 

"parasitic error" during the numerical integration of the 

equation. To keep the sets of numerical solutions for ¢ 

independent, this "parasitic error" has to be removed during 

the integration process. Finally, the eigenvalues can be 

determined by an · iteration scheme. These numerical aspects 

of the problem are discussed in this section. 

1. Transformation of the Eigenvalue Problem into an 

Initial Value Problem 

In order to apply the numerical procedure to be dis

cussed, it is more convenient to transform the differential 

equation (3.12) into the form 

¢"" + L(¢,¢',¢",¢"') = 0 (4.1) 

where 
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L{cp,cp',cp",¢" ·') = -2¢"'/r + 3¢"/r 2 -3<P'/r 3 + a. 2 (-2¢" 

+ 2¢'/r + a. 2 ¢) + ia.R{(c-U) (¢"-<P'/r-a. 2 ¢) + [a 2 U/3r 2 

-(au;ar)/r]¢} + R{[-<P"'+3¢"/r-(4/r 2 -a. 2 )¢'-(2a. 2 /r)¢]V 

+(av;ar) (¢'/r)+(a 2 v;ar 2 )¢'} (4.2) 

The boundary conditions for annular duct flow and for circu

lar tube flow are given, respectively, by equations (3.28) 

and ( 3. 29) . 

The first step of the transformation is to transform the 

differential eigenvalue problem to a boundary value problem. 

As explained in Section C, Chapter III, any two of the four 

parameters a., R, cr , and ci can be assigned and the other 

two found as eigenvalues. By assigning the values for the 

parameters and then selecting values for the eigenvalues, the 

eigenvalue problem is transformed into a boundary value 

problem. However, the eigenvalues are yet to be determined 

in this problem. Therefore two things must be done in order 

to use this direct integration method. First, an estimate 

of the eigenvalues is to be made. Secondly, an iteration 

scheme must be available to obtain the eigenvalues which 

approach close to the exact eigenvalues within a prescribed 

convergence criterion. These two things can be accomplished 

and will be discussed in Sub-sections 5 and 6. 

In the analysis to follow, we shall use the annular duct 

flow as an example, because it applies to the tube flow as 

well. The only difference in the analysis between these two 

flows appears in the boundary conditions. 
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Let 

yl (r) = <P ( r) 

y2 (r) = <P' (r) 
(4.3) 

y3 (r) = <P"(r) 

y (r) = <P"' (r) 
4 

then the governing system (4.1) becomes 

y' (r) = y2 (r) 
1 

Y' (r) = y (r) 
2 3 (4.4a) 

y' (r) = y (r) 
3 4 

y' (r) = -L(¢,¢' ,¢",¢"') 
4 

= Elyl + E y + E y + E y 
2 2 3 3 4 4 

where 

E = -a 4 + iaR[(c-U)a 2+a 2u;ar2-(au;ar)/r] + 2a 2RV/r 
1 

E = 3/r 3 
- 2a 2/r + iaR(c-U)/r + R[(4/r 2-a 2)V 

2 

+(av;ar)/r+a 2v/ar2 ] 

E = -3/r2 -2a 2 - iaR(c-U) - 3RV/r 
3 

E = 2/r + RV 
4 

The boundary conditions (3.28) become 

y (r=r =2/(K-1)) = y (r=r =2/(K-1)) = 0 
1 1 2 1 

y (r=r =2K/(K-1)) = y (r=r =2K/(K-1)) = 0 
1 2 2 2 

(4.4b) 

(4.4c) 
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In matrix form, equation ( 4. 4a) may be written as 

y' 0 1 0 0 y1 1 
y• 0 0 1 0 y2 2 = ( 4. Sa) 
y• 0 0 0 1 y 

3 3 

y' E E E E ylf If 1 2 3 If 

and the boundary conditions (4.4b) and (4.4c), respectively, 

as 
y (r ) 

1 1 

[ 
1 0 0 0 ] Y (r ) 

( 
0 

) 2 1 = 
0 1 0 0 y (r ) 0 

3 1 
y (r ) 

If 1 

and 

Y (r ) 
1 2 

( 
1 0 0 0 ] Y (r ) 

( 
0 

) 2 2 = 
0 1 0 0 Y (r ) 0 

3 2 

y (r ) 
If 2 

In a compact form, equations (4.5a) through (4.5c) are 

expressible as 

y' (r) = Ay (r) 

and 

By(r ) = 0 
1 

By(r ) = 0 
2 

where 

( 4. Sb) 

(4.5c) 

( 4. 6a) 

(4.6b) 

( 4. 6c) 
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y' y1 1 
0 1 0 0 

y' y 0 0 1 0 
y' = 2 y = 2 A = ( 4. 6d) 

y' y 0 0 0 1 
3 3 

y' y 
4 4 

E E E E 
1 2 3 4 

B = ( ~ 0 0 : ] 1 0 
( 4. 6e) 

The operator L is linear and the boundary conditions 

are also linear. The boundary value problem (4.6) can, 

therefore, be solved directly in terms of a set of initial 

value problems. 

To numerically integrate a fourth order differential 

equation for ¢ by the initial value technique, one needs to 

specify the initial values of¢, ¢',¢",and¢"' at the 

starting point. Since ¢(r) and¢' (r ) are known (boundary 
1 1 

conditions), the values ¢"(r) and¢"' (r) have to be speci-
1 1 

fied. This can be done by assigning ¢"(r )=0 and¢"' (r )=1 
1 1 ' 

and ¢"(r )=1 and¢"' (r )=0, which gives rise to two inde-
1 1 

pendent solutions ¢
1 

and ¢
2 

for ¢. Let y(!) and y<
2

l be the 

corresponding two independent solutions. Then 

y (r) = S y{l) (r) + S y( 2
) (r) 

1 2 
( 4. 7 a) 

y1 (r) y(l) (r) y(2) (r) 
1 1 

y2 (r) y{1) (r) y(2) (r) 
or = s 2 + s 2 

y (r) 1 y(1) (r) 2 Y(2) (r) 
3 3 3 

(4.7b) 

y4 (r) y(1) (r) y(2) (r) 
4 4 



In matrix form, this gives 

where 

y(r) = Y(r) 6 

y(r) = 

y (r) 
1 

y (r) 
2 

y (r) 
3 

Y (r) 
4 

and 6 is a constant matrix 

Y (r) = 
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(4.7c) 

y(1) (r) 
1 

y(2) (r) 
1 

y(1) (r) 
2 

y(2) (r) 
2 

Y(1) (r) 
3 

Y(2) (r) 
3 

y(1) (r) 
4 

y(2) (r) 
4 

( 4. 7d) 

(4.7e) 

In order to assure that y(r) in (4.7c) is a solution to 

(4.6a), the matrices Y(r) and S in (4.7c) must be chosen such 

that 

Y' (r) =A Y(r) 

with the initial condition 

B Y(r ) = 0 
1 

( 4. Sa) 

(4.8b) 

Equations (4.8a) and (4.8b) determine the two initial value 

problems, one for each column of Y(r). With the boundary 

condition 

B y(r ) = B Y(r ) 6 = 0 
2 . 2 (4.9a) 
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the constants B and B can then be determined, as (4.9a) 
1 2 

can be written as 

y(1)(r) y(2) (r ) 
1 2 1 2 

r 
1 0 0 0 

] 
y(1)(r) y(2) (r ) 

[ 
B l 2 2 2 2 1 = 0 (4.9b) 

l 0 1 0 0 y(l)(r) y(2) (r ) B 
3 2 3 2 2 

Y(l)(r) y(2) (r ) 
l 

4 2 4 2 

or 

y(l) (r) y(2) (r ) B 
1 2 1 2 1 

= 0 (4.9c) 
y(1) (r) y(2) (r ) B 

2 2 2 2 2 

Thus, there exists a non-trivial solution for B and B if 
1 2 

and only if the determinant of (4.9c) vanishes, that is, 

y(1) (r) 
1 2 

y(2) (r ) 
1 2 

= 0 (4.10) 
y(1) (r ) 

2 2 

The analysis presented above is an exact algorithm. 

However, in the actual computation it has a so called para-

sitic error in the numerical integration of the disturbance 

equation. The Runge-Kutta integration scheme was employed 

in the present study. The problem of the parasitic error 

will be examined next. 
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2·. The Parasitic Error 

As pointed out earlier, in a differential system that 

has general solutions with vastly different growth rates, 

there exists a parasitic error during the course of the nu-

merical integration process. The error introduced by 

portions of the rapidly growing solution into the more slowly 

growing solution is called the parasitic error. When the 

parasitic error develops, the slowly growing solution is 

dominated by the rapidly growing solution and the linear 

independence of the solutions of the initial value problem 

is lost. The following technique is used to remove the para-

sitic error. 

In the solution of the modified or conventional Orr-

Sommerfeld equation by a numerical method, it has been found 

that one of the initial value problems produces only a slowly 

growing solution and the other produces only a rapidly 

growing solution, rather than each solution having a combi-

nation of the slowly growing solution and the rapidly growing 

solution. Let ¢ be the slowly growing solution and ¢ the s g 

rapidly growing solution. By the def inition of parasitic 

error, the slowly growing solution is being influenced by the 

r a pidly growing solution, but ¢ cannot be affected by the 
g 

parasitic error. 

Let the integration inter val be divided into N equal 

subintervals and let integers in brackets 0,1,2, ... ,N be the 

end points of these subintervals . Then, the initial 
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conditions (4.8b) for the initial value problems assume the 

form 

<P [ 0 J <P [ 0 J s g 

( 
1 0 0 0 ] <P' [OJ <P' [OJ 

( 
0 0 ] s g (4.11) = 

0 1 0 0 <P" [OJ <P" [OJ 0 0 s g 

<P" I [OJ s <P" I [QJ g 

and the condition (4.10) from which eigenvalues are de-

termined becomes 

cps' [N] cp ' [N] 
g· 

= 0 ( 4 .12) 

where [0] and INJ are the left-side end point and right-side 

end point, respectively. The terms¢ [N],<P' [N], ¢ [N], and 
s s g 

¢g[NJ are from the exact algorithm. 

Let ¢ [iJ and ¢ [i] be the numerical approximations to 
s g 

the exact solutions ¢ [i] and ¢ [iJ at the ith point. Since 
s g 

cp [i] is not affected by the parasitic error, we have 
g 

¢ (j) [i] = <P (j) [i] j=O,l,2,3; i=O,l,2, ... ,N 
g g 

(4.13a) 

where the superscript (j) denotes the order of differenti-

ation. But for the slowly growing solution cp , it contains 
s 

a parasitic error from the rapidly growing solution at every 

integration step. After an integration step from the point 



[OJ to point [1], ~(j) [1] becomes 
s 
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cp(j) [1] = cp (j) [1] + G cp (j) [1] 
s l g 

(4.13b) 
s 

where G is a constant. If the parasitic error is not 
1 

removed and the integration is carried on to the point [N], 

then the term G cp{j) [N] will finally dominated cp(j) [N]; 
N g s 

that is 

~ (j) IN] = cp ( j) [N] + G cp(j)[N]~ G cp .(j)[N] (4.13c) 
s s N g N g 

and equation (4.12) therefore becomes 

¢ [N] cp [N] G cp [N] cp [N] 
s g N g g 

= = 0 (4.14) 
~· [N] cp' [N] G cp' [NJ cp' [N] 

s g N g g 

Equation {4.14) is identically zero for any choice of eigen-

values , so the parasitic error has to be removed or the con-

dition (4.12) will not be satisfied. 

To remove the parasitic error from the integrated so-

lution ¢ , an auxiliary solution ~ 
s s 

is not contained in ~ Let 
s 

is chosen such that ¢ 
g 

cp(j)[i] = ~(j)[i]- B cp(j)[i] (4.15a) 
s s i g 

To remove cp from (4.15a), ~ 
. g s 

that is 

is made orthogonal to cp 
g 

I 



< ~(j)[i] 1 ~(j)[i] > = 0 
s g 

or 

< 4)(j)[i] <f>(j) [i] >- B < <f>(j) [i] 
s g i g 

Thus 

< ¢(j) [i] 
I 

<t> (j) [i] > 

B 
s g = 

i 
< <t>(j) [i] <t> (j) [i] 

I > 
g g 

and (4.15a) becomes 
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<t> (j) [i] > = 0 
g 

~ (j) [i] = <P(j)[i] 

< 4>(j) [i] 1 ¢ (j) [i] > 
---=s:;...._ ___ ...;Ag_· --- ¢ ( j) [ i] 

s s < <t>(j) [i] 
g 

<t>(j) [i] > 
g 

g 

(4.15b) 

A normalization of equations (4.13a) and (4.15b) yield 

¢ (j) [i] 

¢ ( j) [ i] = ___ g='----- (4.16a) 

gn I I <t> < j > I i 1 I I 

and 

< ¢(j) [i] 
I 

<t> (j) [i] > 
q)(j) [i] s s <t> ( j) [ i] 

s 
¢ (j) [i] <t> (j) [i] 

g 

~ (j) [i] 
< I > 

= 
sn 

< ~(j) [i] <P (j) [i] 
4>(j) [i] 

I > '\ ( • J) 
s g 4> : Cl ' [ l] 

s .l.(j} r.:1 A.{j} r.:l ~ ' 
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After each integration, a Gram-Schmidt orthonormalization 

process is performed, and with the use of (4.16) the para-

sitic error can then be removed. The Gram-Schmidt ortho-

normalization process is discussed next. 

3. The Gram-Schmidt Orthonormalization Process 

The Gram-Schmidt orthonormalization process is given 

by Dettman (1962). The linearly independent vector y(l) (r.) 
1 

and y(i) (r.) in (4.7a) are related to their respective 
l. 

orthonormal sets x ( :1 ) (r.) and x ( 2 ) (r.) defined by 
l. 1 

x< 1 > (r.) x( 2 ) (r.) 
1 l. 1 1 

x(l) (r .) 
x(

1
) (r.) x( 2

) (r.) 
= 2 l. x( 2

) (r.) = 2 1 

l. x(l) (r.) 1 x( 2
) (r.) 

3 l. 3 l. 

x< 1
> (r.) x< 2 ) (r.) 

~ 1 ~ l. 

' 

through the relation 

y ( 1) 

( 1 ) = X . (4.17a) 

II ( 1 ) II y 

and 

( 2) 
- < 

( 1 ) ( 2) > X ( 1) y X ' y 
( 2) (4.17b) 

X = 
II y ( 2) 

- < X 
( 1 ) 

' y 
( 2) > X ( 1) II 
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If the relationship between y(r.) and x(r , ) is expressed 
l. l. 

through a constant matrix P{i) by 

where 

(i) 
p 

x(r.) = y(r.) p(i) 
l. l. 

[ 

p 
1 1 

= 0 

(4.18a) 

(4.18b) 

a comparison among equations (4.17a), (4.17b), and (4.18) 

gives 

p 11 = 

p22 = 

and 

1 

II y ( 1 ) II 

1 --
w2 2 II Y < 

2 
> - <x ( t) 

<x ( 1) , y { 2) > 
_______ pll 

w 
22 

(4.19a) 

1 
(4.19b) 

, y(2)> x(l) II 

(4.19c) 

By comparing (4.16a) with (4.17a) and (4.16b) with 

{4.17b) it is clear that 
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cp [i] ~ [i] 
gn sn 

x(l) (r.) 
cp ' [i] 

x( 
2

) ( r . ) 
~' [i] 

(4.20a) = gn = sn 
l. ¢" [i] l. ~" [i] 

gn sn 
¢"'[i] ~"' [i] 

gn 
' 

sn 

cp [i] ¢ [i] 
g s 

y(1) (r.) 
cp' [i] 

y(2) (r.) 
4>' [i] 

(4.20b) = g = s 
l. ¢"[i] l. 4>""[i] 

g s 
cp "'[i] ¢"'[i] 

g 
' 

s 

Substituting these results into equations (4.19a), (4.19b), 

and (4.19c), one obtains 

1 
pll = ------------------------------

[ ( cp ) 2 + ( cp ' ) 2 + ( cp " ) 2 + ( cp " ' ) 2 ] lj 2 g g g g . 

B . = <x ( 1 ) , y ( 2 ) > 
l. 

= (¢ <P +¢' <P '+<P" ¢"+¢" '¢" ') 1/2 gn g gn g gn g gn g 

(4.2la ) 

(4.2lb) 

= [ ( cp - B . cp ) 2 + ( ~ • _ B . cp • ) 2 + ( 4)" _ B . <J> n · } 2 + ( 4)" ' _ B . <j> n , ) 2 ] 1 I 2 
s 1. gn s 1. gn s 1. gn s 1. gn 

(4.2lc) 

P = 1/W 
22 22 

(4.2ld) 

p = -<x( 1
), y( 2 )> P /W = -B

1
.P /W 

1 2 1 1 2 2 1 1 2 2 
(4.2le) 
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With P(i) determined, equation (4.18) relates x(r.) to y(r.). 
1 1 

This completes the orthonormalization process at each step 

of the integration. 

4. The Runge-Kutta Method 

This numerical integration scheme was employed in the 

present study. The highlights of this method is described 

here. Consider a fourth order differential equation 

y"" = f(x,y,y' ,y" ,y" ') (4.22a) 

which is to be integrated with the initial conditions 

y(v) = y<v> (x ) 
0 0 

(v=O,l,2,3) (4.22b) 

at the point x=x. The approximate values of y, y', y", and 
0 

y" ' at the next point one step ahead, x =x +h, are given by 
1 0 

the following expressions (Collatz, 1966) 

X 

X 
'o 

x · +h/2 
0 

X +h/2 
0 

X +h 
0 

x =x +h 
1 0 

y · 
0 

y 

y +v /2+v /4+v /8+k /16 
0 1 0 2 0 3 0 1 

y +v /2+v /4+v /8+k /16 
0 1 0 2 0 3 0 1 

y +v +v +v +k 
0 1 0 2 0 3 0 3 

y =y +v +v +v +k 
1 0 10 20 30 

v 
1 0 

hy'=v 
1 

v +v +3v /4+k /2 
10 20 30 1 

v +v 3v /4+k /2 
10 20 30 1 

v +2v +3v +4k 
10 20 30 3 

v =v +2v +3v +k' 
11 10 20 30 



h 2 y"/2=v 
2 

v 
2 0 

v +3v /2+3k /2 
2 0 3 0 1 

v · +3v /2+3k /2 
2 0 3 0 1 

v +3v +6k 
2 0 3 0 3 

h 3y"'/6=v 
3 

v 
3 0 

v +2k 
3 0 1 

v +2k 
3 0 2 

v +4k 
3 0 3 

v =v +3v +k" v =v +k"' 
21 20 30 3 1 3 0 

where 

k = (8k +4k +4k -k )/15 ' 
1 2 3 4 

k' = (9k +6k +6k -k )/5 
1 2 3 4 

k" = 2(k +k +k ) , 
1 2 3 

k"' = 2(k +2k +2k +k )/3 
2 3 4 
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k =(hl+/24) f(x,y,y' ,y" ,y" ') 
\) 

k 
1 

k 
2 

k 
3 

k 
4 

The integration process is continued from one end of the 

region to the other. 

5. The Differential Correction Iteration Scheme 

To obtain the eigenvalues of the stability problem, one 

needs an iteration scheme. Of the various schemes available, 

the differential correction iteration scheme was found to be 
•· 

very efficient and used in the present study. Let F=F +iF. r J. 

be a complex function of the two real variables x and x . 
1 2 

Then, one can write 

I , 

! 



dF (x ,x )= 
r 1 2 

dF. (x ,x ) = 
l. 1 2 

aF (x I X ) 
r 1 2 

------ dx + 
1 

aF (x I X ) 
r 1 2 

3F (x ,x ) aF (x ,x ) 
i 1 2 i 1 2 

dx 
2 

dx
1
+ dx

2 

53 

(4.23a) 

(4.23b) 

Replacing the differential operators by the forward differ-

ence operator ~' equations (4.23a) and (4.23b) become 

~F (x ,x ) 
r 1 2 

~F (x , X ) = 
r 1 2 

~F (x , X ) 
i 1 2 

~F (x ,x ) = 
i 1 2 

~F (X , X ) 
r 1 2 

~X +----------
1 

~X 
2 

~F. (x ,x ) 
l. 1 2 

/1x +------
1 

X 
1 

~X 
2 

~X 
2 

(4.24a) 

(4.24b) 

If one applies (4.24) to the problem under consideration, it 

is seen that x and x are the eigenvalues and F is the de-
l 2 

terminantal value of (4.10). Let s and s be the eigenvalues 
1 2 

that satisfy F(s 1 s )=0, and x and x be the first estimate 
1 2 1 2 

for the eigenvalues such that F(x ,x )~ 0. Then the iter-
1 2 

ation scheme is performed in the following manner. 

(a) Chosse the values of x and x , perform the 
1 2 

orthonormalization process and compute the determinantal 

values F (x ,x ) and F (x ,x ) . 
r1 1 2 it 1 2 

(b) Perturb x and x such that x =x (1+£ ) and 
1 2 lp 1 1 
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x =x (l+s ) , where s and s are small numbers. Compute 
2p 2 2 1 2 

F ( x , x ) , F . ( x , x ) , F ( x , x ) , and F . ( x ;< ) • 
r2 1 p 2 12 1 p 2 r 3 2 p 13 1 2 p 

Steps (a) and (b) provide three determinantal values corre-

sponding to three sets of estimated eigenvalues in the vicini-

ty of ?; and ?; • 
1 2 

(c) Apply steps (a) and (b) to equation (4.24). Since 

the values ofF (x +~x ,x +~x) and F.(x +~x ,x +~x) at the 
r 1 1 2 2 1 1 1 2 2 

new trial point are approximated to be zero, this yields 

F -F . F -F 
F = 0 = F + r2 r1~x + ra r1~x (4 . 25a) 

r r1 1 2 

X E X E 
1 1 2 2 

F. -F. F. -F. 
F. 0 F. + J. 2 11~x + 13 .11 ~X (4.25b) = = 1 11 1 2 

X E X E 
1 1 2 2 

Solve equation (4.25) for ~X and ~X . 
1 2 

(d) The new estimated values of X and X for step (a) , 
1 2 

i.e., X and X I are then given by 
1n 2n 

X = X + ~X 
1 n 1 1 

I X = X + ~X 2n 2 2 

(e) Repeat the process until the determinantal values 

Fr(?; ,?; ) and F.(?; ,?; ) are vanishingly small (within the 
1 2 1 1 2 

set criterion) • This gives the desired eigenvalues s and 
1 

s . 
2 

This iterative scheme requires three passes through the 

integration for each iteration. However, this disadvantage 
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is offset by the use of partial derivatives in the iteration, 

resulting in a more rapid convergence for the iteration. 

6. Method to Obtain Eige·nvalues 

The eigenvalue problem is solved as follows. An esti-

mate of the eigenvalues is first made. Equation (4.8a) is 

then integrated, using the initial condition (4.8b) at r=r , 
1 

up to r=r and the determinant {4.10) evaluated. If the de-
2 

terminant is equal to zero, then the chosen eigenvalues are 

the correct eigenvalues of the problem. The condition that 

the determinant (4.10) be equal to zero is the core of the 

iteration scheme for finding the eigenvalues of the original 

system (3.l2) or (4.l) with the boundary conditions (3.28). 

Once the eigenvalues have been found, equation {4.9) may 

be used to determine a relationship between S and S ; one 
1 2 

of the S's may be assigned an abritary value of, say, 1. 

This fixes the amplitude of the eigenfunction 

y { r) = S y ( 1 ) ( r) + S y( 2 ) ( r) . 
l 2 

In summary, the procedure for solving the system (3.12) 

and (3.28) or (4.8) and (4.10) consists of the following 

steps: 

a) Assign any two of the parameters a, R, c , and 
r 

ci; for example, assign a and ci . 

b) Choose an initial estimate for the eigenvalues, 

the two of the a, R, c , and c. not selected in step a) r 1 

that is, R and c . 
r 

c) Integrate the initial value problem consisting of 
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equations (4.8a) and (4.8b) from r=r to r=r . 
1 2 

d) Compute the value of the determinant (4.10). 

e) If the value of the determinant is not zero , 

adjust the initial estimate for the eigenvalues (R and c ) 
r 

systematically and repeat the process in steps c) and d ) . 

The differential correction iteration scheme is used to 

refine the estimate of the eigenvalues. This scheme was 

described in Section 5 of this chapter. 

f) If the value of the determinant is zero, then the 

eigenvalue problem is solved. These eigenvalues R and c 
r 

along with the assigned values of a and c. are then used 
1 

to compute the eigenfunction. This is done by choosing an 

arbitrary value of one of the S's, e.g., S =1, and using 
Ir 

(4.9c) to determine S , B , and S 
1i 2r 2i 

The eigenfunctions 

y(r) are then computed with (4.7a). 

7. Generation o£ the Neutral Stability Curves 

Mott (1966) has obtained the neutral stability results 

f or the fully developed flow in annular ducts. In his 

work, Mott used the maximum velocity u* , as the character
max 

istic velocity . However, in the entrance region flow , the 

average velocity u* was chosen as the characteristic veloci-

ty. This choice was made because the u* depends on x*, 
max 

while u* contains no x* - dependent quantities. With the 

neutral stabi lity results available for the fully developed 

flow <x*=oo), the eigenvalues at a smaller x* value can be 
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obtained by the iteration scheme, using those values at 

x*=oo as the initial estimates. 

Once a point on the stability curve at this smaller 

value is obtained, the neutral stability curve can be gener-

ated. This is done as follows. One can increase or de-

crease a, using R and cr from that point as the initial 

estimates to find the new values of R and cr for which ci=O, 

and so on. This choice is usually done in the nose area 

(i.e. in the neighborhood of the critical point where R is a 

minimum) . One can also find a and cr for given values of R 

and ci=O. This latter approach is quite efficient in mapping 

out the upper branch of the neutral curve, where the change 

in a with respect to R is slow. After the neutral curve for 

this smaller x* is obtained, the neutral curve for the next 

smaller x* is obtained by repeating the same process, and so 

on. The critical Reynolds numbers (R) (that is, the minimum c 

Reynolds number on the neutral curve) for each value of x* 
can be readily obtained by examining the neutral curves along 

the nose region. 

For the tube flow, Huang {1973) has obtained a set of 

results of (R)c at various axial locations X* under the 

parallel flow assumption, that is, the results are from the 

solution of the conventional Orr-Sommerfeld equation. These 

results were used as the initial estimates of the eigenvalues 

in the stability calculations for the non-parallel tube flow 

using the modified Orr-Sommerfeld equation. 
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The neutral stability curves and the critical Reynolds 

nmabers from both parallel and non-parallel flow assumptions 

for annular ducts and circular tubes are presented in 

Chapter v. 

8. Eige·nf·u·nc·t ·ions 

Once the eigenvalues have been obtained with sufficient 

accuracy, the eigenfunctions can be obtained by the Gram-

Schmidt orthonormalization process described in Section 3 of 

this chaptero 

If Q(r
1
·) = [Q(i) (r·), Q( 2 ) (r.)] is a set of the two 

l. l. 

independent solutions of the initial value problem after 

the integration, then by the Gram-Schmidt process, it is 

related to the orthonormal set Z(ri) by 

Z(r.) = Q(r.)p(i) (4.26) 
l. l. 

where P(i) is a constant matrix given by (4.18a) and the two 

independent solutions Q(l) (r.) and Q( 2 ) (r.) are given by 
l. l. 

( 4. 2 Ob) • 

The eigenfunction y(rm) is obtained from 

= 8 z( 1 )(r) + 8 z( 2 )(r) 
l m 2 m (4.27a) 

where z(l) (r ) and z( 2) (r ) are given by (4.20a), and r =r 
m m m 2' 

the outer radius, is the last point. In matrix form, this 

equation can be written as 
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y(r) = Z(r )S(m) 
m · m (4.27b) 

where s<m>, the constant matrix (see equation (4.9a)), is to 

be found from 

BZ(r )S(m) = 0 (4.27c) 
m 

in which B is given by (4.6e). Note that one of the S's is 

to be specified, for example, real(S )=S =1. The super-
1 1r 

script on s(i) indicates the matrix at the mesh point r .. 
l. 

The eigenfunction at the point next to the last point 

r=rm=r may be obtained by the backward substitution (Conte, 
2 

1966) as follows. Combining equations (4.27b) and (4.26) 

yields 

(4.28a) 

Similarly, at the next point r 
m-l I 

one obtains 

(m-1) (m-2) y(r )=Z(r )S =Q(r )S 
m-1 m-1 m-1 

(4.28b) 

With s<m- 2 )=p(ffi- 1 )s(m-l) 1 and SO On. 

In general, 

y ( r . ) = Q ( r . ) S ( j -l ) ; j =m, m -1 , . . . , 1 
J J 

(4.29a) 

where 

j=m,m-1, .• • ,1 (4.29b) 
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Thus, the entire procedure for finding the eigenfunction 

consists of two processes. First, a forward integration 

(Runge-Kutta integration) is performed during which Q{r.) is 
J 

retained at each point and p{j) is retained at each point of 

orthonormalization. Second, a backward calculation is made, 

using (4.29) to calculate the constants S{j) and the eigen

function y(r). 

The representative eigenfunctions for the developing 

flow in the annular ducts are presented in Chapter V. 

c. The Finite Difference Method 

This method was employed in the stability calculations 

for the parallel-plate channel. The method has proven accu-

racy and was conveniently available (Chen 1966) . 

In the finite difference method, the differential 

equation and the boundary conditions are transformed into a 

system of linear algebraic equations. The flow field is 

subdivided into N equal subintervals with {N+l) discrete 

points. The differential operator is then replaced by a 

suitable difference operator, e.g. the forward difference 

operator, the backward difference operator or the central 

difference operator. A further transformation is carried 

out to reduce the relatively large truncation error. The 

boundary conditions are included in the transformation. 

This gives a system of {N+l) algebraic equations. For a 

non-trivial solution to exist, an algebraic eigenvalue 
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problem with a secular equation in the form of {3.32), i.e., 

f(R,a,c ,c.)=O, must be solved. An iteration scheme is then r ~ 

applied to determine the eigenvalues. The details of this 

method can be found, for example, in Chen (1966). Its 

highlights will be given here. 

1. Formulation of the Finite Difference Equations 

The expressions in equations (3.27a), (3.27b), and 

(3.27c) can be put in the form 

where 
00 

v = n;R 
'd2V/'dy2 = '!'/R 

A= -3- 2 E {cos(a.y)/cos(a.)} exp(-a~X*) 
j= 1 J J J 
00 

n = (2/e:) .I {sin(a .y)/[a .cos (a.)]} exp(-a~X*) 
J=l J J J J 

00 

'¥ = - (2/e:} .E · {a .sin(a .y)/cos (a.)} exp(-a~X*) 
J=l J J J J 

(4.30a) 

{4.30b) 

(4.30c) 

(4.3la) 

(4.3lb) 

(4.3lc) 

With equations {4.30) and (4.31), the modified Orr-Sommerfeld 

equation (3.26) can be written in the form 

where 

A = -n , 
1 

(4.32a) 

(4.32b) 
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A 
2 

= aR(U-c)/i - 2a 2 (4.32c) 

A = a.2SG + '1' = -a 2 A - A" {4.32d) 
3 1 1 

A = a.4 - a.Rfa. 2 (U-c)+A]/i (4.32e) 
4 

For a conventional Orr-Sommerfeld equation without the 

third derivative, the equation can be solved directly by 

using the transformation of Thomas (1953) • This is because, 

without the third derivative, the truncation error is rela-

tively small. However, the third derivative does appear in 

the modified Orr-Sommerfeld equation, and it must be removed 

first. Fu (1967) has introduced the transformation 

¢(y) = e(y) exp[-/Y (A /4) dy] (4.33) -.J 0 1 

for changing the variable ¢(y) to 8(y). With {4.33), 

equation {4.32a) is transformed into (Chen, Sparrow, and 

Tsou, 1971) 

D4 8 + B D2 8 + B D8 + B 8 = 0 (4.34) 
1 2 3 

in which 

B = A -3A 2 /8-3A'/2 , (4.35a) 
l 2 1 1 

B = A -A A /2+A 3/8-A" , {4.35b) 
2 3 1 2 1 1 

B =A -A A /4+A 2A /16-3A 4 /256+3A 2 A'/32+3(A') 2 /16 
3 4 13 12 1 11 1 

-A"'/4-A'A /4 {4.35c) 
1 1 2 
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and 

00 

A' = aA /ay = -(2/s) L {cos(a.y)/cos(a.)-1} exp(-a~X*) 
1 1 j=l J J J 

(4.36a) 

00 

A" = a 2A ;ay2 
1 1 

A"' = C33A. /C3y3 
1 1 

= ( 2/s) L: 
j=l 

00 

= ( 2/s) L 
j=l 

aj{sin(ajy)/cos(aj)}exp(-a~X*) 

(4.36b) 

a~{cos(a.y)/cos(a.)}exp(-a~X*) 
J J J J 

(4.36c) 

The boundary conditions (3.30a) and (3.30c), when 

expressed in terms of 8(y), become 

8(1) = 8'(1) = 0 

8'(0) = 8"'(0) = 0 

Since equation (4.34) does not contain th~ third 

(4.37a) 

(4.37b) 

derivative, Thomas's transform can be employed to formulate 

the difference equations. 

The matrix transformation for a function g{y) and its 

derivatives in finite difference form with the order of 

accuracy to 8{o 3 ), is 

g 1 0 0 0 0 g 0 

hDg 0 1 0 0 0 }log 0 { 0 3 ) 

h2D2g = 0 0 1 0 0 o2g + 0 ( 0 ~) (4.38a) 

h3D3g 0 0 0 1 0 }.lo3g 0 ( 0 5 ) 

h~D~g 0 0 0 0 1 o~g 0 ( 0 6 ) 

where 
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g 0 0 1 0 0 g(y-2h) 

lJOg 0 -1/2 0 1/2 0 g{y-h) 

o2g = 0 1 -2 1 0 g{y) (4.38b) 

1J03g -1/2 1 0 -1 1/2 g {y+h) 

o4g 1 -4 6 -4 1 J g {y+2h) 

with o and 1J denoting the central difference operator and 

the average operator, respectively. 

Thomas {1953) introduced the transformation 

g(y) = [l-h 2D2/6+h 4D4/90]8(y) (4.39) 

t o relate g{y) to 8(y). It can be shown from finite 

differences (Hildebrand, 1956) that 

e 

hD8 

h 2 D 2 e 

h 3D 3 8 

h 4 D4 e 

= 

1 

0 

0 

0 

0 

0 1/6 0 1/360 

1 0 0 0 

0 

0 

0 

1 

0 

0 

0 

1 

0 

1/12 

0 

1 

g 

lJOg 

Substituting (4.38b) into (4.40) yields · 

e 

hD8 

h 2 D 2 8 

h 3 D 3 8 

h 4 n4 e 

1/360 7/45 41/60 7/45 1/360 g(y-2h) 

0 

= 1/12 

-1/2 

1 

-1/2 0 1/2 0 g(y- h) 

2/3 -3/2 2/3 1/12 g(y) 

1 

- 4 

0 

6 

-1 1/2 

-4 1 

g(y+h) 

g(y+2h) 

. 0 (h 8 ) 

0 (h 5 ) 

+ 0 (h 8 ) 

0 (h 5 ) 

0 (h 8 ) 

(4.41) 
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Thus, it is seen that the values of 8(y) and its derivatives 

at a point are related to the values of g(y-2h), g(y-h), 

g{y), g{y+h), and g{y+2h) at five discrete points. 

2. Formulation of the Algebraic Equations 

Equation {4.34) can be expressed in matrix form as 

(M) (g) = (D 4 +B D2 +B D+B )8 = 0 
1 2 3 

{4.42) 

Substituting {4.41) into {4. 4 2) gives 

(M) (g) = a g(y-2h)+a g(y-h)+a g{y)+a g(y+h)+a g(y+2h) 
1 2 3 4 1 

(4.43) 

where 

h 2 a = l/h 2 +B /12+B h 2 /360 
1 1 2 

(4.44) 

h 2 a = -4/h 2 +2B /3+B h/2+7B h 2 /45 
4 1 2 3 

The independent variable y takes on the values 0, h, 2h, ... , 

(N-l)h, and Nh=l. 

In order to evaluate the quantities on the right-hand 

side of (4.43) at the boundar ies y=O (centerline) and y=l 

{upper wall) , it is necessary to know the values of g at two 

points which are outside of each of the boundaries; i.e., 

g(-h), g(-2h) and g((N+l)h), g{(N+2}h). These values are 
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obtained by applying the boundary cinditions in conjunction 

with (4.41). Application of (4.37b) gives 

g(-h) = g(h) 

g(-2h) = g(2h) 

and the use of (4.37a) yields 

g((N+l)h) = g((N-l)h) 

g((N+2)h} = -g((N-2}h)-112g((N-l)h}-246g(Nh) 

(4.45a) 

( 4. 4 Sb) 

(4.46a) 

(4.46b) 

Equations (4.43), (4.45a), (4.45b}, (4.46a}, and (4.46b) 

provide complete information for writing (N+l) simultaneous, 

complex, algebraic equations given by the relation 

(M(R,a.,c)) (g) = 0 (4.47) 

Since these equations are linear and homogenous, there 

exists a non-trivial solution if and only if the determinant 

of the coefficient matrix is zero, that is, 

Det(M(R,a.,c)) = 0 (4.48) 

The eigenvalue problem is now reduced to the solution 

of the determinantal equation (4.48), which consists of 

finding the eigenvalues (any two of the four variables R, a., 

cr , ci) for given values of the two parameters (the two of 

R, a, cr , ci not selected as eigenvalues) . When the 

elements of the coefficient matrix (M} are written out, it 

is of form 
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a a +a 2a 
3 2 '+ 1 

a a +a a a 
2 1 3 '+ 1 

a a a a a 0 
1 2 3 '+ 1 

(M) = 

a a a a a 
0 1 2 3 '+ 1 

a a a · +a a 
1 2 1 3 '+ 

0 (a +a -112a ) (a -246a ) 
'+ 2 1 3 1 

(4.49) 

In computing the neutral stability results for non-

parallel flow in the parallel-plate channel, the initial 

estimates of the eigenvalues were taken from the results of 

Chen (1966) for the parallel flow assumption. With the use 

of the differential correction iteration scheme described in 

the previous Section B, the eigenvalues can be determined. 

The relationship between the critical Reynolds number (R) 
c 

and the axial location X was obtained in a manner similar to 

that previously discussed in the annular duct flow. In order 

to compare the results from the parallel flow and non-paral-

lel flow models under the same conditions, the number of steps 

used for each of the X* values was the same as that used by 

Chen. These two sets of results will be compared in the next 

chapter. 
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D. Effect of SteE Size on Eigenvalues 

In order to obtain accurate numerical results, the 

effect of the step size on the accuracy of the eigenvalues 

needs to be considered. Strictly speaking, the exact values 

of the eigenvalues are obtainable only when the number of 

steps N is increased to infinity. This is not feasible in 

any numerical procedure. However, one chooses the number of 

steps large enough to achieve accuracies that are sufficient 

for practical purpose. 

The effect of the step size on the accuracy of the 

eigenvalues was checked for the numerical solution as 

applied to the annular duct flow. The accuracies of the 

eigenvalues for the tube and channel flows were checked, 

respectively, by Huang (1973) and Chen (1966). In Table 3 

are shown the representative variations of the eigenvalues 

(cr,R) or (cr,ci) for given values of (a,ci=O) or (a,R) 

with the number of steps used in the stability calculations. 

The results are for annular duct flow with K=r*/r*=2.0 and 
2 1 

3.33 at axial locations x*=0.008, 0.004, 0.0015, 0.001 and 

0.0025, respectively. It can be seen from the table that 

as the number of steps is increased, the eigenvalues converge 

to certain limiting values. To maintain the accuracy of the 

numerical results, as x* decreases, it was found that for a 

given K value, the number of steps must be increased (i.e., 

the step size must be decreased) • The actual number of steps 

used in the stability calculations for annular duct flow at 

different axial locations are listed in Table 4. 
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Table 3 

The Effect of Number of Steps on the Accuracy of Eigenvalues, 

Annular Duct Flow 

K x* N a R cr C· 
1 

2.0 0.008 100 0.95 11169 0.301944 0 
2.0 0.008 150 0.95 11249 0.301779 0 
2.0 0.008 200 0.95 11259 0.301769 0 
2.0 0.004 100 1.218513 20000 0.285351 0 
2.0 0.004 150 1.205245 20000 0.285922 0 
2.0 0.004 200 1.203887 20000 0.286045 0 
2.0 0.0015 100 0.95 42877 0.218792 0 
2.0 0.0015 150 0.95 44865 0.217953 0 
2.0 0.0015 200 0.95 45227 0.217858 0 
2.0 0.001 100 1.685 19324 0.299829 0 
2.0 0.001 150 1.685 21893 0.295085 0 
2.0 0.001 200 1.685 22396 0.294353 0 
2.0 0.001 300 1.685 22550 0.294171 0 
2.0 0.001 100 1.685 22550 0.290707 0.2761D-2 
2.0 0.001 200 1.685 22550 0.293986 0.9127D-4 
2.0 0.001 300 1.685 22550 0.294171 0.1032D-6 
3.33 0.0025 200 1.560 42780 0.241254 0 
3.33 0.0025 250 1.560 43466 0.240764 0 
3.33 0.0025 300 1.560 43681 0.240626 0 

*D-x = lo-x 

Table 4 

Number of Steps Used in the Calculations at Various Axial 

Locations, .Annular Duct Flow 

K x* N K x* N 
2.0 00 100 3.33 00 150 
2.0 0.016 150 3.33 0.016 150 
2.0 0.008 150 3.33 0.008 200 
2.0 0.004 150 3.33 0.004 250 
2.0 0.003 150 3.33 0.0025 300 
2.0 0.002 200 
2.0 0.0015 200 
2.0 0.001 200 
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V. NEUTRAL STABILITY RESULTS AND DISCUSSION 

The stability problems of the axisymmetric or two

dimensional disturbances for the duct flows were formulated 

in Chapter III and their numerical methods of solutions were 

presented in Chapter IV. · In this chapter, representative 

neutral stability results from the solutions of the modified 

and conventional Orr-Sommerfeld systems are presented for 

the following three flow configurations. 

(1) Developing laminar flow in the entrance region of 

annular ducts. 

(2) Developing laminar flow in the entrance region of 

a circular tube. 

(3) Developing laminar flow in the entrance region of 

a parallel-plate channel. 

The stability results include neutral stability curves, 

axial variation of the critical Reynolds number, and repre

sentative eigenfunctions. Some results for the fully de

veloped flow in annular duct flow and parallel-plate 

channel flow are also included. Finally, comparisons be

tween the results from the modified and the conventional 

Orr-Sommerfeld equations are made for each of the three flow 

problems. The numerical results are tabulated in Appendices 

c, D, and E. All th.e numerical results were obtained with 

an IBM 360/50 digital computer. 
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1. N'eut:ra:l ·st·abiTi·t :y eu·rves 

The neutral stability results for annular duct flow are 

tabulated in Tables C~l through C-9, Appendix C, for x* 

ranging from 0.001 to oo. In the tables, the wave number a 

is based on the characteristic length L~=(K-l)r;/2K, and the 

Reynolds number R is based on L* and the average velocity u~ c 

Also included in the tables are the dimensionless velocity 

of wave propagation c and the number of steps N used in the 
r 

stability calculations. 

The representative neutral stability curves from the 

solutions of the modified and conventional Orr-Sommerfeld 

equations with radius ratio of K=2.0 are shown in Figure 1 

for three axial locations (in terms of the dimensionless 

* stretched axial coordinate) at x =0.0015, 0.0040, and oo. 

* The curve for x =00 represents the results for the fully 

developed flow. Those representative neutral stability 

curves for K=3.33 are shown in Figure 2 for three values 

* of X =0.0025, 0.008, and 00 • The solid and dashed lines in 

the figures represent, respectively, the results from the 

modified and conventional Orr-Sommerfeld equations. 

It is seen from Figures 1 and 2 that the neutral sta-

* bility curves shift to the left as x increases; that is, 

the flow becomes more unstable as the axial distance in-

creases from the duct inl~t. In addition, the curves 
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obtained from the modified Orr-Sommerfeld equation are seen 

to lie slightly to the left of those obtained from the con

ventional Orr-Sommerfeld equation for K=2.0, Figure 1. That 

is, th_e modified Orr-Sommerfeld equation predicts critical 

Reynolds numbers which are somewhat lower for all locations 

of the stretched axial coordinate examined. However, for 

the case of K=3.33, Figure 2, the results for the modified 

Orr-Sommerfeld equation lie slightly to the right of those 

obtained from the conventional Orr-Sommerfeld equation, 

indicating that the critical Reynolds numbers are somewhat 

higher for all axial locations examined. Thus, inclusion of 

the transverse velocity component in the mainflow changes 

the stability characteristics of the flow to a certain 

extent. Its effect is most pronounced in th~ region near 

the nose of the neutral stability curves. 

In Figure 3, the neutral stability curves from the 

modified Orr-Sommerfeld equation for both K=2.0 and K=3.33 

at three locations are brought together. It is seen from 

the figure that the group of curves for the radius ratio 

K=3.33 lie to the right of those for K=2.0, indicating that 

the flow is more unstable for K=2.0 than for K~3.33. This 

fact applies to flow both in the entrance region and in the 

fully developed flow region. 
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2. AX:iaT Va:r:ia:ti·o:n o:f Stability Characteristics 

The neutral stability results at the critical point, 

(a)c , (R) , and (c ) , for both the modified and con-e r c 

ventional Orr-Sommerfeld equations are tabulated in Table 

C-10, Appendix C, for K=2.0 at axial locations x*=O.OOlO, 
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0.0015, 0.002, 0.003, 0.004, 0.008, 0.016, and oo, for K=3.33 

at x*=0.0025, 0.004, 0.008, 0.016, and oo. These results are 

illustrated in Figure 4, in which the dimensionless physical 

axial coordinate X has been used as the abscissa. The co-

ordinates X and X* are respectively related to x and x* by 

the relations 

X -
x*/{ (.r~ .-.rt> /2} 

u*(r*-r*)/2V 
2 1 

~ */{ (.r*-.r*) /2} 
X*= ~{2K/(K~1)} 2 x* 

u*(r*-r*)/2v 
2 1 

The solid and dashed lines represent the results from the 

modified and conventional Orr-Sommerfeld equations, re-

spectively. The curves for K=l.O correspond to flow in a 

parallel-plate channel. This will be discussed later. 

An inspection of Figure 4 reveals that the critical 

Reynolds numbers (R)c for K=3.33 are much higher than those 

for K=2.0 in the entire region of the annular duct. In 

addition, the critical Reynolds number for K=2.0 decreases 
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much more rapidly than for K=3.33 in the range of small X 

values increases. That is, the lower the value of the ratio 

of outer radius to inner radius, the more rapid the Reynolds 

number decreases in the region near the duct entrance (for 

example, in the region between X=O and X=O.lO). It can also 

be noted from the figure that the differences between the 

critical Reynolds numbers from solutions of the modified and 

conventional Orr-Sommerfeld equations are very small. At a 

fixed axial location, this difference is negative for K=2.0; 

that is, the critical Reynolds number from the modified Orr

Sommerfeld equation is less than that from the conventional 

Orr-Sommerfeld equation. The reverse is true for the case 

of K=3.33. 

3. The Eigenfunctions 

In Chapter IV, the technique used in obtaining the 

eigenfunctions was discussed. Representative numerical 

results of the eigenfunctions for annular duct flow are 

presented in this section. 

The eigenfunction ¢ and its first derivative with 

respect to r, ¢', for K=2.0 at the axial location x*=0.008 

(x=0.00786) with a=0.9744, R=lll37, cr=0.30545, ci=O, and 

for K=3.33 at the axial location x*=0.008 (x=0.00589) with 

a=l.057, R=42223, cr=0.22200, ci=O are plotted in Figure 5 

and Figure 6, respectively. These results are from the 

modified Orr-Sommerfeld equation and are shown as solid 

lines. The eigenfunctions were computed by assigning the 
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real part of the coefficient S in equation (4.7a) the 
1 
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normalizing value of 1.0 and calculating the imaginary part 

of S and the real and imaginary parts of S , such that the 
1 2 

boundary conditions, equation (3.28), at the inner wall and 

outer wall of the annular duct are satisfied. 

The eigenfunctions from the solution of the convention-

al Orr-Sommerfeld equation were also computed. They corre-

spend to a=0.9745, R=lll34, c =0.30551, and c.=O for K=2.0 
r 1 

and a=l.0540, R=42189, cr=0.22187, and ci=O for K=3.33. The 

curves for K=2.0 are shown in Figure 5 as dashed lines. 

It can be seen from the figure that there is only a slight 

change in magnitude between the two sets of results. The 

results from the conventional equation are essentially 

identical to those from the modified equation and are, 

therefore, not included in Figure 6. 

It is to be noted that the results shown in Figures 5 

and 6 are normalized by the maximum value of ¢r , the real 

part of ¢. 

B. Circular Tube Flow 

The neutral stability results for the tube flow at 

various axial locations are tabulated in Tables D-1 and D-2, 

Appendix D. In the tables, the wave number a is based on 

the radius of the tube r* and the Reynolds number R is based 
0 

on r* and the average velocity u*. Also included in the 
0 

tables are the dimensionless velocity of wave propagation c 
r 

and the number of steps N used in the stability calculations. 
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The neutral stability curves are shown in Figure 7 for 

three axial locations X*=0.003, 0.006, and 0.010 for both 

the modified and conventional Orr-Sommerfeld equations. It 

is to be noted that the dimensionless stretched axial coordi-

nate X* is defined as (~*/r*)/(u*r*/v). Since there is no 
0 0 

instability for the fully developed tube flow, there is no 

neutral curve for X*=oo. The curves with the solid lines are 

the results obtained from the modified Orr-Sommerfeld equation 

and those with the dashed lines are the results from the con-

ventional Orr-Sommerfeld equation. The latter results are 

taken from Huang (1973) and are included in the figure for 

comparisons. 

It is seen from Figure 7 that the neutral curves 

obtained from the modified Orr-Sommerfeld equation cross 

and lie slightly to the left of those from the conventional 

Orr-Sommerfeld equation. That is, the modified Orr-

Sommerfeld equation yields critical Reynolds numbers that 

are somewhat lower. Thus, the effect of the mainflow trans-

verse velocity, as accounted for in the modified equation, 

causes a shift in the neutral curves toward a larger wave 

number. The largest deviation occurs in the upper branch of 

the neutral curves. 

The critical Reynolds numbers (R) at various axial c 

locations X*=0.002, 0.003, 0.005, 0.006, 0.007, 0.009, and 

0.010 are tabulated in Table D-3, Appendix D. The results 

from the conventional Orr-Sommerfeld equation are from Huang 
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(1973). A comparison of the axial variation of the critical 

Reynolds number (R) among the three sets of results is also 
c 

made in Figure 8. In the abscissa of the figure, the di-

mensionless physical axial coordinate X is used. The solid 

and dashed lines represent results from the modified and 

conventional Orr-Sommerfeld equations, respectively. 

An inspection of Figure 8 reveals that the critical 

Reynolds number decreases as X increases from the inlet and 

then increases as X increases further. It is also evident 

from the figure that the modified Orr-Sommerfeld equation 

gives critical Reynolds numbers that are smaller in the 

entire region of the tube. The minimum critical Reynolds 

numbers occur at X=0.00323 and are (R) =19780 and 19900, 
c 

respectively, from the modified and conventional equations. 

c. Parallel-Plate Channel Flow 

The neutral stability results for the channel flow as 

computed from the modified Orr-Sommerfeld equation are 

tabulated in Table E-1, Appendix E for axial locations 

0.005, 0.006, 0.008, 0.0100, 0.015, 0.02, 0.03, 0.04, 0.06, 

0.08, 0.10, 0.15, 0.20, 0.30, and 00 • In the table, the wave 

number a is based on the half-spacing of the channel L* and 

the Reynolds number is based on L* and the average velocity 

u*. The critical stability results for the same range of X* 
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values are tabulated in T~ble E-2, Appendix E. Table E-2 

includes results from solutions of the modified and con-

ventional Orr-Sommerfeld equations. The results from the 

conventional equation are taken from Chen (1966) • 

The curves for K+l.O in Figure 4 illustrate the vari-

ation of the critical Reynolds number (R) with axial lo
c 

cation X for the channel flow. It is to be noted that the 

* characteristic length L for the channels is equivalent to 

* * (r 2 -r 1 )/2 for the annular ducts. Thus, the coordinates R 

and X in Figure 4 apply to the channel flow as well. An 

inspection of the curves for the parallel-plate channel flow, 

i.e., the curves for K+l.O, shows, as in the annular duct 

flow with K=2.0 and K=3.33, that there is a small difference 

in the critical Reynolds numbers between the two sets of 

results from the modified and conventional stability 

equations. The inclusion of the mainflow transverse ve-

locity results in a somewhat lower critical Reynolds number. 



87 

VI. CONCLUSIONS 

The present investigation deals with the linear stabili

ty of non-parallel, developing laminar flow in the entrance 

region of ducts. The problems covered include flow in annu

lar ducts, circular tubes, and parallel-plate channels. The 

mainflow velocity fields employed in the stability analyses 

correspond to those obtained from the solution of the line

arized momentum equations. Axisymmetric disturbances for 

annular duct and tube flows and two-dimensional disturbances 

for channel flow are considered in the analysis. By using 

the linear perturbation theory of hydrodynamic stability and 

taking into account the non-parallelism of the mainflow, the 

modified Orr-Sommerfeld equations for tube and channel flows 

were derived. The governing disturbance equation and the 

corresponding boundary conditions for each of the flow con

figurations constitute an eigenvalue problem. 

The eigenvalue problems for flow in annular ducts and 

circular tubes were solved by a direct numerical, fourth. 

order Runge-Kutta integration scheme along with an iteration 

technique. An orthonormalization process was used to remove 

the "parasitic error" which arises during the numerical 

integration of the disturbance equation. The differential 

correction method was used as the iteration scheme to find 

the eigenvalues. For the parallel-plate channels, the 
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eigenvalue problem was solved by a finite difference method, 

using an existing computer program. 

In the stability calculations for flow in annular ducts, 

circular tubes, and parallel-plate channels, the mainflow was 

considered to be both parallel and non-parallel. That is, 

both the conventional and modified Orr-Sommerfeld equations 

were used in the analyses. For the developing annular duct 

flow, the neutral stability curves at various axial locations, 

the axial variation of the critical Reynolds number, and the 

eigenfunctions were obtained and presented for both the 

parallel and non-parallel flow models. For flow in the 

entrance region of circular tubes, neutral stability charac

teristics for the non-parallel flow model were examined. 

Representative neutral stability curves and axial variation 

of the critical Reynolds number were presented and compared 

with those based on the parallel flow model. The neutral 

stability results and axial variation of the critical 

Reynolds number for the developing channel flow were obtained 

from the non-parallel flow model and compared with those 

obtained from the parallel flow model. 

From the present investigation, the following con-

clusions are drawn. 

For annular duct flow, it is found that: 

(1) The developing flow in the entrance region is 

unstable to axisymmetric small disturbances. 

(2) The flow becomes more stable as the ratio of outer 
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radius to inner radius, K, increases. In addition, the 

critical Reynolds number decreases less rapidly in the region 

adjacent to the inlet as K increases. 

(3) The critical Reynolds number (based on the charac

teristic length L~=(K-l)r~/2K and the average velocity u*) 

decreases monotonically with an increase in the axial 

distance from the entrance and reaches a minimum value in 

the fully developed flow region. 

(4) The minimum critical Reynolds numbers for K=2.0 

and K=3.33 are 9720 and 40530, respectively. 

(5) The modified Orr-Sommerfeld equation (i.e., the 

non-parallel flow model) gives critical Reynolds numbers 

that are somewhat smaller than those obtained from the con

ventional equat~on (i.e., the parallel flow model) for K=2.0 

in the entire region. For K=3.33, the situation is reversed. 

(6) The difference in the critical Reynolds numbers 

between the non-parallel and parallel flow models .. is · sm~ll. 

Thus, the parallel flow assumption for the stability analy

sis in the entrance region of annular ducts is resonably 

acceptable. 

For circular tube flow, it is found that: 

(1) The flow in the entrance region is unstable to 

axisymmetric small disturbances. 

(2) The critical Reynolds number decreases with an 

increase in the axial distance from the entrance, reaches 

a minimum value, and then increases monotonically to infinity 

as the axial distance increases farther downstream to the 
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fully developed flow region. 

(3) For the non-parallel flow model, the minimum 

critical Reynolds number of 19780 (based on the tube radius 

and the average velocity) occurs at an axial location of 

X=0.00323. 

(4) The non-parallel flow model based on the modified 

Orr-Sommerfeld equation yields critical Reynolds numbers 

that are somewhat smaller than those obtained from the paral

lel flow model based on the conventional equation for the 

entire region. 

For parallel-plate channel flow, it is found that: 

(1) The flow in the entrance region is unstable to 

two-dimensional small disturbances. 

(2) The critical Reynolds number decreases monoto

nically with an increase in the axial distance from the 

entrance and reaches a minimum value in the fully developed 

flow region. 

(3) The minimum critical Reynolds number of 3850 

(based on the half-spacing between the plates and the 

average velocity) occurs in the fully developed flow region. 

(4) The critical Reynolds numbers for the non-parallel 

flow model based on the modified Orr-Sommerfeld equation are 

somewhat smaller than those for the parallel flow model 

based on the conventional equation. 
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VIII. APPENDICES 

Appendix A 

Derivation of the Series Coefficients C. of Equation (2.13a) 
J 

From the text, it has been established that the veloci-

ty solution for U is obtained from equation {2.9), namely, 

as the sum of the fully developed profile Ufd(n) and a 

difference velocity U*(x*,n); that is from (2.10a) 

where 

A= 

2 £n(M) 

(2.9) 

(2.10a) 

(A . l) 

The solution for the di f ference velocity U*(x*,n) is 

expressible in the form 

00 

U*{x*,n> = .L k.g. (n) exp(-a~x*> 
J=l J J J 

(A. 2) 

where aj is a c onstant arising from the separation of vari

ables. 

By introducing (A.2) into (2.9) and noting that U*(x*,n) 

satisfies (2.9), it is found that the function g. must 
J 
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satisfy the equation 

(ng!)' + a~ng. = l~Mz [g! (1) - Mg~ (M)] 
J J J J J (A. 3a) 

and the boundary conditions 

(A. 3b) 

In equation (A.3a), the primes denote differentiation with 

respect to n. Since (A.3a) is a homogeneous equation with 

homogeneous boundary conditions, (A.3b), it follows that the 

a. may be identified as eigenvalues and g. as the cor re-
J J 

sponding eigenfunctions. 

A solution for g. may be constructed as 
J 

wherein 

= J (a.n) + 
0 J 

2[MJ (a.M)-J (a.)] 
1 J 1 J 

2 [MY 
1 

(a . M) - Y 
1 

{a . ) ] 
= Y

0
(a.n) + · J J 

J a. {1-M 2 ) 
J 

(A. 4a) 

(A. 4b) 

(A . 4c) 

and the J and Y are Bessel Functions of the f irst and second 

kind, respectively. Application of the homogeneous boundary 

conditions (A . 3b) to this solution leads to an algebraic 

equation for determining the eigenvalues a. 
J 

(A. 5) 



98 

In addition to the eigenvalues, the application of the 

boundary conditions provides the relationship 

With (A.6), the solution for g. becomes 
J 

(A. 6) 

{A. 7) 

The scale factor a may be fixed by the nor.malizing condition 
2 

!~ n g~ dn = 1 
J 

It is also useful to note the following orthogonality 

properties of the eigenfunctions g, 
J 

fi g. n dn = o; 
} M J 

fi n g. g. dn = 0 for i]ij 
j M 1. J 

(A. 8) 

(A. 9) 

With the g. function thus fully determined, it remains 
J 

to complete the U*(x*,n) solution by finding the coefficient 

k. in the series of (A.2). For this, the velocity condition 
J 

at the duct entrance is used, namely, u*=u* at x*=O. This 

yields 

00 

U*{O,n) = L k.g. (n) = 1-Ufd(n) 
j= 1 J J 

(A.lO) 

If (A.lO) is multiplied by ngj and integrated over the range 

M$n51 and if use is made of (A. 7) and (A.9), i t follows that 

(A.l l a) 
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or 

k. 
J 

4a A 
-

2 ~~n in(n){-[Zy(l)/ZJ(l)]ZJ(nl+Zy(n)} dn 

l+M 2 -2A 
(A.llb) 

Next, consider the identities (see, for example, the 

third and fourth equations of 9.1.29. on page 361 of Handbook 

of Mathematical Functions, National Bureau of Standards) 

nf' (n) = Aqnqf (n) + (p-vq)f (n) 
\) \)- 1 v (A.l2a) 

nf' (n) = -Aqnqf (n) + (p+vq)f (n) 
\) V+ 1 V 

(A.l2b) 

where 

Integrating {A.l2a) and {A.l2b) and rearranging, there 

results 

f q-l+p J (Anq)dn = 
v+l 

(A.l3a) 

(A.l3b) 



With the use of (A.l3a) and (A.l3b), one obtains 

/
nJ (a.n)dn = (n/a.)J {a.n) 

0 J J 1 J 

Thus, 

Also, 
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(A.l4a) 

(A .14b) 

(A.l4c) 

(A.l4d) 

Combining (A.l4c) and (A.l4d) and after rearranging, there 

results 

~~ n(l-n 2 )ZJ(n)dn = [(l+M2 )/(2aj)-(aj-4l/aj]J
1 
(aj)-(2/ajlJ

0
(aj) 

- [(l+M2 )M/(2a.)-(a~M 2 -4)M/a~]J (Ma.) 
J J J 1 J 

(A.l5a) 

Similarly, the following integral can be obtained 

!~ n(l-n
2 )Zy(n)dn=[(l+M2 )/(2a.)-(a~-4)/a~]Y (a.)-(2/a~)Y (a.) 

J J J 1 J J 0 J 

(A.l5b) 
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The first term on the right-hand side of (A.11b) then 

becomes 

= +[Zy(1)/ZJ(1)]{[(1+M2 )/(2a.)-(a~-4)/a~]J (a.)-(2/a~)J (a.) 
J J J 1 J J 0 J 

- {f(l+M2 )/(2a.)-(a~-4)/a~]Y (a.)-(2/a~)Y (a.) 
J J J 1 J J 0 J 

After rearranging, (A.15c) reduces to 

= 2a F /(1+M 2 -2A) 
2 1 

where 

aJ~GJ = (a~-4)J (a.) - (a~M 2 -4)MJ (Ma.) + 2a.J (a.) 
J 1 J J 1 J J 0 J 

- 2 a . M 2 J (Ma . ) 
J 0 J 

(A.l5c) 

(A.15d) 

(A.15e) 

(A.l5f) 
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a. . (1-M 2 
) E = 2 {- [ z ( 1) I z ( 1) ] [ MJ ( Ma. . ) -J (a. . ) ] 

J y J 1 J 1 J 

+MY (Ma..) - Y (a..)} 
1 J 1 J 

(A.lSg) 

Next, the second term on the right-hand side of (A.llb) 

will be evaluated as follows. 

Since 

and 

J'~ nJ
0

(ajnl in(nl dn = [-(M/aj) in(M)]J
1 

(Maj) 

+ (J (a..)-J (Ma..)]/a.~ 
0 J 0 J J 

/M1 
n in(n) dn 

it follows that 

f 1 nz (n) in(n) dn = -(M/a..)J (Ma..) in(M) 
} M J J 1 J 

(A.16a) 

(A.l6b) 

+[J (a..)-J (Ma..)]/a.~+[M 2 -2M 2 2n(M)-1] (MJ (Ma..)-J (a..)] 
0 J 0 J J 1 J 1 J 

(A.l6c) 

Similarly, one obtains the expression 

/

1 
nZ (n) in(n) dn = -{M/a.)Y {Ma..) in{M) 

M y J 1 J 

+[Y (a..)-Y (Ma..)]/a.~+[M 2 -2M 2 2n(M)-l] [MY (Ma..)-Y (a..)] 
0 J 0 J J 1 J 1 J 

(A.l6d) 

Therefore, the second term on the right-hand side of 
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(A.llb) becomes 

==---- F2 
(A.l6e) 

where 

(A.l6g) 

The scale factor a is to be determined from (A.8) 
2 

with the use of (A.7) 

(A.l7a) 

or 

a2 1 
= (A.l7b) 2 

~~ n{-[Z (l)IZ (l)JZ (n)+Z (n)} 2dn y J J y 

Let 

BJ = 2 [ MJ ( Ma . ) -J ( a . ) ] I [a . ( 1-M2 
) ] (A.l8a) 

1 J 1 J J 

By = 2 [MY ( Ma . ) - Y ( a . ) ] I [a . ( 1-M2 ) ] (A.l8b) 
1 J 1 J J 

Since 
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{4nJ (a.n}/[a: (1-M 2 )]} [MJ {Ma .)-J (a:.)] 
1 J J 1 J 1 J 

+J2(a,.)] 
1 J 

f J 2 
( a. . n ) d n = ( n 2 /2) [ J 2 

( a . n ) +J 2 (a . n ) ] 
0 J 0 J 1 J 

one obtains 

[ M 2 J 2 ( Ma. . ) - 2MJ ( a . ) J ( Ma . ) +J 2 ( a . ) ] 
1 J 1 J 1 J 1 J 

(A.18c) 

(A.18d) 

(A.18e) 

+ {4nJ (aJ·n)/[aJ~(l-M 2 )]}[MJ (Ma.)-J (a.)] 
1 1 J 1 J 

(A .19) 

Similarly, the following expression can be obtained 

[M 2 Y 2 (Ma.)-2MY (a.)Y (Ma.)+Y 2 (a.)] 
1 J 1 J 1 J 1 J 

+ {4nY (aJ·n)/[aJ~(1-M 2 )]}[MY (Ma.)-Y (a.)] 
1 1 J 1 J 

(A. 20) 

In addition, since 

[nJ (aJ.)Y (aJ·n)-MnJ (MaJ.)Y (a.n) 
1 1 1 1 J 

+nJ (a.n)Y (aJ·)-MnJ (aJ·n)Y (Ma.)] 
1 J 1 1 1 J 

(A. 2la) 
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-MJ {Mo. . ) Y (a . ) +J (a. . ) Y (a . ) ] 
1 J 1 J 1 J 1 J 

(A. 2lb) 

f J {a. .n)Y (a..n)dn = (n 2 /2) [J (a.n)Y (a..n) 
0 J 0 J 0 J 0 J 

+ J (a.(·n)Y {a..n> J 
1 J 1 J 

(A. 2lc) 

it follows that 

- MJ ( a. . } Y (Mo. . ) - MJ ( Ma . } Y { a. . ) + J ( a . ) Y ( a. . } ] 
1 J 1 J 1 J 1 J 1 J 1 J 

+ < n 2 I 2 > I J ( a. . n ) Y {a. . n > +J { a. . n > Y < a . n > J 
0 J 0 J 1 J 1 J 

- { 2/ I a. ~ < 1-M2 > J } In J < a. . > Y < a. . n > - Mn J < Ma. . > Y {a. . n > 
J 1 J 1 J 1 J 1 J 

+nJ (a..n)Y (a..)-MnJ (a.n)Y (Ma.)] 
1 J 1 J 1 J 1 J 

(A. 22) 

Substituting (A.l9), (A.20), and {A.22) into {A.l7b), yields 

1 = -~----:-o--F {1)-F (M} 
(A. 23a) 

3 3 

where 

+ Y 2 (a..n)] + O.Sn 2 E 2 -[Zy(l)/ZJ(l)]n 2 [J (a.n)Y (a..n) 
1 J 0 J 0 J 
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+ J (a.n)Y (a.n)] + (2E/a.){n 2 Y (a.n) 
1 J 1 J J 1 J 

(A. 23b) 

Referring to (A.7) and (A.lO), one can put 

(A. 24) 

With the use of (A.llb), (A.lSd), {A.l6e), and (A. 23a), one 

finally obtains the desired expression for C. 
J 

c. = 
J 

( 1 + M 2 - 2A) [F 
3 

{ 1) - F 
3 

{M) ] 

where F , F , F , G , H , and E are expressed in 
1 2 3 J J 

(A. 2 5) 

equations (A.lSe), (A.l6f), (A.23b), (A.l5f), (A.l6g), and 

(A.l5g), respectively. The terms GY and HY are obtained from 

GJ and H by replacing J by Y. J . 
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Appendix B 

The Relationship Between the Stretched and Physical Axial 

Coordinates 

Table B-1 

The Relationship Among x*, s, and X for Annular Ducts 

x* = 
~*/r* 

2 

u*r*/v 
2 

X = 

X= {2K/{K-1)} 2 x*, 

x* X* 
0.0008 0.0128 
0.0010 0.0160 
0.0015 0.0240 
0.0020 0.0320 
0.0030 0.0480 
0.0040 0.0640 
0.0080 0.1280 
0.0160 0.2560 

x* x* 
0.0010 0.008170 
0.0020 0.016341 
0.0025 0.020426 
0.0040 0.032681 
0.0080 0.065362 
0.0160 0.130724 

x*/r* 
2 

u*r*/v 
2 

K = r*/r* 
2 1 

K=2.0 

€ 

0.58323 
0.62079 
0.70148 
0.76936 
0.87845 
0.95875 
1.09729 
1.13044 

K=3.33 

€ 

0.51948 
0.62317 
0.66559 
0.77188 
0.96001 
1.09786 

X*= {2K/{K-1)} 2 x*, 

X X 
0.000387 0.006192 
0.000511 0.008176 
0.000842 0.013472 
0.001210 0.019360 
0.002033 0.032528 
0.002952 0.047232 
0.007064 0.113024 
0.015975 0.255600 

X X 
0.000452 0.003693 
0.001024 0.008366 
0.001346 0.010997 
0.002424 0.019805 
0.005888 0.048107 
0.014120 0.115364 
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Table B-2 

The Relationship Among X*, t · and X for Circular Tubes 

(Huang, 1973) 

~*/r* x*/r* 
X* = X = 

u*r*/v u*r*/v 
0 0 

X* s X 
0.002 0.50014 0.00087 
0.003 0.55121 0.00140 
0.005 0.6.3385 0.00258 
0.006 0.66143 0.00323 
0.007 0.70242 0.00392 
0.009 0.76262 0.00539 
0.010 0.79045 0.00616 

Table B-3 

The Relationship Among X*, s and X for Parallel-Plate Channels 

(Chen, 1966) 

~*/L* x*/L* 
X* = X -

u*L*/v u*L*/v 

X* s X 
0.005 0.46627 0.00203 
0.006 0.48465 0.00250 
0.008 0.51755 0.00351 
0.010 0.54682 0.00457 
0.015 0.60998 0.00747 
0.020 0.66390 0.01066 
0.030 0.75465 0.01776 
0.040 0.82960 0.02570 
0.060 0.94345 0.04350 
0.080 1.01789 0.06317 
0.100 1 .. 06384 0.08403 
0.150 1.11426 0.13873 
0.200 1.12945 0.19490 
0.300 1 .. 13624 0. 3 0829 
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Appendix C 

Neutral Stability Characteristics for Annular Duct Flow 

u*r* (K-1) 
R = --2 

' \) 2K 

~*/r* 

a = a. *r * 
2 

(c. =0) 
l. 

. (K-.1) 

' 2K 

x*/r* 

c = c*/u* 
r r ' 

K = r*/r* 
2 1 

x* = 2 

' u*r*/v 
X*= {2K/(K-1)} 2 x* X = 

2 

X= {2K/(K-1)} 2 X 

u*r*/v 
2 

Table C-1 

Neutral Stability Results for the Fully Developed 

0.57087 
0.61738 
0.68167 
0.72232 
0.78021 
0.82658 
0.90000 
0.94000 
0.94500 

0.67594 
0.73524 
0.81292 
0.90000 
0.90700 
0.91000 
0.92000 

R 

50000 
35000 
23079 
18494 
14219 
12040 
10103 

9725 
9716 

R 

80000 
60000 
46000 
40554 
40529 
40540 
40675 

Annular Duct Flow, x*=oo 

K=2.0 

0.18046 
0.20132 
0.22927 
0.24612 
0.26854 
0.28476 
0.30588 
0.31390 
0.31465 

K=3.33 

0.17030 
0.18749 
0.20656 
0.22064 
0.22131 
0.22158 
0.22232 

N=lOO 

0.95000 
1.00000 
1.02866 
1.03099 
1.02667 
1.01107 
0.99477 
0.98188 

N=l50 

0.93000 
0.97375 
1.01482 
1.02606 
1.02661 
1.02236 

R 

9717 
10585 
14000 
16000 
21000 
30000 
40000 
50000 

R 

40974 
45000 

. 60000 
80000 

100000 
140000 

0.31534 
0.31659 
0.30285 
0.29515 
0.27903 
0.25793 
0.24125 
0.22853 

0.22287 
0.22215 
0.21185 
0.19962 
0.18985 
0.17505 
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Table C-2 

Neutral Stability Results for the Developing Annular Duct 

Flow, x*=0.016 

K=2.0 

Modified O-S Equation 

a 
0.9440 
0.9460 
0.9480 

Modified 

a 
0.93510 
0.93520 
0.93600 

R 
9920 
9919 
9920 

c 
0.315.91 
0.31298 
0.31326 

K=3.33 

o-s Equation 

R cr 
41040.8 0.21831 
41040.7 0.21832 
41040.8 0.21839 

N=150 

Conventional O-S Equation 

a 
0.9440 
0.9460 
0.9480 
0.9520 
0.9560 
0.9600 

N=150 

Conventional 

a 
0.92000 
0.93400 
0.93500 
0.93650 
0.94000 
0.95000 
0.96000 
1.00000 

R 
9920.4 
9919.5 
9920.4 
9927 
9942 
9964 

cr 
0.31268 
0.31296 
0.31323 
0.31373 
0.31418 
0.31458 

O-S Equation 

R Cr 
41194 0.21693 
41039 0.21823 
41038.0 0.21831 
41038.4 0.21842 
41052 0.21868 
41186 0 . 21930 
41478 0.21973 
44849 0.21892 
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Table C-3 

Neutral Stability Results for the Developing Annular Duct 

Flow, x*=0.008 

K=2.0 N=l50 

Modified o-s Equation Conventional o-s Equation 

a. R Cr (), R Cr 
0.96092 11170 0.30362 0.90000 12071 0.29110 
0.96553 11150 0.30430 0 .. 95000 11249 0.30178 
0.97450 11134 0.30551 0.97440 11137 0.30545 
0.97784 11136 0.30591 1.00000 11286 0.30776 
0.98047 11140 0.30621 1.04852 13253. 0 .. 30350 

1.06122 15372 0.29600 
1.06205 22000 0.27579 
1.05115 28000 0.26201 

K=3.33 N=200 

.Hodified o-s Equation Conventional o-s Equation 

(), R Cr (), R Cr 
0.77887 80000 0.17444 0 .. 91927 50000 0.20471 
0.83061 65000 0.18674 1.02000 42756 0.21900 
0.91927 50000 0.20473 1.04000 42304 0 .. 22083 
1.05300 42226 0.22178 1.05300 42194 0.22179 
1.05700 42223 0.22200 1.05400 42189 0.22187 
1.05900 42228 0.22216 1.06000 42199 0.22223 
1.15458 50000 0.21965 1.07000 42291 0.22275 
1.18346 65000 0.20908 1.08000 42491 0.22314 
1.18683 80000 0.20021 1.10000 43248 0.22348 
1.18041 100000 0 .. 19067 1.15483 50000 0 .. 21965 
1.15991 140000 0.17661 
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Table C-4 

Neutral Stability ResUlts for the Developing Annular Duct 

Flow, x*=0.004 

K=2.0 

Modified O-S Equation 

a R cr 
0.72232 39301 0.20518 
0.78021 29306 0.22488 
0.82658 24019 0.23969 
0.86273 21000 0.25061 
0.99157 15000 0.28294 
1.06812 13750 0.29583 
1.07775 13700 0.29699 
1.09100 13676 0.29837 
1.10247 13700 0.29935 
1.19000 16793 0.29489 
1.20523 20000 0.28597 
1.20334 28000 0.26738 
1.18831 36000 0.25345 

K=3.33 

Modified O-S Equation 

a 
1.29400 
1.29700 
1.30000 

R 
43029 
43025 
43037 

cr 
0.23171 
0.23185 
0.23197 

N=l50 

Conventional O-S Equation 

ct R cr 
0.90000 18626 0.26097 
1.00000 14794 0.28452 
1.06572 13771 0.29540 
1.08500 13685 0.29766 
1.09000 13680 0.29816 
1.09500 13684 0.29862 
1.10500 13717 0.29942 
1.18171 16000 0.29700 
1.20525 20000 0.28592 

N=250 

Conventional O-S Equation 

a 
1.28600 
1.29200 
1.29800 

R 
42976 
42959 
41960 

c 
0.23l33 
0.23162 
0 . 23189 
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Table c-5 

Neutral Stability Results for the Developing Annular Duct 

F 1 0\'1 , X*= 0 • 0 0 3 

K=2.0 N=l50 

Modified O-S Equation Conventional O-S Equation 

a R c a R Cr 
1.15258 15050 o.29S3o 0.78021 39500 0.21020 
1.16270 15020 0.29626 0.82656 31965 0.22451 
1.16900 15015 0.29681 0.90000 24222 0.24546 
1.17308 15017 0.29714 0.95000 20798 0.25834 
1.17518 15020 0.29730 1.00000 18367 0.26993 

1.07825 16000 0.28504 
1.15000 15069 0.29486 
1.16000 15032 0.29585 
1.16500 15024 0.29630 
1.20000 15165 0.29859 
1.25088 16300 0.29817 
1.29437 20000 0.28922 
1.30344 28000 0.27113 
1.29058 36000 0.25725 

Table C-6 

Neutral Stability Results for the Developing Annular Duct 

Flow, x*=0.0025 

K=3.33 N=300 

Modified O-S Equation Conventional O-S Equation 

a R Cr a R Cr 
1.08581 80000 0.19310 1.33458 50000 0.22565 
1.17380 65000 0.20637 1.52000 43797 0.23915 
1.33617 50000 0.22585 1.54000 43680 0.23997 
1.54200 43763 0.24007 1.54100 43670 0.24001 
1.54700 43750 0.24025 1.71112 50000 0.23841 
1.55200 43756 0.24041 
1.55700 43763 0.24056 
1.56200 43776 0.24071 
1.56700 43791 0.24086 
1.70942 50000 0.23846 
1.76327 65000 0.22727 
1.76369 80000 0.21793 
1.74488 100000 0.20796 
1.72087 120000 0.19994 
1.69562 140000 0.19336 
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Table C-7 

Neutral Stability Results for the Developing Annular Duct 

Flow, x*=0.002 

K=2.0 N=200 

Modified O-S Equation Conventional o-s Equation 

a. R cr a. R c 
1.29534 17400 0.29412 0.95000 31842 0.23~94 
1.29861 17390 0.29437 1.00000 27366 0.24672 
1.31300 17372 0.29534 1.05000 24057 0.25754 
1.31350 17373 0.29537 1.15000 19816 0.27602 

1.25000 17755 0.28963 
1.30000 17401 0.29422 
1.31000 17387 0.29492 
1.35000 17553 0.29691 
1.40000 18235 0.29737 

Table C-8 

Neutral Stability Results for the Developing Annular Duct 

F lov.:;, x*=0.0015 

K=2.0 N=200 

Modified O-S Equation Conventional 0-S Equation 

a R Cr a R Cr 
0.95000 45228 0.21801 0.95000 45227 0.21786 
1.15355 25985 0.26035 1.03006 35000 0.23601 
1.30000 20867 0.28208 1.15352 26000 0.26007 
1.40000 19463 0.29198 1.25000 22161 0.27525 
1.45000 19314 0.29513 1.30000 20886 0.28176 
1.45666 19325 0.29544 1.35000 20004 0.28725 
1.46123 19337 0.29564 1.40000 19485 0.29164 
1.55000 20506 0.29648 1.44500 19334 0.29454 
1.62375 25000 0.28821 1.45000 19338 0.29479 
1.64036 29000 0.28061 1.47000 19395 0.29566 
1.62257 45000 0.25711 1.50000 19629 0.29614 

1.60357 23000 0.29196 
1.62356 25000 0.28804 
1.64031 29000 0.28047 
1.64035 36000 0.26897 
1.62268 45000 0.25704 
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Table C-9 

Neutral Stability Results for the Developing Annular Duct 

Flow, x*=O.OOlO 

K=2.0 N=200 

Modified O-S Equation Conventional O-S Equation 

a R Cr a R cr 
1.69000 22350 0.29501 1.35000 28738 0.26537 
1.69200 22349 0.29508 1.40000 26887 0.27156 
1.69500 22350 0.29519 1.45000 25422 0.27711 
1.69800 22352 0.29530 1.50000 24282 0.28203 

1.55000 23427 0.28630 
1.60000 22831 0.28990 
1.65000 22486 0.29279 
1.68500 22396 0.29435 
1.70000 22399 0.29490 
1.75000 22607 0.29614 

Table C-10 

Axial Variation of Critical Stability Characteristics for 

Annular Duct Flow 

K=2.0 

Hodified Orr-Sommerfeld Equation 

X X* X X* (a) c (R)c (cr) c N 
00 00 00 00 0.9450 9716 0.31465 100 

0.01598 0.016 0.255600 0.2560 0.9460 9920 0.31296 150 
0.00706 0.008 0.113024 0.1280 0.9744 11137 0.30545 150 
0.00295 0.004 0.047232 0.0640 1.0900 13680 0.29862 150 
0.00203 0.003 0.032528 0.0480 1.1650 15024 0.29630 150 
0.00121 0.002 0.019360 0.0320 1.3100 17387 0.29492 200 
0.00084 0.0015 0.013472 0.0240 1.4450 19334 0.29454 200 
0.00051 0.0010 0.008176 0.0160 1.6850 22396 0.29435 200 
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Table C-10 (continued) 

K=2.0 

Conventional Orr-Sommerfeld Equation 

X x* X X* (a)c (R)c <cr) c N 
00 00 00 00 0.9450 9716 0.31465 100 

0.01598 0.016 0.255600 0.2560 0.9460 9919 0.31298 150 
0.00706 0.008 0.113024 0.1280 0.9745 11134 0.30551 150 
0.00295 0.004 0.047232 0.0640 1.0910 13676 0.29837 150 
0.00203 0.003 0.032528 0.0480 1.1690 15015 0.29681 150 
0.00121 0.002 0.019360 0.0320 1.3130 17372 0.29534 200 
0.00084 0.0015 0.013472 0.0240 1 .. 4500 19314 0.29513 200 
0.00051 0 .. 0010 0 .. 008176 0 .. 0160 1.6920 22349 0.29508 200 

K=3.33 

Hodified Orr-Sommerfeld Equation 

X x* X X* (a) c (R)c (cr) c N 
00 00 00 00 0.9070 40529 0.22131 150 

0.01412 0.016 0.115364 0.130724 0.9352 41041 0.21832 150 
0.00589 0.008 0.048107 0.065362 1.0570 42223 0.22200 200 
0.00242 0.004 0.019805 0.032681 1.2970 43025 0.23185 250 
0.00135 0.0025 0.010997 0 . 021426 1.5470 43750 0.24025 300 

Conventional Orr-Sommerfeld Equation 

X x* X X* (a)c (R)c (cr) c N 
00 00 00 00 0.9070 40529 0.22131 150 

0 . 01412 0.016 0.115364 0.130724 0.9350 41038 0 . 21831 150 
0.00589 0.008 0.048107 0 . 065362 1.0540 42189 0 . 22187 200 
0.00242 0.004 0.019805 0.032681 1.2920 42959 0.23169 250 
0 . 00135 0.0025 0.010997 0 . 021426 1.5410 43670 0.24001 300 
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Appendix D 

Neutral Stability Characteristics for Circular Tube Flow 

R = u*r*/V 0 , 

X = 
x*/r* 

0 

u*r*/V 
0 

a = a*r* 
0 

(c. =0) 
1 

Table D-1 

~*/r* X* _____ o 

u*r*/V 
0 

Neutral Stability Results at Various Axial Locations for 

Circular Tube Flow, Modified Orr-Sommerfeld Equation 

X*=O.OlO (X=O. 00616) N=lOO 

(). R Cr 
0.40616 54000 0.44894 
0.52000 43466 0.44765 
0.60630 38500 0.44624 
0.75000 33799 0.44191 
0.77500 33412 0.44062 
0.80000 33180 0.43912 
0.81500 33148 0.43800 
0.82500 33167 0.43721 
0.83000 33208 0.43672 
0.85000 33487 0.43466 
0.87500 34655 0.43040 
0.88259 37500 0.42395 
0.79257 52000 0.40694 

X*=0.009 (X=0.00539) N=l50 

a R c 
1.0700 24997 0.438~43 
1.1200 24809 0.436437 
1.1300 24803 0.436006 
1.1750 24970 0.433517 



Table D-1 (continued) 

X*=O. 007 (X=O. 00392) N=l50 

a 
1.6300 
1.6500 
1.6700 
1.7050 

X*=0.006 

a 
0.71682 
1.01447 
1.32503 
1.80000 
1.96000 
2.01000 
2.07000 
2.27517 
2.29153 
2.21718 
2.12745 

X*=0.005 

a 
2.3000 
2.3300 
2.3500 
2.4000 

R 
20202 
20174 
20160 
20182 

(X=O. 00323) 

R 
45000 
32000 
25000 
20216 
19785 
19802 
19946 
23000 
30000 
38000 
46000 

(X=0.00258) 

R 
20245 
20235 
20242 
20308 

Cr 
0.425184 
0.424882 
0.424576 
0.423888 

N=150 

Cr 
0.40118 
0.40608 
0.41155 
0.41708 
0.41673 
0.41618 
0.41518 
0.40370 
0.38549 
0.37051 
0.35511 

N=150 

c 
0.40,59 
0.40755 
0.40747 
0.40711 
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Table D-1 (continued) 

X*=0.003 (X=O. 00140) N=200 

a R cr 
1.52998 51717 0.34095 
2.02995 36754 0.35747 
2.52346 28964 0.37220 
2.75000 26817 0.37787 
3.30000 24174 0.38664 
3.37500 24119 0.38711 
3.38800 24118 0.38717 
3.40000 24117 0.38722 
3.42000 24129 0.38727 
3.43000 24136 0.38729 
3.50000 24236 0.38307 
3.75000 25874 0.38355 
3.96285 35302 0.36426 
3.91191 44127 0.35011 
3.82122 52953 0.33888 

X*=0.002 {X=0.00087) N=200 

a R c 
4.190 29266 0.37~68 
4.360 29062 0.37517 
4 . 500 29225 0.37536 
4.700 29900 0 . 37506 



Table D-2 

Neutral Stability Results at Three Axial Locations for 

Circular Tube Flow, Conventional Orr-Sommerfeld Equation 

X*=O.OlO 

a 
0.40000 
0.50000 
0.60000 
0.70000 
0.72500 
0.75000 
0.77500 
0.80000 
0.82500 
0.84390 
0.84850 
0.82310 
0.76870 
0.78500 

X*=0.006 

a 
0.7000 
1 . 0000 
1.3000 
1.6000 
1.7000 
1.8000 
1.9000 
2.0000 
2.1317 
2.2272 
2.2461 
2.1750 
2.0838 
1.9300 

c.=O 
J. 

(X=0.00616) 

R 
54206 
44580 
38627 
35066 
34508 
34102 
33878 
33909 
34402 
35751 
37340 
43696 
52641 
33840 

(X=0.00323) 

R 
45030 
31770 
25004 
21362 
20640 
20150 
19914 
19998 
20935 
2344 7 
29309 
37682 
46056 
19900 

N=100 

c 
0. 447 563 , 
0.446431 
0.444637 
0.441646 
0.440575 
0.439295 
0.437720 
0.435681 
0.432739 
0.428570 
0.425103 
0.415694 
0.408043 
0.431008 

N=l50 

Cr 
0.37856 
0.40341 
0 . 40855 
0.41270 
0.41354 
0.41393 
0.41371 
0.41257 
0.40853 
0.40031 
0.38544 
0.36981 
0.35809 
0.41349 
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Table D-2 (continued) 

X*=0.003 (X=0.00140) N=200 

a. R cr 
1.5000 51717 0.336004 
2.0000 36754 0.352190 
2.5000 28964 0.366903 
2.7500 26683 0.372937 
3.0000 25248 0.377638 
3.2500 24658 0.380504 
3.2800 24620 0.380775 
3.5000 25182 0.380550 
3.7500 28424 0.374284 
3.8456 35302 0.361132 
3.8070 44127 0.306757 
3.7259 52953 0.297178 

Table D-3 

Axial Variation of Critical Stability Characteristics for 

Circular Tube Flow 

Hodified Orr-Sommerfeld Equation 

X* X (a.)c (R) (cr) c N c 

0.010 0.00616 0.815 33148 0.43800 100 
0.009 0.00539 1.130 24803 0.43601 150 
0.007 0.00392 1.670 20160 0.42458 150 
0.006 0.00323 1.960 19785 0.41673 150 
0.005 0.00258 2.330 20235 0.40755 150 
0.003 0.00140 3.400 24117 0.38722 200 
0.002 0.00087 4.360 29062 0.37517 200 
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Table D-3 (continued) 

Conventional Orr-Sommerfeld Equation (Huang, 1973) 

X* X (ct) c (R)c (cr) c N 

0.010 0.00616 0.785 33840 0.437008 100 
0.009 0.00539 1.095 25006 0.434828 150 
0.007 0.00392 1.635 20250 0.422166 150 
0.006 0.00323 1.930 19900 0.413491 150 
0.005 0.00258 2.260 20370 0.403830 150 
0.003 0.001.40 3.280 24621 0.380768 200 
0.002 0.00087 4.190 30101 0.366564 200 
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AppendiX E 

Neutral Stability Characteristics for Parallel-Plate Channel 

R = u*L*/v , a = a*L* , 

. x*/L* 
X = 

u*L*/v 

c = c*/u* r r ' 

Table E-1 

X* -
~*/' *' ·S·. L . 

u*L*/v 

Neutral Stability Results at Various Axial Locations for 

Parallel-Plate Channel Flow, Modified Orr-Sommerfeld Equation 

X*=oo (X=oo) N=lOO 

a R cr 
0.45977 83996 0.14936 
0.60234 21166 0.22380 
0.75050 8291 0.29769 
0.99818 3883 0.39140 
1.01000 3858 0.39397 
1.02000 3850 0.39587 
1.02841 3855 0.39724 
1.04045 3884 0.39879 
1.09416 6742 0.36895 
0.95177 32840 0.26073 
0.87743 62807 0.22389 

X*=0.300 (X=0.30829) N=lOO 

a R Cr 
1.0200 3883.77 0.39504 
1.0215 3883.74 0.39530 
1.0230 3884.06 0. 3955 6 



124 

Table E-1 (continued) 

X*::::.0.200 (X=O.l9490} N=lOO 

a R cr 
1.0230 4096.24 0.39047 
1.0245 4096.18 0.39073 
1.0260 4096.45 0.39098 

X*=0.150 (X=O . l3873) N=lOO 

a R Cr 
1.0320 4491.96 0.38303 
1.0335 4491.92 0.38328 
1.0350 4492.23 0.38351 

X*=0.100 (X=0.08403) N=100 

a R cr 
1.0600 5434.30 0.36842 
1.0660 5429.58 0.36933 
1.0675 5429.236 0.36955 
1.0690 5429.243 0.36976 
1.0705 5429.60 0.36997 

X*=0.080 (X=0.06317) N=100 

a R c 
0.600 41997 0.19l86 
0.700 21058 0.23571 
0.800 12563 0.27642 
0.900 8632 0.31247 
1.050 6272 0.35378 
1.090 6098 0.36099 
1.100 6087 0 . 36242 
1.103 6086 0.36282 
1.110 6090 0.36368 
1.120 6109 0.36474 
1.130 6148 0.36558 
1.200 7861 0 . 35741 
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Table E-1 (continued) 

X*=0.060 (X=O. 04 350) N=lOO 

a R c 
1.1620 7059.88 o.3sso9 
1.1635 7059.42 0.35527 
1.1650 7059.27 0.35544 
1.1660 7059.35 0.35555 

X*=0.040 (X=O. 02570) N=l50 

a R Cr 
0.8000 27765.7 0.23228 
1.1000 10471.1 0.31767 
1.2830 8693.9 0.34724 
1.2845 8693.6 0.34738 
1.2860 8696.6 0.34751 
1.3500 9016.0 0.35066 

X*=0.030 (X=0.01776) N=150 

a R Cr 
1.3927 10092.7 0.34268 
1.3942 10092.4 0.34279 
1.3957 10092.3 0.34290 
1.3975 10092.5 0.34304 
1.4000 10093.4 0.34322 

X*=0.020 (X=O. 01066) N=l50 

ct R c 
0.7500 100765 0 . 17552 
1.0000 32266 0.24269 
1.2500 17155 0.29096 
1.5920 12439.56 0.33761 
1.5935 12439.33 0.33770 
1.5945 12439.28 0.33775 
1.5950 12439.29 0.33778 
1.6000 12441 0.33805 
1.7000 13054 0.34022 
1.8000 19052 0.32187 
1.7500 32089 0.29144 
1.5000 98121 0.23117 
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Table E-1 (continued) 

X*=O.Ol5 (X=0.00747) N=200 

a R cr 
1.7720 14369.1 0.33480 
1.7735 14368.83 0.33487 
1.7750 14368.72 0.33494 
1.7770 14368.81 0.33502 
1.7800 14369.5 0.33515 

X*=0.010 (X=0.00457) N=200 

a R Cr 
1.7500 20450 0.30985 
2.0990 17518.2 0.33156 
2.1005 17518.1 0.33161 
2.1500 17585 0.33284 
2.3000 19017 0.33212 

X*=0.008 (X=O. 00351) N=200 

a R cr 
2.3100 19469 0.32970 
2.3150 19466 0.32984 
2.3235 19464 0.33005 
2.3335 19466 0.33030 

X*=0.006 (X=O. 00250) N=250 

a R Cr 
1.2500 99062 0.20811 
1.5000 56587 0.24428 
2.0000 29667 0.29546 
2.5000 22633 0.32382 
2.6750 22171 0.32858 
2.6680 22170 0.32845 
2.6610 22171 0.32831 
3.0000 25654 0.32540 
2.9900 53181 0.28591 
2.7500 93360 0.25654 

X*=0.005 (X=O. 00203) N=250 

a R cr 
2.9115 24061 0.32730 
2.9195 24060 0.32744 
2.9250 24061 0.32752 
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Table E-2 

Axial Variation of Critical Stability Characteristics for 

Parallel-Plate Channel Flow 

Hodified Orr-Sommerfeld Equation 

X* X (a)c (R)c (cr)c N 

00 00 1.0200 3850 0.39587 100 
0.300 0.30829 1.0215 3884 0.39530 100 
0.200 0.19490 1.0245 4096 0.39073 100 
0.150 0.13873 1.0335 4492 0.38328 100 
0.100 0.08403 1.0675 5429 0.36955 100 
0.080 0.06317 1.1030 6086 0.36282 100 
0.060 0.04350 1.1650 7059 0.35544 100 
0.040 0.02570 1.2845 8694 0.34738 150 
0.030 0.01776 1.3957 10092 0.34290 150 
0.020 0.01066 1.5945 12439 0.33775 150 
0.015 0.00747 1.7750 14369 0.33494 200 
0.010 0.00457 2.1005 17518 0.33161 200 
0.008 0.00351 2.3235 19464 0.33005 200 
0.006 0.00250 2.6680 22170 0.32850 250 
0.005 0.00203 2.9195 24060 0.32744 250 

Conventional Orr-Sommerfeld Equation (Chen, 1966) 

X* X (a) c (R)c (cr) c N 

00 00 1.0200 3850 0.39587 100 
0.300 0.30829 1.0215 3884 0.39521 100 
0.200 0.19490 1.0245 4098 0 . 39067 100 
0.150 0.13873 1.0335 4497 0.38314 100 
0.100 0.08403 1.0690 5442 0.36950 100 
0.080 0.06317 1.1040 6103 0.36261 100 
0.060 0.04350 1.1635 7085 0.35483 100 
0.040 0.02570 1.2835 8736 0.34667 150 
0.030 0.01776 1.3942 10152 0.34204 150 
0.020 0.01066 1.5935 12533 0.33673 150 
0.015 0.00747 1.7735 14495 0.33375 200 
0.010 0 . 00457 2.0990 17705 0.33021 200 
0.008 0.00351 2.3220 19694 0.32854 200 
0.006 0.00250 2.6625 22465 0.32670 250 
0.005 0.00203 2.9130 24402 0.32558 250 
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