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ABSTRACT 

Conventional numerical simulation of hydrocarbon reservoirs is 

inadequate for the prediction of bottom-hole pressures at production 

wells. This problem can be overcome by using a special mathematical 

model which combines individual well simulation with reservoir simu-

lation. Severe computational instability is commonly encountered in 

the radial models due to the relatively small grid-blocks and high fluid 

velocities in the vicinity of the well bore. This instability is found to be 

more pronounced during depletion of the reservoir when the pressure near 

the well bore is below bubble-point pressure. A new technique is intro-

duced here for saturation calculations in the critical region near the well. 

This technique is found to be stable for computing saturations in the 

small inner elements of the radial grid. stability is maintained even for 

the simulation of reservoir behavior within a few inches of the producing 

sand face. 

The mathematical model developed in this study was used to predict 

performance of a hypothetical oil field, and these predictions were com-, 

pared to the performance predicted by an areal model. It is suggested 

that this type of model be used for reservoirs where pressure drawdown 



at producing wells is large, and bottom-hole pressure is less than 

bubble-point pressureo 
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I. INTRODUCTION 

Pressures and fluid saturations in a hydrocarbon reservoir may be 

described at any point by differential equations involving reservoir rock 

and fluid properties. Numerical simulation of field performance. is 

accomplished by establishing a reference grid, writing appropriate 

equations for each mesh point, then solving the system of equations by 

a finite difference technique. Since the number of mesh points must be 

finite, there is a necessary assumption that each mesh point is repre­

sentative of a finite segment of the reservoir. Actually, however, 

pressures are not equal throughout such a segment of a producing field. 

This inability of a model to predict pressure variations within an element 

of the reference grid may create problems when the element contains a 

production or injection well. Since the field simulation model yields a 

calculated pressure which is representative of the entire element, this 

pressure is not the bottom-hole pressure of the well. This situation will 

exist even though the well location may coincide with the grid point which 

represents the element. 



This inability of the model to describe variations within small 

segments of the reservoir is not unique to the pressure calculation. 

Fluid saturations computed for a mesh point represent average satura­

tions of a finite segment of the reservoir. Fluid produced from the 

area of the well bore is handled mathematically as if it were withdrawn 

from the entire area associated with a mesh point. Since the conven­

tional finite difference tee hnique does not adequately describe reservoir 

conditions near a well, special mathematical techniques are required to 

handle this problem. 

In this study an approach to the calculation of well performances 

is described. A conventional radial coordinate well simulator was 

2 

first incorporated within a two-dimensional, three-phase, Cartesian 

coordinate reservoir simulation model for those areal blocks that con­

tained wells. These two models were joined mathematically by summing 

the fluxes into the four vertical faces of the grid block in the areal 

model, and considering the total flux for each phase as influx into the 

outer annular ring of the radial well simulator. 

This approach was found to be adequate above bubble-point pressure. 

However, problems arose with respect to gas balance when well pressure 

declined below the bubble point and free gas appeared near the well bore. 

For this situation, the gas-oil ratio calculated from the radial model at 

the innermost cell was higher than that calculated from the corresponding 



areal block. This situation arose because the radial grid elements 

near the well bore were drawn down below bubble-point pressure, 

while the average pressure both in the radial model and in the corres­

ponding areal model block was still above saturation pressure. This 

condition created instability in the radial model material balance calcu­

lation for grid elements near the well bore, where the pressure 

gradients were high and the elements were small. 

In order to eliminate this instability, a modified technique for 

calculating saturations near the well bore was developed 0 The purpose 

of this new technique was to improve the material balance sufficiently 

to avoid the prediction of excessive gas production by the radial simu­

lation model. It is shown later in this work that the new technique 

3 

will theoretically achieve a perfect material balance. However, machine 

round-off errors and the use of estimated implicit coefficients prevent 

the attainment of this ideal. 

The method of simulation which was developed was tested using 

data from a hypothetical petroleum reservoir under natural depletion 

drive. The results of this study are discussed in a later section. 



II. LITERATURE REVIEW 

A mathematical petroleum reservoir simulation model may be used 

to represent the behavior of individual wells or complex petroleum 

1 2 3 
reservoir-aquifer systems. ' ' Several methods have been employed 

for predicting well bottom-hole pressures from the results computed by 

numerical reservoir simulators. Mesh point pressures computed by 

these simulators have been used to a limited extent as bottom-hole 

4 
pressures. However, this technique has always been considered in-

adequate because of the known lack of resolution in areal models. A 

somewhat more useful technique is to reduce permeability at mesh 

points corresponding to producing wells so that computed pressures 

equal measured bottom-hole pressures. This method can be expected 

to give consistent results only when a single fluid phase is flowing. 

4 

Another method which has been suggested is that pressure dis­

tribution be represented by means of piecewise-polynomial approximations? 

The technique involves the use of high order polynomials to represent 

the immediate vicinity of the well bore, and lower order polynomials to 

represent points more remote from the well. 
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Another procedure which has been used with some success is the 

estimation of bottom-hole pressure by extrapolation of pressures from 

grid blocks adjacent to the block in which the well is located. The 

extrapolation is calculated by Darcy's law written in radial form and 

integrated for steady-state conditions. Although the technique is 

satisfactory for some applications, it can lead to erroneous results 

for some cases. For example, the method does not give correct re-

sults when pressure immediately adjacent to the well bore is drawn 

down below the bubble point. This condition may generate a gas 

saturation in the vicinity of the bore hole which is not accounted for 

by the extrapolation. Since the increase in gas saturation reduces 

relative permeability to oil, a bottom-hole pressure that is too high 

will be predicted. 

6 
van Poolen, Breitenbach, and Thurneau developed a method for 

comparing pressures calculated by a numerical simulation model with 

observed field pressures. The technique used a pressure build-up curve 

obtained from field measurements to locate the point in the reservoir 

which grid pressure in the model actually represents. 

Individual well simulation has been discussed by several investi-

gators. This type of simulation employs a radial model for the specific 

purpose of studying water or gas coning problems. Such a model simu-

lates only that portion of the reservoir associated . with a single well, 
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and it does not integrate the well simulation model with the field model. 

Coning models are inherently less stable than areal models, and this 

problem of stability has been discussed by several authors. 

7 
Welge and Weber presented a paper on water coning which 

recognized the limitation of explicit coefficients. In order to overcome 

the problem, these authors applied an arbitrary limitation on the maxi-

mum saturation change during a time step. While this method is 

workable for certain classes of problems, it is not rigorous and is not 

generally applicable. The severe computational instability which is 

commonly encountered in the simulation of coning is due to the combi-

nations of high fluid velocities and small pore volumes in grid elements 

near the well bore. Blair and Weinaug
8 

further explored the problems 

resulting from explicitly determined coefficients and formulated a coning 

model which used implicit coefficients and mobilities obtained by an 

iterative procedure. This technique resulted in a significant improve­

ment in stability. McDonald and Coats, 
9 

and Letkman and Ridings
10 

verified the Blair and Weinaug technique and reported a new method for 

calculating saturations which utilizes fully implicit equations. They also 

emphasized the need for including implicit mobilities in the production 

term. These investigators showed that better stability and convergence 

could be obtained by this fully implicit method. 

There have been two papers presented which examine detailed 
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behavior of individual wells in a multi-well reservoir simulation model. 

M ky d R .d. 11 t d th et• al h hi h ed rosovs an _ 1 1ngs preserr e a eor 1c approac w c us 

a two-dimensional, radial well simulator within a three-dimensional 

reservoir simulation modelo 
12 

Akbar, Arnold, and Harvey presented 

a technique for computing bottom-hole pressure by incorporating a one-

dimensional radial well simulator into a two-dimensional areal reservoir 

simulation model. The present research work is an extension of this 

study. 



III. DEVELOPMENT OF THE MODELS 

A general discussion of the criteria used for developing the con­

ventional areal and radial models used in this study is presented in this 

chapter. Detailed development and derivations have been relegated to 

the appendices. This chapter includes discussion of the mathematical 

basis for development, the boundary conditions, the production and 

injection terms, and the methods of solution. 

A. Mathematical Description of the Models 

8 

Both the areal and the radial models are three-phase numerical 

simulators. The mathematics developed accounts for effects of capillary 

forces between the oil and water phase~, reservoir heterogeneity, and rock 

and fluid compressibilities. 

1. Areal Reservoir Model 

The areal model used in this study is a two-dimensional simulator which 

accounts for effects of gravity, a:ni;sotr.opy, and structural dip in addition to those 

effects mentioned earlier which are applicable to both models. As illustrated 

in Figure 1, the grid system which was used provides for variable spacing. 

The development of the mathematical basis for calculating pressures and 
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l 

~ Block Center 

e Production Well 

Figure 1. Grid Pattern for the Areal Simulation Model 
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saturations for this model follows. 

Pressure Computation. The pressure calculations in the areal 

model are made by solving a finite difference equation based on the 

partial differential equation which is derived in Appendix B-1. 

({3 - {3 R ) V • ( :\ V<P ) + {3 \1 • (:\ V<P ) 
o gs o o w w w 

+ {3 \1 • ( :\ \1 <P g) + {3 V · ( :\ R \1 ¢ ) - QT ERM 
g g g 0 s 0 

s {3 s s I 
0 

h ¢ (C + C S - {3 
r w w {3

0 
o 

_g I _g:__£ I 2.£. 
f3 f3g + f3 Rs) at·· ..... . .. (1) * 

g 0 

An implicit finite difference approximation to Equation (1) is: 

n+1 n+1 + Qn+1 n +1 
({3 -{3 R ) ( {). T {). ¢ ) JJ ( {). T b. <P ) 

0 g S • • X 0 X 0 • • W. . X W X W •. 
1,] 1,] 1,] 1,] 

+ 
n +1 n+1 Qn+1 T n n +1 

{3 ({). T ) JJ ( o. ) g. . X g /).X¢ g. . + g. . ~ 0 S /).X¢> 0 •. 
1,J 1,J 1,] 1,] 

n+1 n+1 "' )n+1Qn+1 + ({3 - {3 R ) ( {). T {). ¢ ) + ( {). T ~ '¥ fJ 
0 g s . . y 0 y 0 • . y w y w . . w .. 

1,] 1,] 1,] 1,] 

+ {3n + 1 ( {). T {). <P ) n + 1 + {3n + 1 ( {). T R {). <P ) n + 1 
g. . y g y g . . g. . y 0 s y 0 . . 
1,] 1,] 1,] 1,] 

* All symbols are defined in Nomenclature. 
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- QTERM~+.1 
I,J TR~'~ 1 

6 tp .............................. (2) 

Rearranging Equation (2) yields the following set of equations: 

~+1 n+1 _ _n+1 _ _n+1 n+1 n+1 
A .. P. 

1 
. + (BX. . + BY. . - TRM .. ) P .. 

I,] I- ,J I,] I,] I,J I,] 

_ _n+1 n+1 
+ ex .. P. 

1 
. 

1,] I+ ,] 

_ _n+1 n+1 n+1 
+ AY . . P .. 

1 
+ CY .. P .. 

1 1,] I,J- I,] l,J+ 

~+.1 - TR~+.1P~ ...................... o •••••••••••••••••• (3) 
I,] I,] I,J 

i 1,2, ... , M 

j = 1, 2, ... , N ... 

The coefficients appearing in Equation (3) are defined in Appendix B-2. 

Derivations of Equations (2) and (3) are presented in Appendix B-2. 

Equation (3) is written about each point in the two-dimensional 

reference grid. Thus a total of (MxN) equations are obtained. Appli-

cation of appropriate boundary conditions reduces the number of unknown 

quantitites to (Mx:N). In matrix notations, the resulting set of equations 

may be written 

AP D ........•...•.....•....•....•....•....•.. (4) 

where P is the solution vector, D is the vector of known parameters, 
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and A is an (MxN) 
2 

penta-diagonal matrix of coefficients. Since the 

implicit coefficients are known, the system may be solved as a set of 

linear equations. The techniques used are discussed in a later section 

of this chapter. 

Saturation Computation. Each phase saturation in the areal model 

is calculated separately and explicitly using its respective flow equation. 

These equations are derived in Appendix B-4, and are written for oil, 

water, and gas respectively, as follows: 

sn+l 
o .. 
1,J 

~+1 
w .. 

1,] 

sn+l 
g .. 
1' J 

= 

= 

_ _n+l _ _n+l 
(AMOX. . + A.MOY .. 

1,] 1,J 
QOTn. +_1 + __n n+1 ~ ) /COMPRO .. o ••••• (5) 

1,J o. . 1,) 
1,) 

_ _n+1 _ _n+1 n+1 + sn I n+1 
(AMWx .. + AMWY .. - QWT. . ) COMPRW ...... (6) 

1,J 1,) 1,J W. . 1,) 
1,J 

-~+1 _ _n+1 xn.+1 ~+1 
(AMGX .. + AMGY .. + AMSG .. + AMSG .. 

1,J 1,J 1,J 1,) 

n+l n+1 __n n+l 
- QGT. . - RST. . + ~ )/COMPRG ................... (7) 

1,) 1,] g. . 1,] 
1,) 

The terms in Equations (5), (6), and (7) are derived and defined in 

Appendix B-4. The saturations are calculated sequentially after the 

pressures and the terms containing implicit potential gradients. There 

are (MxN) equations which must be solved. However, each equation 
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contains only one unknown quantity, and the calculations are explicit 

in nature even though the coefficients appear as implicit quantities. 

This computation is discussed in a later section of this chapter. 

2. Radial Model Well Simulator 

The well simulator is a one-dimensional, three-phase, radial coor-

dinate model. The grid system used is shown in Figure 2. One of these 

models is assigned to each of those wells which has been selected for 

detailed analysis. 

Pressure Computation. The unsteady-state radial model flow 

equation (which is derived in Appendix C-1) may be written as follows: 

a~ a~ 
1 a . o 1 a , w 
-({3 -{3 R )- (r A --) + -{3 - (r 1\ --) 
r 0 g s ar 0 a r r w a r w a r 

r r 

a~ ~ a~ 
1 a r::r 1 o o 

+ - {3 ~ (r A · ---") + - {3 - (r A R --) - QT ERM 
r g (j r g a r r g ar 0 s a r 

r r 

s s {3 s . 
o ' _g ' ~ ' aP ¢ (C + S C - - {3 - {3 f3 + {3 Rs) ~ .................. (8) 

r w w {3
0 

o g g 
0 

o 

An implicit difference approximation to Equation (8) is 

1 n+1 
[ (/3 - {3 R ) ( ~ T 

r o gs. ro 
1 r 

~ ~ n+1 + 13n+1(~ T ~ ~ n+1 
r o). w. r w r w). 

1 1 r 1 
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tfl+1 ( ~ T ~ q, )n+1 + {:f+1 ( ~ T R ~ q, )n+1 
g. r g r g . g. r o s r o 

1 r 1 1 r 

- QTERM~+1 

1 
TRn. +1 ~ p 

1 t oooooooooooooooooooooooooooooooooo(9) 

Rearranging Equation (9) yields the following: 

n+1 
D. oooooooooooooo(10) 

1 

i 1,2, ... , I. 

The coefficients of Equation (9) are derived in Appendix C-2. This 

equation is written for each of the radial grid blocks which comprise 

the radial well simulator. Thus a total of I equations are obtained. 

Application of appropriate boundary conditions reduces the number of 

unknown quantities to I. In matrix notation, the resulting set of equations 

may be written 

AP D ••......•............•..•.••...........•...... (11) 

where P is the solution vector, D is the vector of known parameters, 

and A is an (Ixl) tri-diagonal matrix of coefficients. It is assumed that 

the implicit coefficients are known; therefore, the system can be solved 

as a set of linear equations. The solution of Equation (11) is discussed 

later in this chapter. 
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Saturation Computation. Each phase saturation in the radial 

model is calculated by relationships similar to Equations (5), (6), and 

(7) written in radial form. This type of calculation is used for radial 

cells from L+1 to I as shown in Figure 2. A modified saturation com-

putation is used for radial cells 1 to L. This is the region of instability 

in the standard radial model. This method is a new approach to the 

stability problem and is discussed in detail in a later chapter. 

B. Boundary Conditions 

Closed boundaries are assumed for the areal simulator. These 

boundary conditions are satisfied by setting the potential gradients at 

the boundaries equal to zero. As illustrated by Figure 3, this condition 

is represented by setting the value of potential in an adjacent dummy 

block equal to the value of potential in the adjoining boundary block. The 

"no-flow" boundary requirement is satisfied by assuming that each dummy 

block has the same dimensions and the same rock and fluid properties 

as the adjacent grid block. Substitution of these conditions into 

Equation (3) yields the following values for the coefficients AX, CX, A y 

and· CY at the boundaries: 

AX1 . CXM. = 0 j 1,2, .... , N 
'J 'J 

AY. 
1 CY. N 0 i 1, 2, .... ' M. 

1, 1, 

This method of specifying boundary conditions is a standard approach 
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Boundaries of Dummy Blocks 

Figure 3. Boundary Elements of the Areal Model 
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which is used in most reservoir simulators. 

Closed boundaries are assumed for the radial well simulator, and 

the principle described above is applied in the same way as for the 

areal simula1fon model. Figure 4 illustrates the grid arrangements used 

for the radial model. These boundary conditions cause the coefficients 

AR1 and CRl in Equation (10) to vanish. The resulting matrix equation 

has I unknowns and I equations. 

The closed boundaries which have been assumed may appear in­

compatible with the .fluxes shown crossing the boundaries in Figure 4. 

However, these fluxes are included as injection or production terms. 

This approach, which combines injection and production terms with 

closed boundaries, is mathematically identical to the open boundaries 

shown in Figure 4. This approach is used with the radial well simulator 

and is discussed in the following section of this chapter. 

C. Production and Injection Terms 

The total production rates for each component in the areal and 

radial models must be equal. This is part of the validation criteria 

discussed in Chapter V. However, it should be noted that since the 

models are linked mathematically , the production rates calculated for 

the radial model well simulator are also used in the areal simulation 

model. 
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The combined production term (QT ERM), as defined in Appendix 

B-2, and Appendix C-2 may be different in the radial and areal models, 

even though the total rates including solution gas are the same. This 

situation can occur because pressures and solution gas content may be 

different for the simulators. The actual production terms used are 

derived in Appendix B-1 and Appendix B-2, respectively, for the areal 

and radial models. These terms contain rates of production for all 

mobile phases. In accordance with the convention defined in deriving 

the equations, fluid production has been considered to be positive in 

algebraic sign, and fluid injection has been considered negative. 

In the simulation of an actual reservoir, oil production rates 

would be determined primarily by field operating conditions. In this 

study a constant oil production rate was specified and pressure at the 

sand face was calculated based on 

. r1 
q {3 -lJ In(-) 

p -
1 

o o o r 
w ••••. • ..•.•..•••••••.•.••.•.•..•• ( 12) 

27r(KhKr ) 
0 1 

where P sf is sand face pressure, 

and the productivity index was calculated using the equation 

PI == == 

27r(KhKr ) 
0 1 

r1 
{3 1J In(-) 

o o r w 

.•..••.•.••.•..•....••.•.•.•• ( 13) 
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The oil production rate remained constant until P sf reached a minimum 

pressure. Thereafter, P sf was held constant and the well produced at 

capacity according to 
27r(KhK ) 

r 
0 1 

r1 
{3 l.l ln(-) 

o o r 

(P
1 

- P m) •........••.••.. (14) 

w 

where P is a minimum pressure. The total gas production rate was calcu­
m 

lated in this study from the oil rate, the mobility ratio o_f gas to oil, and the 

solution gas content at the innermost cell of the radial simulator. The pro-

duction term used in the models contains only free gas rate. Therefore , 

radial free gas production was adjusted for the areal simulator in such a way 

that total gas production rate will be the same from both models; this adjust-

ment is necessary to satisfy the Law of Mass Conservation. The adjustment 

was made by the following equation: 

q 
g .. 

1' J 

(R 
s .. 

1,J A 

- (R ) ] 
s1 

R 

q ............. (15) 
o .. 

1,] 

Water production rates were calculated from the oil production rate and 

the water-oil mobility ratio. No adjustment to equalize water production 

in the two models was required, since water breakthrough did not occur 

during the study. According to the theory which has been developed , 

water production predicted by the two models should be equal. 

For production wells, the production term in the radial model 

was obtained by summing the fluxes for each phase at each of the four 
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vertical faces of the areal block which includes the well. This scheme 

is illustrated by Figure 50 These fluxes were used to calculate the 

overall flux term in the radial model which was applied at the outer 

annular ring as illustrated by Figure 4. The only adjustment necessary 

for these fluxes between models was a change of sign. The fluxes from 

the areal faces are positive for a producing well and were changed to 

negative quantities to indicate injection into the radial model. No 

further adjustments were required, since these fluxes were carried as 

mass rates rather than volumetric rates. 

D. Solution of the Numerical Simulators 

Equation (3) represents a set of simultaneous equations where 

pressure at each point is unknown. Several methods were investigated 

to determine convergence rate and stability. A method which was found 

to converge rapidly even for highly heterogeneous reservoir conditions 

was the combination of Anr
13 

and pressure residual relaxation method, 
14 

as illustrated in Appendix B-3. Fluid and rock properties used in the 

coefficients of Equation (3) were calculated at the new time level tn+ 1 

l hn
. 15 

based on a linear extrapo ation tee 1que. Each phase saturation in 

the areal model was calculated using Equations (5), (6), and (7) 

explicitly. 

Equation (10) is the pressure equation for the radial well simulator, 

and Equation (11) is the matrix notation for Equation (10). The coefficient 
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matrix A is tri-diagonal in form; it was solved for pressure by Gaussian 

elimination. Rock and fluid properties used in forming the matrix 

n+l 
coefficients A were evaluated at the new time level t by linear extra-

polation. Each phase saturation for each radial cell from L+ 1 through I 

was calculated using equations similar to Equations (5), (6), and (7), 

but written in radial form. 



IV. NEW TECHNIQUE FOH SATURATION CALCULATION 

(DYNAMIC APPROACH) 

The method presented here for calculating saturations was used in 

the small annular rings of the radial model which are near the well 

bore. The technique avoided the stability problems usually encountered 

in radial simulation models. A standard radial model was used for 

pressure calculations. These computations were also stable, since the 

technique used avoided material balance errors which cause instability 

in the pressure calculations. 

25 

The technique for calculating saturations employed a one-dimen­

sional, three-phase radial coordinate simulation model. It assumed 

unsteady-state flow conditions and accounted for the effects of rock and 

fluid compressibilities as well as relative permeability. The equations 

presented later in this chapter were used for the saturation computations; 

their derivations are presented in Appendix D. The geometric con­

figuration of the simulation grid is illustrated by Figure 6. 

The fundamental concept on which the saturation calculation was 

based is that material balance must be maintained. A derivation of the 
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material balance equations used in this study is presented in Appendix D. 

Although these equations are somewhat complex, the concept of the 

material balance can be readily illustrated without use of mathematics. 

For example, the material balance for total gas must satisfy the following 

statement of the law of mass conservation: 

(gas in) + (gas in place at the old time level) - (gas produced) 

(gas in place at the new time level) .................. (16) 

where total gas is defined as the sum of free gas and solution gas. 

Although the relationship expressed by Equation (16) is self-evident, 

it is not always satisfied by standard computational techniques throughout 

the simulation model. The source of this problem lies in the vast 

difference in the sizes of the grid elements within the radial model. For 

example, the innermost radial element might contain only 0. 001 percent 

of the total pore volume of the radial simulator. The minute sizes of 

the inner grid elements brings about a situation in which the standard 

flux balance for these elements is influenced more by machine round-off 

error than by changes in saturation. Thus, the saturations calculated 

are entirely meaningless; they are often negative or greater than one 

hundred percent. These errors lead to unstable pressure calculations 

in the standard radial model. 

The new method utilizes a dynamic concept which calculates first 
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the gas-oil ratio required to maintain the mass balance for gas in the 

entire radial model. In terms of Equation (16), the unknown parameter 

is considered to be gas produced. Accuracy of the first estimate of 

implicit gas saturations for the innermost grid elements is of little 

importance, since the pore volume of these radial cells is negligible 

when compared with the total pore volume of the model. Therefore, the 

round-off error which causes instability in the standard calculations is 

not troublesome in the dynamic approach. 

After calculating gas-oil ratio, the gas-oil relative permeability 

may be determined. This ratio is computed by the following equation: 

K _g n+1 
( K ) 

0. 
1 

{ G. 
1n 

1 
+--

~t 

L 
r 

k=i 

s s "R 
n P" o s n 

PV (--'Z. + --) ] 
{3 {3 k 

g 0 

1 
~ t 

L 

r 
k=i 

s 
n+1 _g + 

PV ( {3 
n+1] 

) k 
n+1 n+1} R q 
s. o. 

].1 {3 
g g n+1 

( -q-].1~{3..__) 
0 0 0 

i 

g 1 1 

••••.••.• • ••.•.•••••••.••••••••••. ( 1 7) 

i 1,2, .... , L 
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(PV)S n+1 
q 

o. 1 I+ 

n+1 +_a_ 
qo at 

i 
[

. 0 ] 

{3 ••••••••••••••••••••• (18) 
0 i 

Gas saturation may n0w be computed, since 

s 
g 

s 
g 

> s ................... 0 ••• (19) 
gc 

The relative permeability for each phase was assumed to be a 

function of the phase saturations. Therefore, the function describing gas 

saturation in Equation (19) varies with both gas and oil saturations. The 

complexity of these relationships is such that it was not feasible to ob-

tain a direct solution for S • Therefore, an iterative approach was used 
g 

to obtain gas saturation. 

Water influx into the well was not studied, and the complications 

arising when three phaS6a·s flow into the radial model were not examined. 

Therefore, the solution of Equation ( 19) was sufficient to specify all 

three saturations for the system which was examined. In this study 

water saturation remained at its irreducible value, and oil saturation was 

computed by requiring that the sum of the three saturations be unity: 

sn+l 
o. 

1 

= 
n+l 

1 - s -
g. 

1 

n+1 s ............................... (20) 
W. 

1 



The solution scheme required that the saturation in the first 

block be calculated initially by Equations (17) and (19), on the basis of 

the oil production rate into the well bore. The gas flux in, G. , was 
In 

computed from the standard radial model and was the total gas entering 

its inner block from the adjacent block. This gas flux was calculated 

from upstream relative permeabilities. The inner grid element was 

relatively large in the standard radial model, and it was subdivided 

logarithmically to form the grid system for the dynamic model. This 

scheme is illustrated in Figure 6 . . 

After the saturations were calculated in block 1 of the dynamic 

model, the oil production rate was adjusted for accumulation using 

30 

Equation (18), and transferred to block 2. Oil and gas saturations were 

then calculated for block 2. 

This procedure was repeated sequentially through block Lo The 

technique has been shown by tests described in this study to be a stable 

method for computing saturations in the small inner elements of the 

radial grid. Stability was maintained even for the simulation of reservoir 

behavior within a few inches from the producing sand face. Pressure at 

the sand face was calculated by extrapolation using Equation (12). 
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V. VALIDATION CRITERIA 

Since the radial model represents a rectangular grid block in the 

areal model, it was necessary to establish criteria for equivalence of 

the two systems. One criterion which was selected is that the pore 

volume of the radial model must equal the pore volume of the rec-

tangular block. Since the porosity and bed thickness in the radial 

model equal the corresponding terms in the areal model, the external 

radius of the well simulator was calculated by 

r e = v!J. xi!J. Y/1T ...................................... (21) 

The effect of relative sizes of t:.x. and 1::. Y. on accuracy of the 
1 ) 

simulation has not been investigated. However, since the circular shape 

of the radial model correspmds more closely to a square than to a 

rectangle, this study was made with 1::. x. = 1::. y. for grid blocks which 
1 ) 

contain wells in the areal reservoir model. The use of square grid 

blocks near producing wells is consistent with conventional modeling 

techniques. If is customary to utilize rectangular grid spacing 

only for representation of the reservoir system at points remote 
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from the area of primary interest 0 

Another criterion which was selected to as sure correspondence of 

the two models is that the volumetrically weighted average pressure 

within the radial model must equal the corresponding block pressure in 

the areal model. Since accumulated round-off error could eventually 

cause a discrepancy in pressures calculated by the two models, pressures 

in the radial model were automatically adjusted to maintain the desired 

equivalency with areal model pressure. These small adjustments were 

made without altering the pressure gradients calculated by the radial 

model. These adjustments were based on the following equations: 

The volumetrically weighted average pressure ( P R) for the radial 

model was calculated by 

I 
PV.S P. 

1 o. 1 
r 1 

f3 
i=l o. 

1 

I 
r 

PV.S 

i=l f3 

1 o. 
1 

o. 
1 

• ••••••••• 0 ••••••••••••••••• (22) 

The term PMP is the difference between P R and the block pressure 

of the grid that contains the well in the areal model. This difference 

was substracted from each pressure in the radial model. This procedure 

is shown by the following .two equations: 
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PMP (P. . ) .•..•.•..•.•....•..•....••.•.•..• (23) 
I, J A 

and (P.)k+l 
1 

R 

k 
(P.) - PMP •...•.•..••••.••.•....•.•..•••• (24) 

IH 

where the subscripts A and R denote areal and radial models, respec-

tively. Following this adjustment in the radial model, it was essential 

to reduce pressure residuals in Equation (10) by the residual relaxation 

method discussed previously. The saturation computations were begun 

after the radial model pressure residuals were reduced to an appropriate 

level. 

If the radial model is to represent the system predicted by the 

areal simulator, then the fluid fluxes must be the same for both models. 

This condition was achieved by summing the fluxes into the four vertical 

faces of the grid block in the areal model, and considering the total 

flux for each phase as influx into the closed outer boundary of the radial 

model, as was discussed in Chapter III. It should be noted that small 

errors in calculating pressures in the areal model may invalidate the 

flux calculation. Therefore, the pressure residuals in the areal model 

were reduced to a low level. 

Gas production rates from the radial model were then determined 

by gas-oil mobility ratio relationship, and production rates for this 

model were compared with corresponding production rates predicted by 
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the areal model. If these rates were found to differ significantly 

between the two models, areal model pressure calculations were repeated 

using production rates calculated by the radial model. This iterative 

process was repeated until the two models predicted the same fluid 

production rates. Convergence was usually obtained with one iteration. 

It should be noted that instability occurs only when the radial model 

calculation becomes somewhat unstable and predicts high gas saturation. 

It has been found that the dynamic saturation calculation method corrects 

this situation. 

It should be noted that the method of computation can lead to an 

ambiguous situation. The radial model may predict production of free 

gas while the areal model indicates that the block pressure is greater 

than bubble-point pressure. This situation arises because the areal 

model fails to provide an adequate simulation of reservoir conditions 

near the well bore. The problem was handled by two different methods , 

and both methods gave good results. The first method handled the 

problem by comparing free gas production predicted by the two models. 

Any excess gas predicted by the radial model was considered as addi-

tional solution gas production in the areal model. Since the material 

balance must be maintained in each model, R in the areal model was s 

reduced to account for this excess gas production. 

The s·econd method handled the problem by c0mparing the 

total gas in the grid block of the areal model with the total gas 
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of all the cells of the radial model. Since accumulated round-off error 

could eventually cause a discrepancy in pressures calculated by the 

two models, gas saturations in the radial model were automatically 

adjusted to maintain equivalency of total gas in the two models. Total 

gas volume error between the two models was also calculated, and it 

was found to reduce with gas saturation adjustments. 

The total gas volume for the areal block (GV A) was calculated by 

PV .. S 
1, J g .. 

PV .. S R 
1, J o .. s .. 

GVA 
[ ____ __.1 ,...,]...._ 

{3 
+ 1,J 1,J ]A 

{3 
.•••.••••.• (25) 

g .. 
1,] 

o .. 
1,] 

Total gas volume for the radial model (GVR) was calculated by 

PV.S PV.S R 
I 1 gi 1 o. s. 

[ 1 1 ] 
GVR r + 

{3 {3 R •...•.••••• • .•• (26) 
i =1 gi o. 

1 

The gas volume error (GVE) between the two models was defined as 

GVE (1 - GVR) X 100 .............................. (27) 
GVA 

The gas saturations in the radial model were adjusted according to the 

equation 
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(S g ) k - GMG •••.••••••.•••••.••••.•••••.• (28) 

iR 

where 

and 

SR 

I 
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i=l 
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PV.S 
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[--~ 
{3 

g. 
1 

SR - (S ) ................................. (29) 
g .. 

1,J A 

+ 

PV.S R 
1 o. s. 

1 1 
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PV .. 
[ 1, J ] 

{3 
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1, J 

PV .. S R 
I,J 0 .. S .. I ___ __;;;,1.l...o, JL-__;:,jl ,~J-

!3 o. 
1, 

] 
A 

A • • • • ••••••••••••••••••.• (3 0) 

The term SR is a pseudo-average gas saturation for the radial model 

which caused the iterative adjustm_ent shown by Equation (28) to converge 

to the correct value. As pointed out earlier, the convergence criterion 

is that both models contain the same total gas mass. 

After each gas saturation adjustment, oil saturation was also ad-

justed, and pressure adjustment calculations discussed previously were 

also repeated. This iterative process was repeated until the gas volume 

error (GVE) was reduced to a very low level. It was found that con-

vergence was rapid, and the maximum number of iterations was approxi-

mately five. 



A flow chart describing the sequence of calculations is presented 

in Appendix F. 
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VI. APPLICATION OF THE MODEL 

This chapter describes in the first section the types of models 

used in the study. This is followed by a presentation and discussion 

of the results obtained by the test models. 

A. Description of Test Systems 

38 

The model was applied to a small hypothetical oil field as shown 

in Figure 7. Rock and fluid properties and well data are described in 

Appendix E. The reservoir is homogeneous, isotropic, and uniform in 

thickness. As illustrated in Figure 7, development consists of two pro­

ducing wells and sufficient dry holes to define the limits of the oil field. 

The field is divided into one hundred grid elements (10 x 10). Each 

element is square with ~ x = ~ y = 528 feet. 

Water and oil saturations were initially distributed according to the 

capillary pressure curve, shown by Figure 4A in Appendix E. The 

reservoir was initially above bubble-point pressure. Both grid sections 

containing producing wells were taken for a detailed well analysis. Each 

well was assumed to be in the center of the areal block, and was repre­

sented by a radial model which was divided into fourteen radial cells. 
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Fine grid spacing was used near the well bore to obtain better definition 

of pressure and saturation profiles in this critical region. This was 

done by dividing the first five cells into logarithmic increments, in­

creasing in size away from the well bore. The outer nine grid elements 

were divided into equal increments of 6 r. The dimensions of these 

increments are listed in Appendix E. 

It was assumed that each well would produce at an allowable rate 

of 197 barrels per day until bottom-hole pressure was reduced to 200 

psia. Thereafter, bottom-hole pressure was held constant at 200 psia , 

and the wells produced at maximum capacity, which was calculated by 

the standard approach discussed in Chapter III. 

In order to compare results obtained by the dynamic material 

balance technique with those obtained by standard approaches, three test 

models .were used for the same field. The first test was made with a 

standard radial model simulating well performance in the areal model. 

The second was made by including the dynamic technique in the radial 

model near the well bore. A third test was made using only an areal 

model with bottom-hole pressure calculated from Darcy's law in radial 

coordinates . 

In addition to the three tests described above, another test was con­

ducted to study the capability of the well simulator to obtain pressure build-up 

data. This procedure tests the validity of the unsteady-state model 
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and yields a basis for matching field :results. This test was conducted 

by closing well No. 1 at the sand face and allowing the fluxes at the 

outer faces of the areal model to continue to flow into the well simulator 

for a short period of time (0. 001 day). 

The comparison tests for the three models indicated that results 

were different for each model. The combined areal and standard radial 

model was not sufficiently stable to produce conclusive results. The 

simulation of well bore effects using the combined areal and radial 

models with the dynamic material balance technique yielded results 

which differed from those obtained with the standard areal model, which 

has no capability of accounting for the reduction of oil permeability near 

the well bore. The simulated pressure build-up test was also successful. 

These results are described in the following sectiono 

B. Results 

The three tests referred to in the previous section each consisted 

of several computer runs made with the corresponding simulation systems. 

Test No. 1 refers to those results obtained using the combined areal­

standard radial model system. Test No. 2 consists of results obtained 

from combined areal-radial-dynamic material balance model system; 

this system is referred to hereafter as the dynamic model. Test Noo 3 

was made with the ar-eal model only, using Darcy's law to calculate 

bottom-hole pressures in the well. The other test on pressure build-up 



referred to in the previous section was actually a part of Test No. 2; 

it is discussed separately as the pressure build-up test. 
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Results for Test No. 1 are presented in Tables I through III for 

three different runs made with this model. The results of this test con­

sist only of values of stability criteria used in the study. These are 

presented to show how a standard approach failed to simulate bottom­

hole pressure. These runs were conducted with various inner block 

sizes and various time steps. The results of run No. 1 are presented 

in Table I. These results were obtained with an inner block radius (r 
1

) 

of 1. 7 feet and a time step size of 0. 01 day. Instability of gas 

saturation appeared at 0. 34121 year, and the material balance became 

unstable thereafter. The time step size was reduced in order to improve 

stability, and a stable solution was found with 6 t = 0. 0001 day. Table 

II shows the results of the second run which was made with a larger 

inner block radius of 14. 7 feet and with a time step of 2 days. Instability 

in gas saturation was apparent at 0. 5593 year, and the sum of saturations 

in the inner blocks became approximately 95. 5% and fluctuated thereafter. 

The time step size was decreased and a stable solution was obtained for 

a time step of 0. 01 day. 0 Table III presents the results of the third run 

with an inner block radius of 45 feet and a time step of 6 days. Signs of 

instability appeared at 0. 9781 year. A stable solution was found with a 

time step of 4 days. other parameters shown in the tables are defined 

immediately after Table I. These parameters are validity criteria 



Time, 
Years 

0.1091 

0. 3411 

o. 34112 

0.34115 

o. 34118 

0. 34121 

0. 34123 

o. 34126 
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TABLE I 

Results of c_ombined Areal and Conventional Radial Models 
for r

1 
= 1.7 feet and ~t = 0.01 day 

Gas Satura-
tion in Pro· GVE* GMG* PMP* fum of 
ducing % % Psia Saturations 
Block o/n 

0.0 0.0000189 -0.0000754 - 15.0 0.9975 

5.71 -2.226 0.00853 - 34.0 1.0293 

6.53 -1.074 0. 0041211 25.5 0.9766 

11.19 0.6819 -0.002397 15.0 1. 0294 

14.48 -1.4360 0.005488 - 32.0 0.9904 

21.41 1.362 -0.005224 -184.0 1.0373 

-11.2429 -9.290 0. 035625 328.0 0.0162 

-39.69 3.476 -0.013310 165.0 -3.6135 

* The following equations describe the parameters GVE, GMG, 
and PMP that are listed in the Table. 

GVA = PV .. [S /{3 
1, J g. . g .. 

+ S R /{3 
o .. s. . o .. ] Areal 

GVR 

GVE 

l,J l,J l,J l,J l,J 

I 
r 
i =1 

[PV.S /{3 + PV.S R /{3 ] 
Radial 1 g. g. 

1 1 

(1. - GVR/GVA) x 100 

I I 

1 o. s. o. 
1 1 1 

where, GVA = total gas volume in the 
areal block 

G VR = total gas volume in the 
radial model 

PMP = I: [ (PV.S P./[3 )/ I: (PV.S /[3
0

) J R - (P .. ) A 
. 1 1 0. 1 0. . - 1 1 0. 1. 1' J 
1 = 1 1 1- 1 



TABLE II 

Results of Combined Areal and Conventional Radial Models 
for r

1 
= 14.7 feet and 6 t = 2 days 

Gas Satura-
Time, tion in Pro GVE GMG PMP 
Years ducing % % Psia 

Block,% 

0. 3251 0.0 -0.0000186 0.00000112 - 0.06732 

0.4132 5.3 0.00972 -0.000763 0. 5321 

0.5593 28.43 6.86 -0.002397 18.4828 

0.5647 76.15 -6.338 o. 002238 16.344 
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Sum of 
Saturation 

1.0000 

1. 0024 

0.9941 

0.9951 



Time, 
Years 

0.4011 

0.4285 

0. 4421 

0.4832 

0.7019 

0.896 

0.9616 

0.9781 

0.9945 

1.010 

1.027 

1. 043 

1.0598 

1.0762 

1.0926 

TABLE III 

Results of Combined Areal and Conventional Radial Models 
for r 

1 
= 45 feet and 6 t = 6 days 

Gas Satura-
tion in Pro- GVE GMG PMP 
ducing % % Psi a 

Block,% 

0.0 -0.0001907 0.00001151 -1.32079 

0.7 -0.08401 0.00001261 -0.004083 

1.0 -0.10938 0.00003981 -0.00535 

1.7 -0. 16345 0.0000673 -0.0081526 

5.3 o. 009924 -0.000561 5.8757 

7.8 2.5884 -0.009723 38.22 

10.2 1.47948 -0.00574 26.46 

30.16 6.85573 -0.02674 99.9 

54.65 -0. 74377 0.002905 -19.8 

31.17 6.515 -0.02548 92.6 

42.45 2. 4201 -0.009477 13.4 

60.54 0.8116 -0.003182 17.5 

56.62 0.2607 -0.001023 6.2 

62.73 0. 9236 -0.003632 18.3 

-206.9 239.8 -0.9482 f-3405. 

45 

Sum of 
~aturation~ 

1.00000 

1.0000 

1.0000 

1.0000 

1. 0003 

1.0059 

1. 0019 

0.9979 

1.0001 

0.9977 

1.0017 

0.9996 

0.9997 

1 . 0000 

-1.4323 
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that indicate accuracy of the linkage of the well simulator with the 

corresponding areal block; they are also indicators for material balance 

stability in the radial model. These criteria were poor for Test No. 1, 

and this approach was abandoned because of the lack of resolution of the 

method, which results from the large block sizes. Furthermore, the 

method is computationally inefficient because of the small time steps 

which must be used. The technique is presented here for the purpose 

of compa-ring a combination of standard models with the model built from 

the new concepts in material balance calculations. 

Results for Test No. 2 and Test No. 3 are presented in Table IV, 

and Figures 8 through 16. Table IV shows the results of the dynamic 

material balance approach with an inner radius (r 
1

) of 0. 81 feet and a 

time step of 10 days. As indicated in Table IV, a stable solution was 

obtained for gas saturation, and the deviation of the sum of saturations 

from unity never exceeded 0. 01%. Increasing the time step size to 30 

days did not cause the solution to become unstable. This technique was 

found to be successful in achieving stable material balance calculations. 

These results also indicate that the linkage of the radial and the areal 

models is valid. The greatest deviation between the average pressure 

of the radial model and the corresponding areal block is 1. 115 psi. The 

value occurred only once during the simulation. These deviation values 

can be reduced to any desirable tolerance by the iterative scheme dis­

cussed in the previous chapter. 



TABLE IV 

"Results of Combined Areal and Radial Models using Dynamic 

Approach for r 
1 

= 0. 81 feet and b, t = 10 days 

Time, 
PMP, Psia GMG,% . Years 

0.130 0.0 0.01197 

0. 213 0.0 0.01236 

0.308 0.1526 X 10-4 
0.0177 

0.404 -0.1526 X 10-4 
0.0224 

0.500 -0.1526 X 10-4 
0.00925 

0.609 0.30517 X 10-4 
-0.00826 

0.7185 0.30517 X 10-
4 

-0.00434 

0.8005 -0.1525 X 10 
-4 

-0.00512 

0.9099 0.61035 X 10 
-4 

0.00576 

1.0466 0.3051 X 10-4 
-0.0067 

1.2517 0. 3051 X 10 
-4 

-0.008612 

1.4565 0.12207 X 10-3 
-0.0065709 

1.5522 0.28541 -0.004696 

1.6890 0. 36280 -0.00905 

1.7847 0.41480 -0.00799 

1.9077 0. 47204 -0.006745 

2.0034 0. 51693 -0.005698 

2.2495 0.6323 -0.005842 

2.454 0. 84854 0.0087457 

2.8098 0. 952179 0.006159 

3 ~ · 2063 . 1.115 0. 006227 
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Figure 8 shows the percentage gas volume error (GVE) between 

the linked models as a function of time. It indicates success in linking 

the two models, and it shows indirectly the stability in the saturation 

computation technique used for the radial model. Table IV and Figure 

8 indicate the validity and applicability of such a simulation model to the 

study of individual well performance in a field simulation model. These 

two combined models were used to study well performance for the re­

servoir example described in the previous section. 

Although the same criteria were used to determine reservoir be­

havior for the two methods of simulation (described as Tests No. 2 and 

No. 3), significant differences in predicted reservoir performance were 

observed. As illustrated by Figure 9, the dynamic model (Test No. 2) 

predicts an early build-up in gas saturation near the production wells, 

whereas the areal model (Test No. 3) without the radial simulator does 

not anticipate this effect. Figures 10 and 11 depict the producing bottom­

hole pres sure and productivity index, respectively, as calculated by the 

two types of simulation models. Figure 12 indicates the calculated 

pressure distribution in the vicinity of well No. 1. Oil production rates 

and calculated gas/oil ratio are illustrated by Figure 13 and 14 respec­

tively. As illustrated by Figure 15, the dynamic model predicts a lower 

oil recovery per well than the areal model. 

The result of the simulated pressure build-up test is shown in 
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Figure 8. Calculated Gas Volume Error for Dynamic Model, Well No. 1 
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40 .----------.----------.---------~----------~----------

---Dynamic Model 
t = Years Since Initial Prod. 

35 tl 0.2539 t5 = 1.0847 
----Areal Model in the t2 0.5000 t6 = 1.1558 

30 Combined Models t3 0.7185 t7 = 2. 0034 

t4 1.0737 t8 = 3.0149 
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Figure 9. Calculated Gas Saturation Distribution, Well No. 1 
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Table Vo Figure 16 is the pressure build-up curve for well No. 1 , 

after a production period of 0. 5547 year (4860 hours). 
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These models were run on the IBM 360/50 digital computer. Use 

of the dynamic model increased computation time by approximately 27% 

as compared with the standard areal model. The example used required 

10. 5 seconds of computer time per time step for the areal model , and 

13. 35 seconds of computer time per time step for the dynamic model. 
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TABLE V 

Simulation Data for Pressure Build-up Analysis 

t * + l1 t s p 

Hours 1:1 t Psia 

. 05 97201 1575 

. 50 9721 2154 

1.00 4861 2172 

2.00 2431 2190 

4.00 1216 2221 

8.00 608 2232 

12 . 00 406 2238 

16.00 304 2242 

20.00 244 2245 

24.00 203 2248 

28.00 175 2250 

32.00 153 2251 

36.00 136 2253 

40.00 122 2254 

44.00 111 2256 

48.00 102 2257 

* Flowing time before shut in ts = 4860 hours. 
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VII. CONCLUSIONS 

The following conclusions were reached on the basis of this in­

vestigation: 

1. The validity criteria which were studied showed that it is 

feasible to link a radial model to an areal model for the 

purpose of simulating well performance. 

2. stability tests for a radial model using the dynamic material 

balance approach developed in this work show that this new 

method is stable and accurate for reasonably large time 

steps and for fine grid spacing near the well. 

60 

3. This technique is suitable for commercial use. In this study 

the new model increased computing time by only 27% for two 

wells in a (10 x 10) grid system, and it gave well performance 

information which cannot be obtained by conventional simula­

tion methods • 

4. It is suggested that this type of model be employed to study 

reservoirs where pressure drawdown at producing wells is 
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large, and bottom-hole pressures are less than bubble-point 

pressure. 
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p 

PI 

PV 

p 
w 

= 

APPENDIX A 

NOMENCLATURE 

Cross sectional area normal to the flow direction - cm2 

-1 
Compressibility - atm 

Gas flux rate - cc/sec 

Conversion factor of gravity term - . 00096714 atm/ 
(gm/cm2) 

Thickness - em 

Number of grid elements in r- direction 

Absolute permeability - Darcys 

Phase effective permeability - Darcys 

Relative permeability, fraction 

Number of elemental blocks for dynamic model 

Number of elemental blocks in x- direction 

Number of elemental blocks in y- direction 

Pres sure - atm 

Average pressure - atm 

Productivity index - cc/sec per atm 

Pore volume - cc 

Producing bottom-hole pressure - atm 
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p 
c 

q 

R 

r 

r 
e 

R s 

r 
w 

s 

s 

s 

0 
r 

w 
c 

T 

t 

v 

w 

z 

Greek Letters: 

{3 

' {3 . = 
e: = 

A = 

Capillary pres sure - atm 

Production rate - cc/sec 

Pressure residual - atm 

Radial distance - em 

Boundary radius - em 

Solution gas/oil ratio 

-1 
dR /dP - atm s 

Well radius - em 

Saturation - fraction 

Critical gas saturation - fraction 

Residual oil saturation - fraction 

Irreducible water saturation - fraction 

Transmissibility 

Time - sec 

Darcy's velocity (superficial, q / A) - em/ sec 

Water flux rate - cc/sec 

Vertical direction - em, positive downward 

Formation volume factor - res cc/std cc 

d{3/dP 
Error tolerance 
KhKr/ l-t {3 or KKr/ll {3 
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p 

6 p 

6 r 

6 t 

6 X 

6 y . 

Subscripts: 

A 

b 

g 

i 

in 

j 

k 

0 

out 

R = 

Viscosity - cp 

Density - gm/cc 

Pres sure potential atm 

Porosity - fraction 

Pres sure differential - atm 

Width of radial elemental block - em 

Time increment - sec 

Length of areal elemental block - c m 

Width of areal elemental block - em 

Areal model 

Bubble point 

Gas phase 

Indicating ith elemental block in x or r direction 

Input 

Indicating jth elemental block in y- direction 

Indicating the kth elemental block for the dynamic 
model 

Oil phase 

Output 

Radial model 
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r 

s 

T 

w 

Superscripts: 

k 

n 

Radial direction 

standard conditions of pres sure and temperature 
(1 atm ari.d 60 degrees F) 

Total 

Water phase 

Iteration level 

Time level 
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APPENDIX B 

DERIVATION OF THE TWO-DIMENSIONAL 
THREE-PHASE AREAL MODEL 

The areal model developed here is essentially a conventional 

70 

numerical simulator, which provides for variable grid spacing, variable 

thickness, and accounts for effects of relative permeability, capillary and 

gravity forces, reservoir heterogeneity, anisotrophy, and fluid and rock 

compr es sibilities. 

1. Partial Differential Equations 

The concept employed in describing fluid flow in pbrous media is 

based on the law of mass conservation: 

mass rate in - mass rate out - mass production rate = 

rate of mass accumulation .•............•................ (lA) 

and Darcy's law: v K 
- 'V¢ •••••••••••••••••••••••••••••••••• (2A) 
1J 

Consider three-phase fluid flow through an elemental block in the x and y 

directions as shown in Figure 1A. Apply the law of mass conservation 

to each of the three phases: 



v. 
1n 

y 

q 

v 
out 

y 

Figure 1A. A Typical "Reservoir Elemental Block 
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Oil phase: 

mass rate in (V 
0

A g /{3 
0

). + (V 
0 

A. P 
0 

/{3 
0

). • ••••••••••••• (3A) 
s m s 1n 

X y 

where A is the area normal to the direction of flow; v and V 
o. 

m 
X 

o. ln 
y 

are the oil velocities entering the elemental block in the x and y 

directions, respectively. The oil velocity is defined by Darcy's law as: 

v 
0 

K 
0 

11 
0 

\7<1> •••••••••••••••••••••••••••••••••••••••• (4A) 
0 

mass rate out (V A P /{3 ) + (V A P /{3 ) ••• o •••••••• (5A) 
0 0 0 t 0 0 0 t s ou s ou 

X y 

where V and V are the oil velocities leaving the elemental block 
0 t 

0
out ou 

X y 
in the x and y directions, respectively. The mass rate out can be defined 

in terms of the entering mass rates and the change in mass rates within 

the block as follows: 

(V A p /{3 ) 
0 0 0 t s ou 

X 

(V A p /{3 ) 
0 0 0 t s ou y 

The oil mass flow rate 

(V A p /[3 ) 
0 0 0. 

d 
+ b, X -'\- (V A p /{3 ) 

oX 0 X 0 0 
s ln 

X 

(V A p / [3 ) 
0 0 0. s lll 

y 

X S 

••• o •••••••••••••••• (6A) 

d 
+ 6 y- (V A p /[3 ) 

d y 0 y 0 0 
y s 

= q p ••.••..•••••...•• · •.••••.•..•.•••••••. (7 A) 
0 0 

s 
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where q
0 

is positive for production and negative for injection. 

d ¢so 
Rate of mass accumulation= M x6.yp 

0 
at<-

13
--) •••••••••••• (SA) 

s 0 

In all the above equations P is oil density at standard conditions of 
0 

s 
pressure and temperature (14. 65 psi and 60 degrees F), and is therefore 

constant. 

Substituting Equations (3A), (5A), (7A) and (SA) into Equation (lA) 

and utilizaing the relationships defined by Equations (4A) and (6A), then 

dividing the resulting equation by 6. x 6. yp yields: 
0 

s 

_a_ ¢So 
h at < -

13
-) ••••••••••••••••••••••• (9A) 

where 
0 

KhK :ro 

lJ {3 
0 0 

and K 
0 

0 

(K)(K ) 
r 

0 

Expanding the time derivative of Equation (9A), and multiplying both 

sides of this equation by {3 yields: 
0 

where c 
r 

1~ 
cp dP 

....•• (lOA) 
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Equation (lOA) is the partial differential equation describing the 

flow of oil in two dimensions (x and y directions) in a porous medium. 

Water Phase: 

Applying logic similar to that employed in deriving the equation 

for the oil phase, a partial differential equation for the water phase 

flowing through an elemental block in two dimensions can be developed; 

it is written as follows: 

~(3w 
(3w V • ( A V<I> ) - --

w W 6X6 Y 
.... ( llA) 

where A 
w 

Gas Phase: 

KhK 
r 

w 
11 (3 

ww 
and c 

w 

1 d{3w 
- -{3-~ 

w 

The derivation of the partial differential equation for the gas phase 

differs from that of the oil and water phases only in that the mass 

balance must be made on total gas (free gas and gas in solution). The 

resultant equation can be written as: 

= 
<f> ~.. cpS R 

h . _a_ ( . lJ. ) + h _a_ ( o s ) • • • • • • • • • • • • • • • • • • . • • • • • • • • • .. ( 12A ) 
at f3g at f30 



where 

KhK 
r 

A g 

g l-1 g/3 g 

and q refers to production of the free gas phase from the reservoir. 
g 

Expanding the time derivative of Equation (12A) yields: 

h 
" 1 

= <P· e- /3-
g 

as 
g 

a t 

s 
+ _g_ (C 

f3 r 
g 

1 d/3 
_ _g_) 

2 dP 
f3g 
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ap ] 
at 

a ¢ So ¢ So dRs a p 
+ hR -(--) + h -- -- (13A) s at f3 

0 

f3 
0 

dP a t ................. . 

<P s 
Substituting the equivalent of the term 

a 0 
hat(-/3-) 

0 

from Equation (9A) into Equation (13A) yields: 

. <P s a ¢ 8 R a s s 1 d {3 

h-a <___g> at {3 

0 s 
+ hat ( {3 ) 

0 

h¢{_!_ __g + [ ~c - - __g_) + 
{3 a t {3 r {3 dP 

g g g 

S dR 
0 s 

{3
0 

dP 

g 

ap 
at } 

qR 
0 s 

+ R s v . ( A 0 v <I> 0) - 6 X 6 y ........................ (14A) 

Substituting the right-hand side of Equation (14A) for the right-hand of 

Equation (12A), multiplying both sides of the resultant equation by f3 and g 

re-arranging yields: 
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{3 V • ( A V <I> ) + [3 V • ( A R V <I> ) _ [3 .R V • (A V <I> ) _ qg£3 g 
g g g g o s o g s o o t:,x 1::, y 

8 S l d/3 {3 dR a 
h ri.- { ____g_ + [ S (C - - _g_) + _g S

0 
dPs ] ____E} (15A) 

'¥ at g r {3 dP {3 8 t ........ . 
g 0 

Equation (15A) describes the flow of total gas in two dimensions in a 

porous medium. Since capillary pressure and gravity forces are accounted 

for in this model, the following definitions of the potential equations are 

applicable: 

<I> 
w 

<I> 
g 

p- p 
c 

ow 
p gz 
w 

p + p - p gz 
c g 

go 

and <I> 
0 

P - P gz 
0 

where, p - p 
0 

p p - p 
c 0 w 

ow 

p = p + p 
c g 0 

go 

•...••..•••••••••••.•.•••••••• ( 16A) 
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Since the partial differential Equations (lOA), (llA) and (15A) are 

simultaneous equations relating pressure and the three saturations 

(four dependent variables) to the independent variables, position and 

time, this system can not be solved as there are three equations and 

four unknowns. This problem is readily overcome, however, by intro-

ducing another equation containing the same dependent variables. This 

equation is based on the definition of saturations: 

s + s + s 1 
0 w g 

It may be further noted that the partial differential equations have 

been arranged so that they may be added to yield one equation in one 

dependent variable (pressure). Note that the three time derivatives of 

the saturations are isolated so that the sum of the saturation derivatives 

vanish as follows: 

os 
0 

a t 

as 
w 

+ -- + a t 
as 

___g 
at 0 

Summing Equations (lOA), (llA) and (15A), re-arranging terms, and 

simplifying as discussed immediately above, yields: 

({3 - f3 R ) 'V • (A 'V <I> ) + {3 'V • ( A 'V <I> ) + {3 'V • (A 'V <I> g) + {3 \1 • ( A R 'V <I> ) 
0 gs 0 0 W W W g g g OS 0 
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q {3 +a 8 +q [3 
oo ~w gg 

!::.x !::.y 

s I s {3 d 
h ¢ ( c + c s - _2_ [3 - __g {3 I +_g s R I ) p ( 17 A) 

r w w {3 o {3 g {3
0 

o s ~ · · · · · · · · · 
0 g 

I d{3 
where {30 0 

dP 

I d{3 
{3 __g g 

dP 

and R 
dR 

s 
s 

dP 

Equation (17A) is a non-homogeneous, second-order, non-linear, 

partial differential equation, and no technique for solving it analytically is 

known. It is non-linear because the coefficients are pressure and satura-

tion dependent. The equation is solvable, however, by finite difference 

techniques. 

2. Finite Difference Equations 

Equation (17 A) is in a form which is suitable for conversion to a 

difference equation from which can be calculated the values of the de­

pendent variables (pressure) at time level tn+
1

. The terms of the left 

hand side of Equation (17 A) can be represented by a finite difference 

equation if the time-space region is divided into discrete increments in 

each direction, then expanded about some point (i, j) in the spatial grid 
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pattern at some fixed time. 

The point at which all parameters are defined in each block is 

arbitrarily selected as its mid-point. Thus, the center is the focal 

point at which the pressure is assumed to exist, and this assumption 

forms the basis for calculating pressure gradients. 

Utilizing this convention, Equation (17A) may be written in an 

implicit difference form as: 

(/3 _ f3 R ) n + 1 ( .6. T .6. q, ) n + 1 + 13n + 1 ( .6. T .6. q, ) n + 1 
0 g S • • X 0 X 0 • • W. . X W X W . . 

1,] 1,] 1,] 1,] 

n+1 n+1 n+l n+1 
+ f3 ( !J. T 1\ q, ) + f3 ( .6. T R .6. q, 

0
) 

g. . X g ){ g . . g. . X 0 S X 
1
• J. 

1,J 1,J 1,J ' 

n+1 T A "' )n+1 + ,..n+1 ( A T .6. q, )n+1 + (/3 - f3 R ) (.6. u. '¥ P u. 
0 g s . . y 0 y 0 • • W. • y W Y W 

1
• 

1
. 

1,J 1,J 1,] ' 

+ 13n + 1 ( !J. T . .6. q, ) n + 1 + ~ + 1 ( .6. T R .6. q, )n + 1 
g. . y g y g . . g. . y 0 s y 0 . . 
1,J 1,J 1,J 1,J 

_ _n+l 
TRlVl. . .6. tp ............................... (18A) 

1, J 
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where: 

T. 1/2 .(~. 1 .- <I> •• ) - T. 1/2 .(<I> •• -<I>. 1 .), 
I+ ,J I+ ,J 1,) 1- ,J 1,) 1- ,J 

Ti+1/2,j 
2 

KhK 
( r) 

'J.1 [3 • 1/2 . 
1 + 'J ' 

6. X. ( 6. X. 
1

- 6. X.) 
I 1+ I 

Ti-1/2,j 

KhK ____ 2 ___ ( r) 

6.xi(6.xi-!J..xi-1) vf3 i-1/2,j, 

T ( <I> - <I> ) - T 1/2( ~ .. - ~ .. 1) i,j+1 i,j+1 i,j i,j-- I,) I,)-

Ti, j +1/2 

Ti, j-1/2 

KhK 
2 r 

------------~---------(-----) 

6 yj ( 6.Yj + 6 Yj_1 vf3 i, j-1/2 

n+1 n 
p - p 



TRM .. 
I,J 

QTERM .. 
I,J 

(q {3 +q {3 + q {3 ) 
00 ww gg .. 

I,] 

~X.~ Y. 
I J 
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s ' {3 ' 
_g {3 +_gS R ) 
{3 g {3 0 s . . 

g 0 I, J 

The terms T , T and T are transmissibility terms for the flows 
0 w g 

between grid blocks of oil, water, and gas phases, respectively. In 

addition the term (T R ) is a transmissibility term for the flow, between 
0 s 

grid blocks, of solution gas transported in the oil phase. It is noted 

from Equation (18A.) that the pressure and saturation dependent variables 

have been treated implicitly. Therefore, both the pressure dependent 

n +1 
and saturation dependent variables should be evaluated at t . It is also 

important to use the upstream relative permeability values in Equation 

(18A), which implies that, dependent on the direction of flow, subscript 

(i+1/2, j) should be either (i, j) or (i+1, j) , and (i-1/2 , j) should be either 

(i,j) or (i-1,j); the same is applicable for y direction. The effective 

interblock permeability-thickness products, (Kh\+1/ 2 ,j' (Kh)i_112 ,j' 

(Kh) .. 
112

, and (Kh) .. _
11

.
2 

for x and y directions, respectively, must 
I,J+ I,J 

be evaluated at the interface boundary between the (i, j) grid block and 

the appropriate adjacent block. The interblock permeability-thickness 

products are defined as: 
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(Kh)i+1/2' j 

K .. K. 
1 

.h. 
1 

.h .. ( b.x. 
1 

+ 6. x) 
1,] 1+ ,] 1+ ,] 1,] 1+ i 

h.+1 .K. 1 . 6.x. +h. .K. . 6. x. 
1 1 ,J 1+ ,J 1 1,J 1,J 1+ 

(Kh) .. 1/2 1, J+ 

Substituting the values of the potential function, defined by Equation 

(16A), into the difference equation which was formed from the three 

phase equations, into Equation (18A), and re-arranging yields: 

n+1 n+1 n+1 n+1 ~+1 n+1 
AX .. P. 

1 
. + (BX .. +BY .. -TRM .. ) P .. +C .. P. 

1 
. 

1,J 1- ,J 1,] 1,] 1,J 1,J 1,J 1+ ,J 

-~+1 n+1 ~+1 n+1 
+ A y. . p. . 1 + C . . P. . +1 

1,J 1,]- 1,] 1,J 

~+1 _ _n+1 n 
.I:!;. • - TRM. . P. . ••••.•••••••••• (19A) 

1,J 1,J 1, J 

where: = [({3-{3R) T + 
0 g s .. o. 1/2 . 

1,] 1- ,J 

{3 T + {3 T + {3 R T ] 
wi,j wi-1/2,j gi,j gi-1/2,j gi,j 

8
i-1/2,j 

0
i-1/2,j 

n+1 



_ _n+l 
ex .. 

l,J 

_ _n+l 
eY .. 

l,J 

_ _n+1 
BX .. 

l,J 

= 

= 

[ (/3 - {3 R ) T + {3 T 
0 g S . . 0. 

112 
. W. . W. 

1
/

2 
. 

l,J 1+ ,J l,J 1+ ,J 

+ {3 T + {3 R T ] 
gi,j gi+1/2,j gi,j 

8
i+1/2,j 

0
i+l/2,j 

[({3-{3R) T +{3 T 
0 g s . . o .. 1/2 w. . w .. 1/2 l,J l,J- l,J l,J-

+ {3 T + {3 R T ] 
g. . g. . 1/2 g. . s. . 1/2 o. . 1 "2 l,J l,J- l,J l,J- l,J- /· 

[ ({3 - {3 R ) T + {3 T 
0 g S •• 0 •• l f.2 W •• W •• 1 / 2 l,J l,J+ /· l,J l,J+ 

+ {3 T 
g .. g. "+1/2 l,J l,J 

_ _n+1 
ex .. 

l,J 

+ {3 R T ] 
gi' j s i' j + 1 /2 ° i' j + 1 /2 
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n+1 

n+l 

n+1 



n+1 
E .. 

1' J 

PCTR~~1 

1,J 

n+1 
GTRM .. 

1,J 

QTER~~1 
+ PCTR~~1 

+ GTRMn+
1 

1,J 1, J i,j 

tfl+1 ( ~ T ~ p )n+1 
W. . X W X C 

1, J ow .. 
l,J 

+ 13n+ 1 ( ~ T ~ P ) n + 1 
w. . y w y c 

1,J ow .. 
l,J 

an+1 T p n+1 
- fJ g .. ( ~X g~ X C ) 

1, J go .. 
l,J 

_ 13n + 1 ( ~ T ~ P )n + 1 
gi, j y g y c go . . 

1,J 

n+1 n+1 
(/3 - /3 R ) [ ~ T ~ ( p gz) ] + 

o gs .. xo x o .. 
1,] 1,J 

.Bn + 1 [ ~ T ~ ( P gz) ] n + 1 n + 1 ~ ~ 
W. • X W X W + {3 ( T 

1 J . . g. . X g 
( p gz) ] n+1 

X g 
' l,J l,J i,j 

+ .Bn+ 1 [ ~ T R ~ ( P gz) ] n + 1 + (/3 - {3 R ) 
g. . X 0 S X 0 • . 0 g S . • 
l,J l,J 1,J 

84 



[ 6 6 ] n+l n+l [ ] n+l T ( p gz) + {3 6 T 6y ( pwgz) 
y 0 y 0 . . w. . y w 

1,] 1,] i,j 

+ 13n + 1 [ 6 T 6 n + 1 
g Y

( pggz)] 
. . y g .. 
1,) 1,] 

n+l 
+ {3 [ 6 T R 6 (p 

g. . y 0 s y 
1,] 

gz) 
0 

] n+l 

i' j 

Equation (19A), written about each point in the grid, forms a set 
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of simultaneous equations . which can be solved by numerical techniques. 

In matrix notation, the resulting set of equations may be written 

AP D 

where P is the solution vector, D is the vector of known parameters and 

A is an (MxN) 
2 

penta-diagonal matrix of coefficients. Since the implicit 

coefficients are known, the system may be solved as a set of linear 

equations. A solution was obtained in this study using a combination of 

the Alternating Direction Implicit (ADI) procedure and the Pressure 

Residual Relaxation Method. 

3. Solution of the Areal Numerical Simulator - Combination of ------
Alternating Direction Implicit Procedure (ADI) and Pressure 

Residual Relaxation Method 

To illustrate the ADI method, Equation (19A) can be written im-

plicitly in P as: 
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n+1 2k+1,n+1 n+1 2k+1,n+1 -~+1 2k+1,n+1 
AX .. P. 

1 
. + BX .. P. . + Cx .. P. 

1 
. . 

l,J 1- ,J l,J l,J l,J 1+ ,J 

n+1 2k+1, n+1 
2. (HK)TRM .. (P .. 

l,J l,J 

2k,n+1 n+1 
P. . ) + E. . ••••••••••••.•• (2 OA) 

l,J l,J 

where HK is the iteration parameter which depends on the grid size used ; 

7 
it is selected according to the method suggested by Welge and Weber. 

p 2k, n+1 p 2k, n+1 a d p~~' n
1
+1 are the values of P obtained from the 

i,j+1 ' i,j n I,J-

previous half iteration in the y- direction (j); they are held constant 

during the (2k+1)th iteration in the x- direction (i). Also note that 6 t is 

halved; therefore TRM .. in the right hand side of Equation (20A) is 
l,J 

multiplied by 2 since 6 t appears in the denominator of TRM. .. Equation 
l,J 

2k+1,n+1 
(20A) is implicit in the x- direction (i) with three unknowns, P . 

1 
. , 

1- 'J 
2k+1, n+1 d 2k+1, n+1 

P. . an P. 
1 

. . 
l,J 1+ ,J 

An equation identical to Equation (20A) but 

with each superscript k increased by 1, would be implicit in the y-

d . t" (") "th kn p2k+2, n+1 1rec 10n J w1 un owns , . . 
1 1, J- ' 

p2k+2, n+1 d 2k+2, n+1 the 
i J. an P .. +1 and 

' 1, J 

P's with superscripts 2k+1 held constant. Thus the solution of Equation 

(20A) is comprised of two parts, obtained by iterating in the x- direction 

a row at a time, then holding these values constant and iterating in the 
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y- direction a column at a time. 

It may be observed that Equation (20A) represents a set of linear 

equations each having three unknowns. Each row and each column in 

the model's grid system would yield such a set of linear equations, 

containing as many equations as there are mesh points in the row or the 

column. Thus, for each row, or column, a tri-diagonal matrix would be 

formed. Gaussian Elimination provides a very efficient solution of such 

a matrix. A complete sweep through every row and every column com-

prises an iteration. Iterations (for the same time step) are continued 

until the difference between the answers from two successive iterations 

for P, iterated one at a time, does not exceed the desired error 

tolerance. If convergence is not achieved in one complete iteration, 

another iteration parameter is selected and the iteration is repeated using 

the value of P computed in the previous iteration. 

In the present work, one complete iteration was performed by setting 

the iteration parameter HK equal to unity, then the pressure residuals 

were relaxed until the largest normalized pressure residual did not exceed 

the desired error tolerance. The normalized pressure residual is defined 

as: 

k 
R .. 

1') 

A~+1pn+1, k CXn+1pn+1, k A n+1 n+1, k 
( . . . 1 . + . . . 1 . + Y .. P. · 1 

1,] 1- , ] 1,] 1 + ,] 1,] l,J-
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_...n+1 n+1, k n+1 n+1 n n+1, k 
+ CY .. P .. 1 - E. . + THM .. P .. )/F + P. . . ....••..... (21A) 

1,] 1,]+ 1,) 1,] l,J l,J 

where F TRMn+1 
. i,j 

Convergence is obtained in the relaxation method used here by 

forcing the residual of Equation (21A) to zero by correcting Pn+
1

, k as 
i,j 

follows: 

n+1,k+1 
P .. Pn+1,k 

i, j 
k 

H. . ....•••••.••...•.• o •••• o •••••••••• (22A) 
l,J 

so that 
k+1 

R .. 
l,J 

l,J 

0. 

This correction of H~ . to zero requires that the residuals in the adjacent 
l, J 

elemental blocks, (i-1,j), (i+1,j), (i,j-1) and (i,j+1) be correctedo The 

procedure used is demonstrated as follows by correcting the residual at 

the (i-1, j) location. The definition of this residual, before correcting is 

k 
H. 1 . 

1- 'J 
1 A~+1 pn+1, k+1 + C~+1 pn+1, ~ A yn+1 

F. 
1

. ( i-1,j i-2,j i-1,j i,j + i-1,j 
1- 'J 

n+l, k+1 _ _n+1 n+1, k n+1 n+1 
P. 

1 
. l + CY. 

1 
.P. 

1 
. 1 - E. 1 . + TRM. 1 . 

1- ,J- 1- ,J 1- ,J+ 1- ,J 1- ,J 



k+1 
R. 1. 

1- 'J 
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n n+1,k+1 
p. 1 . + F. 1 . p. 1 . ) . . . . . . • . . . . . . • . . . . • . . . . . • . • 0 • • (23 A ) 

1- 'J 1- 'J 1- 'J 

1 

F. 1 . 
1- 'J 

A 
n+1 n+1, k+1 n+1, k+1 

( .X. 
1 

.P. 
2 

. + CX. 
1 

.P .. 
1- ,J 1- ,J 1- ,J 1,) 

+ A n+1 Pn+1, k+1 _ _n+1 n+1, k _n+1 
Y. 1 .. 1 . 1 + CY. 1 .P. 1 . 1 - ~- 1 . 

1- 'J 1- 'J- 1- 'J 1- 'J+ 1- 'J 

n+1 n n+1, k+1 
+ T RM. 

1 
. P. 

1 
. + F . 

1 
. P. 

1 
. ) . . . . o • • o • • • • • • • • • • • • (2 4A ) 

1- 'J 1- 'J 1- 'J 1- 'J 

Subtracting Equation (23A) from Equation (24A) yields: 

but 

k+1 
R. 1 . 

1- 'J 

k 
R .. 

I, J 

therefore 

k 
R. 1. 

1- 'J 

:x?-+1 
C i-1,j pn+1, k+1 

F ( .. 
. 1 . 1, J 
1- 'J 

n+1,k 
P .. ) •. o ••••••••••• (25A) 

1,) 

Pn+1, k 
i,j 

n+1,k+1 
P .. 

1,) 
from Equation (22A); 

k+1 
R. 1 . 

1- ,J 

cxn+l 
Rk i-1, j k 

· 1 · - __ _......... R. . ••••••. o •• o ••• (26A) 
1- ,J F . 1 . 1, J 

1- 'J 
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_ _n+1 

Similarly, 
k+1 

R. 1. 
1+ ,] 

k 
R. 1. 

1 + '] 

Ax. 1. k 
I+ '] 

F R ....•....•...... (27A) 
"+1 . 1,] 

and 

k+1 
R .. 1 

1, ]-

k+1 
R .. 1 

1, ]+ 

k 
R .. 1 

1, ]-

k 
R .. 1 

1, ]+ 

1 '] 

Y?-+1 c .. 1 k 1 ]-
F ' R. . • o •••••••••••• (2 SA) 
.. 1 1,] 
1, ]-

AYn+1 
i, j+1 k 

F 
R. . .............. (29A) 

. . 1 1'] 
1,]+ 

The calculation scheme is as follows: 

k 
a. Calculate R. . by Equation (21A) using the calculated pressures 

1,] 

from ADI. 

b. Correct the pressure of the elemental block, Pn+
1

, k using 
i, j ' 

Equation (22A). 

c. Correct the pressure residuals for the blocks adjacent to ele-

mental block (i,j) using Equations (26A) through (29A). 

d. 
k+1 

Set R .. 
1'] 

0.0. 

e. Repeat steps b through d for the rest of the elemental blocks. 

f. Terminate the iterative procedure when the maximum pressure 

residual does not exceed specified tolerance. 



It was found that this method converged more rapidly than iterative 

ADI, thus reducing computational time and obtaining a more accurate 

determination of the fluid saturations. The combination of the (ADI) and 

the pressure residual relaxation methods is competitive with any other 

available technique. 

4. Material Balance Solution 

Each phase saturation may be calculated explicitly for each block 

after expanding Equations (lOA), (llA) and (15A) as finite difference 

equations. The result of this expansion follows for each phase. 

Oil phase saturation: 

Equation (lOA) written in a finite difference form yields: 

,Bn+l ( ~ T ~ <I? )n+l + ,Bn+l ( ~ T ~ <I? )n+l _ 
0. • X 0 X 0 . • 0. • Y 0 y 0 . . 
1,] 1,] 1,] 1,] 

Ax. ~Y-
1 ] 

n+l 
<P .• h .. 

1,] 1,] 

t:. t 
[ (Sn+l _ 8n ) + 8n+l 

o. . o. . o. . 
1,] 1,] 1,] 
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(c __ 1_ ,a' )n+ 1 " tp, u _ J •••••••••••••••••••••••••••••••••••• (3 OA) 
r ,B o .. 

0 1,] 

n+l 
Equation (30A) is rearranged and solved for S , o .. 

1,] 
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n+l s 
o .. 

....Jl+l Jl n+l 
QOT. . + :::i )/COMPRO ..••• (31A) 

1,) o. . 1,) 
1,] 

where 
- _ _n+l 

AOlVlX .. 
1,) 

_ _n+l 
AOMY .. 

1,) 

zo 

ZO( 11 T 11 <P )n+l 
X 0 X 0 .• 

1,] 

ZO( 11 T 11 <P )n+l 
y 0 y 0 .. 

1,) 

n+l 
q {3 

o .. o .. 
ZO( 1,J 1jJ 

11x. 11y. 
1 1 

11 t{3n+l 
o .. 
1,] 

n+l 
¢ .. h .. 

1,) 1,) 

n+l 
COMPRO .. 

1,) 

1 

13
n+l 

o .. 
1' J 

Water phase saturation: 

1,) 

Equation (llA) written in a finite difference form yields a result 

which is identical to Equation (31A), except for the phase subscript. It 

is given below. 
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..J1+1 ~~~ __ _n+1 _ _n+1 n+1 Jl ~-_n+1 
:::> (A w MX. . + AWMY .. - QWT .. +::; )/COMPRW ..•••• (32A) 
w. . l,J l,J l,J w. . l,J 

l,J l,J 

where 
__ _n+1 

AWMX .. 
l,J 

n+1 
AWMY .. 

l,J 

zw 

ZW ( /::; T /::; ~ )n+ 1 
X W X W •. 

l,J 

ZW ( /::; T /::; ~ ) n+ 1 
y w y w .. 

l,J 

~{3w n+1 
ZW( ~::; l1 ) •• 

X. y .1, J 
1 J 

n+1 
<P • • h .. 

l,J l,J 

~-_n+l 
COMPRW .. 

l,J 
[ 1 + (C + C ) t:; tp ] 

r w 

Gas Phase Saturation: 

Expanding Equation (15A) in a finite difference form yields: 
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n+l n+l ....n n+l 
- QGT .. - RST .. +:::; )/COMPRG ..•••.••..•...••• (33A) 

1,J 1,J g. . 1,J 

where 
__ _n+l 

AGMX .. 
1,J 

_..n+l 
AGMY .. 

1,J 

ASGMXn+l 
i,j 

_..n+l 
ASGMY .. 

1, J 

1,J 

ZG( 6 T 6 <I> )n+l 
X g X g .. 

1,J 

ZG( 6 T 6 <I> )n+l 
y g y g .. 

1,J 

Z G( 6 R T 6 <I> ) - Z G (R ) (6 T ~ <I> ) 
XSO X 0 S XO X 0 

ZG( 6 R T 6 <I> ) - ZG(R )(~ T ~ <I> ) 
yso yo s yo yo 

ZG 

~t,Bn+l 
g .. 
1,] 

n+l 
cp .. h .. 

1,J l,J 



RST0 +1 
i,j 

n+1 
COMPRG .. 

1,) 
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s {3 I 1 
(_2__.& R )n+ 6 p 

{3 s . . t 
0 1,) 

[ 
1 

+ (C ___ 1 __ 13 'n+1) 6 P ] 
r an+1 g. . t 

jJ 1, J 
g .. 
1,) 



APPENDIX C 

DE"RIVATION OF THE ONE-DIMENSIONAL, THREE­
PHASE RADIAL MODEL 

96 

The derivation of the mathematical relationships for radial flow of 

oil, water and gas in porous media is similar to that for the areal 

model. The only differences are the value of the area normal to the 

direction of fluid flow and in the calculation of pore volume. The area 

for the radial model is calculated as 

A 21frh ............................. . : . ............. (34A) 
r 

The pore volume calculation appears in the rate of mass accumulation 

term, [Equation (7A) ] for the areal model. For the radial model it is 

2 2 d 
7r(r i+ 1/2 - r i-1/2)h P s a t 

cps 
(-{3-) ....................... (35A) 

where r. 
1 

and r. I are boundary radii of the radial cell, and r is 
1+1 2 1-1 2 i 

the centered radius of the radial cell i. Therefore, Equation (35A) can 

be written as 
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fj a ¢s 
27Tri rih P s 3't <-r;- ) ........................... (36A) 

where fj r. 
1 

1. Partial Differential Equations 

Following an identical procedure as in the areal model, a partial 

differential equation for each phase can be derived. Summing the three 

equations for the phases (oil, water and gas) yields: 

d¢ d¢ 
1 d 0 1 d w 
- ({3 - {3 R )- (r A --) + -{3 - (r' --) 
r o g s ar o a r r w a r 1\ w a r 

r r 

d¢ d¢ 
1 d P' 1 d 0 

+ -{3 - (r A ____g,) + -{3 -(rR ' --) 
r gar g a r r gar s/\o a r 

r r 

' s {3 ({3 q +{3 a +{3 q ) 
o o w-w g g 

¢ (C +S C -
r w w 

0 0 

21rr fj rh [30 

' 

' s [3 
g g 

{3g 

f3 s R ap 
+ g [3 o s ) Tt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3 7 A ) 

where 

0 

A 
r 

KK 
r 

llf3 



2. Finite Difference Equations 

Equation (3 7 A) can be written as a difference equation similar to 

that for the areal model. A complete solution of Equation (37 A) in 

difference form is: 

cp )n+1 ] 
r o. 

1 
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n+1 
QTERM. 

1 

n+1 b. 
T R i t P • • • . . • . • • . • . o o o o o o o • • o • o o • o o o o o o • o • ( 3 SA ) 

where: 

t, T t, <P 
r r r 

T 
ri+1/2 

T 
ri-1/2 

cp cp cp cp 
T ( 1· +1 - . ) - T ( . - . 1) 

ri+1/2 1 ri-1/2 1 1
-

1 (K)(K ) 

[ 
r 

] 
l.l {3 

6r.ln( ri+1) i+l/2 

1 r. 
1 

1 
(K)(K ) 

[ r ] 
r. 11{3 i-1/2 

' 1 
A r.ln(--) 

1 r. 
1 1-



_ n+1 
QTERM .. 

1,) 

¢. S , S , /1 S R 
.. 1 [ c + s c - ~ {3 _ _g {3 + g 0 s ] 

TI" r w w {3
0 

o {3g g {3
0 

n+1 
(q {3 +n 8 + q {3 ) 
oo~w gg. 

1 

27Tr. 3 r.h. 
1 1 1 

The effective interblock permeabilities Ki+1/
2 

and Ki_
112 

are series 

averaged permeabilities between i and i + 1, and i and i-1, respectively. 
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Since the radial model is horizontal, gravity forces are neglected; 

therefore the potential functions may be written as follows: 

<I> p - p 
0 0 

<I> 
w 

p 
w 

P - P •••.••••••••••.•.•••••••••••••• (3 9A) 
c 

ow 

<I> 
g 

p = 
g 

P+P 
c go 

Collecting terms associated with P. 
1

, P. and P. 1 in Equation 
1- 1 1+ 

(38A) respectively, will yield the following equation 

n+1_n+1 n+1 n+1 n+1 n+1 
AR. .P. 

1 
+ BR. P + CR. P. 1 1 ' 1- 1 i 1 1+ 

n+1 
D. . ....••..•...•. (40A) 

1 



where: 

A n+1 R. 
1 

1 
r. 

1 

[ ({3 -{3R)T +{3 T 
0 g s . 0 . 1/2 w. w . 1/2 1 r1- 1 r1-

+ {3 T + {3 H T ] 
gi gri-1/2 gi 8 i-1/2 °ri-1/2 

n+1 

1 
r. 

1 

[ ({3 - {3 R ) T + {3 T 
o g s . o . 

112 
w. w . 

1 
I 

1 r1+ 1 r1+ . 2 

+ {3 T + {3 R T ] 
gi gri+1/2 gi 8 i+1/2 °ri+1/2 

n+1 

n+1 
BR. 

1 

n+1 n+1 n+1 n 
QTERM. + PCTRM. - TR. P. 

1 1 1 1 

PCTRM~+1 

1 

1 
r. 

1 

13n+1 ( f:. T b. 
w. r w 

1 r 

n+1 
rp c ) 

OW. 
1 

100 
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_ {3n + 1 ( ~:::, T ~:::, P ) n + 1 
gi r g r c 

r go. 
1 

Equation (40A) is a set of simultaneous equations containing as 

many equations as there are grid elements. Application of appropriate 

boundary conditions reduces the number of unknowns to the number of 

equations. Thus, a tri-diagonal coefficient matrix is formed. 

3. Material Balance Solution 

The material balance solution follows the same procedure discussed 

for the areal model. 

4. Effective Interblock Permeabilities Determination (Ki+
1

/
2 

and Ki_
112

) 

!?.l_ Series Averaging 

The derivation of Ki+1 / 2 and Ki-l/2 are based on an assumption of 

steady-state, by assuming the rate of flow q to be constant for the radial 

cells i, i+1 and i-1. The total pressure drop between radial cells i+1 

and i-1 is equal to sum of incremental cell pressure drops. The grid 

system is illustrated by Figure 2A. The following derivation shows the 

proper relationship for calculating Ki+l/2 : 

b p + flp •........ 0 ••••••••••••••••••••••••• ( 41A) 
i i+l 



Figure 2A. illustration of Series-Averaging Technique for 
Permeabilities 

102 



q. 
1 

27rK h 
i i 

~+1 

11 ln ( r i + 1/2 ) 
r. 

1 

27rK h 
i+1 i 

r. 1 1+ 
JJ ln( . . ) 

r1+1/2 
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~p 
i · · · · · · · · · · · · · · · · · · · · · · ........ ( 42A) 

~p i + 1· · · · · · · · · · · · · · · · · · · · ........ (43A) 

)1 ln / i + 1) /::, P T · • · · · • · · · • · • · · • · · • · • · · · · • • . . . . . . ( 44A ) 

r. 
1 

From Equation ( 42A), 

ri+1/2 
q. 11ln( ) 

~P. 
1 

1 r. 
1 

27rK h .•..............•..•.......•....•... .. (45A) 
i i 

and from Equation (43A) 

~ P. 1 
1+ 

r. 1 
q. 

1 
11 ln ( 1 + ) 

1 + r i+1/2 
27rK. 1h. . .••.......•. 0 •• 0 ••••••••••••••• (46A) 

1+ 1 
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and from Equation (44A) 

r. 1 I+ 
qTll ln(--) 

r. 
I 

27rKh. 
I 

••• •••••••• ••••••••••oooooo••••••••••(47A) 

Substituting Equations (45A), (46A) and (47A) into Equation (41A) yields: 

r. 1 I+ 
In(--) 

r. 
I 

K 

In( ri +1/2 ) 
r. 

I 

K. 
I 

+ 

r. 1 I+ 
In(--) 

ri+l/2 

K. 1 I+ 
••••.••••.•••.•••.•. ( 48A) 

Solving Equation (48A) for K yields, 

Similarly, 

= 

r. 1 I+ 
K.K. 

1
In(--) 

I I+ r. 
I 

r I r. 1 
1 i+l 2 ) + K.ln(~) K. 1 n( r 

I+ ri I i+l/2 

r. 
I 

K.K. 
1
In(--) 

I I- r. 
1 I-

•• o o ••••••••• ( 49A) 

r i-1/2 · . ri 
K.ln( ) + K. 

1
ln('---) .................... (50A) 

I r i-1 I+ r i+l/2 



APPENDIX D 

NEW TECHNIQUE FOR SATURATION CALCULATION 
(DYNAMIC APPROACH) 
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The dynamic material balance technique is based on a new concept 

for calculating saturations based on net flux in a cell. The new approach 

calculates the correct material balance and includes a method of calcu-

lating the saturations necessary to maintain this balance under current 

flowing conditions in the modeL This was accomplished by establishing 

directly all terms in the material balance except the rate of production, 

then computing the rate. The balance was made on the gas phase in this 

work and this is related to the oil rate by the ratio of mobilities of oil 

and gas. This ratio is uniquely related to saturations and can be used 

to calculate the correct saturations with two mobile phases. 

The grid system used is illustrated by Figure 6 in Chapter IV. The 

technique described above can be stated quantitatively for the gas phase 

by the following equation: 

Xl = X2 + X3 - X4 ........................................ (51A) 



· where, 

Xl Total gas mass production rate, gm/sec; the use of 

expression "total gas" in this work implies that free 

gas and solution gas are both accounted for. 

X2 Mass rate of total gas influx, gm/sec, into the outer 

boundary of the dynamic model, calculated from the 

standard radial model which is interfaced with the 

dynamic model. 

X3 Total gas present in the dynamic model at the old 

time, tn, divided by the time step, t:::. t; gm/sec. 

X4 Same as X3, except it is evaluated at the "new" 

n+l 
time level, t . 

Equation (51A), expressed mathematically for the gas phase, is: 

KP" 11 
0 {3 0 )n+l n+l n+l 

~ ~ + q R 
o K ll f3 o. s. 

0 g g i 1 1 

S R 

n+1 
G. + 

1n 

S R 

1 L 
r 

t:::. t k=i 

s 
[ PV (_g + 

k [3 
g 

106 

0 s ) n 1 L 
r 

~t k=i 

0 s) 
[3 

n +1 
....••....•.. (52A) 

[3 
0 k 0 k 
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i 1,2, .... , L 

where PV 27rr ~;;;rh ¢ ..•.......•.....•.•........ (53A) 

and G. is the total gas influx at the outer boundary of the dynamic In 

model; it is calculated from the conventional radial model using the 

following equation: 

n+1 
G. 

n+1 
2rr(T ) (<I> 

n+1 
<I> ) + 21r (T R ) ( <I> _<I> n+1 

0 ) m g g 
rL+1/2 L+1 

g 0 s 0 
L r L+1/2 L + 1 L 

....................... (54A) 

It should be noted that all the terms in Equation (54A) are known since 

n+1 
the pressures at the new time level, t , have already been computed 

from the conventional radial model. The gas and oil relative permeabili-

ties in the terms, T and T , are evaluated from upstream saturation 
gr 0 r 

values. 

Equation (52A) is the same as the mass balance indicated by 

Equation (51A) since density, which is calculated at standard conditions 

of temperature and pressure and is constant, is cancelled from each 

term. 

Solving Equation (52A) for (K /K )n+l yields, 
g 0. 

1 



L 
{ n+1 1 

Gin + llt r 
k= i 

S S R 
[ PV (_g_ + ~) 

k {3 (3 
g 0 k 

S S R 1 
ll t 

L 
r 

k=i 
[ PV k ( f + ; s) ] 

n+1 

g 0 k 

11 {3 
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n 

n+1 n+1 } 
- q R 

o. s. 
1 1 

g g n+1 
( q 11 f3 ) • • • • • · • • • • • •••••••• (5 5A) 

0 0 0 i 

Since the relative permeability ratio is a function of gas saturation 

(K /K ) = f(S ), Sn+l is computed from this relationship. This ratio 
g 0 g gi 

(K /K ) is a unique function of gas saturation since the case treated here g 0 

does not contain mobile water. The relationship would become more 

complex if three mobile phases were present. 

The approach described by Equation (55A) is an iterative one by 

nature since one of the "known" values is gas saturation at the new time 

level. However, in the small cells where these saturations change 

rapidly, the pore volume is so small that errors in these quantities 

Sn+ 1 ot · ·f· t d 1 t · hi d ff ( ) are n s1gn1 1can an are os 1n mac ne roun -o errors. 
g. 

1 

Therefore, the method converges rapidly. It may be noted that this same 

round-off error causes the conventional method to become unstable. 
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Another possible problem which may be noted is that Equation 

(55 A) has no meaning during the period when a cell has dropped below 

the bubble-point pressure but has not built up a mobile gas saturation. 

This is avoided by reverting to a standard oil balance when this occurs. 

Again, round-off error in the small blocks could cause stability problems 

with the oil balance. As expected, however, this transition, from zero 

saturation to mobile gas saturation, in the small cells near the well 

bore occurs very rapidly and the problem did not appear in this work. 

The reason this transition occurs so rapidly is that many pore volumes 

flow through the small cells during a time step. Therefore, they act 

more as separators than as "material balance" entities during the dy-

namic calculations. 

Although the case of water blockage was not studied in this work, 

it may be noted that the approach is identical to that for gas. The 

equation for computing water saturation is given as follows: 

Kw n +1 
(-) 

K 
0 i 

1 
W +-­

in !J. t 

L PVS 
1 

L PVS 1 r ( {3 w )n - r-t r ( w)n+ ] 
k 

. {3 
k=i wk = 1 wk 

l..l (3 
( _q_w_l..l_w_{3_ )n + 1 ................................ (56A) 

0 0 0 
i 

i = 1,2, .. . . , L 



where W is the water influx into the outer boundary of the dynamic in 

model from the conventional radial model and is calculated using the 

following equation: 

110 

~+1 
in 

27r(T )n+1 
w 

<I> n+1 
) o •••••••••••••• (57 A) 

WL 
r L+1/2 

.....n+1 
;:; is calculated from K /K relationship. 
w. w 0 

1 

The previous discussion relating to the gas phase also applies to 

the water Equations (56A) and (57A). 

The oil phase saturation is calculated from the following equation: 

8
n+1 
o. 

1 

1.0 - sn+1 
W. 

1 

~+1 
............................. (58A) 

gi 

This completes the calculation by the dynamic material balance approach. 

Oil saturation calculated by Equation (58A) is accurate since the material 

balance errors are minimal. Although it is not treated in this work, the 

principal criterion which assures that the saturations will sum to unity 

is that the material balance calculations be accurate. 
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APPENDIX E 

COMPUTATIONAL. DATA 

Number of grid points in reservoir model, (MxN) 10 X 10. 

Grid length .[):. x = 528 feet* 

Grid width b. y = 528 feet 

Number of grid elements in radial well simulator, I 14. The 

dimensions are as follows: 

Block Centered Radii in Feet 

0.81 2.40 7.03 20.60 60.36 

101 . 55 124.66 147.77 170.88 193. 98 

217.09 240.20 263.31 286.41 

r . 416 feet 
w 

* Units in this section are as defined. In the Nomenclature (Appendix A) 

the units are noted in cgs since that system was used in equations. 
Data are customarily read into a computer program in English units and 
converted internally into cgs. 



Number of grid elements for the dynamic model: L 

dimensions are as follows: 

Block Centered Radii in Feet 

0.82 2.40 7.03 

Permeability k = 50 md. 

Porosity¢ = 20% 

Irreducible water saturation S 

Residual oil saturation, S 
0 

r 

w 
c 
18% 

18% 

Equilibrium gas saturation, S = 5% 
gc 

Initial reservoir pressure at -6130 feet 

Bubble point pres sure, P b = 2173 psi 

Oil formation volume factor at Pb, {3 
ob 

Oil viscosity at Pb' ll = 1. 0467 cp 
ob 

Oil density at Pb, P = 39. 4726 lb/ ft
3 

ob 

Initial gas saturation = 0. O% 

Initial solution gas, R = 573 scf/bbl 
sb 

20.60 

2855 psi 

1. 4437 

Reservoir pore volume = 19. 86 million bbl 

Initial oil in place = 8. 02 7 million bbl 

Natural water influx = None 

Allowable oil production rate = 197 bbl/ day per well 

-5 -1 
Oil compressibility , C = 1. 5 x 10 psi 

0 

Water compressibility , C 
w 

= 3.0 x 10- 6 psi-l 

112 

5. The 

60.36 
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Rock compressibility, C 4 x 10-
6 

psi-
1 

r 

The fluid properties were specified by the following empirical 

equations: 

-5 -8 2 
{3 O = 1. 03 + 7. 1 X 10 P + 5. 7 X 10 p 

{3 = {3 - C (P - P ) 
o ob e o b 

f3 = 1.002 - 3 X 10-
6

P 
w 

{3 = 1./(-19.937 + 9.126 X 10-
2
P- 2.1086 X 10-

6
P

2 

g 

R = 24.0 + .253 p ft
3 

/bbl 
s 

R R ft
3 

/bbl 
s sb 

ll 0 

-4 -8 2 
2.239- 7.16 X 10 p + 7.7 X 10 p 

ll + 5 x 10-
5 

(P - Pb) 
ob 

ll 
0 

ll . 6246 
w 

ll 9 X 10-3 + 5 X 10-6P 
g 

p 53.03 - .00487P - 6.3 X 10-
7

P
2 

0 

p 
0 

p -C (P - Pb) 
ob e o 

2. 932 X 10 -
3

p p 
g 

P = 62.275 + 1.875 X 10-
4

P 
w 

p 

p 

.2. pb 

> p 
b 

cp 

cp 

cp 

cp 

lb / ft
3 

lb / ft
3 

lb / ft
3 

lb / ft
3 

Relative Permeability Curve Shown in Figure 3A. 

Capillary Pressure Curve shown in Figure 4A. 

p < p 
- b 

p > p 
b 
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.3 
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Figure 3A. Gas-Oil Relative Permeability Data 
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APPENDIX F 

FL-oW CHART FOR SIMULATION MODELS 

Extrapolate 
P .. and S .. 

1, J 1' J 

Calculate 
Pressure 
Coefficients 
Areal 

Solve for 
P .. by ADI 

1,J 

No 

No 

Relax 
Pressure 
Residuals 

Calculate 
Areal 
Saturations 

P .. = (P .. )cal 
1, J 1, J ..,_. __ -< 

S. . = (S. . )cal. 
1,) 1,J 

NW = Well No. 
1 

116 



Calculate 
Pressure 
Coefficients 
Radial 

Calculate 
P. by ADI 

1 

Relax Pressure 
Residuals 

No 

Yes 

Calculate 
PMP 

P. = (P.) cal 
s.1= (SJ cal 

1 1 

Adjust 

(q~)A 

No 

No 

Saturations 
From L+1 to I 

Calculate 
S., i=1, L 
rJynamic Model 

117 



Calculate 
GMG 

Yes 

Calculate 
PMP 

118 

STOP 

k+l k 
P. =P.-PMP 

1 1 

NW = NW + l 
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