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ATR REFLECTIVITY STUDY OF SURFACE 

ELECTROMAGNETIC WAVES WITH DAMPINGt 

by 

G. S. Kovener, R. ~L Alexander, Jr., 
I. L. Tyler, and R. J. Bell 

Graduate Center for Materials Research 
and Physics Department 

University of Missouri-Rolla 
Rolla, Missouri 65401 

ABSTRACT 

Surface electromagnetic wave (SEW) dispersion curves 

are usually calculated using a simple equation derived 

from Maxwell 1 s equations and boundary conditions. When 

complex dielectric functions are used for the two media, 

the component of the propagation vector along the surface 

kx becomes infinite as the frequency w approaches the 

surface polariton frequency ws if w is considered complex 

and kx real. On the other hand, if kx is considered 

complex and w real, the dispersion curves bend back toward 

smaller kx as w approaches ws. We have previously 

demonstrated that both types of dispersion curves can be 

obtained from attenuated total reflection measurements of 

1 

silver. We now extend this result to other materials and 

show that dispersion curves alone present an inadequate 

summary of the data. 
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I. INTRODUCTION 

Dispersion curves for elementary excitations are 

usually treated in the absence of damping and inclusion 

of damping considerably complicates the situation. 1- 3 This 

has been pointed out for bulk excitations by Barker and 

Loudon. 4 In this paper we shall restrict ourselves to 

surface electromagnetic waves (SEW) on isotropic media 

and postpone a discussion of anisotropic media. 5 We show 

t~at th~r~ is an ambiguity in what is meant by the 

di~persion curves when damping is present and further 

that care must be exercised in relating the minima in 

reflectivity observed using ATR techniques to the disper-

sion curves. Following a general discussion, we will 

consider three classes of SEW: surface plasmons, surface 

phonons and coupled surface plasmon-surface phonons. The 

effects of finite beam divergence will also be considered 

and shown to be important in some cases. 

II. DISPERSION CURVES WITH DAMPING 

To simplify our discussion, we shall consider SEW on 

an infinite half-space, z<O, with the z>O half-space 

being vacuum. Then the dispersion curves for SEW are the 

solutions to 1 • 6 

= w{ s(w) }l/ 2 
kx c s(w}+l ( 1 ) 



where s(w) = s 1 (w) + is 2 (w) is the dielectric function of 

the medium and kx is the component of the propagation 

vector along the surface. Usually s 2 (w) is considered to 

vantsh, and then kx is purely real for those frequencies 

for which SEW exist, i.e., those frequencies for which 

In the absence of damping, k ~ oo at the 
X 

surface wave frequency ws where s 1 (ws) = -1. 

3 

In the presence of damping, s 2 (w) r 0, Eq. (1) becomes 

complex and if w is chosen to be real, then kx is complex. 

The real part of kx describes the propagation wavevector 

and the imaginary part of kx describes the spatial damping 

tn a manner frequently encountered in optics. 7 The real 

part klx of kx is used to plot the dispersion curve. In 

this case, however, the dispersion curves bend back toward 

smaller klx as w approaches ws' rather than klx becoming 
.6 

infinite at this frequency. This difference in behavior 

is illustrated in Fig. 1 where the dielectric function for 

silver has been used. 8 The dashed line is for s 2 = 0 and 

the solid line for E2 r 0. For the moment ignore the 

curves above ws. 

Because the propagation vector, k, has become complex, 

the usual condition for the existence of surface waves can 

no longer be used. This condition requires kz, the 

z-component of k, to be purely imaginary so the fields 

decay exponentially away from the surface in both the + 

and- z directions (which requires s(w) < -1). With s(w) 



complex, k2 is complex so this evanescent wave condition 

is no longer useful. Instead we shall replace it with 

the condition that E1 (w) < -1. 

4 

Another method of finding the dispersion curve for 

E(w] complex is to keep k real and let w be complex. 9 • 10 

The equations to be solved are complicated and cannot in 

general be solved analytically. The solution has been 

found numerically by Gammon and Palik 9 who find the result-

ing dispersion curve to be very close to that obtained 

using real E(w). That is, no bend back occurs, and kx 

becomes large as w approaches ws . Thus, when damping is 

included, we can obtain two dispersion curves, depending 

upon whether we keep w real and k complex, or treat k 

real and w complex. This is an indication that a plot of 

w vs k cannot represent all the information present in 

E(w) if E(w) is complex. 

A similar problem for bulk polaritons within the 

. 4,11-14 h b d" d . context of Raman scatter1ng as een 1scusse 1n 
11 -1 4 the literature. Several authors have used a temporal 

damping (w complex) treatment for bulk polaritons which 

have the usual dispersion relation 

k = (w/c) r£. ( 2 ) 

The real w roots of the polynomial do not exhibit bend 

back as kx increases, but the roots asymptotically approach 

f H G. 11 .14 . a limiting requency. owever, 1a orenz1 po1nts out 



tnat tne solution does not differ substantially from that 

obtained by taking only the real part of s(w), just as 

for SE~. 

Puthoff, et al . 15 have made the calculation keeping 

w real and found the dispersion curves also bend back in 

a manner similar to that found for SEW dispersion curves 

with kx complex. 

Another way to understand this difficulty with the 

dispersion curves is to consider it as an attempt to 

describe the normal modes of a system that has damping. 

If one considers the excitation as a wave propagating 

along a surface, then spatial damping (complex kx) is 

appropriate. Conversely viewed as an excitation of a 

normal mode that decays in time, temporal damping (complex 

w) is required. 

Tne way to avoid these difficulties is to consider 

5 

the quantities measured in the experiment. For ATR 

experiments this quantity is the reflectivity as a function 

of w and klx" In practice one measures the angle of 

incidence, e, and relates this to klx by 

klx = (w/c) np sin e ( 3 ) 

The results can be represented by a three-dimensional plot 

of the reflectivity versus both e and w. A typical 

calculated surface is shown in Fig. 2 for silver. 

The real and imaginary parts of the dielectric 



function were taken from Johnson and Christy. 8 The 

equations of Wolter 16 for the reflectivity of a multilayer 

media were used with the experimental geometry as shown in 

the inset. No correction was applied for losses at the 

hemicylinder entrance and exit faces. The refractive 

index of the CaF 2 hemicylinder was 1.434 and the film was 

340 A thick. The range of w was 3.0 to 4.25 eV, with the 

range of incident angles from 45° to 75°. 

There are two valleys in this reflectance surface. 

The lower energy valley is due to surface plasmons while 

the other valley is due to a bulk plasmons (E 1 (w)=O). 

In practice, experimentalists have chosen one of two 

methods to measure this reflectivity surface. 3 •17 - 20 If 

the experiment is done by fixing the angle and scanning 

the frequency, the ATR spectra is a cross section line 

going from left to right. Alternatively if the frequency 

is fixed and the angle scanned, the ATR spectra is a 

cross section line going from bottom to top. Some 

representative cross sections are shown in Figs. 3a and 

3b. The frequencies of successive cross section minima 

are converted to momenta using the ATR equation [Eq. (3)] 

and then plotted in Fig . 1. The dashed line is the 

result obtained for fixed angle cross sections and the 

solid line for fixed frequency cross sections . It is 

evident that the dashed curve approaches an asymptote 

while the solid line bends back. The crosses are the data 

6 



points of Arakawa, et ~·, and the slight discrepancy 

near 3.7 eV is due to sample differences between Johnson 

and Christy and Arakawa, et ~~O In this region, the real 

part of s(w) approaches -1, and the ATR reflectivity 

minima are sensitive to small variations in s(w). 

The reason for the bend back using fixed frequencies 

can be seen qualitatively by a careful examination of the 

reflectance surface. As one selects successive fixed 

energy cross sections the spectra obtained become more 

and more parallel to the axis of the SEW valley near 

3.7 eV. When the energy is sufficiently large the spectra 

are no longer located in the minimum of this valley but 

climb the ridge between valleys. The curves of Fig. 3b 

clearly illustrate this anomalous behavior. 

The solid curve also represents the solution of 

Eq. (1) for w real and kx complex with e:(w) complex. The 

bend back is in agreement with the previous discussion. 

The dashed curve is the solution of Eq. (1) for 

Im(s(w)]~o, and it approaches a frequency asymptote as 

expected. Thus our approach of three dimensional 

reflectance surfaces correctly predicts the experimental 

results and the results for both w real, kx complex and 

w complex, kx real~ It also demonstrates the ambiguity 

in calling the ATR results the 11 dispersion curve 11 • 

7 



III. APPLICATIONS 

The reflectance surface is an ideal way of easily 

visualizing the influence of the gap spacing in those 

ATR measurements with an air gap between the sample and 

prism (Fig. 4). The gap spacing is an important factor 

in determining the features of the spectra since there 

are two fields exponentially decaying across the gap. 

One field due to the incident light has its maximum at the 

prism-gap interface. The other evanescent field is due to 

t~e SEW and has its maximum value at the gap-absorber 

interface. For small gaps the SEW may recouple back into 

the prism but the effect of gap spacing is also influenc­

ed by the value of wand kx. An expression for the 

optimum gap spacing has been derived by Otto 21 with some 

approximations but because the reflectance surface 

displays the response for a wide range of wand e, it is a 

more effective aid for looking at this gap dependence. 

NaCl was chosen for this investigation since it has 

been examined experimentallly by Bryksin, et al . 22 In 

t~is case the NaCl sample was separated from the base of 

the prism by various air gap spacings. The calculations 

were done for frequencies from 150 cm-l to 250 cm-l and 

incident angles from 20° to 60° in the prism (silicon, 

np = 3.418). The reflectance surfaces were generated for 

several air gap spacings: 12 ~m, 5 ~m and 2 ~m. The 

8 



NaCl dielectric function was calculated from the 

oscillator model and the parameters of Bryksin, et a1. 22 

(Table I). The phonon damping was not frequency dependent 

and was assumed a constant for each oscillator. 

Two reflectance surfaces are presented here for 

comparison: Fig. 5 with a gap spacing of 5.0 ~m and 

Fig. 6 with a gap of 12.0 ~m. Although the surface of 

Fig. 5 is for a smaller gap, the overall reflectance 

minima are shallower and broader which is a general 

consequence of recoupling back into the prism. In 

addition, the 11 Valley 11 of Fig. 5 clearly 11 turns .. toward 

smaller frequencies as e is decreased. Note the sharp 

rise in reflectivity of the SEW minima near the critical 

angle (17° for a silicon prism). 

The dispersion curves resulting from the minima are 

shown in Fig. 7. (To compute these minima a smaller grid 

was used than that of Figs. 5 and 6.) The solid curves 

B and c are obtained from minima with frequency fixed; 

dashed curves B and C are obtained with incident angle 

fixed. Curve B is with a 5.0 ~m gap and curve C with a 

2.0 ~m gap. The triangles correspond to a gap of 12.0 ~m 

and for clarity are not connected with a smooth curve. 

The crosses are the experimental points obtained from 

Bryksin, et al?2 The value of the gap spacing they used 

9 

is not given, but we estimate from the reflectance spectra 

given in their article that d ~ 10 - 11 ~m. The solid 
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line A is obtained from Eq. (1) with Im(s(w))=O and the 

dashed line A using a complex s(w) and the real part of kx. 

The reflectance minima curve approaches the calculat­

ed dispersion curve Eq. (1) at small k only for large gap 

spacings. This is expected since the SEW will strongly 

couple to the prism via the evanescent field of the SEW 

at small gaps. Indefinitely large gaps cannot be used 

since the reflectivity minimum is substantialty reduced at 

larger angles for large gaps as can be seen by comparing 

the reflectance surfaces of Fig. 5 and Fig. 6. 23 However, 

for all gap spacings, the fixed angle minima (dashed 

curves) approach the asymptote of Eq. (1) for sufficiently 

large k, but the experimental data appear to approach an 

asymptote of lower frequency, as noted by Bryksin, et al . 22 

We attempted to improve the fit by considering a finite 

beam as discussed in the next section, but no appreciable 

change was noted in the reflectance minima curves. 

It is therefore certain that the discrepancy in 

frequencies is not due to recoupling across the gap or 

finite beam divergence. Because the purpose of this paper 

is to demonstrate the reflectance surface technique we 

have not attempted different damping parameters or 

frequency dependent damping parameters in an attempt to 

reconcile the difference. The ability of the reflectance 

surfaces to easily represent all facets of the gap 

spacing is obvious. 
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The full width half-maximum (FWHM) of the ATR spectra 

is of interest because it is an indication of the damping 

of the SEW and thereby the absorbing material. We have 

found that a straightforward measurement of FWHM and its 

conversion to the material damping parameter does not 

include all the parameters which determine the FWHM. One 

can decide from an examination of the reflectance surface 

that the FWHM is also controlled by the gap spacing and 

the incident angle in a manner that is difficult to 

perceive with other analytical techniques. That is, the 

ATR cross sections measured do not cross the valleys at 

right angles, and this increases the observed width of 

the spectra. Once again, we will select an example to 

demonstrate this. 

InSb has been studied extensively using the grating 

technique 24 , 25 and the ATR technique. 18 , 26 Although no 

appreciable difference is apparent between calculated and 

measured SEW dispersion curves, the ATR line width of the 

upper branch is larger by two to three times the width 

expected from the bulk electronic damping constant T. 

We will include the finite beam divergence using an 

integrated spectra approach in an attempt to reduce this 

line width discrepancy. 

The free carrier concentration in InSb produces 

strong plasmon-phonon coupling for electron concentrations 

on the order of 1017 cm - 3 . In addition, the conduction 
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band is non-parabolic so the effective mass m* is a 

function of the concentration. 27 For a carrier 

concentration of 2.0 x 10 17 cm- 3 there are two frequency 

regions for SEW: w < wTO and wTO < w < wp. These two 

branches are readily visible on the 3-D surface of Fig. 8. 

The incident frequency is from 150 to 250 cm- 1 and 

incident angles are from 18 to 38°. The ATR prism is 

silicon and gap is 19 ~m. The InSb parameters used to 

calculate the dielectric function are given in Table II. 

A fixed angle cross section for 8 = 22° is detailed 

in Fig. 9. The crosses in Fig. 9 are the experimental 

data of Bryksin, et ~? 6 for the lower branch (A) and the 

upper branch (B). The dashed line is the calculated ATR 

spectra with the electronic lifetime T = 10 cm-l. A 

better fit is obtained with T = 20 cm-l which is shown 

as the solid line. Similar changes of the oscillator 

damping r did not appreciably alter the lower branch fit. 

One must be very careful in relating the FWHM of the 

ATR spectra to the damping of the SEW. The shape of the 

minima is determined by the ATR parameters of 8 and gap 

spacing d as well as the material parameters. The 

influence of e and d on the width is clearly apparent in 

the Figs. 5 and 6 for NaCl. Therefore, if one desires to 

measure the material damping using SEW, the experimental 

variables 8 and d must be accurately measured and d 

should be uniform. 
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The finite divergence of the incident beam is 

considered by integrating at a fixed frequency over a range 

of incident angles centered about e0 . The reflectivity 

is weighed with a Gaussian of standard deviation of one 

degree; the angular integration interval included 99.4% 

of the incident beam. The result of this treatment is 

displayed as A• and s• in Fig. 9. As expected, the spectra 

features are reduced and the FWHM increased. In addition, 

the minimum of the upper branch is shifted to a lower 

frequency by 3 cm- 1 . This shift is caused by the shape of 

the upper branch in the reflectance surface. The shift is 

somewhat unpredictable as can be seen by another 

integration done for a gap spacing of 8.0 ~m for which the 

minimum shifts upward 3 cm-l. For measurements at smaller 

angles where the dispersion curve is near the light line, 

the minimum shift is reduced, but the amount is difficult 

to predict without this integration. Any attempt to 

include a non-uniform gap spacing would require a finite 

width beam treatment or the ATR technique which we did not 

attempt. 28 This underscores the requirement that the 

experimental conditions be rigidly controlled in order to 

plot dispersion curves from the ATR spectra. 

IV. DISCUSSION 

Barker and Loudon 4 have presented an alternative 
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approach for bulk polaritons which has been extended by 

Barker 29 - 31 to SEW. In analogy with mechanical systems 

they define a response function which governs the response 

of an oscillatory system to an applied force. The poles 

tn the response function indicate the location of the 

normal modes of the system, while the shape of the function 

along the real plane is determined by the damping of the 

system. In thts way one need only consider if his 

experiment measures w complex with kx real or w real with 

kx complex in order to decide the path on the response 

function surface. For an ATR experiment (with vacuum 

interface), Barker finds the response function to be of 

the form 30 

2 2 l/2 -1 T{w,k) = [-E(w)-{[1-E(w)k ]/[l-k 0 ]} ] 

where k0 = (w/c)k. At the pole in T, the dispersion 

relation is regained 

( 4) 

( 5 ) 

which will demonstrate bend back for real w as we have 

shown. Since this response function is for the system 

without the prism, the response function is s i mply related 

to the ATR reflectivity only for large gap spacings where 

the influence of recoupling is small. Then 



1-R a Im[T(w)] (6) 

where R is the ATR reflectivity. An additional disadvan­

tage is that the variables are k and w instead of 

experimental variables e and w. Although not ex plicitly 

mentioned by Barker, the T surface will also give bend 

back if w is kept fixed and e varied. The reflectivity 

R calculated from Wolter•s equations can be thought of as 

the response function for SEW including the pris m. 

V. CONCLUSION 

1 5 

The ATR surface has been used to show how dispersion 

curves for surface electromagnetic waves with or without 

bend back can be obtained from measurements of ATR spectra. 

Theoretically, no bend back occurs if the dielectric 

function is purely real. The introduction of an imaginary 

part of the dielectric function complicates the picture 

because the poles now occur for complex values of k and w. 

If one makes kx real and w complex, bend back does not 

occur, while complex kx and real w produces bend back in 

the dispersion curves. The ATR reflectivity surface then 

shows the relation between these two choices. Also, the 

problem of defining what is meant by an SEW becomes 

difficult because the decay of the fields away from the 

surface into the medium is always exponentially damped. 

In fact, dips may appear in the ATR spectrum where there 



is no SEW, at least according to the usual criterion 

found without damping. This will be illustrated in a 

future paper. 5 

In addition the qualitative effect of a divergent 

incident beam can be visualized by considering the shape 

of the minima in the surface. A quantitative example is 

given for InSb with two gap spacings, and the shift in 

the upper branch minimum is shown to be toward higher 

frequency for one gap and toward lower frequencies for 

another. 

1 6 

The application of the reflectance surface technique 

is not limited to isotropic materials, and we will publish 

theoretical and experimental results for MnF 2 in a 

forthcoming paper. 5 
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FIGURE CAPTIONS 

Fig. 1. Dispersion curves for a 340 A silver film on a 

CaF 2 prism. Solid curve, obtained from cross section of 

the ATR reflectance surface for fixed frequencies. This 

solid curve also results from solving Eq. (1) using complex 

kx and E(w). Dash-dot line, from cross sections for fixed 

angle. This dash-dot curve also results from solving 

Eq. (1) with E(w) purely real or with w complex and k 

real. Crosses are experimental points of Arakawa, et al . 

(ref. 20) who fixed the frequency and varied the angle. 

Fig. 2 . The ATR reflectance of a 340 A thick Ag film on 

a CaF 2 prism plotted as a function of the incident 

frequency w and the angle of incidence e. Inset, ATR 

geometry of a prism or semicylinder (index of refraction 

np) with a silver film and a second interface with another 

medium. 

Fig. 3. (a) Cross sections of the ATR reflectance 

surface of Fig. 2 obtained by holding the angle of 

incidence fixed and varying the incident frequency. The 

solid line is e = 52 ° , dashed is e = 54°, dashed dot is 

e = 58° and dash-hatch is e = 60°. (b) cross sections 

of the ATR reflectance surface of Fig. 2 obtained by 

holding the incident frequency fixed and varying e . Th e 

solid line i s incident fr equency of 3~4 eV a nd th e 



dash-hatch line is 3.7 eV. Note how the minimum in 

Fig. 3a move toward higher frequencies as e increases 

while the last minimum moves back towards smaller e 

(and hence smaller k1x). 

Fig. 4. ATR geometry with air gap. The incident light 

intensity is ! 0 , the reflected light intensity, I, the 

reflectance is I/! 0 , e is the incident angle in the 

hemicylinder prism, and d is the air gap spacing. The 

absorber is the material supporting the SEW and having a 

complex dielectric constant s(w) = sl(w) + is 2 (w). 

Fig. 5. ATR reflectance surface of NaCl with a 5.0 ~m 

air gap spacing. The frequencies along the lower axis 

are 150 cm- 1 to 250 cm- 1 . The incident angles along the 

upper axis are 20° to 60°. 

Fig. 6. ATR reflectance surface of NaCl with a 12.0 ~m 

air gap spacing the frequencies along the lower axis are 

1 8 

1 - 1 150 em- to 250 em . The incident angles along the upper 

axis are 20° to 60°. 

Fig. 7. Dispersion curves of NaCl obtained from the ATR 

reflectance surface minima. The inset is a detailed view. 

The solid lines B and C are plotted from the cross 

sections with frequency fixed; the dashed curves B and C 

are plotted from cross sections with incident angle fixed. 

Curve B is from the reflectance surface of Fig. 5 with a 



5.0 wm gap spacing. Curve C is from a reflectance 

surface with a 2.0 wm spacing. The triangles 

correspond to the 12.0 wm gap reflectance surface 

of Fig . 6 and they are not connected by a line 

for clarity. Curve A is the dispersion relation 

Eq. (1) with s(w) com pl e x (solid line) and s(w) 

purely real (dashed line) . The crosses are experi­

mental points of Bryksin, et ~. 22 The straight 

line is the free space photon dispersion line. 

Fig. 8. ATR reflectance surface of InSb with a 19.0 wm 

air gap spacing. The frequencies along the lower axis 

are 150 cm- 1 to 250 cm- 1 • The incident angles along the 

upper axis are 18° to 38° . 

Fig. 9 . e = 22° cross section of the InSb ATR surface. 

A is the lower branch and B is the upper branch. The 

dashed line is for T = 10 
- 1 em . The solid line is f or 

T = 20 -1 em The crosses are the experimental points o f 

Bryksin, et EJ_. 26 The lower curves A' and B' are the 

integrated divergent beam results. The dashed line is 

-l 1 . d 1 . . f 20 -l forT= 10 em and the so 1 1ne 1s or T = em . 

Note the break in the y-axis. 
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TABLE I 

NaCl Oscillator Parameters 

W· 0 E:. r . 1 1 1 

(em -l) (em -l ) 

164 3.1975 6. 1 3 

247 0.0898 34.7 

E: = 2.32 
00 

TABLE II 

InSb Oscillator Parameters 

( -1 ) wt em 179 N(cm- 3 ) 2.00 X 1 01 7 

oE: 2.0 m* 0.022 me 

r(cm- 1 ) 2.864 T(cm-l) 1 0. 0 

E: 1 5. 7 
00 
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ABSTRACT 

The technique of plotting the ATR reflectance as a 

function of both frequency and incident angle using a 

three dimensional plot is applied to surface electro­

magnetic waves (SEW) in a uniaxial material, MnF 2 . It is 

shown that dispersion curves calculated without absorption 

do not completely describe the ATR reflectivity. 

Experimental data confirming the reflectance surface 

features are presented. The termination of an extra­

ordinary SEW dispersion branch is observed experimentally, 

and the experimental conditions for this observation are 

discussed. Also, additional minima in the reflectance 

surface not associated with SEW are found. 
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I. INTRODUCTION 

The three dimensional ATR reflectance surface 

technique has been previously applied to isotropic 

materials in order to explain various aspects of the ATR 

spectra including the bend back behavior of the surface 

electromagnetic wave (SEW) dispersion curves. 1 •2 This 

technique of plotting reflectance as a function of both 

frequency and incident angle can be used for anisotropic 

materials, and we present a treatment of the attenuated 

total reflection (ATR) spectra for MnF 2 , a uniaxial 

material, using the reflectance surface technique. The 

ambiguity present in identifying all minima in the ATR 

spectra as SEW minima will be discussed. 

We have experimentally measured several branches of 

the SEW dispersion curves of MnF 2 , and these results will 

be discussed. In addition, the termination of a 

dispersion curve branch has been observed. Several other 

features predicted by the reflectance surface approach to 

SEW have been confirmed experimentally. 

II. THEORY 

The description of SEW on anisotropic materials was 

first presented by Lyubimov and Sannikov 3 although surface 

magnetoplasmons which have a uniaxial dielectric tensor 

were treated earlier. 4- 7 For non-magnetic anisotropic 

2 



materials, the first experimental observations of SEW 

using the ATR technique of Otto8 were made by Bryksin, 

Mirlin and Reshina 9 , 10 on MgF 2 and Ti0 2 , followed by 

Falge and Otto 11 on quartz and by Perry, Fischer, and 

Buckel on Cds. 12 

In order to properly discuss SEW in anisotropic 

materials, the theory of Lyubimov and Sannikov will be 

reviewed and then the dispersion relations will be 

examined. In this paper, we will consider only 

non-magnetic media which are not optically active. Since 

the experimental data was taken for MnF 2 , we will further 

consider only uniaxial materials and refer the reader to 

Burstein, et ~· for a treatment of biaxial crystals. 13 

Rather than reproducing a complete description of 

the Lyubimov and Sannikov derivation of SEW dispersion 

relations in anisotropic materials, only the important 

points of departure from the isotropic case will be 

mentioned. For uniaxial materials, the electric fields 

can be divided into ordinary and extraordinary components 

based on the orientation of E relative to the plane 

containing k and the optic axis (OA). Choosing the z axis 

normal to the crystal sur f ace and the optic axis at an 

angle e relative to the surface, the bulk dispersion 

relations are: 

3 

k~ + k~ 0 = e:-'- (w) ( 1 a) 



4 

( 1 b) 

where k0 and ke are the ordinary or extraordinary wave-

vectors parallel to the surface, and k and k are the zo ze 
ordinary and extraordinary wavevector components normal to 

t h e s u r fa c e . E:11 ( w ) a n d £ .L ( w ) a r e t h e d i e 1 e c t r i c t e n s o r 

components relative to the optic axis. If only the three 

special orientations of Fig. 1 are considered, then the 

Maxwell boundary conditions at the z = 0 plane are 

simplified since each case has only one E field present 

for p - polarized radiation. Cases I and I I have only 

extraordinary E fields and Case III has only ordinary E 

fields. Applying the boundary conditions and the bulk 

dispersion relations of Eq. (1), dispersion solutions are 

obtained which are characterized (in the absence of damping) 

by a propagating wave along the interface and damped fields 

normal to the interface. 

For these special orientation of the optic axis, 

propagation vector, and the crystal surface, the dispersion 

relations are simplified to the equations shown in Fig. 1 

where OA is the optic axis direction or the direction of 

the axis of rotational symmetry. With a first 

consideration of the two unequal dielectric tensor 

components, one would expect just two different disp ersion 

relati:ons. However, Maxwell's boundary conditions applied 



to the crystal surface distinguish between Case I and 

Case II. We will use Lyubimov and Sannikov•s notation 

in calling Case I and Case II extraordinary SEW and 

Case III ordinary SEW. The dispersion relations for the 

three cases are: 3 

5 

Case I kx = ( w I c ) [ ( E: II :c E: II ) I ( E: II E:.L 1)]112 ( 2 a) 

Case I I kx = ( w I c ) [ ( E: II E:...[E:..J.. ) I ( E: II E:..J.. 1)]112 (2b) 

Case I l I : kx = (wlc)[t::..LI(t::.l. - 1)]112 ( 2c) 

For the purpose of demonstrating the problems 

associated with using damping in the dielectric function, 

let us first examine Eq. (2a) with purely real dielectric 

functions £ (w) and E: (w) i.e . , no damping included. For 
II .L 

an excitation to be defined as a SEW, kx must be real and 

kx > (wlc). ( 3 ) 

In addition, the values of kz in each medium must be 

appropriate to lead to real exponential decay of the 

fields as z ~ ± oo. If kz in the vacuum is labeled kgz and 

kz in the materials as kaz' then for fields of the form 

exp[-i(k z)] (see Appendix), one obtains z 

(4a) 

(4b) 



and 

Since kaz and kgz must be imaginary for damping and the 

imaginary parts of each must be of opposite sign as 

z-+ ± oo, then 

6 

(4c) 

( 5 ) 

Therefore E~(w) must be negative for Case I SEW to exist. 

The other component of the dielectric tensor E11 (w) 

must also be examined. There are four regions to consider: 

1 : E11 (w)<o, E11 (w)E~(w)>l ( 6 a) 

2: E11 (w)<o Ell ( W) E~ ( W) < 1 (6b) 

3: l>E (w)>o II . 
(6c) 

4 : E11 (w)>l (6d) 

It is a simple matter to show that only region 1 and region 

4 satisfy the conditions on kx, kgz' and kaz· In region 1, 

k -+ oo as the frequency approaches a limiting ws given by 
X 

( 7) 

Except for the presence of the additonal dielectric 

function, the asymptotic behavior of the dispersion curve 

is the same as that of isotropic dispersion curves for 



similar dielectric functions. For region 4, the wave­

vector kx does not approach large values but terminates 

at a finite value given by 

7 

k 8 = (w/c) ~ . ( 8) 

This is the bulk polariton dispersion relationship and the 

SEW changes into a bulk wave at k8 . This behavior is 

unique to anisotropic materials. A similar analysis can 

be made for Case II by interchanging~ (w) and£ (w). 
II ..L 

Case III has a dispersion relation identical to that of 

isotropic SEW and those results apply here; specifically, 

SEW exist for £~(w)<-l and kx ~ oo as w ~ ws given by 

The dispersion relations (Eqs. 2) were originally 

d e r i v e d f o r r e a 1 £ 11 ( w ) a n d £..L ( w ) , i . e . , n o d amp i n g . 

( 9) 

Bryksin, et al . 10 have shown that the form of the dispersion 

c u r v e i s t h e s am e w h e n £ 11 ( w ) a n d £..L ( w ) b e c om e c om p 1 e x . 

However, a problem similar to that for isotropic materials 

occurs. For w real, kx must be complex from Eq. (2). 

This leads to bend back exactly as in the isotropic 

case 1 ,2_ Although we have not attempted the solution of 

Eq. (2) for w complex and kx real, there is no apparent 

reason for it to differ from the isotropic case for which 

kx approaches infinity as w ~ ws. This discrepancy can 



be treated using the ATR reflectance surface technique 

just as in the isotropic case, and we will discuss this 

technique later in this paper. 

There are additional problems associated with complex 

£11 (w) and £..L(w). In the discussion of regions in which 

we expect SEW, it was shown that £ (w) <o and £ (w) £ (w) >l ..L II ..1.. 

by requiring the k and k be imaginary for proper decay az gz 

of the fields. Now of course, this is meaningless since 

for any complex dielectric constant, kaz will be complex 

and wtll lead to decay of the field. Bryksin, Mirlin, 

and Reshina 10 proposed using just the real part of £11 (w) 

and £l(w) but as we shall see, this leads to inconsisten­

cies in the assignment of SEW to minima in the ATR 

spectra. 

This point is best illustrated by considering the 

dielectric function of MnF 2 . Using the three phonon model 

parameters for £ (w) and the three phonon model parameters 
II 

for £..L(w) as given by Weaver, et ~. 14 and summarized in 

Table I, the real part of £(w) is plotted in Fig. 2. 

Note the small peak at 244 cm- 1 . This is due to the 

resonance at 254.1 cm- 1 , but this oscillator strength is 

not sufficient to force the real part of £..L ( w) to be 

negative. Therefore no SEW should exist; yet, with no 

damping £.J_ ( w) (which is now rea 1 ) i s negative and a SEW 

should exist. An inconsistency is present at this 

frequency regarding the presence or absence of a SEW 

8 



while in fact a minimum was observed in the experimental 

data near 258 cm-l. We will discuss the experimental 

aspect in the next section. We will therefore define 

that Eqs. (2) are to be used only for e: 1 (w) and E (w) 
I :.L 

purely real and the results will dictate which ATR minima 

will be defined as SEW minima. 

As an aid in labeling the minima in the ATR spectra, 

the dispersion relations Eq. (2) are plotted in Fig. 3 

using purely real dielectric functions. The dispersion 

branches for all orientations are presented in one graph; 

but, of course, only one case may be observed for a 

particular experimental configuration. The solid lines 

are Case I, the dash-dot lines are Case II, and the dashed 

lines are Case III. The arrows A indicate the maximum 

wavevector allowed for the extraordinary SEW as discussed 

earlier. For branch 2, the two Cases I and III are not 

sufficiently different in frequency to be separated on 

this scale. Note that there is no Case II extraordinary 

SEW until 280 cm- 1 . The solid line labeled 11 light line .. 

is the dispersion line of free space photons and the line 

labeled 11 Silicon line .. is the maximum wavevector available 

with a silicon ATR prism. Thus only one terminating 

branch, branch 1, would be accessible using a silicon 

prism. All three upper branches are asymptotic. It 

must be kept in mind, however, that purely real E11 (w) 

and E (w) were used and this does not adequately describe 
.J.. 

9 



the SEW in a damped material. 

There is no difficulty in the experimental results 

if the ATR reflectance surface technique is used to 

describe the experiment. Using uniaxial ATR reflectance 

equations derived in the Appendix, the reflectance can be 

plotted along the vertical axis as a function of wand e. 

Fig. 4 is a reflectance surface for MnF 2 with Case I 

orientation. The gap spacing is 2.0 pm, the frequency 

· 100 cm-l to 500 -l d h · "d range 1s em , an t e 1nc1 ent angle is 

10 

20 to 80 degrees. If an experimental ATR spectra is 

measured by fixing the incident angle and scanning the 

frequency, the results will follow a cross section going 

from left to right. Conversely if the ATR spectra is 

measured by fixing the frequency and scanning the incident 

angle, the results will follow a cross section going from 

bottom to top. This is discussed further elsewhere 1 ' 2 . 

The reflectance surfaces for Case I, Case II, and 

Case III are shown in Figs. 4, 5, and 6 respectively. 

The gap spacfng was 2.0 pm in all cases, and the ranges 

of frequency and incident angle are the same as those 

mentioned earlier. Some general comments can be made 

about all three cases. The dispersion of branch 3 can 

be seen as the turning of the 11 Valley 11 toward lower was 

e decreases. For a given w, decreasing e corresponds to 

de creasing kx through the governing ATR equation 



1 1 

kx = (w/c) np sin(e) (10) 

where np is the prism index of refraction. Notice that 

there is a maximum in the reflectivity at small angles 
-1 near 200 em , and this maximum obscures the SEW minimum 

which is present at larger angles. Also note that the 

minima become quite shallow as e gets larger and in fact 

at 70 degrees the minima are too small to be observed 

experimentally. 

The last effect precludes observation of the branch 

1 termination for Case I SEW since Eq. (8) and Eq. (10) 

indicate that e would be 72 degrees. In order to increase 

the minima depth at larger angles, the gap spacing was 

reduced to 0.5 ~m and the resulting surface for Case I 

is shown in Fig. 7. As e increases, branch 1 now rises 

until it becomes a small, local maximum while the 

neighboring branch 2 continues to larger angles as a 

minimum. This is also apparent for this surface in the 

fixed angle cross sections which are displayed in Fig. 8. 

(The curves are offset for clarity). The other branches 

which terminate are not available with the silicon prism. 

In addition, the cross sections show the enhancement of 

the maximum at small angles which is due to the smaller 

gap. The complexity of the surfaces and their rapid 

change with different gap spacings indicate that the gap 

spacing must be uniform for quantitative ATR measurements, 



especially at smaller gaps. 

III. EXPERIMENTAL 

The ATR spectra of MnF 2 were measured using a RIIC 

FS-720 Michelson Fourier transform spectrometer with a 

Golay cell detector. The data was obtained by fixing the 

angle and 11 Scanning 11 the frequency. In most cases the 

apodized resolution was 2.0 cm- 1 and the uncertainty in 

the incident angle was ± 2.0 degrees. A sample holder 

for use with the RIIC TR-5 Micro ATR unit was fabricated 

to press the silicon (n = 3.418) hemicylinder prism p 

against the crystal. The gap spacing was provided by 

1 2 

Mylar spacers (2.0 ~m) or if smaller gaps were required, 

the prism was pressed directly against the sample. The 

spacing was estimated using visible light interference 

fringes. The crystals were purchased from Optovac, Inc. 

and the surfaces were polished to 1/4 A (Na) flatness 

over a minimum of 80% of the surface. We have found that 

a large area must be flat in order to couple effectively 

(the incident beam diameter was approximately 5 mm). One 

face had the optic axis normal (basal face) and one face 

had the optic axis parallel to an edge (CA face). Since 

MnF 2 is a transparent uniaxial material, the orientation 

of the crystal is easily decided with crossed polarizers. 

The beam divergence inside the prism was estimated to be 



1.0 degree. All data was taken at room temperature. The 

relative reflectance was determined by a ratio of the ATR 

reflectance with MnF 2 to the ATR reflectance with a 

polished Al cube substituted for the crystal. 

A representative experimental result is shown in 

1 3 

Fig. 9 for Case I orientation. The gap was 1.0 ~m and the 

incident angle e = 30°. The minimum at . 206 cm- 1 occurs 

at a frequency for which E~(w) is negative (see Fig. 2), 

and we will assign it to the branch 1 extraordinary SEW. 

Note, however, that the second minimum at 259 cm- 1 occurs 

at a frequency for which real E~(w) i5 positive (see 

Fig. 2). We therefore assign this minimum to the branch 

2 extraordinary SEW using the definitions carried over 

from the cases involving zero damping. 

After converting the reflectance minima to wave­

vector k using Eq. (10), the results are plotted in 
X 

Fig. 10. The triangles are the data points for Case I 

and the squares for Case III. The solid line is the 

Case I dispersion relation Eq. (2a), and the dashed line 

is the Case III dispersion relation Eq . (2c). The data 

for Case III branch 1 was taken with a 2 . 0 ~ m gap spacing 

while the gap spacing was 0.5 ~m for the Case III branch 

2 data. The data for Case I was taken with a 0.5 ~m gap. 

The experimental points are slightly lower in frequency 

than the theoretical values, but this is expected since 

smaller gaps do produce a shift toward lower frequency 



minima in isotropic materials. 

The termination of the Case I extraordinary SEW at 

point A was observed by noting the disappearance of the 

branch 1 while the branch 2 remained for increasing 

1 4 

angles. The experimental spectra are displayed in Fig. 11. 

The minimum disappeared at an experimental incidence angle 

of 60° which was less than the 72° predicted by the 

dispersion curves without damping. This discrepancy is 

due to the finite divergence of the incident beam, and 

the subjective choice of when the minimum has 11 disappeared 11 • 

Qualitative agreement with the calculated ATR 

reflectance surface and the empirical data of Case III can 

be seen in the Fig. 12 for a gap of 0.5 ~m where the 
-1 reflectivity is decreased at 125 em for the small angle. 

Then as e is increased, the experimental reflectivity in 

this 125 cm- 1 region increases. Furthermore branch 1 is 

not apparent in the smaller angle spectra. At 0.5 ~m the 

minimum is shifted to 185 cm-l (from 200 cm-l at 2 ~m) 

because of the smaller gap. 

Examining the reflectance surface of Fig. 6, one can 

see that this minimum disappears at smaller angles due to 

the large increase in reflectivity centered on 185 cm-l 

for small angles. The existence of this .. bump .. is then 

confirmed experimentally. 

In Case II the ATR spectra pointedly indicates the 

difficulties associated with using the dispersion relation 



Eq. (2b). As one can see in the reflectance surface 

(Fig. 5) and the fixed angle cross section in Fig. 13, 

a pronounced minimum occurs at 250 cm- 1 and yet even 

£ 11 (w) with no damping is positive. By our previous 

definition of SEW minima, this cannot be assigned to a 

SEW. The extraordinary SEW predicted from Eq. (2b) is 

the small dip at 280 cm-l in the calculated cross section 

(Fig. 13). Our experimental data were not sufficiently 

good to detect this small minimum. Similar observational 

difficulties were also encountered by Bryksin, ~ al . 10 

with MgF 2 which is structurally similar to MnF 2 . 

CONCLUSION 

1 5 

Previous theoretical treatments of SEW on anisotropic 

materials which did not include absorption are shown to be 

inadequate. When the dielectric function is allowed to be 

complex so as to include absorption, the dispersion curves 

can be made to bend back or to show asymptotic behavior 

near the usual surface polariton frequencies. This 

problem with the dispersion curves has been previously 

noted for isotropic materials. In addition, the component 

of the wavevector normal to the surface as calculated from 

complex dielectric functions is always complex and the 

usual conditions for the existence of SEW are no longer 

precise. 
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To overcome these difficulties with complex dielectric 

functions the technique of displaying the ATR reflectance 

as a three dimensional plot of reflectance vs. both wand 

e can be used very effectively. Using this complete 

dielectric description of the anisotropic material, most 

minima or "valleys" in the surface can be assigned as SEW. 

Using the conditions of Eqs. (6a,d) with the real parts of 

E 11 ( w ) and E:..L Cw) . 0 the r m i n i m a ex i s t at f r e que n c i e s where 

E 11 ( w } a n d E:...L ( w ) s a t i s f y E q s . ( 6 a , d ) o n 1 y i f d a m p i n g i s 

omitted. A third type of minima occur where the conditions 

of Eqs. (6a,d) are not met, with or without damping. These 

three types of minima are all observed in the experimental 

measurements on MnF 2 . 

The termination of an extraordinary SEW was examined 

using the reflectance surface and experimental verification 

was found. With this graphical reflectance surface 

technique, we have demonstrated that a small gap is requir­

ed to avoid confusing the termination with the normal 

reduction of the reflectivity minima as e increases. 



APPENDIX 

The ATR reflectance for an anisotropic sample with 

absorption is derived for special orientations of kx and 

the optic axis. The geometry is that of Fig. Al. 

Subscripts p., g., and a. refer to the prism, gap and 

absorber respectively. The prism is non-absorbing 

( s p = n~), and the gap has dielectric constant E 9 . The 

three orientations considered are those shown in Fig. 1 

and the incident light is p-polarized. 

1 7 

The electric fields are written (with time dependence 

e-iwt) in the three regions as: 

-+ 

prism Ep = ~lp(l,O,kx/kpz)exp[i(kxx- kpzz)] 

+ ~ 2 p(l,O- kx/kpz)exp[i(kxx + kpzz)] 

( ; ) 

-+ 

gap E9 = ~lg(l,O,kx/kgz)exp[i(kxx- k9zz)] 

t ~ 29 (1 ,0, - kx/kgz)exp[i (kxx + k9zz)] 

The first term in Eq. (i) is the incident beam and the 

second term is the reflected beam. Thus we want to 

determine the reflectance ratio r = ~ 2p/ ~ lp" The 
-+ 

( ; ; ) 

( ; ; i ) 

coefficient A depends upon the orientation of k and the 
-+ 

optic axis, and will be determined from V•D = 0. We shall 

require Imag(kaz) >O so that the field decays as z + - oo. 
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T~e dielectric tensor is diagonal and has the following 

forms. for the th.ree cases considered. 

Case I Case I I Case III 

jEJ._ 0 01 ls,l 0 01 ~ 0 01 ~ 
E: = 0 E:...L 0 E: = 0 l 0 0 0 - E: = E: 

II 

~ 0 e:lll L9 0 ~ ~ 0 s• - ___. . ...L ..__. 

( i v) 

+ 

One fi.nds from V•D = 0 that A1 = (kxs...L/kzs 11 ) 

All = (kxe: 11 /kze:..L) and Alii = (kx/kz) for the three cases 

respectively. Energy conservation (the wave equation) can 

be used to relate kx and kz for each medium. The boundary 

conditions for E-tangential and D-normal at the two 

interfaces can be written as a matrix equation: 

FC = G ( v) 

w.he.re 

~~2~ ~-~, p l 
~lg -(sp/kpz)~lp 

c = G = 0 ~ 2g ' 

L~ ,~ La J 

and 



I -1 -1 ol 
-e:p/kpz -e:g/kgz e: 9;k 92 0 

F = 
0 F32 F33 F34 

L 0 F42 F43 F44j 

F32 = exp[i k92 d], 

F33 = exp[-i k92 d], 

F34 = -exp[i kazd]' 

F42 = (e: 9 /k 92 )exp[i k92 d], 

F43 = (-e: 9 /k 92 )exp[-i k92 d], 

F44 = (-A 1 /kx)exp[i kazd] 

AI i s determined from the D-normal boundary condition and 

i s g i v e n by A I = e: 11 A I , A I I = e:....L A I I a n d A I I I = e:....L A I 1. I for 

the three cases, respectively. 

It is straightforward to find the ratio r = ~ 2 p/~lp 

and from this the ATR reflectivity, R = r*r. 

The wave equation for the anisotropic absorber is 15 
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-+ -++-+ -+ 

-(w/c) 2 D = k(k·E)-k 2E ( vi ) 

The eq~ation can be used to obtain kaz from kx. For the 

three cases considered here: 

k;z = (w/c) 2e:...L- k;( e:...L / e: 11 ) (Case I) (vi i ) 

kai = (w/c) 2e: 11 - k;(e: 11 /e:...L) (Case II) (viii) 
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(Case III). ( i X) 

This concludes the derivation of the ATR re f lectivity 

for anisotropic materials with special orientations. 
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FIGURE CAPTIONS 

Fig. 1. Special orientation geometry and dispersion 

relations. OA is the optic axis direction and k is the 

SEW propagation direction for each case. The dispersion 

relations are also listed along with the general condition 

for SEW to exist. The additional conditions are found in 

the. text. 

Fig. 2. The real part of the dielectric functions of MnF 2 . 

The subscripts II and .1. refer to the diagonal tensor 

components relative to the optic axis. 

Fig. 3. Dispersion curves for MnF 2 . The solid line is 

Case I, the dash-dot line is Case II and the dashed line is 

Case III. The arrows A indicate the terminating points of 

the extraordinary SEW. The Case I and Case III curves are 

overlapping for the second branch on the scale. The line 

labeled "light line" is the free space photon dispersion 

line and the lfne labeled "silicon line" is the maximum 

momentum available with a silicon ATR prism. 

Fig. 4. The ATR reflectance surface of Case I MnF 2 . The 

reflectance is plotted in the vertical direction as a 

function of the frequency, w, and the incident angle, e . 

The gap spacing is 2.0 ~m. The frequency range is 100 cm- 1 

to 500 cm - 1 and the incident a ngl e is 20 o- ao o. 
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Fig. 5. The ATR reflectance surface of Case II MnF 2 . The 

gap spacing is 2.0 ~m. w varies from 100 cm- 1 to 500 cm-1 

and e from 20° to soo. 

Fig. 6. The ATR reflectance surface of Case III MnF 2 . The 

gap spacing is 2.0 ~m. w varies from 100 cm- 1 to 500 cm-1 

and e from 20°-8Qo. 

Fig. 7. The ATR reflectance surface for Case I MnF2 . The 

gap spacing is 0.5 ~m. w varies from 100 cm- 1 to 500 cm-1 

and e varies from 20°-80°. 

Fig. 8. Fixed angle cross sections of the reflectance 

surface of Fig. 7. The curves are offset for clarity; one 

division on the ordinate is a change of 10% in reflectance. 

The angles are indicated. Note that the first minimum 

terminates while the second remains. 

Fig. 9. Experimental ATR spectra of Case I MnF 2 . The 

incident angle is fixed at 30°. The division along the 

ordinate are reflectance increments of 10%. 

Fig. 10. Experimental dispersion curves for Case I and 

Case III. The solid line is the Case I dispersion curve 

and the dashed line is the Case III dispersion curve (see 

Fig. 3). The triangles are the experimental data points 

for the Case I configuration and the squares are the data 

points for the Case III configuration. Point A is the the ­

oretical termination point of the Case I extraordinary SEW. 
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Fig. 11. Experimental ATR spectra showing a terminating 

branch. The orientation was Case I and the incident 

angles are as indicated. The gap was approximately 0.5 ~m. 

The curves are offset for clarity. Note the abrupt dis-

appearance of the lower frequency minimum while the mini-

mum at 258 cm-l remains in the spectra at 60°. 

Fig. 12. Experimental ATR spectra for Case III. The spec-

tra were obtained at the angles indicated. The curves are 

offset for clarity; each division on the ordinate is a 10 % 

change in reflectivity. Note that the minimum at 180 cm- 1 

is not present at small angles. 

Fig. 13. Fixed angle cross section of the reflectance 

surface of Fig. 5. This is the Case II orientation with a 

gap of 2.0 ].lm. The incident angle is 30 ° . The small dip 

at 280 
-1 . em 1s the lowest frequency SEW predicted using the 

dispersion relation. 

Fig. Al. ATR Geometry. The incident light is I 0 and the 

reflected light I. The incident angle e is measured inside 

the pr i sm and is larger than the critical angle. The gap 

spacing is d. 
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wtj 

(em -l ) 

160.0 

2 51 . 4 

354.4 

TABLE I. MnF 2 Oscillator Model Dielectric 

Function Parameters 14 

oE:. 
J 

y. 
J wtj QE:. 

J 

( em -l ) 

3.774 0.0283 279.0 1.460 

0.224 0.0780 283.8 2.202 

l . 5 34 0.0725 369.6 0.224 
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y. 
J 

0.0129 

0. 0 389 

0.7333 
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