

 e-ISSN: 2289-8131 Vol. 9 No. 2-4 53

Low Level Communication Protocol and Hardware
for Wired Sensor Networks

Jan Stepan, Jan Matyska, Richard Cimler, Josef Horalek
Department of Applied Informatics, University of Hradec Kralove, Hradec Kralove, Czech Republic.

jan.stepan.3@uhk.cz

Abstract—This paper describes communication protocol,
which was originally designed and implemented for end point
communication in smart homes. Due to protocol simplicity and
architecture robustness, it is possible to use the whole system
for other purposes rather than smart home control. For this
purpose, the protocol uses the very common RS485 bus. Using
metallic connection nowadays may look like a step back, but it
is the fastest and cheapest way to integrate real hardware
devices into the existing simulation projects. This paper
describes the requirements for the whole hardware and
software architecture, emphasizing on the descriptions of the
protocol and the lowest hardware layers.

Index Terms—Sensor Networks; RS485; Home Automation.

I. INTRODUCTION

Systems for home automation consists of two parts: The first
part is the control unit, and the second is the modules
connected to it. Modules are various peripherals (actors,
controllers and sensors) placed in a house. For example
buttons, switches, lightbulbs, thermostatic heads and etc.
They are connected with control unit by wires or wirelessly
[1]. Communication protocols and transmitting technologies
vary by specific manufacturer. Portfolio of the available
modules may also vary as well as the capabilities of control
unit.

Many companies worldwide offer very good to excellent
smart home solutions. For examples, the iNELS [2], Loxone
[3] and Fibaro [4]. These companies have extensive range of
various modules to buy. However, there is a problem of
architecture, in which there is no way to control home, if the
control unit is broken or fail to work.

There are also many researchers who have successfully
tried to make this area better. There are papers [5] [6] that
describe algorithms for fall detection using cameras. [7]
presents algorithm for learning inhabitant’s behavior
patterns and use them for better automation. Machine to
machine learning networks are described in [8]. However,
ways to integrate these approaches with real physical
hardware are still non-existance as the commercial solutions
are not open for third party usage and developing one
purpose hardware for testing is costly and demanding.

For this reason, a new architecture has been designed and
implemented. The main goal is to make it open for third
party integration so that it is more secure than the existing
commercial products with the possibility to use it in areas
other than smart home automation.

As shown in Figure 1, the existing smart home
architecture is expanded by adding another layer – the
lowest logical layer containing nodes. This name was
chosen to differentiate it from the other modules. The

module stands for various types of devices according to its
manufacturer. Some are equipped with microcontroller and
some are not. Some communicate by analog signals and
some over digital bus. Microcontrollers can be programmed
and used for getting or setting data from any existing
hardware components [9] [10] [11]. They can communicate
with higher layers through data buses.

Central server

Subsystem
(Room 1)

Subsystem
(Room 2)

Node

Ethernet
switch

Node

Node

Node

Node

RS485 bus RS485 bus

Figure 1: Block diagram of system architecture

Node must always fulfill certain properties and features
which will be specified below in next section. Nodes
contains various hardware peripherals, such as sensors,
actors or controllers and they are connected to RS485 bus to
communicate with the subsystem. Subsystems represent an
extension of the existing architecture. Its default state is to
delegate states and data between nodes and top layer, and
the central server.

Central server replaces control unit by common computer
on x86/64 platform with Linux open source operating
system. This solution has low initial costs, and it is easily
fixable when problem occurs. Server runs Java application
with Spring Framework. It communicates with subsystems
and with external services and mobile applications through
REST API. It also contains web interface for configuration

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universiti Teknikal Malaysia Melaka: UTeM Open Journal System

https://core.ac.uk/display/229268227?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Journal of Telecommunication, Electronic and Computer Engineering	

54 e-ISSN: 2289-8131 Vol. 9 No. 2-4

and monitoring. Central server receives node changes
(button press, temperature change, etc.) and sets other nodes
by user defined rules.

Subsystem keeps a local copy of user’s defined rules to
direct the connected nodes. If connection with the server is
loss due to an error, nodes in the subsystem are still
working. The local defined rules are evaluated by Java
application called Controller, which shares information with
the server application. The subsystem also contains C++
application called Handler. Its only purpose is to detect new
nodes based on the demand of the Controller, and read or
write data into nodes in infinite loop. The handle
communicates with the Controller via JSON messages
through TCP socket connection.

It is possible to use this architecture with minimal
modification in other areas besides the smart home
automation due to its modular architecture. For example, the
subsystems can be places in hospital in every patient room.
Individual nodes are placed in beds and detect patient’s
presence. Nodes can also work as emergency buttons to call
nurses or to be placed on patient’s body to measure data.
The central server is located in the doctor’s room and it
notifies them about the changes by defined rules.

It is not necessary to use the whole architecture, as only
nodes with different sensors and Handler application can be
used. Those parts can be easily integrated to other scientific
projects. The integration is fast and simple because of
human readable JSON messages. There is only one
requirement - to use programming language with TCP
server connection and JSON parses support. Complete
architecture is described in more detail in [12] [13].

II. HARDWARE AND SOFTWARE IMPLEMENTATION

Complete architecture is designed in a way that it does not

require too much knowledge from hardware implementation
area. It is possible to realize subsystem and nodes with very
limited resources. Everything is designed to make available
to experienced designers as well as to amateur constructers.
For example, the popular Arduino platform can be used to
implement nodes and the peripherals can be connected
through breadboard so no soldering is required for testing
implementations.

A. Subsystem
There are no specific requirements for subsystem’s

hardware. Every computer with UART interface and one
GPIO pin can be used to develop the hardware. This pin is
connected to data flow pins of RS485 transceiver. Bus is
therefore, used in half duplex mode, where it is sufficient to
use one pair of twisted cable. MAX485 from Maxim is used
in testing implementation of nodes, in which popular
ARMv7 architecture minicomputer Raspberry Pi 2 is used.
It offers many processor performance and operating
memory. Further, it is possible to use any other
minicomputers with similar performance. UART interface is
connected to MAX485. Maximum number of nodes in one
subsystem is limited to 31 when using MAX485. This limit
can be increased up to 127 nodes by using more advanced
transmitter.

Only Java runtime and MySQL database is required for
subsystem software. For compilation of Handler from code
sources, C++ compiler with 2011 standard is required.

B. Nodes
Every node needs to have its type, channel count and

address (identifier) specified. Node type means what kind of
periphery (sensor, controller or actuator) is connected to
node and which data are returned or accepted. Node type
must have its identifier, access type, data count and data
width in bits.

Node type can be, for example a switch. There is nothing
to write into switch only to read its state and there are only
two states: On or off. The two states can be represented with
only one bit so the data width is equal to one. The data count
are the same as there are no other information that the button
can provide. The node has button state, which is available at
any time and this state can be sent to subsystem
immediately.

The next example is the color lightbulb. There is nothing
to read from lightbulb, except it is only set based on color.
However, it is possible to read and verify the latest state
from the node. Color lightbulbs have three independent
LEDs: Red, green and blue. The color lightbulb node type
will have data width of 8 bits and data count of three. The
values of data (from 0 to 255) are light intensity for LEDs.

Both examples are node types with immediate access. It
means that data can be read or set constantly. In some node
types, it is even necessary to read data constantly. For
example, when the node type is button. If data from button
node are not read fast enough, short button press could not
be detected. To solve this, Handle must be able to read data
from node with immediate read type as fast as possible.

The second group of node types are those with delayed
access. Those nodes contain periphery which needs certain
time frame to measure and process data. Delayed access
types are therefore, read only. Those are the most often node
types with some digital environmental sensors (temperature,
humidity, air quality, etc.), which use some digital bus. If
node would try to read data constantly, there would not be
any or wrong data. Therefore, node with delayed access are
waiting for measure command from subsystem. After some
defined time to measure, data subsystem will read their data.

It is possible to split node types into four groups by their
access type: Immediate read, immediate read and write,
immediate write and delayed read.

Another property of node is channel count. Node type
only specifies connected periphery but it is not counted as
one of them. The number of nodes needed in house would
be huge if the node could contain one periphery only.
Therefore, node can have multiple identical peripherals and
the channel count tells how many it is for example, eight
channel switch node or two channel temperature sensor
node.

The last property of node is its address. The subsystem
must communicate with a particular node; therefore, nodes
need to have a unique identifier, which is their address. The
process of dynamic assigning address to node is described in
further communication protocol introduction.

Handler does not have any information about which node
types exist or which nodes are connected to it after the start
up. This information must be sent from Controller via JSON
message, and it is possible to define any new node type. The
controller has already many node types built in his database.
These are listed in Table 1, but the list has been shortened
because there is currently more than 40 node types. ID
means identifier of the node type, bits means the data length,
count is the data count and access means type of data access.

Low Level Communication Protocol and Hardware for Wired Sensor Networks

 e-ISSN: 2289-8131 Vol. 9 No. 2-4 55

From the hardware point of view, the nodes must contain
microcontroller to be able to communicate with subsystem
resp. Handler application. The chosen microcontroller must
be connected to or to have integrated with RS485
transmitter. Microcontroller must have UART interface, if
the transmitter is not integrated. Communication runs at
115200kbit per second speed and microcontroller must be
able to work properly with this speed. It also must contain
one significant analog input pin, which will be explained
later in this paper. Other microcontroller’s features like
buses, timers or interrupts are dependent on the type of
connected periphery.

Table 1

Various node types

ID Description Bits Count Access
1 Button 1 1 R
2 Switch 1 1 R
3 Light 1 1 RW
4 Dimmed light 8 1 RW
5 Dimmed RGB light 8 3 RW
6 Humidity sensor 8 1 DR
7 Temperature sensor 8 2 DR
8 Dimmer 8 1 R
9 Door lock 3 1 R

10 Regulated fan 16 1 RW

Persistence memory like EEPROM or others must be
presented in the microcontroller for protocol
implementation. Only two bytes of persistence memory id
needed, approximately 64 bytes of RAM memory and 1
kilobyte of program memory were used. These numbers are
indicative and depend on the used microcontroller,
programming language or efficiency of language compiler.

Schematic diagram of node with precise digital
temperature sensor DS18B20 is shown in Figure 2. This
diagram is intended only for testing purposes in laboratory
environment. Node type is temperature sensor (type id 7)
with delayed access and two eight bit data which are
returned from node.

The diagram uses very simple and cheap 8-bit
microcontroller PIC16F1813 from Microchip Company.
Circuit requires stabilized 5 volt input through JP2 pin
header. JP2 also contains doubled A and B pins for RS485
bus connection. Pin header JP1 is for terminating resistor
connecting and this header must be connected physically on
the last node on the bus.

It is possible to design very small printed circuit board
because schematic contains small amount of parts, even
while using classic, non SMD parts and when leaving
enough space for manual assembly. The final size is only 22
to 22 millimeters, if the two layered routes are used as seen
in Figure 3. If SMD parts are used, the final printed circuit
board size is even smaller.

III. PROTOCOL DESCRIPTION

Subsystem is the master and controls communication

flow, while nodes are the slaves that wait for the command
because RS485 is used in half duplex mode. The whole
protocol is therefore in request-response style. The
subsystem sends request to every node or one specific node
and waits for response. The whole protocol is binary and
there is no fixed message length. Every message needs to
have data as shown in Table 2.

Figure 2: Schematic of temperature node

Figure 3: Printed circuit board of temperature node

Table 2

Description of message format

Byte Number Description
1 Start character
2 Message length
N Message data

N+1 CRC8 checksum
N+2 Ending character

The first byte of message is the start character. Its binary

value is 35 which corresponds with ASCII character #. The
second byte contains information about its own data length.
The minimum own data length is one byte and the
maximum allowable length is 32 bytes. The next bytes are
the message data itself. The first message byte must be a
message identifier which specifies the message content and
meaning. A list of identifiers is shown in Table 3. Some
messages do not contain any other data because they are

Journal of Telecommunication, Electronic and Computer Engineering	

56 e-ISSN: 2289-8131 Vol. 9 No. 2-4

only commands for nodes to do some actions. The
checksum follows after its own message data. It is
calculated from the message length byte and own message
bytes and is calculated by exclusive disjunction with pre
calculated values of x^8+ x^5+ x^4+1 polynome. The last
byte is the ending character with binary value 36 which
corresponds with ASCII character $.

Table 3

List of protocol messages

MESSAGE NAME ID
MESSAGE_DISCOVERY 0

MESSAGE_DISCOVERY_RESPONSE 1
MESSAGE_DISCOVERY_ADDRESS 2

MESSAGE_DISCOVERY_CHECK 3
MESSAGE_DISCOVERY_CHECK_OK 4

MESSAGE_REQUEST 10
MESSAGE_GET 11
MESSAGE_SET 12

MESSAGE_MEASURE 13
MESSAGE_PING 14

MESSAGE_PING_RESPONSE 15
MESSAGE_RESET 16

A complete protocol contains only twelve different

messages as seen in Table 3. They can be divided into two
logical groups. Messages for address are assigned with
identifiers 0 to 4 and for regular communication with
identifiers 10 to 16. Identifiers from 5 to 9 are reserved for
future improvements.

A. Assigning address
The process of assigning address must be started by user

or other application on the central server. These messages
do not need to be implemented to testing nodes. They can
have their address hard wired into firmware. It is important
to pass the list of existing nodes (their channel count and
address) and the node types in Handler. Further, the
uniqueness of addresses must be guaranteed; otherwise, the
system will not work correctly.

The following messages are ordered in accordance to the
process flows in the real scenario.

a. MESSAGE_DISCOVERY
Handler starts addressing the process with this message. It

does not contain any other data because it is only a
command that not to address the nodes to send their
information. Nodes with already assigned address ignore
this message as well as any other addressing messages.

b. MESSAGE_DISCOVERY_RESPONSE
This message is a response from nodes on request from

MESSAGE_DISCOVERY. Ungrounded analog pin is used
in this part. If two or more new not addressed nodes are
connected to subsystem, there is no way to identify which
one of them should respond first, second and etc. They
would began sending responses at the same time
immediately after receiving MESSAGE_DISCOVERY.

Therefore nodes take electric noise from environment,
which is inducted on analog input pin. They measure this
value twice and the results are multiplied between
themselves and used as variable X. Now, they wait for X
milliseconds before sending their response. This response
contains this pseudo random number, channel count and
node type. Collision may occur when addressing large
number of nodes at once. Central server assigns addresses to
nodes which did not collide. Notification about collision is

send to user or other application. Handler does not send
MESSAGE_DISCOVERY itself again. It is necessary to
receive JSON message with command from Controller or
other used application.

Real data for four channel switch node are shown
in Figure 4. Own data length is five bytes. It contains
message identified, lower and higher byte of random
number, node type and channel count.

MESSAGE_DISCOVERY_RESPONSE

START
35

LENGTH
5

M_ID
1

RND_HI
2

RND_LO
125

TYPE_ID
2

CHAN
4

CRC
72

END
36

Figure 4: Message discovery response content

c. MESSAGE_DISCOVERY_ADDRESS
Handler sends list of new nodes to Controller when

receives MESSAGE_DISCOVERY_RESPONSE from new
nodes. Pseudo random number is sent because this new
nodes do not have addresses. Higher layer then assigns new
address and pairs it with pseudo random number. Therefore
it is possible for nodes to identify if new address is available
for them. Handler sends
MESSAGE_DISCOVERY_ADDRESS to nodes with new
address and pseudo random number.

d. MESSAGE_DISCOVERY_CHECK
Node saves its new address only into RAM memory when

MESSAGE_DISCOVERY_ADDRESS is received. Node
sends back to subsystem
MESSAGE_DISCOVERY_CHECK with its new address
and pseudo random number for checking.

e. MESSAGE_DISCOVERY_CHECK_OK
This message means that node has correct address when

data from MESSAGE_DISCOVERY_CHECK are correct.
Node is ready for switching into its normal function.
Handler therefore sends
MESSAGE_DISCOVERY_CHECK_OK only with new
address of node. Node saves address into EEPROM memory
or any other available persistent memory after receiving this
message.

B. Getting the data
These messages are being used when the system is

running correctly and reads or writes data. Handler
application is running in infinite loop and is getting data
from nodes with immediate read access.

a. MESSAGE_REQUEST
This message is sent to nodes with read access. Address

of node is part of this message to request specific node.
Response with data is sent if node successfully verifies
checksum and address in message and is equal to its own
address. Other nodes with different address ignore this
request.

b. MESSAGE_GET
Nodes are responding with this message after receiving

MESSAGE_REQUEST. Data and node address are
included. Node sends data for all its channels at ones. Data
are sent bit by bit according to data count and data width
because protocol is binary, for example node with three

Low Level Communication Protocol and Hardware for Wired Sensor Networks

 e-ISSN: 2289-8131 Vol. 9 No. 2-4 57

channels and with one variable (data count is one) with three
bit width. Aligning of bits in data byte is shown in Table 4.

Transmission of data is memory efficient due to bit
aligning. Three channel node with three bit width would
allocate 3 bytes if data would not be aligned bit by bit. Thus,
only one whole byte and one bit from other is allocated.

Table 4

Example of node’s data

Bit number Byte 1 Byte 2
Bit 1 Ch. 1, bit 1 Ch. 3, bit 3
Bit 2 Ch. 1, bit 2 Not used
Bit 3 Ch. 1, bit 3 Not used
Bit 4 Ch. 2, bit 1 Not used
Bit 5 Ch. 2, bit 2 Not used
Bit 6 Ch. 2, bit 3 Not used
Bit 7 Ch. 3, bit 1 Not used
Bit 8 Ch. 3, bit 2 Not used

c. MESSAGE_SET
Subsystem sets data of nodes with write access. There are

node data and address of node contained in message. Data
are aligned similarly as in MESSAGE_GET message.

d. MESSAGE_MEASURE
Subsystem sends this message as command to measure

new data because nodes with delayed reading need time to
acquire peripheral data. There can be situation when nodes
are incapable to send their data if these nodes are measuring
data of peripheral right now. This message eliminates this
issue. Node has plenty of time to measure data after this
message is received. This data is stored in RAM memory
and after receiving MESSAGE_REQUEST message nodes
responds with MESSAGE_GET same as when instant read
nodes are called. Delay between MEASSAGE_MEASURE
and MESSAGE_REQUEST is set to ten second at least in
Handler. This time is sufficient to any type of commercially
available sensor to read data.

e. MESSAGE_PING
There is no way to determine if nodes for write only

access are working correctly because they are not returning
any data. MESSAGE_PING is designed to test those nodes
functionality. This message contains node address only.

f. MESSAGE_PING_RESPONSE
When node receives MESSAGE_PING message it will

respond with MESSAGE_PING_RESPONSE message.
Node address is part of this message.

g. MESSAGE_RESET
The address of node is removed from permanent memory

when receiving a MESSAGE_RESET message if there is a
need to remove it for testing purposes.

IV. CONCLUSIONS

Designed and implemented system for smart home

automation expands traditional two layer architecture of
control unit and modules. This article presents low level
communication protocol and hardware solution.

A new three-layer architecture replaces the central server
instead of the control unit on the top layer. It contains user
defined rules, which can be changed anytime when the user

demands it. Subsystem is the middle layer and represents
significant improvement over the traditional architecture.
During any system malfunction as such, functionality in
rooms where the present subsystem is kept. Low layer called
nodes represents end points. Every node needs to fulfill
defined properties and parameters. Due to this
standardization, it is possible to have a simple
communication protocol to get and set node states and
assign unique address.

Communication protocol and architecture represent time
and cost available solution on how to integrate existing
projects that contains data from real sensors or peripherals.
Those can be any peripherals, which are available on the
market and can be attached to microcontroller. This
microcontroller must be capable of running presented
protocol and operating selected peripheral. It is possible to
use only selected parts of the system thanks to the modular
architecture, for example, to use only nodes and Handler
application that can provide sensor readings for external
application such as neuron networks [14] or fuzzy logic.

ACKNOWLEDGEMENT

The support of Czech Science Foundation GA_CR #15

11724S is gratefully acknowledged.

REFERENCES

[1] Lee J., Su Y. and Shen C. , 2007. A Comparative Study of Wireless

Protocols: Bluetooth, UWB, ZigBee, and Wi-Fi, IECON 2007 - 33rd
Annual Conference of the IEEE Industrial

[2] Inels.com, Smart Wiring, Smart Home - iNELS.com, 2015. [Online].
Available: http://www.inels.com/. [Accessed: 12- Oct- 2015].

[3] Loxone.com, 2015. The Loxone Smart Home - Your Smart Home
System Loxone, [Online]. Available:
http://www.loxone.com/enen/smart-home/overview.html. [Accessed:
28- Oct- 2015].

[4] Fibaro.com, 2015. Fibaro - Z-Wave smart home solution, [Online].
Available: http://www.fibaro.com/. [Accessed: 01- Oct- 2015].

[5] Foroughi H., Aski B. and Pourreza H. 2008., Intelligent video
surveillance for monitoring fall detection of elderly in home
environments, 2008 11th International Conference on Computer and
Information Technology

[6] Mubashir M., Shao L. and Seed L., 2013. A survey on fall detection:
Principles and approaches, Neurocomputing, 100:144-152.

[7] Rashidi P. and Cook D., 2009.Keeping the Resident in the Loop:
Adapting the Smart Home to the User, IEEE Transactions on
Systems, Man, and Cybernetics - Part A: Systems and Humans,
39(5):949-959

[8] Fadlullah Z., Fouda M., Kato N., Takeuchi A., Iwasaki N. and
Nozaki Y., 2011. Toward intelligent machine-to-machine
communications in smart grid, IEEE Commun. Mag., 49(4):60-65,

[9] Jakes M., Brozek J., 2015. Connection of microcontroller and
microcomputer to distributed simulation, 27th European Modeling
and Simulation Symposium, EMSS 2015. Bergeggi: Rende, France,
282-288

[10] Brozek J., Jakes M., 2015. Hardware libraries for online control of
interactive simulations, 27th European Modeling and Simulation
Symposium, EMSS Bergeggi: Rende, France, 295-300.

[11] Krejcar, O., Spicka, I., & Frischer, R. 2011. Implementation of full-
featured PID regulator in microcontrollers. Elektronika ir
Elektrotechnika, 113(7), 77-82.

[12] Stepan J., 2015. Design and implementation of smart device’s
hardware and software for communication in smart home', Bachelor,
University of Hradec Kralove,

[13] Horalek J., Matyska J., Stepan J., Vancl M., Cimler R. and Sobeslav
V., 2015. Lower Layers of a Cloud Driven Smart Home System, New
Trends in Intelligent Information and Database Systems, 219-228.

[14] Mikulecky, P., Cimler R., and Olsevicova K. 2012. Outdoor Large-
scale Ambient Intelligence. 2012 Proc. 19th IBIMA Conference.
Barcelona, IBIMA

