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ABSTRACT 

An investigation is made of the linear stahil i t y o f 

the developing laminar flow of an incompressible fluid in 

the entrance region o f a circular tube. Both a xis ymmetric 

and non-axisymmetric small disturbances are considered in 

the analysis. The stability characteristics of the fully 

] _ ] 

developed flow are also re-examined. The main f low velocity 

distribution used in the stability anal y sis is that from 

the solution of the linearized momentum equation. The 

governing equations f or the disturbances and the boundar y 

conditions constitute an eigenvalue problem which is solved 

by a direct numerical integration scheme along with an 

iteration technique. The solution starts with a series 

expans1on near the center of the tube, which is followed 

by a fourth order Runge-Kutta integration to the tube wall. 

Two purification methods, a filtering scheme and an 

orthonormalization technique, are used to remove the 

"parasitic errors" inherent in the numerical integ ra tion of 

the disturbance equations. Both purification schemes y ield 

stability results which are essentiall y identic a l. 

Neutral stability curves are g enerated a nd critic a l 

Re y nolds numbers are obtained a t vario u s ax i al location s 

from the tube inlet f or both axi s ymmetric disturbances and 

azimuthall y periodic disturb a nces with periodicit y one. 

Representative ei g enf unctions are also presented. It is 
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found that: (1) laminar flow in the entrance reglon o f 

a circular tube is unstable to both axisymmetric and 

azimuthally periodic disturbances; (2) the minimum cr i tical 

Reynolds numbers occur in the entrance region and are about 

20,000 (based on the average velocity and the radius of 

the tube) for both axisymmetric and azimuthally periodic 

disturbances; (3) t h e azimuthally periodic disturbances 

are more stable than the axisymmetric disturbances in the 

region adjacent to the entrance of the tube; and (4) ln 

the region away from the tube inlet, the azimuthally periodic 

disturbances are more unstable than the axisymmetric distur

bances. This last finding agrees with that of the earlier 

investigators for the fully developed flow. 
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I. INTRODUCTION 

A. General Remarks 

In 1883 Reynolds (1) carried out systematic experiments 

and showed that the phenomenon of transition from laminar to 

turbulent flow in a circular tube occurs when the Reynolds 

number (based on the tube diameter and the average velocity) 

exceeds about 2,300. At the same time Rayleigh (2,3) started 

a series of theoretical studies on the inviscid stability 

of fluid flows to small disturbances. He discovered that 

velocity profiles which possess a point of inflection are 

unstable and that the speed of a neutral disturbance is 

smaller than the maximum main flow velocity. When Rayleigh's 

criterion is applied to fully developed pipe flow, the 

flow should be stable regardless of the Reynolds number. 

Later, Ekman (4) repeated Reynolds' experiments. He succeeded 

in maintaining laminar flow in a pipe up to a critical 

Reynolds number of 40,000 by providing an inlet which was 

made exceptionally free from disturbances. 

Subsequently, the experimental investigations of Kuethe 

(5), Leite (6), Bhat (7) and Houlihan (8) showed that for 

Poiseuille p1pe flow there exists a minimum critical Reynolds 

number of approximately 2,000, below which the flow remains 

laminar even in the presence of very strong disturbances. 

In the theoretical investigations, the method of small 

disturbances has been successfully employed. This method 



1s based on the assumption that laminar flow is affected 

by certain infinitesimal disturbances (see, for examp l e, 

Schlichting (9)). The behavior of small disturbances in 

a flow can be analyzed from the viewpoint of temporal 

stability or spatial stability. In the temporal stability 

analysis, disturbances which are periodic in axial distance 

are assumed to be applied at an initial instant everywhere 

in the fluid and are observed as time elapes. In the 

spatial stability analysis, disturbances which are periodic 

in time are imposed at a specified location in the fluid 

and are observed during their propagation downstream. 
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The flow is considered to be stable, neutrally stable, or 

unstable depending on whether these disturbances are damped, 

remain constant, or amplified with respect to time for 

the temporal case or with respect to downstream distance 

for the spatial case, respectively. 

B. Review of Previous Theoretical Investigations 

The temporal stability of the fully developed flow in 

a pipe (i.e., the Poiseuille flow) to axisymmetric distur·

bances was analyzed theoretically by Sexl (10). However, 

his conclusions were unreliable since he applied some 

artificial boundary conditions for mathematical simplicity. 

Later, Pretsch (11) and Pekeris (12) found that there are 

two sets of solutions to the disturbances, one for the 

case of a disturbance confined to a thin region near the 



wall and the other to a region near the center of the pipe. 

They are referred to, respectively, as the wall mode and 

the center mode solutions. Corcos and Sellars (13) studied 

these two sets of disturbances and reached a conclusion 

that only a finite number of eigenfunctions exist for the 

pipe flow stability problem. Schensted (14) subsequently 

showed that not only does a set of infinite eigenfunctions 

exist for the case of axisymmetric disturbances, but this 

set is complete. This problem has also been treated 

numerically by Davey and Drazin (15) using a direct 

integration technique. They found that the flow is stable 

to axisymmetric small disturbances. 

Recently, Lessen, Sadler and Liu (16) used a numerical 

integration method to investigate the linear stability 

3 

of pipe Poiseuille flow with respect to azimuthally per i odic 

disturbances with periodicity n=1. Burridge (17) extended 

their work to cover different periodicities for the non

axisymmetric disturbances using numerical and asymptotic 

methods of solution. At the same time, Salwen and Grosch 

(18) found that the p1pe flow is stable to infinitesimal 

disturbances in the range of azimuthal wave numbers n=0,1, 

2,---,5, axial wave numbers a between 0.1 and 10.0 and 

aR~50,000. These studies indicated that Poiseuille pipe 

flow is always temporall y stable to infinitesimal 

disturbances of both axisymmetric and non-axis ymmetric 

types. They also showed that the center mode disturbances 

are more unstable than the wall mode disturbances. 
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The spatial stability problem of pipe flow was anal y zed 

by Gill (19). His theoretical results are in fair agreement 

with those o f the experiments of Liete (6) and he concluded 

that the Poiseuille flow in a pipe is spatially stable to 

infinitesimal, axisymmetric disturbances. Gar g and Roule a u 

(20) further extended Gill's work and found that up to 

Reynolds numbers of 10,000, the pipe Poiseuille flow is 

spatially stable to axisymmetric and non-axisymmetric, 

infinitesimal disturbances. 

The theoretical investigations of Houlihan (8) and 

Graebel (21) have shown, on the other hand, that hydro

dynamic instability of Poiseuille pipe flow exists for 

temporal, non-axisymmetrical sm a ll disturbances. By 

following the classical procedure of Tollmien, Houlihan 

found a portion of the neutral stability curve. However, 

he did not give a critical Re y nolds number. Graebel's 

results from an asymptotic solution showed critical 

Reynolds number of 20 or larger. Since the findings of 

Houlihan and Graebel do not agree at all with those obtained 

from the numerical methods of solution, their results are 

open to question. 

The temporal stability of laminar inlet-flow inside 

a circular tube due to small axis ymmetric disturbances 

was investigated in gr eat deta i l b y Tatsumi (22) using 

an asymptotic ser ie s s olution. He showed tha t i n

stability of flow exists in the entrance section of a 

circular tube, and computed neutral stability curves for 



wall mode disturbances at various distances downstream 

of the entrance. Tatsumi found that the critical Reynolds 

number decreases from infinity at tube inlet to a minimum 

with an increase in entrance length and then increases 

monotonically to infinity farther downstream. 

C. The Present Investigation 

From the previous studies, it can be concluded that 

Poiseuille pipe flow is stable to small disturbances of 

both axisymmetric and non-axisymmetric types. Further-

more, a comparison between the results of Davey and Drazin 

(15) and those of Burridge (17) shows that non-axisymmetric 

small disturbances with n=1 are more unstable than 

axisymmetric infinitesimal disturbances (n=O) for both 

5 

wall and center modes. The instability of pipe flow to 

axisymmetric disturbances was found to occur in the entrance 

region. The question that needs to be answered is: Is 

the first instability in the development region of pipe 

flow due to axisymmetric disturbances or due to non

axisymmetric disturbances? This motivated the present 

investigation. 

The present study deals with linear stability of the 

developing laminar flow in a circular tube . Both 

axisymmetric and azimuthally periodic, non-axisymmetric 

infinitesimal disturbances are considered in the analysis. 

The main objectives of the present investigation are 

fourfold. First, as pointed out by Chen (23), there 
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is an error in Tatsumi's work. In addition, 1n his stability 

calculation, Tatsumi applied the main flow profiles which 

were obtained under the assumption of "almost similarity" 

of the velocity profiles. These velocity profiles result 

in a description of the main flow which is inferior to other 

more recent representations. Thus, the results of Tatsumi 

are doubtful and there is a definite need to re-examin the 

stability characteristics of the developing tube flow to 

axisymmetric infinitesimal disturbances. Second, 
. . 

SlnCe ln 

the fully developed flow, non-axisymmetric small disturbances 

with n=l have been found to be more unstable than axisymmetric 

disturbances, it is of interest to study whether the 

developing pipe flow is more or less stable to non-

axisymmetric disturbances with n=l than to axisymmetric 

disturbances. Third, experimental work has shown that 

a critical Reynolds number exists in pipe flow. Previous 

theoretical investigation for the fully developed flow, on 

the other hand, showed that the flow 1s absolutely stable 

and thus no critical Reynolds number does exist. A 

comprehensiv e investigation of the flow instability 1n the 

entrance region of a pipe will, therefore, help clarify 

the existence or the lack of a critical Re y nolds number. 

Fourth, it is of great importance to examine and compare 

the various numerical schemes employed in the stability 

calculations for pipe f low. 

In the present study, consideration is given to the 

wall mode disturbances. In his study of the quasi-nonlinear 



stability analysis for pipe flow, Chen (23) concluded that 

center mode disturbances merely flatten out the nose of the 

velocity profiles and probably contribute to a more stable 

flow. In fact, he found that the wall mode plays a more 

important role in the nonlinear instability of the flow. 

7 

For the fully developed pipe flow, it has been found (16) 

that for large Reynolds numbers, both the least stable wall 

mode and the least stable center mode exhibit a stability 

characteristic which has almost the same amplification rate. 

In addition, in the entrance region of the tube, the main 

flow is of the boundary layer type and the instability of 

the flow, if it exists, should originate near the tube wall 

as in the boundary layer flow. For these reasons and for a 

comparison with Tatsum j 's results, the present study is 

carried out for the wall mode. In the present investigation, 

the timewise stability characteristics are investigated 

using a numerical integration method of solution. A series 

solution for the stability equations near the center of 

the tube is obtained which serves as a starting point for 

the numerical integration. A direct numerical integration 

is then carried out to the tube wall. A filter technique 

(24) and an orthonormalization technique (25) are used to 

remove the "parasitic errors" inherent in the numerical 

integration. 

Neutral stabilit y curves at different axial locations 

in the entrance region are generated and the critical 

Reynolds numbers are determined for both axisymmetric and 
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non-axisymmetric disturbances. Representative results 

for the eigenfunctions are also presented. Finally, the 

stability results obtained with different methods of solution 

for these two cases are compared and discussed. 
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II. MATHEMATICAL FORMULATION OF THE STABILITY PROBLEM 

A. The Main Flow 

Before preceding to the execution of the stability 

analysis, consideration is given to the main flow in the 

developing region of a circular tube. Of the various 

approximate analytical solutions available in the litera-

ture, the method of analysis carried out by Sparrow, Lin 

and Lundgren (26) appears to offer the most complete and 

accurate velocity distribution. With the linearization 

of the inertia terms in the momentum equation, they 

obtained velocity solutions which are continuous over the 

cross section and along the length from the entrance to 

the fully developed region. The advantage of employing 

this type of velocity profiles in the stability calculations 

is that the derivatives of velocity are continuous and 

can be obtained with great accuracy. It suffices here to 

give only the highlights of the linearization method used 

ln finding the velocity solution for the main flow. 

The basic equations governing laminar flow of an 

incompressible fluid are 

Continuity equation 

v . v 0 2-1 

Momentum equation 

8V 
~ + V·VV 2-2 
8t 
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C * * *) h . where V= u ,v ,w are t e veloc1ty component in the 

* * d d" . p* . h \7 d " 2 
x , r , an 8 1rect1ons, 1s t e pressure, v an v 

are, respectively, the gradient and Lapacian operators. 

For the tube problem under consideration, the following 

assumptions are made: (1) the flow is steady, laminar 

and axisymmetric; (2) all fluid properties are constant; 

and (3) the Prandtl boundary layer assumptions apply. 

With these assumptions, equations (2-1) and (2-2) become, 

in cylindrical coordinates, 

and 

au* 
+ 

*au* 
u -* ax 

1 a * * --(r v ) = 0 

r* ar* 

*au* 
+ v -* 

ar 

dP* 
---* 

pdx 

a 2 u* 1 au* 
+ v(-- + -~ ) 

ar* 2 r*ar* 

2-3 

2-4 

With application of the linearization method of Sparrow 

et al. (26), the momentum equation (2-4) is recast into 

the form 

- au* 
s(x*)u*

ax* 

a 2 u* 1 au* 
A(x*) + v(--- + ) 

ar* 2 r*ar* 
2-5 

1n * which E (x ) is a weighting function of x* to be determined. 

The function A(x*) is another undetermined function which 

includes the pressure g radi ent as well as the residual of 

the inertia terms. 

A stretched axial coordinate ~ is introduced such 

that 

dx* 2-6 
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Equation (2-5) is then integrated over the cross-section 

of the tube and the mass conservation is applied. This 

gives an expression for A(x*). Substitution of A(x*) back 

into equation (2-5) results in the dimensionless momentum 

equation 

8 2 U 1 8U 
-- + 
8r 2 r 8r 

Which is to be solved subject to the boundary conditions 

U = 0 at r=1.0, 8U/8r = 0 at r=O, U =1.0 at x=O 

The dimensionless parameters in equation (2-7) are 

u u* 
u*' X u*r*/v' X 

0 

x*/r* 0 s/r~ 
u*r*/v' 

0 

r = 
r* 
Y* 

0 

1n which u* is the average velocity, r* is the radius of 
0 

pipe, and v is the kinematic viscosity. The velocity 

2-7 

2-8 

2-9 

solution of equation (2-7) with boundary conditions (2-8) 

is given by 

<X) 

u + L: 
i=l 

4 
~ 

i 
- 1 } 

-a?x 
e l 

Where the ai ar e the p o s itive roots of th e e quation 

J 1 (a.) = O.S a. J 0 (a. ) , i=1, 2, 3 
l l l 

2-10 

2- 11 
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The solution given by equation (2-10) is still 

incomplete because the stretched axial coordinate x appears 

instead of the physical axial coordinate X. The we ig hting 

function is evaluated under the assumption that the local 

pressure gradient calculated from momentum consideration 

be equal to the local pressure gradient obtained from 

mechanical energy consideration. This results in 

€ = 
f~(2U- l.SU 2

) (aU/ax ) rdr 

cau;ar) _ +J 1
(aU/ar) 2 rdr 

r-1 0 

Since U=U(x,r), it is clear that the right-hand side of 

2-12 

equation (2-12) is a function of x only. The relationship 

between X and x is expressed by 

X 2-13 

Thus, with E(X) specified, one can easily find the physical 

axial coordinate X from equation (2-13), and the velocit y 

solution may then be considered as formally completed. A 

detailed solution method for U is given in reference (26). 

The eigenvalues ai corresponding to the roots of 

equation (2-11) were found numericall y b y appl y ing the 

computer subroutine DRTNI and a modified BESJ subroutine 

from the IBM Scienti f ic Subroutine Package ( 27). The 

first 40 eigenvalues are listed in Table 1. It was found 

that less than 40 eigenvalues are needed to provide 



numerical results with high accuracy even for the location 

x=0.002 which is very close to the tube inlet. 

For the convenience of numerical calculations and 

without loss of accuracy, the polynomial approximation 

13 

from Abramowitz and Stegan (28) is used instead of the 

subroutine BESJ to calculate the Bessel functions which 

appear in the velocity solution. At an axial location 

x=0.003, the velocity solution U (based on local maximum 

velocity) and its first and second derivatives with respect 

tor, U' and U", obtained with both methods are in good 

agreement as shown in Table 2. 

The variation of the stretching factor E with x as 

calculated from equation (2-13) is presented in Figure 1 

1n which the E is referred to the right-hand ordinate. 

It is seen from the figure that the E value increases 

monotonically from a small value of 0.364 at the tube 

inlet with an increase in x and approaches a limiting 

value of 1.82 as goes to infinity. 

The relationship between X and x 1s determined by 

carrying out the integration of E as indicated in equation 

(2-13). The results are shown in Figure 1 where the X 

appears on the left-hand ordinate and x on the abscissa. 

It is seen that, at locations near the entrance, X is less 

than X· On the other hand, at larger downstream distances, 

the value of X exceeds that of X· The numerical results 

for E, X and x are tabulated in Table A-1, Appendix A. 
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Table 1 

The Eigenvalues a-l 

J 1 ( a i ) = 0.5aiJ 0 (ai) 

i a,. 
l 

l a-
l 

1 5.1356223 21 68.302190 

2 8.4172441 22 71.444990 

3 11.619841 23 74.587688 

4 14.795952 24 77.730297 

5 17.959819 25 80.872827 

6 21.116997 26 84.015287 

7 24.270112 27 87.157684 

8 27.420574 28 90.300025 

9 30.569204 29 93.442316 

10 33.716520 30 96.584561 

11 36.862857 31 99.726744 

12 40.008447 32 102.86893 

13 43.153454 33 106.01107 

14 46.297997 34 109.15317 

15 49.442164 35 112.29524 

16 52.586024 36 115.43729 

17 55.729627 37 118.57931 

18 58.873016 38 121.72131 

19 62.016222 39 124.86329 

20 65.159273 40 128.00525 



Table 2 

A Representative Comparison of Velocity Solutions 

between Results from BESJ and the Polynomial Approxima-

tion Cx=0.003) 

r ' " U,U ,U BESJ 

u 0.99999734 
0.15 u' -o.oooo1038 

U" 0.00028585 

u 0.99999049 
0.65 U' -0.00042327 

u" -0.02444772 

u 0.99866949 
0.75 u' -0.05921832 

u" -2.4352492 

u 0.94630774 
0.85 u' -1.5872134 

u" -39.154516 

u 0.48364390 
0.95 u' -8.3095940 

u" -71.060492 

u 0.25592315 
0.975 u' -9.8032968 

U" -46.015765 

u 0.0 
1.0 u' -10.521900 

u" -1o. 521906 

Polynomial Approximation 

0.99999735 
-0.00001039 

0.00028226 

0.99999049 
-0.00042325 
-0.02445027 

0.99866949 
-0.05921853 
-2.4352526 

0.94630771 
-1.5872133 

-39.154506 

0.48364394 
-8.3095948 

-71.060520 

0.25592316 
-9.8032969 

-46.015773 

0.0 
-10.521897 
-10.521902 

15 
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B. Formulation of the Stability Problem 

In this section, the stability equations for the cases 

of axisymmetric and non-axisymmetric infintesimal dis-

turbances are formulated under certain conventional 

assumptions. The boundary conditions for each case are 

also discussed. 

1. The Disturbance Equations 

The basic equations governing laminar flow are the 

continuity and momemtum equations. In formulating the 

disturbance equations, the following assumptions are made: 

(1) the fluid is newtonian with constant properties and 

the main flow is steady and incompressible; (2) the flow 

is parallel. This is not exactly the actual situation of 

the flow in the entrance region of the tube as encountered 

in the present problem. However, in situations in which 

the flow is nearly uni-directional, the parallel flow 

model is normally used for the purpose of stability analysis; 

(3) there are no body force; (4) the disturbances are 

infinitesimal; and (5) there is no slip at the tube wall. 

The equations of motion in cylindrical coordinates are: 

Continuty equation: 

au* av * v* 1 aw * 
+ + + - ---

ax * ar * r* r*ae 
0 2 -14 



Momentum equations (Navier-Stokes equations) 

au* 
-- + 
at* 

au* ~u* w* au* u*-- + v*-o __ + -
ax* ar * r* a8 

1 ap* 
p ax* 

18 

a 2u* 1 au* 1 a 2u* a 2u* 
+ v(~- + + 

r*2 ~ 
+ 

ax* 2) ar* 2 2-15 

av* 
at* 

and 

aw* 
at* 

r* ar* 

av* *av* w* av* + u*-- + v ar* + Y* ax* a8 

'\2 * + \) (_o_V~ + 
ar* 2 

1 av* 
r* ar* 

v* 
r*2 

+ 
aw* u*-
ax* 

aw* w* aw* 
+ v*-- + - -- + 

ar* r* a8 

1 
r* 

aw* 
ar* 

w* 
+ 

r*2 

w*2 
yx-

w*v* 
r* 

1 
p 

ap* 
aT* 

1 ap* 
p r*a8 

2 
r*2 

2-16 

2-17 

Equations (2-14) through (2-17) can be made dimensionless 

by choosing the radius of the tube r* and the local maximum 
0 

velocity u* as the characteristics length and velocity, max 

respectively. By introducing the nondimensional variables 

u u*/u* max ' 
v v*/u* max ' w */ * w umax 

X x*/r~ 
' 

r r*/r~ ' u u*/u* 2-18 
max 

p p* I pu* 2 
max' t t*u* /r* R max 0 ' 

u* r*/v max o ' 
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into equations (2-14) through (2-17 ) , one obtains the non-

dimensional continuity and momentum equations. 

au 1 a 
(rv) 

1 a w 
0 2-19 - + + 

a x r ar r ae 

au + au + vau + w au ~ + lc1u) 2-20 - u- -
at ax ar r ae ax R 

av av dV w av w2 ~ 1 v 2 aw) 
8t + u- + v- + - 88 

- - + J{(Lv - y-z- ? ax ar r r ar a e 

2-21 

and 

a w aw aw w aw vw 1 ~ 1 w 2 av ) - + u- + v- + - + + -(Lw r2 + ? at ax ar r ae r r ae R ae 

2-22 

In the stability analysis for parallel flow, the main 

flow has the form 

IT U (r) v 0 ' w 0 ' p p (x, r, 8) 2-23 

and the superimposed small disturbances are considered to he 

functions of time and space coordinates with the expressions 

+ + + + u (x ,r, 8 ,t ) , v (x,r, 8 ,t) , w (x,r, 8 ,t ) , p (x,r, 8 ,t ) 

The result a nt motion 1s, there f o r e, described b y 

u ' v 
+ v ' w 

+ w ' p 
+ p + p 

2 -24 

2-25 

Substitut i n g e quation ( 2-25) jnto equations ( 2-19) through 

(2-22), a nd neglect i ng the quadratic terms in the 



disturbance components, one obtains the equation of 

continuity for the perturbation 

8u+ 
-- + 8x 0 

and the perturbation equations of motion 

-- + 
8t 

dV 
+ 

8t + 

and 

d W + 
-- + 
8 t 

8u+ +8U u-- + v-
8x 8r 

+ 
u~ 

8x 
8p+ 

- -- + 8r 

0
8w+ 
8x 

+ w 
? 

+ 
+ L ~) 

r 2 8 8 

Since the main flow is parallel, the steady-state 

solution is independent of the coordinates x, 8 and t. 

Thus, the normal modes for disturbances will involve 

these coordinates exponentially. This can be shown by 

taking Fourier and Laplace transformations of the ab ove 

equations (2-26) through (2-29). It can, there f ore, be 

assumed that equations (2-26), (2-27), (2-28 ) and (2-29) 

have solutions of the f orm 

20 

2-26 

2-2 7 

2-28 

2-29 

2 - 3 0 

whe r e a is the axial wave number, n is the azimuthal wa ve 



number, and c=cr+ici is the complex phase speed, with cr 

denoting the phase speed of disturbances and ci the damping 

or amplification factor for the disturbances. 

Substituting equation (2-30) into the perturbation 

equation of continuity and the perturbation equations of 

motion, one obtains the following linearized ordinar y 

differential equations in terms of the dimensionless ampli-

tude functions u,v,w of the disturbances 

21 

iau + v' + v /r + inw/r 0 2-31 

iaR(U - c)u + ' RU v - iaRp + u" + u' /r - (n2/r2 + a 2 )u 

2-32 

iaR(U - c)v -Rp' + v" +v' /r - {(n 2+1)/r 2 + a 2 }v 

- i2nw/r 2 2-33 

and 

iaR(U - c)w inRp/r + w" + w' /r - {(n 2+1)/r 2 + a 2 }w 

+ i2nv/r 2 2-34 

where the primes denote differentiation with respect to r. 

Equations (2-31) through (2-34) can be transformed into 

the following coupled equations by eliminating the pressure 

terms and after some rearrangements (see Burridge (17)). 



and 

1 --{cp"" 
iaR 

22 

2-35 

_l_{r2"+(n 2 +3a 2r 2 )r2' _ (a2+n 2 )r2+ Zan (cp"+(n 2 -a 2 r 2 )cp' 
iaR (n 2 +a 2r 2

) r r 2 (n 2 +a 2r 2
)

2 (n 2+a 2 r 2 )r 

2-36 

with 

¢ =-irv 2-37 

For the case of axisymmetric disturbances (n=O) and 

the disturbance equations (2-35) and (2-36) become uncoupled. 

Thus, equation (2-35) can be simplified and written as 

~ ( cp ' ' ' ' - ~cp '' ' + ~ cp '' - 2 a 2 ¢ '' + 2 a 2 cp ' _.;?__ cp ' +a 4 ¢ ) 
1aR r r 2 r r 2 

where 

+ 
v 

icp 
r 

= C U - c ) ( cp " - !cp ' - a 2 ¢ ) - cp ( U" - ~ ' ) 

ia(x-ct) 
e 

r r 
2-38 

2-39 
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This disturbance equation for n=O can be compared with 

that derived from the viewpoint of a stream function. The 

disturbances are related to the stream function ~ as 

+ 
u 

where 

1~ 
r 3r 

+ v = 

<P (r) eia (x-ct ) 

1~ 
r 3x 

and <P (r) is the amplitude function. 

into (2-40), one obtains 

+ v 1 . <P( ) ia(x-ct) - r la r e 

Substituting (2-4 1) 

Thus, the relationship between ¢ and <P is 

¢ = - a<P 

2-40 

2-41 

2-42 

2-43 

This giv e s the perturb a tion equation for the axisymmetric 

disturbances in terms of the amplitude function as 

...):.__ { <P I I I I _ ~¢ I 1 t + 3 <P I I _ 3 <P I + a 2 ( _ 2 <P I I + ~¢ f + a 2 ¢ ) } 
laR r ? ? r 

1 u' = ( u - C ) ( <P II - y-<P ! - a 2 
<1J ) - <P ( u II - y ) 2-44 

Equation (2-44) can be directly derived from th e two 

dimensional disturbance equations b y using equations 

(2-40) and (2-41) and by eliminating the pressure term s . 

Equation s (2-35) throu g h (2-4 4) are for azimuthally 

periodic disturbances and equation (2 -44) 1s for the 

axisymmetric disturbances. All of these equations arc 



linear. The boundary conditions for these two different 

cases are discussed in the next section. 

2. Boundary Conditions 

The disturbances are subject to physical restrictions 

at the wall and at the center of the tube. These 

restrictions give rise to boundary conditions. For the 

case of azimuthally periodic disturbances, the boundary 

conditions to be satisfied by equations (2-31) through 

(2-34) at the wall are that the disturbance velocity 

components vanish due to viscosity and an impermeable tube 

wall. 

24 

u(1) v(1) w(1) =0, for n ~ 0 2-45 

or 

¢(1) = ¢ (1) = ~(1) = 0, for n r 0 2-46 

The boundary conditions to be satisfied at the center 

of the tube, r=O, are that no fluid velocity or pressure 

be unbounded or discontinuous, that is, all disturbance 

quantities and their first order derivative must be finite. 

Since it is assumed that the velocity components and pressure 

vary as sin n8 (or cos nG), it is required that 

u(O) p(O) 0, f or n ~ 0 2-47 

Otherw is e, u and p would be multi-valued at r=O. From the 

continuity equation (2-31) and equation (2-30), one also 



has 

v(O) = w(O) = 0, n f 1 

For n=l, the non-vanishing values of v(O) and w(O) are 

permissible (29), that is 

v(O) + iw(O) = 0, n=l 

or 

¢ ( 0) = 1 im { r 2 - n¢ ' ( r) } Sl(O) = 0, n f 0 
r-+o 

For the case of axisymmetric disturbances, n=O and 

the conditions to satisfied at the tube wall are 

' <P(l) <P (1) = 0' n 0 

At the center of the tube, both u and p can have finite 

values 

25 

2-48 

2-49 

2-50 

2-51 

u ( 0) finite, p(O) finite, v(O) 0 ' n = 0 

or from equations (2-40) and (2-41), one can write 

or 

<P 
lim -r r-+o 

0 ' 
<P' lim -r r-+0 

<P(O) = 0, <P ' (O) = 0 

finite 

2-52 

2-53 

2-54 

as will be seen later when the Frobenius series expans i on 

is performed for r -+ 0. 



3. The Eigenvalue Problem 

The coupled linear equations (2-35) and (2-36) with 

the boundary conditions (2-46) and (2-50) for the azimuthal 

disturbances constitute a homogeneous mathematical system. 

The same is true of the linear equation (2-44) along with 

the boundary conditions (2-51) and (2-54) for the 

axisymmetric disturbances. There exists, therefore, an 

eigenvalue problem for each in the form 

26 

E (a,R,c ,n) = 0 2-55 

in which c is usually an eigenvalue which is to be sought 

for given values of a, R and n such that equation (2-55) 

is identically satisfied. 

For the non-axisymmetric case with n=l, one integrates 

equations (2-35) and (2-36) from the center of the tube with 

the condition (2-50) toward the wall where the boundary 

condition (2-46) must be satisfied. Since the equations 

for ¢ and D are linear, the solutions for ¢ and D are 

expressible as 

a1 

¢' a2 2-56 

where ¢ , ¢ , ¢ and 0 , ~ 
1 2 3 1 2 

Q a re, 
3 

respectively, the three 

independent solutions of ¢ and D. For a nontrivial solut i on 

which satisfies the cond i tions (2-46) at r=l.O to exist, 

it is necessary that the determinant of the coeffieient 
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matrix be zero at r=l, that is 

¢ 1 ( 1) ¢2 ( 1) ¢3(1) 

cp~(l) ct>;Cl) ¢ ~ ( 1) 0 2-57 

s-21 (1) s-22(1) s-23(1) 

Similarly, for the case of axisymmetric disturbances 

(n=O), the equations corresponding to equations (2-56) and 

(2-57) are 

and 
¢ ( 1) ¢ (f) 

<P ' 
2 
] [ :: ] 

0 

Equation (2-57) or (2-59) is the so called secular 

equation and is, in general, a complex function of the 

2-58 

2-59 

parameters a, R, c and n. Mathematically, a is taken to 

be positive real, while c is allowed to be complex, that 

is, c=c +ic .. 
r 1 

The flow is unstable, neutrally stable, 

stable, according to whether c. is greater than, equal 
l 

or less than zero. 

o r 

to, 

The eigenvalue problem for both axis ymmetric distur-

bances with n=O and azimuthally periodic disturbances with 

n=l are solv ed numericall y. The numerical schemes employed 

in the s olution are presented i n the next chapter. 
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I I I. THE NUMERICAL METHODS OF SOLUTION 

A. Introduction 

In this chapter, the solutions of the linearized 

stability equations for axisymmetric and non-axisymmetric 

infinitesimal disturbances subject to their respective 

boundary conditions as mentioned in the previous chapter, 

will be discussed. Since the exact solutions to these 

equations are not known to exist, their solutions can only 

be obtained b y approximate methods, such as an asymptotic 

solution, or by numerical methods. Recently, Gersting (30) 

made a systematic study of the numerical methods of so

lution for stability problems. These methods include the 

finite difference method (31,32,33), the variational method 

( 34) ' and the numerical integration method (24,35,36,37). 

To remove the "parasitic errors" due to the numerical in

tegration of the stability equations, Nachtsheim (35) used 

the matching technique while Kaplan (24) and Conte (36) 

employed the filtering and near-orthonormalization scheme, 

respectively. More recently, Davey and Nguyen (37) 

described a very simple "complete orthonorrnalization" pro

cedure to solve the stability problem of Poiseuille pipe 

flow. 

In this investigation, the filtering integration 

technique, the Gram-Schm i dt orthonormaliz a tion procedure, 

and the complete orthonormalization procedure are examined. 

Even thnugh the methods have been applied and described 
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by the previous investigators, a brief description of the 

numerical integration technique used in the present studies 

is given. The methods used to find the eigenvalues and to 

generate the neutral stability curves are also described. 

The stability equations for pipe flow, equations (2-35) 

(2-36) and (2-44) have a regular singular point at the center 

of the pipe, r=O. Because of the singularity, a method 

has to be devised so that the integration can be started at 

r=O. This will discussed first. 

B. The Starting Value for Numerical Integration 

To use the 4th-order Runge-Kutta integration scheme 

(37) for the solution of a mathematical system involving 

a differential equation of order n, the system must be 

transformed into an initial value problem in which the 

values of the function and its derivatives up to the 

(n-l)th are initially specified. Since r=O is a regular 

singular point of equation (2-35), (2-36) and (2-44), any 

self-starting integration methods have to be abandoned. 

Therefore, the Frobenius series solution is obtained and 

applied in the region r > O. The cases of axisymmetric and 

azimuthally periodic disturbances will be treated 

separately. 

1. Axisymmetric Disturbances (n=O) 

The solution of equation (2-44) near r=O lS assumed 

to have the form 



= B+i 
L c.r 

i=o l 

30 

3-1 

In addition, the velocity profile based on the local maximum 

velocity in the entrance region is 

Substituting (3-1) and (3-2) into equation (2-44) and 

putting the coefficient c
0
r0, one finds 6=0,2,2,4. The 

double root, B=2, requires an additional log(r) term ln 

the solution. Since the log(r) term is unbounded at r=O, 

3-2 

and since B=O cannot satisfy the boundary condition ¢(0)=0, 

the single roots B=2 and B=4 are the only solution. It 

is very complicated to find the recursion formulas for c . ' l 

but fortunately the series solutions require only the 

starting values at r near 0. From the two independent 

solutions corresponding, respectively, to B=2 and B=4 

and 

where 

It can be seen that onl y one term is accurate enough f or 

the initial value of integra t ion from r=10- 4 or 1 0- 5 • 

For simplicity a normalizing factor is applied such that 

the starting value at r=O are defined as 

3-3 



3] 

¢ ( 0) 
1 

¢ I (O) =¢"' (O) 
1 1 

1.0 3-4 

and 

3-5 

After integrating to the tube wall where the boundary 

conditions (2-54) are applied, one can find the coefficients 

co and c
1

, and the eigenvalue from the expression 

[ 

¢1 (1) ¢2 (1) 

¢ ~(1) ¢;(1) 
0 

1n which c 0 and c 1 c orrespond to a 1 and a 2 1n equation 

(2-58). The eigenvalue problem will be discussed later. 

Equation (3-4) and (3-5) give the starting value for the 

two independent solution ¢ 1 and ¢
2

• 

2. Non-Axisymmetric Disturbances with n=1 

3-6 

To solve the coupled equations (2-35) and (2-36), the 

series solutions are applied for r ~ o as in the axisymmetric 

case. One starts by assuming the solutions for ¢ and ~ 

near r=O in the form 

¢ (r) 

an d 

~ ( r ) 

oo B+ i 
I: c.r 

i= o 1 

oo v +rn 
I: d r ' 

m= o m 

3- 7 

3-8 
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After expanding the coefficients of the coupled 

equations (2-35) and (2-36) into power series by the 

binomial theory and substituting (3-7) and (3-8) into these 

equations, one obtains the series solutions for ¢ and D as 

and 

where 

¢(r) c
0
{r-(13a 4 +3ia 3 RA

1
)r 5 /192+·······} 

D(r) 

+ c
2
{r 3 +(48a 2 +8iaRA 1 )r 5 /192+·····} 

+ d { ( - 8 a 3 + 2 i a 2 RA ) r 5 I 1 9 2 + • • • • • • • } 0 1 

+ c {-2ar 3 +• · •• •• •• •••• • • • ··} 2 

1-c 

3-9 

3-10 

and c 0 , c
2 

and d
0 

are the undeterm i ned coefficients. For 

simplicity, a scaling factor is applied. The s tarting value 

for the three independent solution s a t r ; O a rc 

¢" 
1 

¢' 
2 

¢"' =rt 
l l 

¢" 
2 

n 
2 

D' 
1 

rt ' 
2 

0, ¢~ = 1.0 

0, ¢ "' 
2 

1.0 

3-11 

3- 12 
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and 

¢ 3 = ¢ 1 = ¢ ·; = ¢ '; ' = s-2 3 = 0 ' s-2 ; = 1 . 0 3-13 

By integrating to the tube wall and applying the boundar y 

conditions (2-46), one can calculate the eigenvalue and 

the coefficients c 0 , c 2 and d
0 

from 

( ¢ (1) 

¢' ( 1) 

s-2( 1) 

1> (1) ¢ (1) ¢ (1) 
1 2 3 

¢ ~(1) <P;Cl) ¢~(1) 

s-2 1(1 ) s-22( 1) s-23(1 ) 

c 
0 

c2 

d 
0 

where c 0 , c 2 , d 0 correspond, respectivel y , to a 1 , a 2 , a 3 

3-14 

in equation (2-56). The solution o f the ei g envalue probl em 

is discussed in section III-D. 

C. The Numerical Integration Schemes 

The 4th-order Runge-Kutta scheme is used for the 

direct integration of the stability equations from near 

the center of the tube (r~O) to the tube wall. It lS well 

known that instability of duct f lows occurs at large 

Reynolds numbers. Thus, during the numer ical integration, 

one of the two independent solutions for the 4th-order 

problem described b y equation (2-44) a nd a t least one o f 

the three independent solutions fo r the 6th-order problem 

described b y equation s (2-3 5 ) and (2 -36 ) gr ows very rapidly. 

These i nherent "par asi ti c error s " cause the independent 

solutions to lose their characteristics and become dependent. 

It is, therefore, difficult to deal with these kinds of 
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stability equations for large Reynolds numbers. There 

are various methods which are employed to reduce or remove 

the so-called "parasitic errors" and thus maintain the 

solutions independent during the integration. Three of 

these methods are described below. 

1. The Filtering Technique 

Kaplan (24) presented a purification scheme for 

controlling the parasitic errors during the integration of 

the stability equation. For example, let ¢g be the rap i dly 

growing solution and ¢s be the slowly growing solution for 

the case of axisymmetric disturbances. The mesh point 1n 

the region O < r~l are i=0,1,2,3, ... ,n. It is not necessary 

to remove the parasitic errors totally, but merely to 1nsure 

that ¢ does not dominate the slowly growing solution ¢ at 
g s 

each step of the calculation. Kaplan suggested that this 

could be done by introducing a linear operator F which has 

the following properties: (1) F {¢ (i)} is not zero at a n y 
g 

mesh point i; (2) the auxiliary differential equation 

F(¢)=0 has a solution that always behaves much differently 

from the rapidly growing solution ¢g in that it does not 

have such a rapid growth; and (3) the operator F keeps 

the order of magnitude of its ar g ument. Then the slowly 

growing solution ¢s can be purified b y the equation, 

~sci) ¢ c i) s 3-15 
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at every step of the numerical integration. In this 

equation, <Ps is the purified, behaved solution and ~s 

is the calculated slowly growing solution before purifi-

cation. A detailed account of this technique is given by 

Gersting (30). 

This technique is applied to the two problems of 

interest in the present study. The terms on the right-hand 

side of equations (2-35), (2-36) and (2-44) represent the 

inviscid part and those on the left-hand side represent 

the viscous part. The inviscid part of the stability 

equations (2-35) and (2-44) is used as the auxiliary opera-

tor F, namely, 

Filter 

where for nrO 

and for n=O 

F(slowly growing solution) 
F(rapidly growing solution) 

m=1,2,3 

F(<P) 
m { C U- c ) ( <P" -l<P ' -a 2 <P) - <P ( U" -!::!.' ) } 

r r m=l,2 

The three conditions on the operator F are now 

3-16 

3-17 

3-18 



examined. (1) F(¢g) 1s not zero, since ¢g 1s a viscous 

solution and will not satisfy the inviscid solution. (2) 

The solution F(¢)=0 is an inviscid solution which does not 

grow rapidly and behaves differently from ¢g. (3) F pre-
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serves the order of magnitude in that F(¢s) is smaller 

because ¢s is an inviscid-like solution and for an exact 

inviscid solution F(¢inviscid)=O, and that F(¢g) is larger 

sinc e ¢g is a viscous-like solution and is not annihilated 

by the inviscid operator. This shows that equations (3-17) 

and (3-18) can be the auxiliary operators which accompany 

equation (3-15). This completes the presentation of 

Kaplan's filtering method. 

For non-axisymmetric infinitesimal disturbances, the 

scheme consists of extracting from solution two and 

solution three a portion of the fastest growing solution 

(solution one) and then extracting from solution three a 

portion of the intermediate growing solution (solution 

two). For large values of aR, overflow occured in an 

IBM 360/50 computer during the integration, since complex 

number operation was needed. Thus, the filtering scheme 

was not used for very large values of aR in the present 

integration. 

2. Gram-Schmidt Orthonormalization Procedure 

Wa zza n, Okamura, and Smith (2 5) replaced the Kaplan' s 

purification scheme b y the Gram-Schmidt Orthonormalization 
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procedure to insure that the solutions are linearly 

independent. Because of the round-off, ~s has a small 

parasitic error which is proportional to ~g· To remove 

this parasitic error from the integration solution, an 

auxiliary solution ~s is introduced such that no component 

of ~s is contained 1n it. This can be done by normalizing 

the integrated values of ~g at the end of each step of 

the integration. The normalized values are denoted by 

~ . At each sub-interval i, let 
g 

3-19 

Since it is desired to remove any presence of the solution 

~g from ~s' ~sis constructed to be orthogonal to ~g· 

Hence 

A 

and 

That is 

3-20 

3-21 

3-22 

in which the notation < , > denotes the 1nner product, whereas 



' ¢ is the functional space containing (¢J. ,¢. 
J 

' " ' j=l,2, for n=O or ¢. ,rt_ ,rt_) with j=l,2,3, for 
J J J 

ntO. 

The procedure is very similar to the filtering 

technique. The advantage of this method is that after 

each step of the integration, the functional space can 

be normalized to avoid the overflow limit of the computer. 

As mentioned before, it is not necessary to remove the 

parasitic error totally, but merely to insure that the 

¢ does not dominate the slowly growing solution ¢s g 

at each step of the calculation. Conte (36) presented 

the near-orthonormalization technique by setting a 
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criterion to perform the orthonormalization when necessary, 

instead of performing orthonormalization at every mesh 

point. 

3. "Complete" Orthonormalization 

This technique was proposed recently by Davey and 

Nguyen (37). Suppose that F(¢)=0, where F is a fourth-

order operator, has the range of integration O~r~l and 

has two boundary conditions on ¢ at each end. Let 

' " ' " y={¢,¢ ,¢ ,¢ } and choose n steps of mesh size h for 

the region O~r~l . If a condition y=y. is given when 
l 

r=ih and if one integrates to obtain y=yi +l at r=(i+l)h, 

the relationship between yi and yi+l can be expressed 

as yi+l=Alyi, where Al lS a 4x4 matrix whose elements 

will be independent of Yi· By letting Yi have the value 
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{0,0,0,1}, {0,0,1,0}, {0,1,0,0} and {1,0,0,0} in turn, 

one may readily determine Ai. This process is repeared 

The relationship between y and y will be of the 
o n 

form 

3-23 

with the matrix 

B 3-24 

An iteration technique may be used to find the eigenvalues 

from y =B- 1 y along with the boundary conditions. o n This 

technique was proposed by Davey and Nguyen (37) to improve 

the filtering technique of Kaplan (24) in their study of 

the stability of Poiseuille pipe flow. 

The numerical results of the eigenvalues c=c +icr 1 

from the various integration techniques discussed above 

will be presented and compared in chapter IV. 

D. Iteration Procedure for Determining the Eigenvalues 

The initial value technique to solve the eigenvalue 

problem (equation (2-55)) leads to the requirement that 

an iteration procedure be employed to determine the eigen-

values. Two different techniques, Muller's method and the 

differential-correction method, are used along with the 

Runge-Kutta numerical integration scheme to obtain the 
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eigenvalues and points on the neutral stability curves. 

For the case of n=1, integration from the tube center 

to the tube wall gives at r=1 

a1¢1(1) + a2¢ L (1 ) + a3¢3 (1) ¢ ( 1) = 0 3-25 

' a 2¢:(1) ' a1¢1 (1) + + a 3¢; (1) ¢ (1) 0 3-26 

a 1st1 (1) + a2Q2(1) + a 3st 3 (1) st ( 1) = 0 3-27 

a 1 ¢ '; ( 1) " " ¢" (1) + a2¢2(1) + a3¢3(1) = = 1.0 3-28 

Similarly, for the axisymmetric case with n=O, one obtains 

<P(1) 0 3-2 9 

<P ' ( 1) 0 3 - 30 

1. 0 3-31 

There are two approaches which can be used to find the 

coefficient ai and the eigenvalues. For instance, consider 

the case of n=1: (1) For a non-trial solution from the 

boundary conditions (3-25) through (3-27), an iteration 

technique is applied to find the eigenvalues which satisfies 

the condition that the determinant of the coefficient 

matrix a· 
l 

be zero. Next, one assigns a 3=(1.0,0.0) to 

find a
1 

and a 2 from any of the two equations. (2) In 

addition to the boundar y conditions (3-25) through (3 -2 7) , 

one more equation (3-28) 1s used. Since there is no 

spec i f i c boundar y c on d i t i on for ¢'' ( 1 ) , the c h o ice for 



-+."(1)--1 . b" '+' 1s ar 1trary. As long as ¢"(1) is non-zero, the 

value assumed merely changes the normalization factor 

for ¢. 

the a-
1 

By solving equations (3-26) through (3-28) for 

and using equation (3-25) as the test function, 
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one can find the eigenvalues by iteration. In this method, 

the coefficients a. and the eigenvalues are found at the 
l 

same time when all the boundary conditions are satisfied. 

There are three case which can be considered in solving 

the equation E(a,R,n,c)=O in the eigenvalue problem: (1) 

For g jv en values of n, a and R, the eigenvalue c=cr+ci 

is found by an iteration technique. (2) To find a point 

(a,R) on the neutral stability curve, the values of n, a 

and ci=O are given and the values of R and cr are sought 

by iteration. Or (3) One can give the values of n, R 

and ci=O and obtain the values of a and cr for a point 

on the neutral stability curve, again by an iteration 

procedure. 

One of the two iteration techniques used 1n this 

investigation is Muller's method (39). It is an iterative 

procedure for finding the real and complex roots of a 

polynomial equation G(x)=O whose coefficient may be complex. 

This procedure selects three arbitrary points x , x and 
1 2 

x
3 

as the starting values. The next approximation to the 

root, x 4 , is taken to be one of the zeros of the second 

degree polynomial which passes through the functional 

values G(x ), G(x) and G(x). 
1 2 3 

The iterative procedure 
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is continued by draping the first point and considering 

the second point as the first point, the third point as 

the second point and the fourth point as the third point. 

The advantages of this method are: (1) the complex roots 

can be obtained; (2) the iteration requires only the 

evalution of the functional value and does not include 

the value of the derivatives of the function; and (3) 

after the three initial estimates have been processed, 

only a single pass through the integration procedure 

is required for each iteration. This procedure is used 

to obtain the eigenvalues for given values of a, R and 

n. A second iteration scheme was used in obtaining points 

on the neutral stability curve with c.=O. 
l 

This is described 

in the following section. 

E. Generation of the Neutral Stability Curve 

The differential-correction method is used for locating 

point on the neutral stability curves. This method is 

based on the representation of the expression for an exact 

differential by a difference equation. If G=G +iG. is r l 

a function of the variables x
1 

dG aG aG 
- d x +-dx ax 1 ax 2 

1 2 

That is, 

3G r d oGrd 
_:__..ta... X +-- X ax l ax 2 

l 2 

and x , then 
2 

3-32 

3-33 
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and 

8Gid 8Gid 
-~X +--X 
8x 1 8x 2 3-34 

1 2 

If the difference operator 6 is applied, one obtains 

3-35 

and 

6G· = 6Gil 6x +6Gil 6x 
l "x 1 6x 2 

~ 1 2 
x2 x1 

3-36 

Suppose that ~ 1 and ~ 2 are the eigenvalues which 

Let x 1 and x 2 be the first estimate 

for the eigenvalues such that G(x 1 ,x 2)f0. The difference 

equations (3-35) and (3-36) are then used to find 6x
1 

and 

6x2. The next estimates for the eigenvalues are taken 

closer to zero, and so on. The final estimates which give 

G=O are the desired eigenvalues ~ 1 and ~ 2 . In the present 

For the given three parameters, 

say a,n,ci=O, the other two parameters Rand cr are to 

be found. This is done as follows. 

a, nand c.=O: 
l 

Select x 1 =R, x =c and find 6G. 
2 r 

(1) 

(2) 

'(3) 

Select x
1

=R+6R, x 2 =cr and find 

Select x 1 =R, x 2 =cr+6cr and find 

For given values of 
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(4) Find 6x
1 

and 6x
2 

from the equation 

(5) The new estimates for x 1 and x 2 are then 

X 
I new 

The above procedure is repeated until G approaches zero. 

The disadvantage of this procedure is that it requires 

three passes through the integration for each iteration. 

However, if the initial estimate is close to the actual 

eigenvalue the disadvantage is offset by the fact that it 

gives the partial derivative which is used in the iteration 

with a more rapid convergence for the iteration. 

The neutral stability curve for a given n is generated 

as follows. Suppose that a point (a,R) is found on the 

neutral curve (c.=O) as described above. 
l 

One can increase 

or decrease a, using R and cr from the previous point 

as the initial estimates to find the new values of R and 

cr for which ci=O, and so on. In this way, the neutral 

stability curve can be systematically mapped out. One 

can also find a and c for given n, Rand c-=0. This 
r 1 

latter approach is useful in mapping that portion of the 

neutral stability curve, such as the upper branch of the 

curve, where the change in a with respect to R is rather 

slow. 

The numerical results for the eigenvalues, the neutral 

stability curves and the critical Reynolds numbers for 
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various axial locations in the entrance region of the 

pipe are presented and discussed in Chapter IV. 

F. Calculation of Eigenfunctions 

Once the eigenvalue is available, the eigenfunction 

can be found easily by the Gram-Schmidt orthonormalization 

procedure. In the orthonormalization technique, one 

divides the region O~r~l into n equal sub-divisions of 

mesh size h so that ri=ih where i=1,2,---,n. The base 

solution Q(ri)=(q'~>,---,q<~1 can be obtained by applying 
l l 

any standard integration method. The Gram-Schmidt pro-

cedure is then used to orthonormalize the base solution. 

At mesh point i, the matrix of the base solutions Q(r.) 
l 

is orthonormalized by multipl y ing with a kxk matrix 

P (i), such that 

If the vectors in Q(r.) are linearly independent, it lS 
l 

always possible to find such a matrix p(i)_ ~oreover, 

p(i) is a nonsingular upper triangular matrix 

p p p 
1 k 1 1 1 2 

p ( i) 
0 p 22 . p 2k 

0 

0 pkk 

3-37 

3-38 

For a g iven nxk matri x O( ri) , one can obtain the element 

P .. o f p(i.) as [allows : 
lJ 

Let a set of vector (q<I,,--- ,qlkJ 
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be orthonormalized by using the Gram-Schmidt procedure. With 

the inner product notation, one writes (dropping the 

subscript i) 

W11= < c,_ C1 ),q(1 )> lz , z( 1 ) = qC 1 )/wll 

t (_2) =q (2) - <q (2), z (1) >z (1)' w 2 2= < t (2) 't (2) >!z' z (2) =t (2) /w 2 2 

• • • a • • • • • • • • • • • • • • 3-39 

t(j)=q(j)_ <q( j) ,z C1) >z(1)_ • - <q(j) ,zCj-1) > z( j -1) 

w . . =<t(j),t(j) >!z, z(j)=t(j)/w .. , j =l,2,· ,k 
J J J J 

where tCj) is orthogonal to z(j- 1 ), z(j-2), ····and z(1). 

The elements p .. 
lJ are then expressed as 

j -1 (k) ( j) pik 
if 

f 

ki:. < z q > j < J w·. =1 J J 

p .. < 0 if 1 > J 3-40 
1J 

l 1 if i j W·. 
J J 

The discrete solution available as a result of the 

computation at any mesh point is denoted as Q(x ) = (qC 1 ), 

q(k)J. At the end point ri=rn, the orthonormalization 

gives 

Z(r ) = Q(r ) p(n) 
n n 

3-41 

The total solution y(rn) at rn 1s now obtained from 

y(r) = Z(r) sCn) n n 3-42 

where s(n) is the coefficient matrix of the s ys tem. 
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the eigenvalue and the coefficients sCn) are obtained by 

satisfying the boundary conditions such as described 

previously in section III-D. 

The function y(ri) at all mesh points except the end 

point i=n is obtained by backward transformation in the 

following manner. At the end point rn, combination of 

equations (3-41) and (3-42) gives 

y(r ) = Z(r ) sCn) = Q(r ) s(n-1) n n n 3-43 

where sCn-1)=p(n)s(n). Then, at the point rn_ 1 , one has 

3-44 

where sCn- 2)=pCn- 1 )sCn- 1 ), and so on. Thus, the function 

y(ri) at any point ri is expressible as 

i = n, n-1, 1 3-45 

with sCi- 1 ) p(i)s(i). 

are known from the eigenvalue calculation, and since sCi- 1 ) 

is related to the kn0wn value of sCi) one step ahead, y(r 1 ) 

can be computed from equation (3-45). 

In terms of the notations used for the case of n = 1, 

equation (3-45) as applied at any point 0 < r < 1 has the 

form 



¢ 

1 
¢ l ¢ 2 ¢ 3 

¢' ¢' ¢ ' ¢' 

I 

1 2 3 

¢" ¢" ¢" ¢" 
1 2 3 

¢'" ¢'" 1 ¢'" 2 ¢ ' " 3 
st st st st 

J 
1 2 3 

st' st ' st' st' 1 2 3 s 
3 

wherein the (3. (i = 1, 2, 3) vary from point to point. 
l 

Similarly, for the case of n = 0, it can be written as 

cp cp1 cp2 B 1 

cp t cpt 1 cp ' 2 

cp" cp" cp" 1 2 
cp'" ) cp•" cp "' s2 1 2 
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3-46 

3-47 

The eigenfunctions ¢, ¢', stand cp, cpr are computed, 

respectively, for the cases n = 1 and n = 0. Their results 

are presented in the following Chapter. 



IV. RESULTS AND DISCUSSION 

In the preceding chapters, the eigenvalue problems 

and the methods to find the eigenvalues and the neutral 

stability curves are discussed in sufficient detail. The 

main flow velocity solution U and its first and second 

derivative with respect to r are evaluated from equation 

(2-10). With these main flow quantities available, the 

stability problem can be handled. The stability results 

were obtained for the least stable wall mode, as was 

explained in the introduction. 

The numerical results are obtained with an IBM 360/50 

49 

digital computer. 

chapter. 

They are presented and discussed in this 

A. The Eigenvalues 

The eigenvalue problem is described by equation (2-55), 

namely, 

E(a,R,n,c) 0 

The numerical integration schemes used to solve for the 

eigenvalues were discussed in Section D, chapter III. To 

obtain an eigenvalue c for given values of a and R b y 

Muller's iteration technique, one needs to have three c 

values to get started. One guesses an eigenvalue c and 

may take the other two as (1±0.02)c. When these three c 



values are guessed close to the actual eigenvalue, only 

a few iterations are required for a convergence. The 

eigenvalues c for the Poiseuille pipe flow are available 
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for both axisymmetric disturbances (15) and non-axisymmetric 

disturbances (17,40). 

For the case of axisymmetric disturbances n=O, the 

eigenvalues for given values of a and R at various axial 

locations in the entrance region were obtained as follows. 

The eigenvalue c=0.3536-i0.0954 for a=l.O and R=SOOO as 

given by Davey and Drazin (15) for the fully developed 

flow was reproduced and used along with two other values, 

(1±0.02)c, as the initial guessed values for the location 

x=0.2 and for the same a, R values. When the eigenvalue 

at x=0.2 is obtained, one uses it as the initial guessed 

eigenvalue to determine the eigenvalue for the next X 

with the same a and R, and so on, until x=0.002. With 

c known for each x, the neutral stability curve at each 

x can be generated. In Table 3, the eigenvalues for 

a=l.O, R=SOOO, n=O with N=lOO steps over O~r~l are shown 

for different axial locations. The results are from double 

precision arithmetic computation. 

It can be seen from Table 3 that the filter method 

and the complete orthonormalization method give eigenvalues 

which agree well at different x values. The general 

Runge-Kutta integration scheme without any purification 

failed when x is smaller than 0.04. Moreover, the results 



at x=O.OS and 0.06 do not agree well with those obtained 

with the purification technique. The complete orthonor

malization method of Davey and Nguyen (37) failed when X 

reached 0.01. From Table 3, one can see the advantage 
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of using the Kaplan filter technique. However, this scheme 

causes overflow in an IBM 360/50 computer when aR is very 

large. In this study, the Gram-Schmidt procedure was used 

as a supplement to Kaplan's technique. 

The eigenvalues c for non-axisymmetric small distur

bances with n=l were calculated for the fully developed 

flow. The results from both single and double precision 

arithematic operations for a=l.O and R=6000 are listed in 

Table 4. They agree with those given in reference (39). 

The single precision gives results which are as good as 

those from double precision calculations. 

The eigenvalues at various axial locations for the 

non-axisymmetric case were obtained in a manner similar 

to that described for the axisymmetric case. A comparison 

of the eigenvalues at x =0.006 with a=l.9 and R=23800 is 

made in Table 5 for various purification schemes. As 1n 

the case of full y developed flow, Table 4, the single 

precision operation gives accurate results. Thus, the 

single precision arithema tic operation was used in the 

numerical calculations. 
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Table 3 

A Comparison of Eigenvalues c Obtained 

with Various Techniques, n=O, a=l.O, R=SOOO, N=100 

X 

00 

0.2 

0~1 

0.08 

0.07 

0.06 

0.05 

0.04 

0.03 

0.02 

0.015 

0.010 

0.009 

0.008 

0.007 

0.006 

0.005 

0.004 

0.003 

0.002 

Filter 

c 

0.35496-i0.09538 

0,37364-i0.09427 

0.38835-i0.09284 

0.39948-i0.09129 

0.41420-i0.08842 

0.43319-i0.08282 

0.45564-i0.07198 

0.47603-i0.05453 

0.48526-i0.03903 

0.48365-i0.03980 

0.47613-i0.05647 

0.47353-i0.06328 

0.47038-i0.07184 

0.46660-i0.08256 

0.46213-i0.09594 

0.45716-i0.11279 

0.45247-i0.13453 

0.45049-i0.16445 

0.45915-i0.21181 

Orthonormalization 

c 

0.35496-i0.09543 

0.35496-i0.09538 

0.37364-i0.09427 

0.38835-i0.09284 

0.39948-i0.09129 

0.41420-i0.08842 

0.43319-i0.08283 

0.45563-i0.07194 

0.47603-i0.05463 

0.48546-i0.03890 

0.48156-i0.04007 

No Purification 

c 

0.35356-i0.09544 

0.35748-i0.09632 

0.36505-i0.09186 

0.39092-i0.08281 

0.38818-i0.09292 



Table 4 

A Comparison of Eigenvalues for the Fully Developed Flow 

Liu (40) 

Filter 

n=l.O, N=lOO 

a=l.O, R=6000 

0.313 

C· 
l 

-i0.0521 

Single precision 0.313291-i0.052140 

Filter 
Double precision 0.313291-i0.052141 

Orthonormalization 
Single precision 0.313292-i0.052141 

Orthonormalization 
Double precision 0.313291-i0.052141 

Table 5 

a=0.98, R=2200 

c 
r 

c. 
l 

0.398318-i0.067752 

0.398351-i0.067829 

0.398348-i0.067832 

0.398349-i0.067832 

0.398348-i0.067832 

A Comparison of Eigenvalues for the Developing Flow at 

x=0.006, a=l.9, R=23800~ n= l .O and N=lSO 

Filter 

c 
r 

c . 
l 

Single precision 0.325959-i0.001373 

Filter 
Double precision 0.325957-i0.001373 

Orthonormalization 
Single precision 0.325958-i0.001374 

Orthonormalization 
Double precision 0.326198- i 0.001310 
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B. The Effect of Stepsize on the Accuracy of Eigenvalues 

For the numerical results to be accurate, the number 

of steps required in the numerical integration needs to 

be checked. 

eigenvalues 

In Table 6 are shown the variations of the 

(cr,R) or (c ,c.) for given values of (a,cl·=O) 
T l 

or (a,R) with the number of steps used in the integration~ 
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The actual number of steps used in the stability calculations 

at different entrance locations are listed in Table 7. 

It is seen from Table 7 that as x becomes smaller, that 

is, as the entrance is approached, a smaller stepsize 

required for accurate numerical results, because the main 

flow velocity solution at a smaller x value has a more 

rapid change near the tube wall. 

C. The Neutral Stability Curves 

By knowing an eigenvalue c for given values of a, 

R and n at a certain axial location x, the points on the 

neutral stability curve can be obtained. This is done as 

follows~ At a fixed x, one increases R or a and checks 

the change of c. (with repect to its sign) to judge the 
l 

stability characteristics. For instance, for the 

axisymmetric case with x=O.OOS, the Reynolds number R was 

increased from 5000 to 30,000 and the wave number a was 

increased from 1.0 to 2.5. The variations of the eigen-

value with a and R are listed in Table 8. Inspection of 

Table 8 shows that for a=2.5, a Reynolds number for neutral 
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Table 6 

The Effect of Number of Steps on the Accuracy of Eigenvalues 

X N R a cr c. n 
l 

0.002 100 38962 3.5 0.316189 0 0 

0.002 200 36573 3.5 0.321617 0 0 

0.002 250 36547 3.5 0.321743 0 0 

0.005 150 25000 2.5 0.340756 -0.000069 0 

0.005 200 25000 2.5 0.340841 -0.000044 0 

0.006 150 24063 1.8 0.346621 0 0 

0.006 200 24051 1.8 0.346699 0 0 

0.006 150 23781 1. 9 0.346434 0 0 

0.006 200 23763 1.9 0.346528 0 0 

0.006 150 23881 2.0 0.345479 0 0 

0.006 200 23832 2. 0 0.345640 0 0 

0.010 100 45000 0.8 0.343068 0.000169 0 

0.010 150 45000 0.8 0.343230 0.000238 0 

0.007 150 24360 1. 9 0.324897 0 1 . 0 

0.007 200 24317 1.9 0.325027 0 1. 0 

0~009 150 24686 1. 6 0.318267 0 1. 0 

0.009 200 24667 1.6 0.318337 0 1.0 

0.010 100 29928 1.2 0.299456 0 1.0 

0.010 150 29842 1. 2 0.299 7 11 0 1.0 
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Table 7 

Number of Steps Used in the Calculations 

at Various Axial Locations 

X N X N 

0.002 200 0.008 150 

0.003 200 0.009 150 

0.005 150 ·0. 010 100 

0.006 150 0.015 100 

0.007 150 

Table 8 

Variation of Eigenvalues c=cr+ci with a and R (n=O, x=O.OOS) 

N 

100 

100 

100 

100 

100 

100 

100 

100 

100 

150 

150 

150 

R 

5000 

8000 

10000 

10000 

10000 

10000 

10000 

10000 

10000 

20000 

25000 

30000 

1.0 

1.0 

1.0 

1.2 

1. 4 

1.6 

1. 8 

2.0 

2. 5 

2 . 5 

2. 5 

2.5 

0.457161 

0.426084 

0.412333 

0.405990 

0.401717 

0.398898 

0.397130 

0.396127 

0.395690 

0.353582 

0.340756 

0.330566 

C· 
l 

-0.112790 

-0.078168 

-0.063782 

-0.052270 

-0.043206 

-0.035969 

-0.030182 

-0.025596 

-0.018317 

-0.002604 

-0.000069 

0.001163 



stability (ci~O) exists somewhere between 25,000 and 

30,000. The differential-correction technique was then 

applied to locate the neutral point. It was found that 

R=25,199 and cr=0.340308 for a=2.5 and ci=O. Once a 

neutral point is found, the next neutral point adjacent 

to it can be found by either changing the wave number a 

or the Reynolds number R and using the eigenvalue from 

the previous point as the initial guessed value to find 

the new set of eigenvalues R and cr or a and cr for which 

c.=Q and so on. 
l ' 

By preceding in this fashion, the points 

(a,R) for ci=O are obtained and the neutral stability 

curve is generated. 

There are two approaches which can be used with 

advantage in generating the neutral stability curve. To 

calculate the points on the lower branch of the neutral 

stability curve, one fixes a and ci=O to find the corre-

sponding R and cr. To obtain a point on the upper branch 

of the neutral stability curve, one fixes R and ci=O to 

57 

find the corresponding a and cr. This approach is effective 

in mapping out a neutral stability curve with a minimum 

amount of computer time. 

l. The Neutral Stability Curves for Axisymmetric Disturbances 

The neutral s tabilit y results for axisymmetric 

disturbances were obtained for axial locations x =O.OlO, 

0.009, 0.006, 0.003 and 0.002. The computer outputs are 
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tabulated in Table B-1 through B-7, Appendix B, and are 

plotted in Figure 2. In the plot R*=r*u*/v is used as 
' 0 

the abscissa instead of R=r;u~ax/v. This is because the 

R* value is based on the average velocity of the flow which 

is constant, whereas R is a local quantity and varies with 

axial locations x, since the maximum velocity u* depends max 

on X· The relationship between X and x is given in Figure 

1 and in Table A-1, Appendix A. It is seen from the figure 

that the flow becomes more and more unstable as the axial 

distance x increases from zero at the inlet, becomes the 

least stable at some distance x, and then becomes more 

and more stable as x increases farther downstream. Finally, 

the flow becomes absolutely stable in the fully developed 

region. 

Figure 2 also indicates that the flow is unstable 

at a larger wave number a when x is smaller. As X 

increases, on the other hand, the instability of flow 

occurs at a lower a value. For a fixed axial location, 

the unstable region encompasses a larger range of a 

when X is smaller. 

The variation of the critical Reynolds number R* with 

tube axial position is illustrated in Figure 3. The data 

for the curve are tabulated in Table D-1, Appendix D. An 

inspection of Figure 3 reveals that as the axial distance 

increases, the critical Reynolds number decreases, reaches 

the minimum value of 2 bout 19900 at X=0.00325 (i.e., 

x=0.00629)and then increases monotonically with distance 



c:J 

5.0 

4.0 

3.0 

2.0 

1.0 

0 
1.5 

0.003 

0 . 006 

0.009 

0.010 

2.0 3.0 4.0 5.0 6.0 7.0 8.0x10 4 

R*=u*r*/v 
Fi gure 2. Neutral stability curv~s at various axial locations 

for axisymmetric disturbances n=O. U1 
~ 



25000 

20000 

u 
r---. 

:::> 
............. 
~C> 

~ 
~ 
l;:j 
'--' 
II 
~u 

~ 

15000 

10000 ' / ' ~ ...... _____ .,. 
/ 

/ 

I 
I 

I 

I 
I 

I 
I 
I 
I 
I 
I 
I 
I 

I 
I 

I 
I 

I 
I 

I 

1 PRESENT STUDY 

--- TATSUHI 

60 
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X=(x*/r*)/(u*r*/v) 
0 0 

Figure 3. Axial variation of critical Reynolds number 
f or axisymmetric disturbances n=O. 



farther downstream, attaining infinity for the fully deve-

loped Poiseuille flow. This is to be contrasted with the 

case of developing flow in a parallel-plate channel in 

which the critical Reynolds number decreases monotonically 

as x increases (41) 

The stability results of Tatsumi are compared with 

those of the present investigation in Figure 3, which are 

shown 1n a dashed line. Tatsumi predicted a minimum 

critical Reynolds number of about 9700 at X=0.00175 

which for this Reynolds number gives x*/r*=17. 
0 

As can 

be seen, there is a big difference in the minimum critical 

Reynolds numbers between the two solutions. However, as 

pointed out earlier, Tatsumi's results are doubtful, for 

he used an inferior main flow velocity distribution and, 

as pointed out by Chen (23), there was an error in his 

main flow solution. For this reason, the present results 

are believed to be more accurate. 

2. The Neutral Stability Curves for Non-Axisymmetric 

Disturbances 

The neutral stability curves f or the case of non-

axisymmetric disturbances are shown in Figure 4 for axial 

locations x =O.OlS, 0.0 1 0, 0.006, 0.003 and 0 . 002. The 

variation of the critical Reynolds number with the a x ia l 
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position is illustrated in Figure 5. The computer output s 

of the data for Figure 4 are tabul a ted in Table C-1 throu g h 



C-8, Appendix C. The data for Figure 5 are presented in 

Table D-2, Appendix D. As in the case of axisymmetric 

disturbances, Figure 4 and 5 reveal that the critical 

Reynolds number Rc decreases as the axial position 

increases, attains a minimum value of about 19780 at the 

location X=0.00490 (i.e., x=0.008346), and then increases 

monotonically to infinity as the axial distance increases 

toward the fully developed region. 

D. Comparison of Results between Axisymmetric and Non

Axisymmetric Disturbances 

Lessen, et al. (16) and Burridge (17) found that for 

Poiseuil1e pipe flow, instability does not exist but that 

the non-axisymmetric disturbances with n=1 is the most 

unstable among all axisymmetric and non-axisymmetric 

disturbances. In the present study, it was found that 

the flow in the entrance region of a circular tube is 

unstable to small disturbances for both axisymmetric and 

non-axisymmetric cases. 

will now be compared. 

The results from these two cases 

In Figure 6, the neutral stability curves for both 

n=O and n=l at four locations are brought together. The 

solid curves are f or the non - axis ymmetric case (n=l) and 

the dashed curves are f or the a xisymmetric case (n=O). 
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It is seen from the f igure that f or small X values, the 

solid lines lie to the right of the dashed lines, ind i cating 

that the axisymmetric d i sturbances are more unstable than 
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Figure 5. Axial variation of critical Reynolds number 
for non-axisymmetric disturbances n=l. 
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the non-axisymmetric disturbances. 

is in evidence for large x values. 

The opposite trend 

This finding for large 

x values agrees with the conclusion of Lessen, et al.and 

of Burridge for the Poiseuille pipe flow in the fully 

developed region. 
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The reason that axisymmetric disturbances are more 

unstable than the non-axisymmetric disturbances in the 

region with small x values (that is, for the region close 

to the tube inlet) is probably due to the boundary layer 

effect in that region. In the region near the tube inlet, 

the boundary layer is developing along the tube wall and 

the flow is essentially of the boundary layer type. Thus, 

Squire's theorem (42) for plane parallel flow, which states 

that two dimensional disturbances are more unstable than 

three dimensional disturbances, applies. 

The variation of critical Reynolds number R* with 

physical axial coordinate X is compared in Figure 7 for 

n=O and n=l. It is of interest to note that the two 

curves have a similar shape. The non-axis ymmetric case 

has a somewhat lower minimum critical Re ynolds number 

R*=l9780 (as compared to R*=l9900 for the axis ymmetric 

case) which occurs at a large downstream distance X=0.00490 

or x =0.008346 (as compared to X=0.00325 or x =0.00629). 

For X less than 0.0038, the axis ymmetric disturbances are 

more unstable than the non-axisymmetric disturbances, while 

the opposite is true when X is larger than 0.0038. 
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The axial variation of the critical wave number for 

n=o and n=1 is shown in Figure 8. For both cases, a c 

decreases monotonically as X increases. A decrease in 
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the critical wave number implies an increase in the critical 

wave length of the disturbances, since a=2n/A. 

E. Eigenfunction 

In chapter III, the technique used in calculating the 

eigenfunctions was discussed. The numerical results for 

the eigenfunctions are presented in this section. 

The eigenfunction~ and its first derivative ~· for 

the axisymmetric case n=O at the axial location X=0.006 

Cx=0.00323) with a=1.9, R=23781, cr=0.346436 and ci=O 

are plotted in Figure 9. The eigenfunctions were computed 

·by assigning the real part of the coefficient a
1 

in equation 

(2-58) the normalizing value 1.0 and calculating the real 

and imaginary parts of a
2 

and the imaginary part of a
1

, 

such that the boundary conditions (2-51) at tube wall are 

satisfied. 

For the non-axisymmetric disturbances with n=1 in the 

fully developed region, the eigenfunctions u, v and w for 

R=2200, a=0.98, cr=0.398348 and ci=-0.0678317 are plotted 

in Figure 10. These results are based on the solution 

which satisfies the three homogenerous boundary conditions 

(2-45) or (2-46) with a
1

, one of the three coefficient a. 
l 

(i=1,2,3), assigned the value of (1.0+iO.O). 
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The eigenfunctions u, v and w for the non-axisymmetric 

case n=1 with R=25009, a=2.0, c =0.325201 and c.=0.0000166 
r 1 

at a location x=0.006 (x=0.00323) in the entrance region 

are shown in Figure 11. The results are from the solution 

with a 1 =(1.0+i0.0) as the normalizing condition. The 

eigenfunction of this fixed wave number a=2.0, but at 

different Reynolds numbers R=23881 (c =0.327704, c.= 
r 1 

-0.000674) and R=26137 (cr=0.322823, ci=0.000634) were 

also computed. They show only a slight change in magnitud e 

as compared with those of R=25009 in Figure 11 and are, 

therefore, not presented. 
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V. CONCLUSION 

In this dissertation, the stability of laminar flow 

in the entrance region of a circular tube was investigated 

by using the linear perturbation theory of hydrodynamic 

stability. Both axisymmetric and non-axisymmetric 

disturbances were considered in the analysis. The main 
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flow in the development region of the tube was treated as 

nearly parallel in the stability formulation. The governing 

equations for the disturbances and the corresponding 

boundary conditions constitute an eiganvalue problem. 

This eigenvalue problem was solved by a direct numerical 

integration of the disturbance equations along with an 

iteration technique. Two purification schemes, the filtering 

and the orthonormali za tion methods, were employed to remove 

the "parasitic errors" in solving the disturbance equations 

by using the fourth order Runge-Kutta integration scheme. 

The stability characteristics of the axisymmetric and 

non-axisymmetric disturbances were studied. The neutral 

stability curves, the axial variation of the critical 

Reynolds number, and the eigenfunctions were presented. 

It is found that: (1) the flow i n the entrance region 

of a circular tube is unst a ble to both axisymmetric and 

non -axisymmetri c i n fi n itesimal disturbance s; (2) the 

critical Reynolds number for both cases decreases with 

an increase in the axial distance from the entrance~ 



attains a minimum value, and then increases monotonically 

to infinity as the axial distance increases farther to the 

fully developed flow region; (3) the minimum critical 

Reynolds number of 19900 (based on the tube radius and 

the average velocity) for the axisymmetric disturbances 

occurs at the axial location X=0.00325; (4) for the case 

of non-axisymmetric disturbances, the minimum critical 

Reynolds number of 19780 occurs at the axial location 

X=0.0049; (5) the non-axisymmetric disturbance is more 

stable than the axisymmetric disturbance in the region 

near the tube inlet; and (6) the axisymmetric disturbance 

is more stable than the non-axisymmetric disturbance 1n 

the region away from the entrance of the tube. 
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APPENDICES 

Appendix A 

Table A-1 

The Relationship among X, E and X 

X X E X X E 

0. 0 0.0 0.36400 0.027 0.02286 1.14559 
0.001 0.00040 0.43488 0.028 0.02401 1.16211 
0.002 0.00087 0.50014 0.029 0.02518 1.17827 
0.003 0.00140 0.55121 0.030 0.02637 1.19409 
0.004 0.00197 0.59490 0.031 0.02757 1.20958 
0.005 0.00258 0.63385 0.032 0.02879 1.22474 
0.006 0.00323 0.66743 0.033 0.03002 1.23958 
0.007 0.00392 0.70242 0.034 0.03127 1.25412 
0.008 0.00464 0.73337 0.035 0.03253 1.26835 
0.009 0.00539 0.76262 0.036 0.03380 1.28228 
0.010 0.00616 0.79045 0.037 0.03509 1.29591 
0.011 0.00697 0.81705 0.038 0.03640 1.30926 
0.012 0.00780 0.84258 0.039 0.03771 1.32232 
0.013 0.00865 0.86715 0.040 0.03904 1.33511 
0.014 0.00953 0.89087 0.045 0.04586 1.39499 
0.015 0.01043 0.91381 0.050 0.05297 1.44844 
0.016 0.01136 0.93605 0.060 0.06792 1.53789 
0.017 0.01231 0.95763 0.070 0.08366 1.60711 
0.018 0.01327 0.97862 0.080 0.10000 1.65985 
0.019 0.01426 0.99904 0.090 0.11681 1.69964 
0.020 0.01527 1.01893 0.100 0.13396 1.72950 
0.021 0.01630 1.03833 0.150 0.22254 1.79763 
0.022 0.01735 1.05726 0.200 0.31292 1.81420 
0.023 0.01841 1.07575 0.250 0.40376 1.81843 
0.024 0.01950 1.09380 0.300 0.49472 1.81954 
0.025 0.02060 1.11145 0.350 0.58570 1.81983 
0.026 0.02172 1.12871 0.400 0.676 7 0 1.81991 
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Appendix B 

Tables of Neutral Stability Results for 

Axisymmetric Disturbances 

Table B-1 

Neutral Stability Results for n=O at 

x=o.oo2, u =1.10722, max N=200 

a R R* ( c ) (cr) * r 

2. 50 53847 48634 0.296002 0.327730 

2. 7 5 47590 42982 0.303343 0.335858 

3.00 42827 38683 8 . 310138 0.343382 

3.50 36573 33032 0.321617 0.356091 

4.00 33631 30375 0.329402 0.364711 

4.19 33338 30110 0.331058 0.366582 

4.25 33361 30131 0.331381 0.366901 

4.50 34209 30897 0 . 331414 0.366938 

4.75 36400 32876 0.329006 0.364272 

4.80 38726 349 7 6 0.326058 0.36100 7 

4.9018 45000 40643 0.318 291 0.352408 

4.8968 55000 49675 0.30 7 566 0.340533 
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Table B-2 

Neutral Stability Results for n=O at 

x=0.003, Umax=1.13312, N=200 

a R R* (c ) (cr) * r 

1. 5 58600 51717 0.296537 0.336004 

2. 0 41646 36754 0.310822 0.352190 

2. 5 32819 28964 0.323807 0.366903 

2. 7 5 30235 26683 0.329133 0.372937 

3.00 28608 25248 0.333281 0.377638 

3. 2 5 27939 24658 0.335811 0.380504 

3.28 27897 24620 0.336043 0.380775 

3.50 28534 25182 0.335851 0.380550 

3.75 32145 28424 0.330322 0.374284 

3.8456 40000 35302 0.318714 0.361132 

3.8070 50000 44127 0.306757 0.347584 

3.7259 60000 52953 0.297178 0.336730 

Table B-3 

Neutral Stability Results for n=O at 

x=0.005, u =1.17564, N=l50 max 

a R R* (cr) ( c ) * 
r -

1. 7 5 27273 23198 0.338657 0.398133 

2.00 2494 0 21214 0.342028 0.402096 

2.25 23965 20384 0.343505 0 .4 03833 

2. 2 6 23960 20380 0.343469 0 .4 03796 

2.50 25199 21434 0.340308 0.400074 



a 

0. 7 

1. 0 

1.3 

1. 6 

1.7 

1. 8 

1.9 

1.93 

2. 0 

2.1317 

2.2272 

2.2461 

2.1750 

2.0838 

Table B-4 

Neutral Stability Results for n=O at 

x=0.006, U =1.19420, N=l50 max 

R R* (c ) 
r 

53775 45030 0.333746 

37939 31770 0.337811 

29860 25004 0.342117 

25511 21362 0.345586 

24649 20640 0.346291 

24063 20150 0.346622 

23781 19914 0.346434 

23765 19900 0.346250 

23881 19998 0.345479 

25000 20935 0.342101 

28000 23447 0.335218 

35000 29309 0.322760 

45000 37682 0.3096 7 4 

55000 46056 0.299864 

(c ) * r 

0.398556 

0.403410 

0.408552 

0.412695 

0.413537 

0.413933 

0.413707 

0.413491 

0.412567 

0.408533 

0.400314 

0.385436 

0.369810 

0.358094 
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Table B-5 

Neutral Stability Results for n=O at 

x=o.oo7, u =1.21157, N=l50 max 

a R R* ( c ) ( c ) * r r 

1. 0 33186 27391 0.347188 0.420640 

1. 2 5 27744 22899 0.349123 0.422984 

1.50 24995 20631 0.349566 0.423521 

1.55 24732 20414 0.349307 0.423207 

1.60 24577 20286 0.348867 0.422674 

1.635 24534 20250 0.348450 0.422166 

1.65 24547 20261 0.348195 0.421860 

1.70 24 67 2 20363 0.347218 0.420675 

1. 7 5 25004 20638 0.345810 0.418970 
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Table B-6 

Neutral Stability Results for n=O at 

x=0.009, u =1.24367, max N=150 

a R R* (cr) (c ) * r 

0.40 67090 53946 0.355402 0.442003 

0.50 54381 43727 0.355417 0.442018 

0.60 46107 37074 0.355345 0.441928 

0. 7 0 40414 32496 0.355119 0.441647 

0.80 36599 29267 0.354644 0.441056 

0.90 33598 27015 0.353769 0.439969 

1.00 31812 25580 0.352237 0.438063 

1.095 31110 25015 0.349683 0.434888 

1.100 31118 25021 0.349481 0.434636 

1.200 32594 26208 0.343328 0.426983 

1.2284 35000 28143 0.338355 0.420799 

1.2260 40000 32163 0.330893 0.411518 

1.1642 50000 40204 0.320541 0.398645 

1.0891 60000 48245 0.313306 0.389646 
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Table B-7 

Neutral Stability Results for n=O at 

x=0.010, u =1.25870, N=100 max 

a R R* ( c ) (c ) * r r 

0.4 68228 54206 0.355578 0.447563 

0.5 56112 44580 0.354680 0.446431 

0 0 6 48620 38627 0.353253 0.444637 

0.7 44137 35066 0.350878 0.441646 

0.725 43435 34508 0.350027 0.440575 

0.750 42923 34102 0 . 349010 0.439295 

0.775 42641 33878 0.347758 0.437720 

0.785 42594 33840 0.347191 0.437008 

0.800 42681 33909 0.346139 0.435681 

0.85 43302 34402 0.343801 0.432739 

0.8439 45000 35751 0.340489 0.428570 

0.8485 47000 37340 0.337735 0.425103 

0.8231 55000 43696 0.330259 0.415694 

0.7687 65000 51641 0.324181 0.408043 



2.50 

2. 7 5 

3.00 

3.50 

3.70 

3.80 

3.90 

4.00 

4.10 

4.135 

4.20 

4.40 

4.60 

4.7932 

4.8209 

4.7555 

Appendix C 

Tables of Neutral Stability Results for 

Non-Axisymmetric Disturbances 

Table C-1 

Neutral Stability Results for n=1.0 at 

x=o.oo2, u =1.10722, N=2oo max 

R R* 

58815 53119 

50862 45937 0.296151 

45125 40755 0.304880 

38113 34422 0.318439 

36441 32912 0.322500 

35840 32370 0.324196 

35379 31953 0.325667 

35061 31665 0.326900 

34911 31531 0.327851 

34888 31510 0.328136 

34934 31551 0.328505 

35531 32091 0.328825 

37573 33934 0.32688 7 

44000 39839 0.319204 

55000 496 7 4 0.30 7 401 

66000 59609 0.29 7 696 

c c ) * r 

0.316733 

0.327904 

0.337569 

0.352582 

0.357078 

0.358956 

0.360585 

0.361950 

0.363003 

0.363319 

0.363 7 27 

0.364082 

0.361936 

0.353428 

0.340359 

0.329614 
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Table C-2 

Neutral Stability Results for n=l.O at 

x=o.oo3, umax=l.l3312, N=200 

a R R* Ccr) (c ) * 
r 

1.50 82533 72937 0.256284 0.290338 

2.00 49151 43377 0.312132 0.353683 

2.90 31142 27484 0.324232 0.367734 

3.10 29986 26463 0.328206 0.371897 

3.24 29710 26220 0.330029 0.373960 

3.30 29794 26294 0.330326 0.3 7 4299 

3.50 30720 27111 0.330152 0.374102 

3.70 34443 30396 0.325108 0.368386 

3.7715 40000 35301 0.31 7 398 0.359650 

3.7577 50000 44126 0.305516 0.346186 

3.6522 65000 57364 0.291685 0.330513 
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Table C-3 

Neutral Stability Results for n=l.O at 

x=0.005, u =1.17564, N=150 max 

ct R R* (cr) (c ) * r 

2.000 28061 23869 0.318858 0.374862 

2.100 26910 22890 0.322694 0.379371 

2.200 26120 22218 0.325802 0.383026 

2.300 25684 21847 0.328097 0.385725 

2.363 25605 21780 0.329058 0.386854 

2.400 25639 21808 0.329442 0.387305 

2.500 26104 22204 0.329560 0.387444 

2.600 27606 23482 0.327478 0.384996 
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Table C-4 

Neutral Stability Results for n=1.0 at 

x=0.006, u =1.19420, N=150 max 

a R R* ( Cr) ( c ) * r 

1.00 67713 56702 0.256976 0.306880 

1.25 45270 37909 0.280297 0.334730 

1.50 33743 28256 0.300085 0.358362 

1.65 29643 24822 0.309828 0.369997 

1.90 25730 21545 0.322007 0.384541 

2.00 25009 20942 0.325211 0.388367 

2.103 24720 20700 0.327397 0.390977 

2.15 24800 2076 7 0.327877 0.391551 

2.25 25610 21445 0.327397 0.390977 

2.35 28393 23775 0.322853 0.385551 

2.3909 35000 29308 0.311960 0.372542 

2.3522 45000 37682 0.298500 0.356469 

2.2903 55000 46056 0.28 7 869 0.343 7 76 

2.2266 65000 54430 0.279184 0.333401 

2.1664 75000 62804 0.271880 0.324679 
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Table C-5 

Neutral Stability Results for n=1.0 at 

x=o.oo7, Umax=1.21157, N=150 

a R R* ( c ) ( c ) * 
r r 

1.70 25591 21122 0.318671 0.386092 

1.80 24690 20378 0.322468 0.390693 

1.895 24353 20100 0.324831 0.393555 

1.90 24360 20106 0.324897 0.393635 

2.00 24804 20472 0.325432 0.394284 

2.10 27139 22399 0.321846 0.389939 

Table C-6 

Neutral Stability Results for n - 1.0 at 

x=0.009, u =1.24367, N=150 
max 

a R R* (cr) ( c ) * r 

1.40 26597 21386 0.310225 0.385818 

1.50 25190 20255 0.315206 0.392012 

1.5930 24674 19840 0.318163 0.395690 

1.60 24686 19850 0.31826 7 0.395819 

1.70 25574 20564 0.318155 0.395680 
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Table C-7 

Neutral Stability Results for n-1.0 at 

x=0.010, u =1.25870, N=100 
max 

a R R* (c ) ( c ) * 
r r 

0. 7 0 69543 55250 0.252730 0.318111 

0.80 55767 44306 0.262914 0.330930 

1.00 38808 30832 0.282568 0.355668 

1.20 29928 23777 0.299456 0.3 76925 

1.40 25874 20556 0.311265 0.391789 

1.475 25426 20200 0.313713 0.394871 

1.500 25548 20297 0.313940 0.395156 

1.600 27700 22007 0.311407 0.391969 

1.6257 30000 23834 0.307564 0.387131 

1.6342 35000 27806 0.299566 0.377064 

1.6005 45000 35751 0.286198 0.360237 

1.5530 55000 43696 0.275636 0.346943 

1.5058 65000 52435 0.266979 0.336046 

1.4617 76000 59585 0.259700 0.326884 
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Table C-8 

Neutral Stability Results for n=1.0 at 

x=0.015, umax=1.32702, N=100 

a R R* ( c ) ( c ) * r r 

0.55 74047 55799 0.249865 0.331576 

0.60 65463 49331 0.254373 0.337558 

0.70 52531 39586 0.263511 0.349684 

0.80 43790 32999 0.272244 0.361273 

0.90 38117 28724 0.279851 0.371368 

0.95 36308 27361 0.28288 1 0.375389 

1.00 35241 26557 0.285077 0.378303 

1.025 35060 26420 0.285713 0.379147 

1.050 35246 26560 0.285827 0.379298 

1.100 38250 28824 0.282474 0.374849 

1.1101 45000 33911 0.274538 0.364317 

1.0896 55000 41446 0.264516 0.351018 

1.0608 65000 48982 0.256263 0.340066 

1.0314 75000 56518 0.249329 0.330865 
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Appendix D 

Tables of Neutral Stability Characteristics at 

Critical Point 

Table D-1 

Axial Variation of Critical Stability Characteristics for 

Axisymmetric Disturbances n=O 

X X a R* R (c ) * ( c ) N c c c r c r c 

0.002 0.00087 4.19 30110 33338 0.366582 0.331058 200 

0.003 0.00140 3.28 24620 27897 0.380775 0.336043 200 

0.005 0.00258 2.26 20380 23960 0.403796 0.343469 150 

0.006 0.00323 1.93 19900 23765 0.413491 0.346250 150 

0.007 0.00392 1.635 20250 24534 0.422166 0.348445 150 

0.009 0.00539 1.095 25015 31110 0.434888 0.349683 150 

0.010 0.00616 0.785 33840 42594 0.437008 0.347191 100 
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Table D-2 

Axial Variation of Critical Stability Characteristics 

for Non-Axisymmetric Disturbances n=1.0 

X X a R* R (c ) * (cr) N c c c r c c 
0.002 0.00087 4.135 31510 34888 0.363319 0.328136 200 

0.003 0.00140 3.240 26220 29710 0.373960 0.330029 200 

0.005 0.00258 2.363 21780 25605 0.386854 0.329058 150 

0.006 0.00323 2.103 20700 24720 0.390977 0.327397 150 

0.007 0.00392 1.895 20100 24353 0.393555 0.324831 150 

0.009 0.00539 1.593 19840 24674 0.395690 0.318163 150 

0.010 0.00616 1.475 20200 25426 0.394871 0.313713 100 

0.015 0.01043 1.025 26420 35060 0.379147 0.285713 100 

~17268 
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