
 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 8 No. 4 7

Storage Performance Evaluation for IoT Gateway

Implementation Using Raspberry Pi 2

Zan-Wai Kong, Boon-Yaik Ooi, and Chee-Siang Wong

Faculty of Information and Communication Technology, Department of Computer Science, Universiti Tunku Abdul Rahman,

Jalan Universiti, Bandar Barat,

31900 Kampar, Perak, Malaysia.

zforzen@1utar.my

Abstract—IoT gateway is a core module exists in many of the

IoT architectures that plays a role to connect WSNs to the

internet, or specifically to the Cloud. However, conventional

internet gateway is not sufficient to be IoT gateway. One of the

most critical issue faced by IoT gateway is unstable internet

connection especially when using cellular network. This work

proposes that IoT gateway should have temporary storage to

mask network issue. The objective of this work is to find out the

most efficient solution for IoT gateway with temporary storage

based on the elements of hardware, scheduler and storage

method including database versus flat file on Raspberry Pi and

NAND flash. From our experimental results, we found that the

most efficient solution for temporary storage in IoT Gateway is

using 4-threaded flat file I/O with Deadline scheduler.

Index Terms—Gateway; Internet of Things; NAND Flash.

I. INTRODUCTION

Internet of Things (IOT) is an emerging paradigm built up

with a continuum of uniquely addressable ‘things’ which is

able to communicate with each other through a worldwide

dynamic network (internet), with the bolster of protocols and

approaches such as IPV6, ubiquitous computing, pervasive

computing, sensing technology and other domains. It is a

system that bridges real and digital world is formed to enable

symbiotic interactions seamlessly between the two parties [1].

In other words, IoT describes a vision where a huge network

of uniquely identified smart objects (things) with different

characteristics (sensors, actuators etc.) connected at any-time,

any-place, any-thing, working together to provide variety of

services on demand to end users [2]. The range of services

varies from services to citizens (e.g., smart home, mobile

health) to industrial applications (e.g., smart grid, efficient

transportation and logistics) [3].

Generally, IoT architectures commonly consisted of three

working layers: perception layer, network layer and

application layer[4]–[6]. In brief, the layers are mainly to

transmit the perceptual information from WSN (perception

layer) to end user devices (application layer), through network

protocols and internet (network layer) [4]. According to Xu et.

al [7], the communication architecture can be categorized into

three groups. (1) Front-end proxy solution: connection is

performed by middleware proxy and no direct connection

between WSNs and the Internet. (2) Gateway solution: a

gateway is located and acts as a bridge between WSNs and the

Internet. (3) TCP/IP overlay solution, an overlay network

constructed on either WSNs or the Internet. In this work, we

will focus on the gateway solution.

Most of the existing IoT frameworks with gateway solution

can be classified into two major groups: with and without

Cloud Computing. IoT architectures without Cloud

Computing proposed that end user devices in application

layers are allowed to accessed into sensor gateways directly in

networks layer to obtain perceptual information; whereas

architectures with Cloud Computing have cloud server(s) in

between of end devices and sensor gateways, which store and

process the information uploaded from sensor gateways and

allow end devices access to obtain information on demand

[7]–[11]. Relatively, approaches with Cloud Computing tend

to be more practically applicable as the data generation rate of

numerous sensors could be extremely high and requires a high

processing power back-end machine for data processing job

that cannot be handled by light-weighted sensor gateway [6],

[12], [13].

According to [4], an IoT gateway should have minimum

requirements of (1) multi interfaces to handle incoming data

from different sources and forward data to different

destination, (2) protocol conversion to handle and standardize

heterogeneous data and (3) high manageability in terms of

remotely managing connected sensors and gateway itself. To

achieve the IoT vision of “connectivity at any-time, any-

place”, wired broadband to the internet would not be suitable

as a medium for gateway-cloud connection. Cellular network

with less geographical limitations becomes a better alternative.

However, inconsistency of cellular networks quality might at

some point causes the upload bandwidth unable to cope with

the incoming data rate from sensors. It eventually leads to

network congestion, which is an issue that cannot be resolved

by IoT gateway with only minimum requirements.

Azzam et. al [6] proposed a framework of IoT Gateway

with temporary storage, allows incoming data from sensors to

be temporary stored while pending to be uploaded to cloud,

resolved the issue of network congestion. Yet, temporary

storage performance is still an ambiguous subject. Since the

continuous incoming data rate from sensor networks could be

very high, I/O speed of temporary storage should also be

decent enough to handle it.

The main contributions of this paper is test and find out the

most efficient method for temporary storage implemented on

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universiti Teknikal Malaysia Melaka: UTeM Open Journal System

https://core.ac.uk/display/229268078?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Journal of Telecommunication, Electronic and Computer Engineering

8 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 8 No. 4

SD card based on elements of hardware, scheduler and storage

method. The rest of the paper is explained as below: Section

2.0- Related work, Section 3.0- Methodology of tests, Section

4.0- Experimental Results and Section 5.0- Conclusion.

II. RELATED WORK

In terms of data storage, from low to high level, the most

essential consideration would be the storage hardware. In the

implementation of embedded computers as an IoT gateway,

flash memory is widely used as a storage medium, where SD

card is a paradigm of flash memory for modern day

programmable embedded computers. Therefore, SD card

speed is undoubtedly the basis of storage performance. SD

cards in the market are classified with grades according to

their read/write speed and performance consistency. UHS

classes are the index to identify the minimum speed of an

SDHC/ SDXC card, cards with minimum speed of 10MB/s

and 30MB/s are graded as UHS class 1 and UHS class 3

respectively [14]. The SD card models with grades above,

SanDisk SDHC ultra (UHS class 1) and SanDisk SDHC

Extreme Pro (UHS class 3) are the example of flash memory

that are used in electronic devices in the market.
The higher level in data storage is the I/O scheduler used in

the embedded computer OS. Noop and Deadline are two

schedulers available in the Linux kernel used by embedded

computers. The Noop scheduler is the simplest I/O scheduler

for Linux kernel, works by inserting all incoming I/O requests

into FIFO queue and performs request merging, while the

Deadline scheduler’s main goal is to guarantee a start service

time for an I/O request by imposing a deadline on all I/O

operations to prevent resource starvation.

Upon hardware and kernel level, the next computer

architecture level that affects the data storage performance is

the I/O method. There are a lot of ways to write continuous

incoming data into files and allowed to read the stored data

concurrently. Since embedded computers nowadays do come

with multicore processors, multithreaded I/O also helps in data

storage [15]. One of the most popular implementations is by

using thread-safe database that features data organization and

query, eases data insertion and searching work. Another

method is using simple flat file storing, which contains only

basic formatting and record with no structured relationship.

Flat files storing might cumber the data searching work, but it

tends to have the highest speed due to its simplicity.

III. METHODOLOGY

The main objective of this work is to test the most efficient

method to store the sensor data, based on the following

criteria: (i) SD card type, (ii) I/O scheduler and (iii) storage

method. Generally the whole work is done on Raspberry Pi 2

Model B with a 900MHz quad-core ARM Cortex-A7 CPU

and 1GB RAM which acts as an IoT gateway platform.

As mentioned above, the first criterion is the SD card type.

In this research, two types of SDHC card are used as test

mediums, which are SanDisk Ultra with 48MBps read/write

speed and SanDisk Extreme Pro with 90/95MBps read/write

speed as advertised. The second criterion is the I/O scheduler,

with the variable of Noop and Deadline scheduler built-in with

the Raspberry Pi 2. The last criterion is read/write method,

where the database PostgresSQL, SQLite and flat file I/O are

compared in term of read/write speed based on input size and

number of threads.

Table 1

 Hierarchy of Storage Performance Test

 Raspberry Pi 2 Model B

Level 1
SanDisk Ultra

(Low-end)

SanDisk Extreme Pro

(High-end)

Level 2 Deadline No-op

Level 3 PostgresSQL SQLite Flat file I/O

The test will be performed by hierarchy as shown in Table

1, starting from the lowest architecture level. The option with

better result will be used as a basis to carry on the next level

test.

Level 1: A set of simple file I/O tests using flat file

read/write is run on both SD cards with default I/O scheduler

using C++ program. The test involves concurrent read/write

rows of string from/to text files, with the manipulated

variables of (1) number of rows range from 5k to 5M and (2)

number of threads range from 1 – 32. Each individual test is

repeated for 10 times for normalized results. The card with

better performance will proceed to level 2 test.

Level 2: The same file I/O test similar as previous level is

run on the same SD card using different I/O scheduler. The

variance with better performance will be selected as default

I/O scheduler of next level test.

Level 3: The C++ test program is modified to work with

SQL databases. The similar tests with same variables working

on different I/O platforms (PostgresSQL, SQLite, Flat file I/O)

are performed under the environment set by previous level

tests.

Eventually, the temporary storage solution with best

performance will be decided with the combination of best

performers from three levels.

IV. EXPERIMENTAL RESULTS

This section shows the experimental results and comments

according to the result observations.

A. Criterion 1: SD card Type

According to Figure 1, SanDisk Ultra has slower read/write

speed as number of threads increases (increment becomes very

significant from 8 threads), whereas SanDisk Extreme Pro

according to Figure 2 gives consistently higher I/O speed

regardless the number of threads.
Table 2 shows the time variance obtained by repeating same

test to read/write 5M rows of data using flat file storage

method. The overall time variance of SanDisk Ultra

significantly overwhelmed SanDisk Pro Extreme’s, showed

that SanDisk Extreme Pro has higher performance

consistency. Therefore, the remainder of tests are set up with

the SanDisk Extreme Pro.

 Storage Performance Evaluation for IoT Gateway Implementation Using Raspberry Pi 2

 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 8 No. 4 9

Figure 1: Read/write time vs number of rows with different number of thread
for SanDisk Ultra

Figure 2: Read/write time vs number of rows with different number of thread

for SanDisk Extreme Pro

Table 2

 Variance of time taken for repeated I/O test

Number

of threads

Variance

Low end NAND flash
storage

(SanDisk Ultra)

High-end NAND flash
storage

(SanDisk Extreme Pro)

1 89.47 1.48

2 148.99 0.95

4 433.53 2.70

8 112.12 1.11

16 987.60 4.69

32 1757.68 10.06

B. Criterion 2: Test on the effect of I/O scheduler speed on

data storage performance.

According to Figure 3 and Figure 4, the two I/O schedulers

did not give significant difference in terms of performance.

The tests gave almost the same results under all variables. It

might be due to the SanDisk Extreme Pro itself was initially

performing with its maximum speed even with slower

scheduler. Since the two do not give much difference, the

Deadline scheduler is selected to carry out next level test as it

is the default I/O scheduler of Raspberry Pi 2.

C. Criterion 3: Test on the effect of storage method on

data storage performance.

Databases in general has much higher overheads compare to

flat file I/O. As shown in Figure 7, flat file I/O able to

read/write 5M rows of data within 300 seconds (100k rows

takes less than 3 seconds) with different number of threads (4

threads gives insignificantly shortest time), whereas Postgres

SQL according to Figure 6 has best case of handling 100k

rows of data with 195 seconds using 32 threads and SQLite

according to Figure 5 takes around 2400 seconds to achieve

100k rows of data regardless of the number of thread. The

overheads occurred in databases is because database has to

ensure the ACID (Atomicity, Consistency, Isolation,

Durability) properties.

Figure 3: Flat file I/O read/write time vs number of rows with different

number of thread (Deadline)

Figure 4: Flat file I/O read/write time vs number of rows with different
number of thread (Noop)

V. CONCLUSION

According to the experimental results, the most efficient

solution for temporary storage in Smart IoT Gateway is using

4 threaded flat file I/O with Deadline scheduler on high end

NAND flash storage such as SD Extreme Pro. This

combination gives the fastest storage performance in terms of

read/write speed. The flat file I/O platform might require

further enhancement to deal with data-query-alike tasks in IoT

systems. However, with the wide margin between

performances of flat file I/O and databases, it is highly

possible to integrate minimum query features to flat file I/O

and still having better performance than regular databases.

Interestingly, from our experimental result, we found that

there are performance differences between of low end and

high end NAND flash storages even though the Raspberry Pi 2

bus speed is capped at around 19.4MBps. Although both low

end and high end NAND flash storages can perform faster

than Raspberry Pi 2 bus speed, the high end NAND flash

storage does have performance advantages over the low end

NAND flash storage especially in handling concurrent IO

activity much better

Journal of Telecommunication, Electronic and Computer Engineering

10 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 8 No. 4

Figure 5: SQLite read/write time vs number of rows with different number of

thread

Figure 6: PostgresSQL read/write time vs number of rows with different
number of thread

Figure 7: Flat file I/O read/write vs number of rows with different number of
thread

REFERENCES

[1] E. Borgia, “The Internet of Things vision : Key features , applications

and open issues,” Comput. Commun., vol. 54, pp. 1–31, 2014.
[2] L. Coetzee and J. Eksteen, “The Internet of Things – Promise for the

Future ? An Introduction,” IST-Africa Conf. Proc., pp. 1–9, 2011.

 [3] L. Costantino, N. Buonaccorsi, C. Cicconetti, and R. Mambrini,
“Performance analysis of an LTE gateway for the IoT,” 2012 IEEE Int.

Symp. a World Wireless, Mob. Multimed. Networks, WoWMoM 2012 -

Digit. Proc., 2012.
[4] H. Chen, X. Jia, and H. Li, “A Brief Introduction To IoT Gateway,”

ICCTA2011, p. 4, 2011.

[5] Q. Zhu, R. Wang, Q. Chen, Y. Liu, and W. Qin, “IOT Gateway:
BridgingWireless Sensor Networks into Internet of Things,” 2010

IEEE/IFIP Int. Conf. Embed. Ubiquitous Comput., pp. 347–352, 2010.

[6] M. Aazam and E.-N. Huh, “Fog Computing and Smart Gateway Based
Communication for Cloud of Things,” 2014 Int. Conf. Futur. Internet

Things Cloud, pp. 464–470, 2014.

[7] Ran,Xu, Y. Shuang-Hua, L. Ping, and C. Jiangtao, “IoT Architecture
Design for 6LoWPAN Enabled Federated Sensor Network,” 11th World

Congr. Intell. Control Autom., pp. 2997–3002, 2014.

[8] S. K. Datta, C. Bonnet, and N. Nikaein, “An IoT gateway centric

architecture to provide novel M2M services,” 2014 IEEE World Forum

Internet Things, pp. 514–519, 2014.

[9] D. Min, Z. Xiao, B. Sheng, and G. Shiya, “Design and implementation
of the the multi-channel RS485 IOT gateway,” 2012 IEEE Int. Conf.

Cyber Technol. Autom. Control Intell. Syst., pp. 47–88, 2012.

[10] C. P. Kruger, G. P. Hancke, S. Networks, and H. Kong, “Rapid
Prototyping of a Wireless Sensor Network Gateway for the Internet of

Things Using o ff -the-shelf Components,” 2015 IEEE Int. Conf. Ind.

Technol., pp. 1926–1931, 2015.
[11] M. Ha, S. H. Kim, H. Kim, K. Kwon, N. Giang, and D. Kim, “SNAIL

gateway: Dual-mode wireless access points for WiFi and IP-based

wireless sensor networks in the internet of things,” 2012 IEEE Consum.
Commun. Netw. Conf. CCNC’2012, pp. 169–173, 2012.

[12] M. Aazam, P. P. Hung, and E. N. Huh, “Smart gateway based

communication for cloud of things,” IEEE ISSNIP 2014 - 2014 IEEE 9th
Int. Conf. Intell. Sensors, Sens. Networks Inf. Process. Conf. Proc., no.

April, pp. 21–24, 2014.
[13] J. De Huang and H. C. Hsieh, “Design of gateway for monitoring system

in IoT networks,” Proc. - 2013 IEEE Int. Conf. Green Comput.

Commun. IEEE Internet Things IEEE Cyber, Phys. Soc. Comput.
GreenCom-iThings-CPSCom 2013, pp. 1876–1880, 2013.

[14] “Speed Class - SD Association.” [Online]. Available:

https://www.sdcard.org/developers/overview/speed_class/. [Accessed:
22-Sep-2015].

[15] B. W. Low, B. Y. Ooi, and C. S. Wong, “Scalability of database bulk

insertion with multi-threading,” Commun. Comput. Inf. Sci., vol. 181
CCIS, no. PART 3, pp. 151–162, 2011.

