
ISSN: 1985-3157 Vol. 12 No. 2 July - December 2018

Multiple Android Package Files Extractor in Mining Request Permissions and Api Calls

11

MULTIPLE ANDROID PACKAGE FILES EXTRACTOR IN
MINING REQUEST PERMISSIONS AND API CALLS

A. Aminordin¹, M.A. Faizal², Y. Robiah², A. Mukhlis³ and F. Arif⁴

¹Faculty of Computer and Mathematical Sciences,
Universiti Teknologi Mara Melaka, Jalan Lendu, 78000 Alor Gajah, Melaka,

Malaysia.

²Faculty of Information and Communications Technology,
Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian

Tunggal, Melaka, Malaysia.

³Rant.ai Network,
Damansara Foresta, Bandar Sri Damansara,

52200, Kuala Lumpur, Malaysia.

⁴Department of Industrial Engineering,
Institut Teknologi Nasional (Itenas), Bandung, Indonesia.

Corresponding Author’s Email: ¹azmi1107@melaka.uitm.edu.my

Article History: Received 6 April 2018; Revised 26 July 2018; Accepted
4 October 2018

ABSTRACT: Android smartphone has the highest demand in the world due
to the ability of the devices and the open source software concept. Numbers
of Android applications are increasing as to fulfill users and businesses’
needs. Not only Android gains huge business return but its applications
has also become the target of attackers. One of the approaches to investigate
and detect malware is through a reverse engineering technique where the
profile parameters are extracted. The process of reversing Android execute
file (.apk) individually takes a long time. Other than having used several
tools, the approach leaves open the possibility of misconduct during the
mining of necessary source codes. Therefore, an Android permissions and
Application Programming Interface (API) calls extractor tool were developed
for Android mobile devices apps. This tool had the capability to record all
request permissions and required API calls inside the AndroidManifest.xml
and classes.dex made to App executable file. In addition, the automatic feature
of the tool allowed for the recording of the permission and API calls more
than one Android Package Kit (APK) files at a time. MAPE (Multiple Android
Package Extractor) was developed using Node.js. Currently, researchers
either disclose mining techniques or use existing tools manually. MAPE used
a sequential search in Depth First Search (DFS) technique to accomplish the

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universiti Teknikal Malaysia Melaka: UTeM Open Journal System

https://core.ac.uk/display/229266489?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ISSN: 1985-3157 Vol. 12 No. 2 July - December 2018

Journal of Advanced Manufacturing Technology (JAMT)

12

operation. This tool can shorten the researchers’ processing time on retrieving
request permissions and targeting API calls. The output produced by MAPE
can be used for several purposes such as Apps categorization and malware
detection.

KEYWORDS: Android; Permissions; API Calls; Depth First Search; Sequential
Search

1.0 INTRODUCTION

Rapid development of Android Apps has triggered serious security
concerns to overcome the presence of malware. Malware creator
does not only target the business, finance and social apps to inject
the vulnerable codes but also to vary the apps category. For example,
plenty of engineering apps can be downloaded through either official
or third party store. Apps such as Axon Calc, Heat Transfer Calculator
and Engineering Cookbook are among the top 10 Android apps for
engineers commonly used by college students and practitioners. Those
others apps might be infected by malware as they can be retrieved
through a third party app store [1, 2-3]. When a file is downloaded,
it does not actually deploy the app that user asks for but a fake Flash
player which is being used to spread a malware. According to a study
[4], most of the repackaged applications in third party app store are
malware applications.

Various methods have been proposed by many researchers and
organizations in addressing malware issues. Static and dynamic
analyses as well as a combination of both (hybrid) [5] are often used for
classifying benign and malware Apps. Static analysis is where the source
codes is analysed without running the application. It is an inexpensive
way to find malicious activities in code segments and consume fewer
resources. Failure at different code obfuscation is the main drawback
of this technique. Dynamic analysis is also known as behavioural based
analysis where the technique is executed within a sandbox. Lastly,
hybrid analysis integrates the two approaches. Features used to analyse
malware for those techniques are clearly explained [6].

Furthermore, static analysis considers features such as permission,
intents, API calls, broadcast receiver and string written in the source
codes while dynamic analysis investigates system call, power
consumption, network traffic and user interactions [6]. In static analysis,
permissions [7] and API call [3–6] are important features used to detect
malware. Permission is the security for the system and users before the

ISSN: 1985-3157 Vol. 12 No. 2 July - December 2018

Multiple Android Package Files Extractor in Mining Request Permissions and Api Calls

13

apps can use certain system data and features. All request permissions
are declared inside AndroidManifest.xml file. On the other hand,
API calls are the set of subroutine definitions, protocols and tools for
building application software. In the Android environment, all APIs
are coded into their specific classes and grouped into one file named
classes.dex.

Android APK is similar to “.exe” file in the Windows environment.
Several files and folders are compiled and packaged to merge as a single
file with the “.apk” extension. This file can easily be decompressed
using Unzip tools, but it will be returned in an unreadable format. The
important files are (i) AndroidManifest.xml which contains essential
information about the app where the system must have the access
before it can run any of the app codes. (ii) Classes.dex contains code that
is written in java and then compiled to class files before these files are
cross compiled to Dalvik VM format. (iii) Resources.arsc: arsc stands
for application resource. This file is kept in the compiled resources
(strings, images, & data) in a binary format.

Android lists the package index for every version of API level in its
developer page. The combination of package index with specific classes
also known as API call is used to activate the Apps. In addition, API calls
provide means for Apps to interact with the devices where the static API
calls give information on their runtime activities[1]. Many researchers
on Android Apps categorization [8-9] and malware detection [7, 10–20]
choose API calls as one of the features in their studies. Recent studies
[15, 21] considered API in their study of Android malware detection,
thus, showing that this feature is still relevant to be analyzed.

ApkTool is a tool for reverse engineering that decodes resources to their
nearly original forms and rebuild them after some modifications. This
tool is similar to any unzipped utilities tool that will unzip the APK file
but this tool allows the transfer of smali files to smali folder [26]. This
command line tool allows users to view the request permissions inside
the AndroidManifest.xml.

ISSN: 1985-3157 Vol. 12 No. 2 July - December 2018

Journal of Advanced Manufacturing Technology (JAMT)

14

Table 1: Tools applied by previous researchers

No Tool Authors Field of
Research Feature Uses Weaknesses

1 Apktool [18] Malware
Detection

-Permissions
-API calls

Manual

2 Apktool [27] Malware
Detection

-Permissions Manual

3 Apktool [28] Categorization
and detection

-Permissions
-API level

Manual

4 Apktool [29] Security
Threshold

-Permissions
-String

Manual

5 Apktool [30] Malware
Detection

-Permissions
-API calls

Manual

6 AAPT [31] Malware
Detection

-Permissions One apk at a
time

Table 1 shows the tools used in order to parse and extract the
permissions. In comparison, a Windows batch file or AAPT tools are
utilized to extract all request permissions from all APK files at one
time. This process would extract all the required permissions coded
inside the AndroidManifest.xml and return matched features into one
text file. Furthermore, a study [31] has built an automatic extraction of
permissions through an application using Python.

Many web based extraction systems are able to extract more than one
features at a time. For example, AVC UnDroid can extract several source
code features and analyze the apk files. However, this system only
allows users to upload not more than 7 Mb size of file. APK Analyzer is
based on Joe Sandbox Mobile which performs deep malware analysis
for malware targeting mobile platforms. This web based program only
allow users to transfer one file at a time and is limited to 20 Mb file size.
Other than that, VirusTotal is a well-known android malware analysis
program that allows users to upload files up to 128 Mb. Even though
these web-based systems are able to do extraction for apk file, they are
restricted to one file at a time. For comparison, MAPE is capable to
process more than one file and with unlimited apk file size at a time.

Thus far, no mining technique for extracting request permissions and
API calls in the Android environment is found. A sequential search
in Depth First Search methods was utilized in order to automate the
extraction for multiple apk files. Details on this searching technique are
elaborated in Section 2.3.

ISSN: 1985-3157 Vol. 12 No. 2 July - December 2018

Multiple Android Package Files Extractor in Mining Request Permissions and Api Calls

15

The remainder of this paper is structured as follows: Section 2.0 presents
the methodology of MAPE; Section 3.0 illustrates the performance
evaluation; and finally, the conclusion in Section 4.0.

2.0 METHODOLOGY

Currently, researchers use several tools such as ApkTool, AAPT,
dex2jar, Dex and JD-GUI separately to catch the wanted API calls as
shown in Figure 1. Basically, an APK file will be decompressed using
APKTool. Only then, all the permissions be extracted using the AAPT.
In order to convert and view the java source codes of an application,
dex2jar and JD-GI are used. Then, one can mine the source codes to
match the targeted features before obtaining results. The manual
process of extracting and mining API calls is shown in Figure 1.

Journal of Advanced Manufacturing Technology (JAMT)

The remainder of this paper is structured as follows: Section 2.0
presents the methodology of MAPE; Section 3.0 illustrates the
performance evaluation; and finally, the conclusion in Section 4.0.

2.0 M E T H O D O L O G Y

Currently, researchers use several tools such as ApkTool, AAPT,
dex2jar, Dex and JD-GUI separately to catch the wanted API calls as
shown in Figure 1. Basically, an APK file will be decompressed using
APKTool. Only then, all the permissions be extracted using the AAPT.
In order to convert and view the java source codes of an application,
dex2jar and JD-GI are used. Then, one can mine the source codes to
match the targeted features before obtaining results. The manual
process of extracting and mining API calls is shown in Figure 1.

Figure 1: Manual process of extracting and mining API calls

The method was enhanced by integrating several operations
(processes 1 to 4) to automatically catch the permission and desired
API calls. Hundreds of apk files can be processed together using a
single program, producing the necessary outputs. Figure 2 illustrates
the MAPE process.

Reversing Tool

Java Classes Result

3

4 5

Dex to Jar
Converter Apk File

Source Code
Reviewer

API Library

1

1

2

2

3

4 5

Figure 1: Manual process of extracting and mining API calls

The method was enhanced by integrating several operations (processes
1 to 4) to automatically catch the permission and desired API calls.
Hundreds of apk files can be processed together using a single program,
producing the necessary outputs. Figure 2 illustrates the MAPE process.Journal of Advanced Manufacturing Technology (JAMT)

Figure 2: Multiple Android Package Extractor Process

2.1 MAPE Flowchart

Currently, MAPE can fully run using Windows operating system
because the batch file created would utilize the shell program and
read the file, then execute commands line-by-line. This .bat extension
file is used in DOS and Windows. However, MAPE can run smoothly
on other platforms if the extractions of permissions are excluded.
Figure 3 illustrates the flowchart of MAPE.

Firstly, MAPE will detect the operating system used by a user. MAPE
will dump all the request permissions located in
AndroidManifest.xml if Windows operating system is detected. This
code can simply be coded using a text file program such as Notepad
or Notepad++. In order to execute this code, the AAPT.exe must be
placed into the same folder where the apk files are located. MAPE
will continue running the program even though the operating system
is not Windows but the request permissions in APK will not be
extracted.

In order to extract the API calls, the system will rename the .apk file to
.zip first before unzipping it to produce the classes.dex file. Then, this
tool will delete classes.dex file right after generating the .jar file using
dex2jar tool. Extracting .jar files into a folder will be the next process
executed by MAPE in order to get the .java files. MAPE will read
through all the .java files in the extracted folder and compare it with
the entries in API calls text file (library). Afterward, the system will
generate (for first time) or amend result.txt file which has the filtered
list of API matched with the library’s. Lastly, the system will delete all
the temporary files and proceed with the second APK until the last
APK file is processed.

Multiple
APK Files

API calls Library

Result

Figure 2: Multiple Android Package Extractor Process

ISSN: 1985-3157 Vol. 12 No. 2 July - December 2018

Journal of Advanced Manufacturing Technology (JAMT)

16

2.1 MAPE Flowchart

Currently, MAPE can fully run using Windows operating system
because the batch file created would utilize the shell program and read
the file, then execute commands line-by-line. This .bat extension file
is used in DOS and Windows. However, MAPE can run smoothly on
other platforms if the extractions of permissions are excluded. Figure 3
illustrates the flowchart of MAPE.

Firstly, MAPE will detect the operating system used by a user. MAPE
will dump all the request permissions located in AndroidManifest.
xml if Windows operating system is detected. This code can simply
be coded using a text file program such as Notepad or Notepad++. In
order to execute this code, the AAPT.exe must be placed into the same
folder where the apk files are located. MAPE will continue running the
program even though the operating system is not Windows but the
request permissions in APK will not be extracted.

In order to extract the API calls, the system will rename the .apk file
to .zip first before unzipping it to produce the classes.dex file. Then,
this tool will delete classes.dex file right after generating the .jar file
using dex2jar tool. Extracting .jar files into a folder will be the next
process executed by MAPE in order to get the .java files. MAPE will
read through all the .java files in the extracted folder and compare it
with the entries in API calls text file (library). Afterward, the system
will generate (for first time) or amend result.txt file which has the
filtered list of API matched with the library’s. Lastly, the system will
delete all the temporary files and proceed with the second APK until
the last APK file is processed.

ISSN: 1985-3157 Vol. 12 No. 2 July - December 2018

Multiple Android Package Files Extractor in Mining Request Permissions and Api Calls

17

Journal of Advanced Manufacturing Technology (JAMT)

Figure 3: Flowchart of MAPE

START
Running on

Windows OS?

Loop over each .apk
files completed?

 END

Execute permission
extractor

Copy .apk and rename the
extension to .zip

Unzip file to get classes.dex
then delete the zip file

Generate .jar file from
classes.dex via dex2jar then

delete the classes.dex file

Extract the .jar file to a folder
then delete the .jar file

Read through all the .java files
in the extracted folder and
compare it with the library

Generate a .txt file

which has the filtered
list of API matched

Delete temporary files

NO

YES

YES

Figure 3: Flowchart of MAPE

ISSN: 1985-3157 Vol. 12 No. 2 July - December 2018

Journal of Advanced Manufacturing Technology (JAMT)

18

2.2 Extracting API Calls

Depth First Search (DFS) searches deeper into the problem space
and uses last-in first-out stack for keeping the unexpected nodes.
More commonly, DFS is implemented recursively with the recursion
stack taking the place of an explicit node stack. Even though there
is a possibility that it may go down the far left path forever and
is not guaranteed to find the solution, this technique is easy to be
implemented and using less memory. Moreover, DFS is one of the most
versatile sequential techniques [32]. This approach was utilized as this
technique would traverse all the classes through all java files to catch
the targeted API calls as shown in Figure 4. Hence, no targeted classes
are exempted.

Journal of Advanced Manufacturing Technology (JAMT)

2.2 Extracting API Calls

Depth First Search (DFS) searches deeper into the problem space and
uses last-in first-out stack for keeping the unexpected nodes. More
commonly, DFS is implemented recursively with the recursion stack
taking the place of an explicit node stack. Even though there is a
possibility that it may go down the far left path forever and is not
guaranteed to find the solution, this technique is easy to be
implemented and using less memory. Moreover, DFS is one of the
most versatile sequential techniques [32]. This approach was utilized
as this technique would traverse all the classes through all java files to
catch the targeted API calls as shown in Figure 4. Hence, no targeted
classes are exempted.

Figure 4: DFS Traversing Tree for Extracting Android API

2.3 Sequential Searching

Basically, API calls is a combination of two or more subroutines or
protocols that is delimited by full stop (dot). In this study, the whole
combination is integrated and becomes a keyword for search
purposes. For example, android.net.wifi. WifiManager is a
combination of four protocols which provides the primary API for
managing all aspects of Wi-Fi connectivity. This API call was
captured as a keyword and then was compared with the desired API
lists in the library. Linear search or sequential search (citation)
technique based on keywords was applied in order to complete the
tasks. Linear search would sequentially checks each element of the list
until it finds an element that matches the target value. The search
terminates unsuccessfully if the algorithm reaches the end of the list

.apk files

Java files

APIs

Folder

Figure 4: DFS Traversing Tree for Extracting Android API

2.3 Sequential Searching

Basically, API calls is a combination of two or more subroutines or
protocols that is delimited by full stop (dot). In this study, the whole
combination is integrated and becomes a keyword for search purposes.
For example, android.net.wifi. WifiManager is a combination of four
protocols which provides the primary API for managing all aspects of
Wi-Fi connectivity. This API call was captured as a keyword and then
was compared with the desired API lists in the library. Linear search or
sequential search (citation) technique based on keywords was applied
in order to complete the tasks. Linear search would sequentially checks
each element of the list until it finds an element that matches the target
value. The search terminates unsuccessfully if the algorithm reaches
the end of the list [33]. Figure 5 is the algorithm of DFS and sequential
search in which to mine the API calls.

ISSN: 1985-3157 Vol. 12 No. 2 July - December 2018

Multiple Android Package Files Extractor in Mining Request Permissions and Api Calls

19

Journal of Advanced Manufacturing Technology (JAMT)

[33]. Figure 5 is the algorithm of DFS and sequential search in which
to mine the API calls.

Figure 5: DFS with sequential search algorithm for MAPE

Given list L of n elements with values L0 … Ln-1, and target value T, the
following subroutines used sequential search to find the index of the
target T in L. The outer loop is where A = number of apk files, and C =
number of class files coded for inner loop.

3.0 P E RF O RM A N C E E V AL U AT I O N

This study was conducted under the environment of Windows 7
Professional operating system plus Intel Core i7-6700 3.40 GHz CPU
and 16GB RAM capabilities. The results for all the tests are shown in
Table 2 .

Table 2: Time taken by MAPE
APKs # API Calls Time (minutes)

100
50 44
100 46
200 50

500
50 77
100 85
200 89

1000
50 113
100 121
200 129

A total of three groups of APK files were tested (100, 500 and 1000)
using MAPE with different numbers of API calls. Varying file sizes
were involved in which the smallest file size was 202KB and the
largest was 39.15MB. No error occurred during the testing period. The
results showed that there was a slight time increase in processing time
when the numbers of API calls were increased. Moreover, MAPE only
took less than half a minute per APK when processing 100 files. The

Figure 5: DFS with sequential search algorithm for MAPE

Given list L of n elements with values L₀ … Ln-1, and target value T, the
following subroutines used sequential search to find the index of the
target T in L. The outer loop is where A = number of apk files, and C =
number of class files coded for inner loop.

3.0 PERFORMANCE EVALUATION

This study was conducted under the environment of Windows 7
Professional operating system plus Intel Core i7-6700 3.40 GHz CPU
and 16GB RAM capabilities. The results for all the tests are shown in
Table 2 .

Table 2: Time taken by MAPE
APKs # API Calls Time (minutes)

100 50 44
100 46
200 50

500 50 77
100 85
200 89

1000 50 113
100 121
200 129

A total of three groups of APK files were tested (100, 500 and 1000)
using MAPE with different numbers of API calls. Varying file sizes
were involved in which the smallest file size was 202KB and the largest
was 39.15MB. No error occurred during the testing period. The results
showed that there was a slight time increase in processing time when
the numbers of API calls were increased. Moreover, MAPE only took
less than half a minute per APK when processing 100 files. The results

ISSN: 1985-3157 Vol. 12 No. 2 July - December 2018

Journal of Advanced Manufacturing Technology (JAMT)

20

also showed that the completion time for each file is decreasing if
the number of files is added. Finally, MAPE produced all the request
permissions and desired API calls recorded in a single text file.

To extract and record request permissions manually, one needs to spend
about 2 to 4 minutes for individual APK using AAPT through command
prompt. Mining related API calls is another step and consumes more
time. With MAPE, the processes time can be shorten. MAPE is also able
to execute both processes without restriction to number of files and file
size. Even though web based extractor is available, it cannot process
more than 1 file at a time and is limited to APK file size.

4.0 CONCLUSION

Android Package Kit (APK) is a package file specifically in zipped
format based on JAR file format. This package contains several folders
and hundreds of files for the installation of mobile apps running on
Android operating system. Mining codes from a large number of files
may take a long time without the proper tools and algorithm. MAPE is
an automation tool for searching the codes inside hundreds of android
apk files. MAPE may shorten the time for processing and mining
permissions and API calls in android apk files. Thus far, there are no
similar tools to MAPE. Existing tools such as ApkTool, dex2jar and
JD-GUI concern with the development of MAPE. Additionally, DFS
is applied with sequential search on keyword in order to capture the
related search items. As a start, MAPE can only look into permissions
and API calls. In the future it can be extended to mining several other
features in Android apk files. By introducing MAPE, working hours on
research related to static code analysis on Android environment can be
shortened.

ACKNOWLEDGEMENT

The authors would like to thank Universiti Teknologi Mara, Universiti
Teknikal Malaysia Melaka, Kementerian Pendidikan Malaysia (Higher
Education) for their facility usage and financial support.

ISSN: 1985-3157 Vol. 12 No. 2 July - December 2018

Multiple Android Package Files Extractor in Mining Request Permissions and Api Calls

21

REFERENCES

[1] A. Sharma and S. K. Dash, “Mining API Calls and Permissions for
Android Malware Detection,” in International Conference on Cryptology
and Network Security, Crete, Greece, 2014, pp. 191–205.

[2] D. Uppal, V. Mehra and V. Verma, “Basic survey on Malware Analysis,
Tools and Techniques”, International Journal on Computational Science &
Applications, vol. 4, no. 1, pp. 103–112, 2014.

[3] R. Raveendranath, V. Rajamani, A. J. Babu and S. K. Datta, “Android
malware attacks and countermeasures: Current and future directions,” in
International Conference on Control, Instrumentation, Commumincation
and Computational Technology, Kanyakumari, India, 2014, pp. 137–143.

[4] W. Zhou, Y. Zhou, X. Jiang and P. Ning, “Detecting repackaged
smartphone applications in third-party android marketplaces,” in Second
ACM conference on Data and Application Security and Privacy, Texas,
USA, 2012 pp. 317-326, 2012.

[5] M. Spreitzenbarth, T. Schreck, F. Echtler, D. Arp and J. Hoffmann,
“Mobile-Sandbox: combining static and dynamic analysis with machine-
learning techniques”, International Journal of Information Security, vol. 14,
no. 2, pp. 141–153, 2015.

[6] A. Feizollah, N. B. Anuar, R. Salleh and A. W. A. Wahab, “A review on
feature selection in mobile malware detection”, Digital Investigation, vol.
13, pp. 22–37, 2015.

[7] Z. Fang, W. Han and Y. Li, “Permission based Android security: Issues
and countermeasures”, Computer Security, vol. 43, pp. 205–218, 2014.

[8] S. Feldman, D. Stadther and B. Wang, “Manilyzer: Automated Android
malware detection through manifest analysis,” in International
Conference on Mobile Ad Hoc and Sensor Systems, Philadelphia, USA,
2015, pp. 767–772.

[9] T. Kanda, Y. Manabe, T. Ishio, M. Matsushita and K. Inoue, “Semi-
automatically extracting features from source code of android
applications”, Transactions on Information and Systems, vol. E96–D, no. 12,
pp. 2857–2859, 2013.

[10] M. Frank, B. Dong, A. P. Felt and D. Song, “Mining Permission Request
Patterns for Malicious Android Applications,” in International Conference
on Data Mining, Brussels, Belgium, 2012, pp. 870–875.

[11] K. Wain, Y. Au, Y. F. Zhou, Z. Huang and D. Lie, “PScout : Analyzing
the Android Permission Specification,” in 2012 ACM conference on
Computer and communications security, North Carolina, USA, 2012, pp.
217–228.

ISSN: 1985-3157 Vol. 12 No. 2 July - December 2018

Journal of Advanced Manufacturing Technology (JAMT)

22

[12] M. Linares-Vasquez, C. McMillan, D. Poshyvanyk and M. Grechanik, “On
using machine learning to automatically classify software applications
into domain categories”, Empirical Software Engineering, vol. 19, no. 3, pp.
582–618, 2014.

[13] B. Olabenjo. (2016). Applying Naive Bayes Classification to Google Play Apps
Categorization [Online]. Available: https://arxiv.org/pdf/1608.08574.pdf

[14] S. M. A. Ghani, M. F. Abdollah, R. Yusof and M. Zaki, “Recognizing API
Features for Malware Detection Using Static Analysis”, Journal of Wireless
Networking and Communications, vol. 5, no. 2A, pp. 6–12, 2015.

[15] P. Pearce, A. P. Felt, G. Nunez and D. Wagner, “AdDroid: Privilege
separation for applications and advertisers in android,” in 7th ACM
Symposium on Information, Computer and Communications Security,
Seoul, Korea, 2012, pp. 71–72.

[16] Y. Zhongyang, Z. Xin, B. Mao and L. Xie, “DroidAlarm: An all-sided
static analysis tool for Android privilege-escalation malware,” in 8th
Symposium on Information, Computer and Communications Security,
Hangzhou, China, 2013, pp. 353–358.

[17] P. P. K. Chan and W. K. Song, “Static detection of Android malware by
using permissions and API calls,” in International Conference on Machine
Learning and Cybernetics, Lanzhou, 2014, pp. 82–87.

[18] N. Peiravian and X. Zhu, “Machine learning for Android malware
detection using permission and API calls,” in IEEE 25th International
Conference on Tools with Artificial Intelligence, Herndon, USA, 2013, pp.
300–305.

[19] Q. Qian, J. Cai and R. Zhang, “Android Malicious Behavior Detection
Based on Sensitive API Monitoring,” in Advanced Science and Technology
Letter, Jeju Island, Korea, 2013, pp. 54–57.

[20] H. Zeng, Y. A. N. Ren, Q. Wang, N. He and X. Ding, “Detecting Malware
and Evaluating Risk of App Using Android Permission-Api System,”
in 11th International Computer Conference on Wavelet Active Media
Technology and Information Processing, Chengdu, China, 2014, pp. 440–
443.

[21] X. Wang, J. Wang and Z. Xiaolan, “A Static Android Malwar Detection
Based on Actual Used Permissions Combination and API Calls”,
International Journal of Computer, Electrical, Automation, Control and
Information Engineering, vol. 10, no. 9, pp. 1486–1493, 2016.

[22] H. Zhong, T. Xie, L. Zhang, J. Pei and H. Mei, “MAPO: Mining and
Recommending API Usage Patterns,” in Genoa Proceedings of the 23rd
European Conference, Genoa, Italy, 2009, pp. 318–343.

ISSN: 1985-3157 Vol. 12 No. 2 July - December 2018

Multiple Android Package Files Extractor in Mining Request Permissions and Api Calls

23

[23] D. J. Wu, C. H. Mao, T. E. Wei, H. M. Lee and K. P. Wu, “DroidMat:
Android malware detection through manifest and API calls tracing,” in
7th Asia Joint Conference on Information Security, Tokyo, Japan, 2012, pp.
62–69.

[24] K. Iwamoto and K. Wasaki, “Malware classification based on extracted
API sequences using static analysis,” in Asian Internet Engineeering
Conference, Bangkok, Thailand, 2012 , pp. 31–38.

[25] M. Zhao, T. Zhang, J. Wang and Z. Yuan, “A smartphone malware
detection framework based on artificial immunology”, Journal of Networks,
vol. 8, no. 2, pp. 469–476, 2013.

[26] Y. Xiaohui, S. Yubo and C. Fei, “Android S Sensitive Data Leakage
Detection Based on Api Monitoring,” in Fifth International Conference
on Multimedia Information Networking and Security, Beijing, China,
2013, pp. 907–910.

[27] U. Pehlivan, N. Baltaci, C. Acarturk and N. Baykal, “The Analysis of Feature
Selection Methods and Classification Algorithms in Permission Based
Android Malware Detection,” in IEEE Symposium on Computational
Intelligence in Cyber Security, Florida, USA, 2014, pp. 1–8.

[28] V. Grampurohit and V. Kumar, “Category Based Malware Detection for
Android,” in Security in Computing and Communications, Delhi, India ,
2014, pp. 239–249.

[29] J. Jeon, K.K Micinski, J.A Vaughan, A. Fogel, N. Reddy, J.S Foster, T.
Millstein “Dr. Android and Mr. Hide: fine-grained permissions in android
applications,” in Second ACM workshop on Security and Privacy in
Smartphones and Mobile Devices, Raleigh, USA, 2012, pp. 3–14.

[30] D. Upadhyay, M. Munghate, S. Dharbey, and A. Bondre, “Detecting
Malicious Behavior of Android Applications”, International Journal of
Science Technology & Engineering, vol. 2, no. 10, pp. 663–668, 2016.

[31] P. Rovelli and Y. Vigfusson, “PMDS : Permission-based Malware
Detection System,” in 10th International Conference on Information
Systems Security, Hyderabad, India, 2014, pp. 338–357.

[32] J. H. Reif, “DFS is Inherently Sequential”, Information Processing Letter,
vol. 20, no. 5, pp. 229–234, 1985.

[33] D. E. Knuth, “Sorting and Searching: The Art of Computer Programming.
Reading, MA: Addison-Wesley Professional, 1998.

