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ABSTRACT 

This paper discusses an algorithm for optimizing the 

density and parallelism of microcoded routines in micro­

programmable machines. Besides presenting the algorithm 

itself, this research also analyzes the algorithm's uses, 

design integration problems, architectural requirements, 

and adaptability to conventional machine characteristics. 

Even though the paper proposes a hardware implementation 

of the algorithm, the algorithm is viewed as an integral 

part of the entire microcode generation and usage process, 

from initial high-level input into a software microcode 

compiler down to machine-level execution of the resultant 

microcode on the host machine. It is believed that, by 

removing much of the traditionally time-consuming and 

machine-dependent microcode optimization from the software 

portion of tills process, the algorithm can improve the 

overall process. 
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INTRODUCTION 

Since the advent of microprogrammable machines in 

recent years, a frenzy of research has occurred on develop­

ing good software compilers to generate user-designed micro­

programs, or microcode, for chosen target machines [1], 

[2]. The traditional argument against such compilers is 

that they will never be able to generate the completely 

compact microcode needed in a typical high-usage micropro­

gram. The traditionalists thus conclude that the tedious 

and complex task of microprogramming is best left solely 

to the hardware designers [3], [4], [5], [6]. On the other 

hand, many machine users have long desired a machine whose 

instruction repertoire they could tailor to their partic­

ular needs [5], [6]. These users argue that a microprogram 

compiler would drastically reduce microcode production time, 

thus making even medium-to-low-usage, less highly compact 

microprograms practical [4]. 

Two important characteristics usually sought by pro­

ponents of such compilers are (1) a powerful, high-level 

input language and (2) a high degree of target-machine 

independence for the user. Typical versions of such com­

pilers are structured in two basic phases conducive to 

these characteristics. The first phase is a complete com­

piler taking high-level input source into intermediate­

level text. The second phase is a simple, direct translator 
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chosen by the user to transform this intermediate text into 

actual microcode for his target machine [3], [7]. 

Although microprogram compilers such as those just men­

tioned have proved quite promising, one particularly annoy­

ing problem remains. This problem is the compactness, or 

degree of optimization, of the microcode output versus the 

required compilation time. To be feasible, even medium­

to-low-usage microprograms require a fair degree of optimi­

zation. Furthermore , such microprograms require short com­

pilation times to make them worthwhile producing. These 

two requirements are inherently conflicting, especially 

since microprograms and their formats are traditionally 

highly target-machine-dependent while the compiler attempt­

ing to optimize these microprograms is designed to be highly 

target-machine-independent. In other words, it is extremely 

difficult to efficiently optimize a machine-dependent process 

by means of a machine-independent mechanism [2], [7], [8]. 

One possible solution to this problem is to relieve 

the microprogram compiler of a large part of its optimiza­

tion chores. The author proposes moving many local optimi­

zation duties out of the compiler and across the software­

hardware boundary into the hardware realm of the target 

machine. The author's - hardware microcode optimizer, HMO, 

is a simple hardware algorithm capable of condensing a 

seque nce of essenti ally horizontal microinstructions to 

incre ase their bit d e nsity and parallelism. It is reason­

able to expect that a hardware implementation of such a 
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hardware-dependent process can be both fast and cost-effec­

tive [9]. Furthermore, by improving the efficiency of 

software microprogram compilers, the HMO algorithm can in­

crease the practicality of a truly user-microprogrammable 

computer system. 

It must be stressed that the overall microcode optimi­

zation process being proposed in this paper would consist 

of two basic levels, or phases. The first level, performed 

by the software microprogram compiler, would be the more 

complex, global, primarily machine-independent type of 

optimization procedures. The second level, performed by 

the HMO algorithm and associated hardware (after receiving 

the software compiler's generated microcode), would consist 

ideally of as much as possible of the less complex, local, 

highly machine-dependent type of optimization. 

At this point, the reader may wish to familiarize him­

self, at least superficially, with the contents and figures 

of Appendices A, B, C, and D. As he reads the remainder 

of the main body, he would thus be aware of where, in the 

appendices, he might refer for more detail. (For example, 

Figures A2 and A3 of Appendix A may be particularly useful 

in developing a mental picture of the microinstruction for­

mat and associated "inhibit" functions as the main body is 

read.) 
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I. DESCRIPTION OF BASIC HMO ALGORITHM 

Consider how the major internal hardware components 

of a computer are involved with the flow of data, or informa­

tion, throughout the machine. With respect to the HMO 

algorithm, the following classification of such components 

is useful: (1) a fixed source, or data constant (e.g., a 

pseudo-register which supplies a hardwired constant of 0 

or 1 to other components), (2) a data transformer (e.g., 

an adder, shifter, working register, main memory during a 

load-from-memory instruction, etc.), or (3) a data sink 

(e.g., main memory during a store-into-memory instruction). 

However, since the production of data constants is a fixed 

operation, with no inputs on which to perform a function, 

HMO need not be concerned with such constants. Their con­

trol is inherently covered in the control of the trans­

formers and sinks to which they supply inputs. 

Concerning the control of active, functional components, 

such as transformers and sinks, two major areas of interest 

are the supplying of inputs and the calling for outputs, 

with only the former area actually being needed for sinks. 

If we consider now a flexible microprogrammable architecture 

such as that shown in Fig. 1, these two areas become nothing 

more than particular groups of horizontal microinstruction 

bits controlling appropriate register transfers. One other 

area of interest for both transformers and sinks is timing, 

or the time interval required for them to complete their 
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respective functions. This timing requirement implies a 

certain needed minimal distance between some microinstruc­

tions, or microwords, in any microinstruction stream. 

Assume for now that the microcycle time of HMl in Fig. 1 

is such that this needed distance is only one microcycle. 

This means, for example, that it is acceptable for one 

microword to excite an adder "input supply" and the micro­

word immediately following to excite the corresponding 

adder "output call". 

Notice that the "latching" type architecture of HMl 

affords the microprogrammer virtually complete timewise 

independence of when inputs are supplied to a data trans­

former such as the adder. He may, in fact, "latch" in 

adder inputs during different microcycles. All he must 

do is make certain all desired inputs are fed at least one 

microcycle before he calls for the corresponding trans­

former output. Thus, the HMO algorithm can simply sequence 

through a stream of microinstructions, condensing (essen­

tially combining) all microinstructions containing "input 

supply" bits into one instruction, until it reaches the 

point where the next instruction contains an "output call" 

bit corresponding to the already condensed "input supplies". 

At this point, the algorithm must temporarily stop con­

densing, save (or execute) the newly formed condensed in­

struction, and then proceed to condense again starting with 

the next microinstruction in the stream. What all this 

means is that the HMO algorithm can produce, from a micro­

instruction stream which exercises HMl's hardware in a 
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purely serial fashion, a corresponding condensed stream 

which exercises HMl's hardware in a highly parallel fa s hion. 

Unlike data transformers, data sinks, which do not 

require noutput call" bits, make it difficult for the HMO 

algorithm to spot the point where condensing must temporarily 

stop. This problem can be solved by requiring that, follow­

ing the desired sink inputs , a succeeding microinstruction 

appear containing a "1" bit which actually excites, or 

causes, the sinking of these preceding inputs. By con­

trolling sinks in this manner, these sinks appear identical 

to data transformers as far as the HMO algorithm is con­

cerned. It always sees a series of "input supplies" followed 

at least one microcycle later by a microword containing 

a control bit which, for transformers, calls for passage 

of the transformed data to some other point and, for sinks, 

causes the actual sinking action to be performed. There­

fore, the HMO algorithm can now handle transformers and 

sinks with equal facility. The major hardware needed is 

a simple set of combinational logic "inhibit" functions 

which are driven both from the condensed instruction being 

formed and from the next instruction in the stream. At 

least one of these functions is activated when the next 

instruction contains an "output call" corresponding to 

"input supplies" in the condensed instruction. Further 

condensing is thus inhibited and the algorithm starts anew 

on the next instruction. 
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Note that Fig. 2 allows the option of either saving 

a condensed result for later use (pre-pass compilation) or 

executing this result immediately without saving it (inter­

pretive execution). Interpretive execution would be in­

efficient for all but extremely low-usage microprograms, 

as it would require repeated condensing of repeatedly exe­

cuted blocks of microcode. Therefore, all discussion that 

follows in the main body assumes that the HMO algorithm is 

being used as a pre-pass condensing compiler. 

Fig. 3 contains two examples illustrating the algorithm's 

use. Note that the second example illustrates how the author 

would ideally like to handle conditional branch microin­

structions. This ideal method would be essentially to 

allow the HMO algorithm to condense "past" conditional 

branches along one of the two available paths (hopefully, 

the "non-branch" path, or path expected to be taken most 

of the time). Then, later, the algorithm could be restarted 

separately along the yet untouched (hopefully "branch") path. 

Finally, Fig. 4 depicts one example of the "inhibit" 

functions which provide the logical signals to control the 

HMO algorithm. 



II. INTEGRATING THE ALGORITHM INTO THE MICROPROGRAMMABLE 

SYSTEM [10] 

While Section I presented a brief overview of the 

basic HMO algorithm, this section presents some intricate 

design problems incurred in evolving the algorithm into 

a well integrated system component. Since the algorithm 
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is actually the final phase of the overall microcode com­

pilation process, many of these problems involve considera­

tions of whether to allocate a particular function to the 

software compiler or to the hardware algorithm. However, 

as will be seen, other problems are not related to such 

an allocation and must be resolved on other bases. 

A. HANDLING CONDITIONAL BRANCH MICROINSTRUCTIONS 

As stated in Section I, the second example of Fig. 3 

depicts an extreme, idealistic scheme for handling con­

ditional branches, a scheme which allows, in one condensed 

result, condensing not only "up to and including" condi­

tional branches but "past" them as well, down a selected, 

"favored" path. The astute reader will notice that, in 

the condensed code, the two transfers "Ail+-PGC" and "AI2+- 0" 

will always be performed, whereas, in the uncondensed code, 

they would have been performed only if the "favored" path 

were taken. Obviously, in general, such a situation could 

result in erroneous results from the condensed code. 



This problem can be solved by (1) allowing room in 

the microinstruction format for not only the normal sec­

tion of control bits but also for a conditional section 

of control bits to be executed only if the "favored" path 

is taken or by (2) simply prohibiting condensing "past" 

conditional branches. Although present research results 

tend to favor solution (2), it must be pointed out that 
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the choice between these two solutions is virtually un­

related to the compiler versus algorithm allocation ques­

tion. Instead the choice here must be made primarily on 

the basis of the tradeoff between the complex microinstruc­

tion format (and related problems) of solution (1) and the 

slight microprogram condensability loss of solution (2). 

B. PARALLELING OF COMPLETELY INDEPENDENT TASKS 

Fig. 5 is an abstract example illustrating a possible 

condensing inefficiency. Note that although the groups of 

uncondensed code in examples (a) and (b) are equivalent, 

the condensed code in example (b) is more compact than 

that in example (a). This variance is a direct, but subtle, 

result of the HMO algorithm's simple condensing scheme 

presented in Section I. For example, the alert reader may 

wonder why, in example (a), the algorithm could not have 

looked at least two instructions ahead of "ACCUM+DATAl" 

to recognize that, even though "Ail+ACCUM" is inhibited 

(by an accumulator inhibit function) from condensing, "IN­

DEX+DATA2" could have been brought up past "Ail+ACCUM" and 
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condensed onto "ACCUM+-DATAl". Indeed, it appears that a 

scheme in which the algorithm, during any given condensing 

step, is allowed to look far ahead and propagate uninhibited 

instructions (or parts of instructions) up past inhibited 

instructions could produce the compact condensed code of 

example (b) directly from the uncondensed code of example 

(a). However, suffice it to say that research has demon­

strated many intricate problems (hardware complexity, 

difficulty of assuring condensed code equivalency and proper 

addressing) with such a scheme. 

Rather than resort to such a "messy" scheme, the soft­

ware compiler can instead be used to pretailor, when pos­

sible, the code it feeds to the HMO algorithm. The basic 

algorithm works more efficiently when its input (uncon­

densed) code is ordered so that completely independent 

tasks do not follow one another in completely serial fashion. 

Essentially, the code of Fig. 5 is intended to show two such 

independent tasks, a multistep transfer of DATAl to Ail 

and a mu l tistep transfer of DATA2 to AI2. In example (a) 

these tasks are arranged entirely sequentially while, in 

(b), they are overlapped in a slightly more parallel fashion , 

thus allowing the basic algorithm of Section I to produce 

a more compact result. Therefore, it should be the job 

of the software compiler to search for such completely in­

dependent tasks, or code groups, and reorder them as 

needed to ensure they are not left completely sequential. 

(Of possible use towards this goal could be techniques for 
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program segmentation and potential task parallelism detec­

t ion [ll] and allowable code motion [12].) Such paralleling 

of independent tasks is a relatively machine-independent, 

global process better suited to the software compiler than 

the hardware algorithm. 

C. REMOVING NONPRODUCTIVE TRANSFERS 

Fig. 6 is another abstract example illustrating a 

possible condensing problem. Note that the first two 

instructions in the uncondensed code both supply information 

to adder input Ail. In particular, because the second 

instruction "writes over" the information supplied to Ail 

during the first instruction without first using the cor­

responding added result (by passing adder output AOl some­

where, for example), the transfer to Ail in the first 

instruction is a "nonproductive" ("negated" [12]) transfer. 

The basic HMO algorithm of Section I would, in fact, 

attempt to condense the two transfers to Ail together. 

This condensing can be used beneficially to remove the "non­

productive" transfer as long as an appropriate condensing 

technique is used. This technique necessitates partition­

ing the control bits of each microword into the mutually 

exclusive, controlwise independent bit sets controlling 

each micro-operation (such as the input sets of each hard­

ware register). For example, the Ail input set consists 

of control bits 8, 9, and 10 (see Fig. 1). The technique 
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then consists of: (1), for non-zero bit sets in the upcoming 

word to be condensed, writing this non-zero set over the 

corresponding set in the accumulating condensed result and 

(2), for all-zero bit sets in the upcoming word to be con­

densed, leaving the corresponding set in the accumulating 

condensed result as is. If such a condensing technique is 

used (whenever the inhibit functions permit condensing) , 

the basic HMO algorithm can easily produce the condensed 

result shown on the right of Fig. 6 . Thus , "nonproductive" 

transfer removal can be handled adequately, at least on 

a local scale, by the hardware algorithm , without special 

help from the software compiler. 
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III. ARCHITECTURAL REQUIREMENTS [ 13 ] 

As expected, easy and efficient support of the HMO 

algorithm dictates certain architectural characteristics as 

desirable. This section presents a summary of the major 

characteristics so dictated. 

A. GENERAL CHARACTERISTICS 

The architecture of HHl must be such that all 

fundamental operations under microprogrammed control consist 

of two elementary steps which can be intuitively termed the 

"starting" and "finishing" steps. As implied in Section I, 

two such steps are found quite naturally for data transform­

ing units such as the adder. However, much time and care 

went into the rather unusual main memory controller shown 

in Fig. 1 so that even the data sinking operation of a 

"store into memory" consists of the needed two basic steps. 

The "latching" ·, or "register transfer" , type 

architecture indicated in Fig. 1 is useful for many reasons, 

some of which are (1) it readily supports the "two-step" 

structure mentioned above, (2) it gives the microprogrammer 

(and the software compiler) much freedom from hardware 

timing requirements (e.g., freedom to supply the three 

adder inputs of Fig. 1 in sequential fashion, in parallel 

fashion, etc.) and (3) it lends itself to pipelining slower 

microcontrolled functions to various degrees (a technique 
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which research indicates may be useful in the interest of 

machine speed) . 

B. MICROINSTRUCTION FORMATS 

As the control section format, a horizontal, unencoded 

control section having one bit per register transfer is 

ideal. This arrangement readily supports a neat, two-level 

realization of the algorithm's inhibit functions, allowing 

these functions to be driven directly from the control 

register (Fig. 2) and from the control memory output lines 

feeding · the control register. 

Concerning microinstruction addressing schemes, 

flexibility is the key requirement. Research has shown 

that employment of the algorithm in its simple, one-pass 

Section I form yields condensed instructions which are 

linked together but interspersed with remaining groups of 

"garbage" instructions. During run time, execution will 

proceed by "leap frog" style jumps which circumvent these 

garbage instructions. Thus, as a minimal base scheme 

(from which to build) , a scheme employing one complete 

"next address" in each microword (Fig. 2) is needed {as 

opposed to, say, the sole use of a separate microprogram 

counter, or pointer, register, a scheme better suited to 

mostly-sequential addressing) . 

As suggested in Section II, use of the ideal 

conditional branch condensing philosophy of Fig. 3 



15 

necessitates a quite complex microinstruction format. How­

ever, if one prohibits condensing "past" conditional branches 

many instruction formats between this extremely complex one 

and the required minimal one of Fig. 2 become possible. 

(This minimal format must, of course, be slightly augmented 

to allow production of, for conditional branches, a second 

"next address".) However, no matter what overall instruc­

tion format is chosen, present research indicates it is in 

all cases desirable, though not always necessary, to have 

the "branch" path address be completely independent of the 

"non-branch" path address. 

C. CONTROL MEMORY CHARACTERISTICS 

Although many types of control memory can be used, one 

arrangement well suited to supporting the HMO algorithm is 

to use the same memory type (and speed) for both main and 

(user) control memories. This arrangement, used in varying 

degrees on the IBM 360/Model 25 [14] and the Burroughs B 

1700 [15], helps to achieve realization of the Section I 

assumption that one control memory microcycle is sufficient 

to complete any elemental machine operation. 

Of the many possible methods which can be used to 

actually implement the HMO algorithm, a firmware implementa­

tion's flexibility is particularly attractive. A feasible 

firmware implementation can be realized by using two separate 

control memories (or, at least, two separate memory sections), 
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one containing the HMO algorithm plus other factory-fixed 

routines of no condensing interest to the algorithm and 

the other containing the user's microprograms. While 

condensing, the factory-fixed, restricted-access memory 

would be operating on the contents of the user-accessible 

memory. Again, this control memory arrangement employing 

both fairly-restricted and easily-accessible memories has 

been used in varying degrees on real production machines 

like the Burroughs B 1700 [15] and the Microdata 1600 

[ 16] . 



17 

IV. ADAPTATIONS FOR PERFORMANCE ENHANCEMENT [17] 

Up to this point, the simplifying Section I assumption 

that one microcycle is sufficient time for all elemental 

mach£ne operations has not been questioned. Obviously, 

such an assumption, if adhered to rigidly and inflexibly, 

could result in a control memory cycle too long to allow 

acceptable machine performance. 

This section presents some techniques which can help 

prevent such possible performance degradation. Basically, 

these techniques allow cycling of control memory at a rea­

sonable, chosen speed rather than restricting it to cycling 

at least as slowly as the slowest elemental operation under 

its control. While the techniques of the first two subsec­

tions are modi.fi.cati.ons of HMl's execution hardware, the 

technique of the last subsection is a modification of the 

basic HMO algorithm itself. 

A. USE OF PROGRAMMED WAIT LOOPS 

By incorporating "busy" (or "ready" for the complemen­

tary approach) signal indicators into those operations 

which are of longer duration than the contro l memory cycle, 

conditional branch microinstructions can be made to branch 

to an "increment-the-PGC-and- then-go-to-FETCH" routine. Thus, 

conditional machine instructions for such operations can be 

microprogrammed so as to simply skip the next machine 
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instruction whenever the desired operational facility is 

still "busy" from some previous use. 

For example, consider I/0 operations. With such 

ma chine instructions available, it is a simple matter to pro-

gram an I/O "transfer/idle" (or "wait") loop at the machine 

instruction level. (Note that, given a rich enough address-

ing scheme for conditional branch microinstructions, there 

is no real reason why such "wait" loops could not also be 

implemented at the microinstruction level.) 

B. INCORPORATION OF ESTABLISHED HARDWARE PERFORMANCE 

ENHANCEMENT TECHNIQUES 

If control memory is to be cycled at a rate too fast to 

allow one-cycle completion of some slower elemental opera-

tions, then several established hardware techniques can be 

employed to help avoid the implied timing hazards which could 

result during execution. For example, "request/reply" control 

interfacing can be used to ensure that control memory idles 

while awaiting the results of slower, previously initiated 

elemental microcontrolled operations. 

on the other hand, an adaptation of the Tomasulo algo­

rithm [18], [19] can be employed so that the microprocessor 

need not often be idled unproductively. Instead of idling, 

the microprocessor can pass appropriate "tags" to the in-

tended destinations of the yet unavailable results and simul-

• II 

taneously mark such destinations as "busy awaiting ~nformation. 
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When later available, the actual information itself would 

then be passed to all appropriately "tagged" units and the 

a ssociated "busy bits" turned off. This Tomasulo-type 

hardware can permit a rapidly cycled control memory to 

proceed executing even in the face of temporarily unavail­

able information, with the possible beneficial side effect 

of eliminating the use of temporary storage stations (also 

possible via a Tomasulo-type routine in the software com­

piler [12]) called for in the microcode being executed. 

While the other techniques of Section IV are essen­

tially means of compensating for (during execution) micro­

programs which were condensed under the "one-microcycle 

assumption" even in situations where this assumption is 

not completely valid, pipelining [19] can be a useful tech­

nique in increasing the validity and practicality of the 

"one-microcycle assumption". That is, rather than simply 

shortening the control memory cycle, pipelining can be 

used in conjunction with such shortening to simultaneously 

shorten the required time of slower microcontrolled opera­

tions. For example, by insisting that the AOl register of 

Fig. 1 be a real physical latching register (which has not 

been assumed thus far), the overall process of addition 

(from operand source registers to result destination regis­

ters) would then consist of three elemental stages instead 

of the present two stages. Thus, pipelining yields more, 

but shorter, elemental micro-operations for a given process, 

making the "one-microcycle assumption" easier to meet even 
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if the control memory cycle is shortened. (Note, however, 

that more micro-operations/process means not only more 

required microinstructions/process but also a wider control 

memory having more bits/microinstruction.) 

C. USE OF DIFFERENT "FIELDS OF VIEW" FOR DIFFERENT INHIBIT 

FUNCTI ONS 

Unlike the other techniques already presented, the 

following technique proposes dropping the "one-microcycle 

assumption 11 of the basic HMO algorithm and giving the algo­

rithm the capability to ensure different length "timing 

gaps" (in its output stream of condensed microcode) for 

different length elemental microcontrolled operations. By 

setting each inhibit function's "field of view" equal to the 

number of microcycles needed to complete the machine opera­

tion scrutinized by that inhibit function, appropriate 

"timing gaps" for all such operations can be produced (where 

"field of view" is the number of microinstructions an inhibit 

function can look ahead from the condensed result being formed 

in the condensing register). 

Specifically, by employing a first-in-first-out stack 

(through which microinstructions are sequenced up to the 

condensing register), inhibit functions could be driven both 

from the condensing register and from a particular stack 

position appropriate to the desired "field of view". For 

example, the second position in the stack would be used to 



21 

create a "field of view" of two for those operations re­

quiring two control memory cycles for completion. -
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CONCLUSION 

This paper has proposed a hardware algorithm which 

could enable a microprogramrnable machine to do its own 

local, machine-dependent optimization of user-written micro­

programs, leaving the global, machine-independent optimiza­

tion to an associated software compiler. In fact, one 

software microprogram compiler could efficiently serve a 

group of logically different, but architecturally similar, 

machines, each possessing an implementation of the HMO 

algorithm enabling it to do its own machine-dependent con­

densing and "cycle squeezing". Such a system should be 

the ideal environment for a software compiler which can 

efficiently serve several different machines but still pre­

sent the user with a maximum degree of machine independence 

as he writes a microprogram for a particular, chosen 

machine. 

Section I presented the algorithm in very basic form 

and described its optimization approach of transforming 

microinstruction streams exhibiting serial machine hardware 

utilization into equivalent condensed streams exhibiting 

highly parallel hardware utilization [20], an approach in 

which the algorithm may accept its input microcode in simple, 

even purely vertical, form and then produce as output an 

equivalent, more complex, horizontal stream of microcode 

[21]. Then, Section II discussed some of the subtle design 

details involved in evolving the algorithm into a true system 
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component that works well with other system components. 

Next, Section III presented some architectural characteris­

tics suitable to the algorithm's implementation. It is 

encouraging to note that these characteristics are not 

exotic ones. On the contrary, many are found on real pro­

duction machines, thus implying their cost effectiveness. 

Finally, Section IV discussed both possible modification of 

the basic algorithm and also incorporation of existing, 

established hardware algorithms and control techniques as 

useful means of ensuring an acceptable level of machine 

performance. 

Since the algorithm presented in this paper is new and 

untried, many practical questions still remain unanswered. 

For example, since the algorithm itself and the horizontally 

microcontrolled architecture of HMl were developed jointly 

to complement each other, the algorithm's usefulness in direct 

application to significantly different hardware layouts (such 

as a strictly vertically microprogrammable machine) is un­

certain at this time. Similarly, until the HMO algorithm 

and an associated software compiler are actually built and 

implemented so that the exact areas of software/hardware 

cooperation and separation in the overall microcode optimi­

zation process can be specifically determined, it would be 

extremely difficult, if not futile, to attempt to derive 

meaningful, precise numerical evaluation measures of the 

algorithm'· s efficiency or performance. Indeed, the lack of 

appropriate, precise evaluation measures to guide the design 
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of novel developments is more often the case than not [22 ]. 

As a result, the designer must often rely , at l east initially, 

on less precise, more subjective tradeoffs and decisions 

(such as those of Section II) to guide his work. 



PGC - Program Counter, IRA - Instruction Register 
Address Portion, 

MIR- Memory Input Register, 
MOR- Memory Output Register, 
etc. 
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ACCUM 1 AOl 

MEM. 
BANK 

ACCUM 

'] 

AI2 

5 . ... 
ACCUM 

8 

MAR 

14 15 
MOR 

6 

ADDER MIR 

16 

PGC 

* Write cntrl bit determines gating of either MBR or 
MIR here. 

** These can be real or pseudo registers. 

*** This adder cond' code = 1 iff AOl t 0 (cond' code = 
0 implies AOl = 0). The algorithm can treat this 
cond' code as an adder output. 

NOTE: The #'s indicate the microinstruction bit 
controlling a transfer. 

Fig. 1 Subset of HMl (Hypothetical Machine 1) 



Control Register Next Addr. 
Register 

Master (Control) Register, or MCR 
(Contains 1 Microword) 

Load Upcoming Microword 
into Master Register 

Condense Upcoming Control 
Section into Control 
Register 

Load (Write) Upcoming 
Next Address into 
Next Address Register 
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Save (or 
Execute) 
Contents of 
Master 
Register 

Fig. 2 Flow Chart of Basic HMO Algorithm 
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The following example illustrates condensing of an "add" 
with direct address that performs ACCUM+ACCUM + MEM(IRA); 

1: MAR+ IRA; to 2; 

2 : AI2+MOR; to 3; 

3 : Ail+ACCUM; to 4; 

4: CI+O; to 5; 

5: ACCUM+AOl; to FETCH; 

uncondensed microcode 

1: MAR+IRA; to 2; 

AI2+MOR; Ail+ACCUM; CI+O; 
to 5; 

5: ACCUM+AOl; to FETCH; 

condensed microcode 

NOTE: The label #'s shown above are symbolically repre­
sentative of control memory addresses and thus, in 
reality, could correspond to virtually any absolute 
physical address. 

The following example depicts how the author would ideally 
hope to handle conditional branch microwords. The example 
is a "mem. increment and skip next instr. if result is 0" 
instruction. Note that "EFF ADDR" means Effective Address. 

1: MAR+EFF ADDR; to 2; 

2 : AI2+MOR; to 3; 

3: Ail+O; to 4; 

4 : CI+l; to 5; 

5: MIR+AOl; to 6; 

6: WRITE CNTRL=l; to 7; 
I* Above implies 

"MEM+MIR" during 
data restore *I 

7: to(AOlZ) S,FETCH; 
I* No reg. xfers in 

above, only cond'l 
branch on cond' 
code AOlZ *I 

8: Ail+PGC; to 9; 

9: AI2+0; to 10; 

10: PGC+AOl; to FETCH; 

uncondensed microcode 

1: MAR+EFF ADDR; to 2; 

AI2+MOR; Ail+O; CI+l; to 5; 

5: MIR+AOl; to 6; 

WRITE CNTRL=l; Ail+PGC; 
AI2+0; to(AOlZ) lO,FETCH; 
I* In cond'l branches such 

as above, parenthesized 
quantity is a binary­
valued cond' code, or 
CC. If this CC=O, left 
next address (here "10") 
is used; if CC=l, right 
next address (here 
"FETCH") is used. *I 

10: PGC+AOl; to FETCH; 

condensed microcode 

Fig. 3 Some "Before & After" Examples 



Inhibit 
adder 

"Input Supplies" 

,__-----------~--------~ 
14 

2 
i=7 

Control Biti 
from condensed 
instr'n being 
formed in 
Master Reg. 
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"Output Calls" 

2 
Control Biti 
from next 

• upcoming 
microinstr'n 

i=2,4,15,16, 
AOlZ Bit 

<( "l:" implies Logical OR 
where " " 0 

1 ° 0 

1 AND . 1mp 1es Log1ca 

NOTE: Refer to Fig. 's 1 & 2 for explanation of "Master 
Reg.", various control bit #'s, etc. (In above, 
"AOlZ Bit" refers to the microinstruction bit which 
performs a cond'l branch based on value of AOlZ.) 

NOTE: "Inhibit" functions for other components in HMl 
are formed in a similar manner to the one shown 
above for the adder. 

Fig. 4 "Inhibit" Function Example 
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1: ACCUM+DATAl; to 2; 1: ACCUM+DATAl; to 2; 

2: All+ACCUM· to 3· rc_9p.,:_~2: Ail+ACCUM 1• INDEX+DATA2 1• 1 1 dense to 4; 
3: INDEX+DATA2; to 4; 

4: AI2+INDEX; to NEXT; 
/* NEXT is some 

"next address" 
of no interest 
here. */ 

uncondensed microcode 

4: AI2+INDEX; to NEXT; 

condensed microcode 
(a) 

1 : ACCUM+DAT Al ; to 2 ; ?-~~~~ e:> 1 : 

2: INDEX+DATA2; to 3;) 
ACCUM+DATAl; INDEX+DATA2; 
to 3; 

3: All+ACCUM · to 4 · r_9~-_.;> 3: 1 1 dense 

4: AI2+INDEX; to NEXT 

Ail+ACCUM; AI2+INDEX; 
to NEXT; 

uncondensed microcode condensed microcode 
(b) 

Fig. 5 Paralleling Independent Tasks 



1: Ail+ACCUM; to 2; 
/* Above is 

nonproductive 
transfer */ 

2: Ail+PGC; to 3; 

3: MAR+AOl; to NEXT; 
/* NEXT is some 

"next address" 
of no interest 
here. */ 

uncondensed microcode 

con-----;> 1: Ail+PGC · to 3 · dense 1 1 

3: MAR+AOl; to NEXT; 

condensed microcode 

Fig. 6 Nonproductive Transfer Removal 

3 0 
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Hypothetical Machine 1, or HMl, is a reasonably prac­

tical machine developed both to support the HMO algorithm 

and to facilitate comprehension of algorithmic working 

details, condensing examples, design considerations, etc. 

The version of HMl here presented is not claimed to be the 

ultimate version, but rather a basic, yet sufficiently de­

tailed, version usable as a base for initial design analyses. 

A. OVERALL DESCRIPTION 

HMl is a high-speed, general purpose, stored-program, 

machine-instruction-driven computer. HMl control is obtained 

via a horizontal, microprogrammable, writable control store. 

Control signals are supplied to HMl's working hardware 

(Fig. Al) from the MCR (Fig. A2), subsequently exciting 

synchronous transfers via a "major cycle" clock pulse train. 

The next microinstruction being addressed through the CMAD 

(control memory address decoder) is always placed in the MCR 

at the next "major cycle" clock time. Interleaved between 

this "major cycle" pulse train is a "minor cycle" pulse 

train used to "mark" the intermediate point of the overall 

main core memory read-write cycle. Specifically, 

"MBR+-MEM(MAR)" at "minor cycle" times while "MEM(MAR) +-either 

MBR or MIR (depending on WRITE CNTRL bit)" at "major cycle" 

times. 

In Fig. Al, the numbers indicate the MCR bit(s) con­

trolling a particular transfer or gating. If the indicated 
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function of MCR bits is "true", the indicated transfer or - -- --- -- --- -- -
gating occurs; otherwise, it does not. Generally, both the 

source and destination of all indicated transfers are 

obvious, the one exception being the combinational logic 

CMAD of Fig. A2. The CMAD does not "latch onto" the various 

gated addresses, but merely decodes them to select a partie-

ular microword. The resultant transfer of interest is the 

"major cycle" clocking of the selected microword into the 

MCR. 

To retain flexibility, the MOR, AOl, ESO, and SOl (Fig. 

Al) may be either real or pseudo registers, but they will 

always contain the outputs of their respective functional 

units (without special microprogrammed attention). All 

other registers shown are real, physical latches. The 

seven CC's (condition codes) shown in Fig. Al have the fol-

lowing definitions: AOlZ=l iff AOl~O, AOlN=l iff AOl <O, 

AOlOF=l iff AOl overflow exists, AOlCO=l iff carry out of 

AOl's most significant bit exists, ACCUMLSBZ=l iff ACCUM's 

least significant bit ~ 0, KBDRDY=l iff KBD (keyboard 

buffer) is ready with some input, PTRRDY=l iff PTR (printer 

buffer) is ready for some output. 

The shifter unit (Fig. Al) is capable of essentially 

shifting S!l one bit to the right or left according to the 

contents of the SCNTRL register. Additionally, to form the 

SOl output, the one-bit contents of ESI are shifted into 

the "leading" (depends on direction) bit position vacated 

by shifting Sil, and the one-bit ESO output is the bit that 
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would otherwise be "lost" by shifting Sil. This simple 

shifter arrangement can be microprogrammed to perform various 

types of shifts and circulates of one or more registers. 

B. MCR LAYOUT 

Fig. A2 illustrates the specific layout of the MCR, 

with the control bits basically grouped, for convenience, 

into register input sets. Generally, when the "all-zero 

state" exists in a given register set (e.g., bits 1,2,3 all 

zero for the MAR) , the corresponding register will remain 

unchanged at the next "major cycle" pulse. Similarly, if 

bits 45-52 are all zero, "normal" microword addressing will 

occur with the NAR contents being used unconditionally as 

the next address. Finally, if bit 18 is zero, the main 

memory will operate in the "read-then-rewrite what was read" 

mode. overall, these various types of "zero-state" control 

were chosen as the "most natural state of affairs" (e.g., 

for registers, no change). By using "all-zero states" for 

these "natural, inactive control modes", these inactive 

modes are readily distinguishable from (and subordinated 

with respect to) the corresponding "unnatural, active (non­

zero) control modes", thus making a wide range of logical 

condensing techniques (e.g., even logical ORing) usable by 

the HMO algorithm (as it condenses a microword onto the 

condensed result being formed). 
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C. "INHIBIT" FUNCTIONS 

Fig. A3 lists the "inhibit" functions which, singly or 

ORed together, can be used to control the HMO algorithm on 

HMl. Note that although these inhibits are generally used 

to ensure proper "one microcycle" timing gaps between func­

tional unit "input supplies" and "output calls", they are 

flexible enough to be used for special purposes, such as 

prohibiting condensing "past" conditional branches (last 

inhibit in Fig. A3). Further note that all inhibits in 

Fig. A3 (except the last one) are the boolean product of two 

boolean sum terms, the first term, consisting of possible 

functional process "starting" steps, being driven from the 

MCR (condensed result being formed) and the second term, 

consisting of possible corresponding functional process 

"finishing" steps, being driven from the control memory out­

put lines (next upcoming microinstruction). However, the 

last, special purpose, conditional branch inhibit of Fig. A3 

consists of only· one term driven solely from the MCR. Finally 

note that the inhibits treat the ACNTRL and SCNTRL modes as 

functional unit inputs, treat CC usages as functional unit 

outputs, and treat direct feedback data paths (e.g., bit 

20 path in Fig. Al) as both functional unit inputs and out-

puts. 
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D. CONTROL SECTION ENCODING 

The reader will note that, in general, the control 

register of Fig. A2 is arranged in an unencoded (or, at best, 

collection of "1-of-n" coded sets) format. This format is 

used because using coding, such as binary coding of register 

input sets, indiscriminately throughout bits 1-54, would 

complicate formation of the "output calls" term (second 

term) of the inhibit functions. In other words, encoding 

according to register input sets disguises this "output 

calls" information so that at least partial decoding is 

first required in order to drive the second term of the 

inhibits. For example, consider the "READ-FROM-MEMORY" in­

hibit of Fig. A3. Detection of bit 6 in the second term 

would require some decoding of the encoded ACCUM input set, 

not to mention bits 7 and 29 and similar bits for other 

inhibits. The implied complexity becomes evident when one 

realizes that this decoding (to drive such second terms) 

needs to be done off of the control memory output lines (or, 

for the fancy scheme of Section IV.C, off of many positions 

of a stack)! Note, however, that binary encoding~ be 

readily employed in situations where this encoding does not 

hinder driving the second term of ~ inhibit. Such encoding 

was thus used, for example, in bits 24-26 and bits 39-40 for 

the ACNTRL and SCNTRL registers respectively. Similarly, 

encoding could be used for registers such as the CI, which 

receives only hardwired constants not used as outputs from 

any other functional unit. 
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E. "NEXT ADDRESS" SELECTION 

Bits 45-54 (Fig. A2) control the selection of the next 

microword. When these bits are used as intended, only one 

bit of 45-52 should be "on" in a given microword. If one of 

the CC selection bits 45-51 is "on", bits 53-54 then allow 

(encoded) selection of one of four possible conditional 

branch modes (which involve picking between the NAR and one 

of two optional hardwired next addresses). Specifically, 

bit 54=0 activates "FETCH" while bit 54=1 activates "SKIP&­

FETCH" (microroutine which increments the PGC by 1 and then 

goes to "FETCH") as the optional NA (next address). Further­

more, bit 53=0 causes a "l" value of the selected CC to 

pick the optional NA (and a "0" CC value to pick the NAR) 

while bit 53=1 causes a "0" value of the selected CC to pick 

the optional NA (and a "1" CC value to pick the NAR). A 

study of the CMAD address gating functions shown in Fig. A2 

will verify the use of bits 45-54 as just described. 



42 

IRO - Instruction Register Op Code Portion, 
ESI - Extended Shifter Input, ESO - Extended Shifter Output, 
CMAD - Control Memory Address Decoder, 
etc. 
(See Fig. 1 for other .abbreviations.) 

AI2 

KBD 

MOR 

41 

INDEX ~OIRA l~ 
l~ PGC l~AOl INDEX 

AC CUM\ 210 1'1 
.,........____.""'"--__, 8 9 s 0 1 

'"J.L-....... ...L-&=-;1 

24 · 25· 26-ADD 
24·25·26-ADDAil 
24·25·26-ADDAI2 

24 · 25· 26-AND 
24·25·26-0R 

24· 25· 26-XOR 

Sil 

MIR AI2 ACCUM INDEX 

AOl IRA 

MAR Ail 

--------
KEYBOARD 
CONTROLLER 

ACCUM~ 27 ~ l KBD I 
KBDRDY4~~t _________ __ 

PRINTER 
CONTROLLER 

PTR 

Ail PTRRDY~~~-------

Fig. Al HMl Working Hardware 
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NOTE: Bits 1-54 constitute the Control Register (see Fig. 2). 

MAR MIR ~ ESI Sil ~ INDEX PGC IR 
8 8 
z z 
(.) u 

Ul 
~ 

Ail AI2 CI ACCUM PTR 

optional NA selection regular NA (Next Addr.) 

cond'l branch 
on indicated 
cond' code (CC) 

Q) 

NAR (Next Addr. Reg.) I 
/ 

NAR--_..._~(~L~1~)_+~5~~~ 

IRO--_...__...__..._~S~2~~-
Ul • 
::::1 Ul 

:> 
::c: 
(.) 

8 CMAD 
~ i·54· (53·CC·+53·CCi) 
II 

FETCH 1 : 

~ i·S4· (53·cc·+53·cc·) 
SKIP& 1 1 

:::: 
r-1 FETCH cO c 
0 

·r-1 
+> 
~ 
0 

where i=45,46,47, 
48,49,50, 
51 

Fig. A2 Microinstruction Format & Addressing 
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READ (LOAD)-FROM-MEMORY (L: 1-3,18). (L: 6-7 ,41,29) 

STORE-INTO-MEMORY (L: 1-5,17). (18) 

ADDER/ALU 
(L 7-14,19-23,24-26,42)• (L: 2,4,15-16,20,22,30,35,45-48) 

SHIFTER ESO (L: 35-38,39-40). (34) 

SHIFTER SOl (L: 32-38,39-40) • ( L 21,23,28,31,38) 

ACCUM ( L: 6 , 15 , 2 7-2 8 ) • ( L 5 , 8 , 3 6 , 4 4 , 4 9) 

INDEX ( L 2 9-31) • ( L: 11 , 17 , 3 7) 

IR ( 41) • ( L 3, 19,4 2-4 3, 52) 

P GC ( L: 16 , 4 3 ) • ( L: 1 , 9 ) 

KBD ( 2 7 ) • ( 5 0 ) 

PTR ( 4 4 ) • ( 51 ) 

COND'L BRANCH (& IRO BRANCH) ( L 4 5- 51 , 52 ) 

Fig. A3 HMl Inhibit Functions 
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APPENDIX B 

HMO ALGORITHM DETAIL 
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A. REQUIREMENTS 

It is essential that the HMO algorithm meet the follow­

ing four requirements: (1) the condensed output code must 

be equivalent to (yield same results as) the uncondensed 

input code, (2) the output code should be as condensed as 

possible, (3) the HMO hardware should be as simple as pos­

sible, and (4) the algorithm should perform as fast as pos­

sible. Obviously, requirement 1 is the highest priority 

requirement which, if not met, renders the algorithm com­

pletely useless. On the other hand, requirements 2, 3, 

and 4 cannot be rigidly ordered by priority because, as 

might be expected, they are interrelated by inevitable 

tradeoffs. 

B. USES 

Near the end of Section I, two basic uses for the HMO 

algorithm were mentioned, either interpretive execution (of 

each condensed result which is then discarded) or pre-pass 

compilation (of all condensed results which are saved to form 

an entire condensed microprogram). At that point, inter ­

pretive execution was ruled out on the basis that it would 

require (1) repeated condensing of repeatedly executed 

blocks of microcode . Other disadvantages associated with 

interpretive execut i on are (2) the long- time occupation of 

control memory space with uncondensed blocks of microcode 
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and (3) the difficulty of assuring any overall speed increase 

(control memory would have to be cycled fast enough so that 

each condensed result could be formulated by the time the 

associated microcontrolled hardware was ready for it). In­

d e ed, these disadvantages seem to make interpretive execution 

generally undesirable (with the possible exception of very 

low-usage microprograms). However, note that, unlike the 

static approach of pre-pass compilation, interpretive execu­

tion is a dynamic type of condensing. This dynamic property, 

as will be seen later, could be advantageous in helping to 

realize a more complex condensing approach for the algorithm. 

Since, in general, so many inherent disadvantages exist 

for interpretive execution, this research has concentrated 

primarily on the use of the HMO algorithm as a pre-pass con­

densing compiler. Thus, unless otherwise stated, the re­

mainder of this appendix can be assumed as concerned with 

the pre-pass compiler use. 

C. GENERAL CHARACTERISTICS AND ASSUMPTIONS 

To facilitate understanding of the various HMO pre-

pass compiler design considerations, the following general 

characteri.stics and assumptions should be kept in mind: ( 1) 

algorithm is "1-pass" (primarily for simplicity) , (2) overall 

optimization approach is a 2-level software-then-hardware 

approach, (3) uncondensed (partially condensed) microcode 

received from software compiler is "directly executable" or 
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"condensable-then-executable" from control memory, (4) 

algorithm transforms vertical code (serial hardware utiliza­

tion) into more horizontal code (parallel hardware utiliza­

tion), (5) algorithm proceeds, generally, under the "1-

microcycle assumption" (microcontrolled operations com­

pletable in one control memory cycle), (6) algorithm is 

intended for local optimization. 

D. RESULTANT PROPERTIES 

The above characteristics and assumptions lead to the 

definition of many properties for the pre-pass compiler use, 

two of which are the following: (1) "restoration at the 

top" and (2) "retention of temporary garbage". Property 

1 simply means that a condensed result is always restored (in 

control memory) at the position initially occupied by the 

top, or first, microinstruction of the original, uncondensed 

group of microinstructions (see first example of Fig. 3). 

This "restoration at the top" allows easiest formation of the 

"next address" portion of each condensed result (simply use, 

as implied in Fig. 2, the "next address" portion of the last 

instruction condensed onto the condensed result) and helps 

assure that the "temporary garbage" of property 2 is left 

intact. Property 2 simply means that all instructions be­

tween restored condensed results (such as instructions 3 

and 4 of the first example of Fig . 3), even though they 

appear to be useless garbage (by the time instruction 5 is 
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reached during the single condensing pass), must be retained 

in original form at least until the condensing pass is en­

tirely finished. Property 2 and property 1 together are 

necessary and sufficient conditions to ensure proper handling 

of "loop-backs". For example, it is obvious that instruction 

4 must be retained (property 2) in case it is "looped 

back to" from some later point in the uncondensed microcode. 

Furthermore, by insisting that the condensed result of instruc­

tions 2, 3, and 4 be restored in position 2 (property 1) 

rather than, say, position 4, it is certain that such a 

"loop-back" to 4 (during the condensing pass) will find 

instruction 4 isolated and in its original form (as the 

uncondensed code intended) rather than finding a condensed 

combination of instructions 2, 3, and 4 (not intended 

by uncondensed code) . The reader will notice that properties 

1 . and 2 are direct, but subtle, results mainly of the 

"1-pass" assumption. 

E. CONDENSING TECHNIQUE 

Concerning the actual condensing technique used to condense 

a microinstruction onto the condensed result being formed, 

Section II.C discussed a particular technique suitable for 

removing nonproductive transfers (Fig . 6). The reader may 

wonder why simply "ORing" the entire upcoming control portion 

onto the control register portion of the condensed result be­

ing formed was not suggested as a suitable condensing tech­

nique. Note that application of such a technique in Fig. 6 
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would have produced as the first condensed result an instruc­

tion containing not only "Ail+-PGC" but also "Ail+-ACCUM". 

Thus, the condensed code would not even be equivalent to the 

uncondensed code. To remedy this obviously unacceptable 

situation, "mutual exclusivity" inhibits could be added to 

the list of Fig. A3 to prohibit condensing whenever the up­

coming instruction and the condensed result being formed both 

contained input transfers to the same register. Thus, in 

Fig. 6, for example, an Ail input set "mutual exclusivity" 

inhibit would have been used to prevent instruction 2 

from condensing onto instruction 1, the result being that 

the condensed microcode would then be identical to the 

original uncondensed microcode. Obviously, then, the simple 

"ORing" condensing technique would not only necessitate more 

inhibit functions and associated hardware but also would pre ­

vent HMO removal of nonproductive transfers. 

Specifically, to employ the more powerful set-related 

condensing technique of Section II.C, the following bit sets 

(of bits 1-54 of Fig. A2) should be condensed according to 

the two-part rule of Section II.C: bits 1-3, bits 4-5, 17, 

bits 32 -3 4, bits 35-38, bits 39-40, bits 29-31, bits 16, 43, 

bit 41, bits 8-10, 19-21, bits 7, 11-12, 42, 22-23, bits 

13-14, bits 24-26, bits 6, 15, 27-28, bit 44 (all these 

groups constituting the various register input sets referred 

to in Section II.C), bit 18 (the write control set), and bits 

45 - 54 (the optional next address selection set) . 
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F. CONDENSING LIMITS 

The reader will recall from Sections II.A and III.B 

that one condensing limit of interest was whether or not 

to allow condensing "past" (as well as "up-to-and-including") 

conditional branch microinstructions. A more detailed dis­

cussion of the ramifications of this condensing limit 

appears in Subsection G of this appendix. 

Another condensing limit of interest concerns whether or 

not to allow the condensing of the beginning of factory­

supplied routines (such as "FETCH" and "SKIP&FETCH") onto 

the tail end of user routines (whenever the inhibit func­

tions would so allow). As will be seen later, use of appro­

priate control means (such as "condensed" bit markers) for 

determining the end point of the algorithm's condensing pass 

could make possible such condensings. 

G. SPECTRUM OF POSSIBLE MICROINSTRUCTION FORMATS 

The reader will recall from Section III.B that the 

microinstruction addressing flexibility necessary to accommo­

date "leap frog" style execution jumps (which circumvent 

groups of "garbage" instructions remaining from the HMO 

condensing pass) implies the need for at least one complete 

"next address" in each microinstruction [13] (Fig. 2, Fig. 

A2). Furthermore, to accommodate conditional choice of 

"next addresses" (for conditional branch microinstructions), 
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some means of producing at least one other "next address" 

must be incorporated. For example, the microinstruction 

addressing format of HMl (Fig. A2) allows a choice between 

the complete "next address" in the NAR and one of two 

optional hardwired "next addresses". This HMl format is, 

in fact, a marginally adequate one (as long as condensing 

"past" conditional branches is prohibited) representing the 

extreme simple end of the spectrum of possible formats. 

On the other hand, if one wishes to ideally allow, in 

one condensed result, condensing "up to and including and 

past" conditional branches (Section II.A) down one of the 

optional paths, then microinstruction formats representing 

the extreme complex end of this spectrum become mandatory. 

Specifically, the second example of Fig. 3 demonstrated that 

condensing "past" CB's (conditional branches) necessitated 

room in the microinstruction for two sets of con trol informa­

tion (essentially so that the collection of transfers to be 

executed could be "conditionally tuned" to the chosen path). 

Furthermore, condensing "past" CB's and down one of the 

paths results in the algorithm automatically updating the 

NA ("next address") originally pointing to the start of this 

particular path. Note, however, that the NA pointing to 

the start of the other path must remain unchanged. (For 

instance, in t he second example of Fig. 3, the NA value of 

" 8" originally in CB instruction 7 was updated to a value of 

"10" in the condensed result on the right while the other NA 

value of "FETCH" necessarily remained unchanged.) The con­

clusion resulting from this requirement is that the two 
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NA's available to a CB instruction must be completely in­

dependent (so that one NA may be changed without changing 

the other). Thus, one instruction format suitable to allow­

ing condensing "past" CB's (down one of the paths) is a 

format having essentially two complete control sections 

and two complete NA's in each microword. (Note, of course, 

that one does not need to duplicate the bit group of 45-54 of 

Fig. A2 in the second control section.) 

Fig. Bl illustrates the spectrum of possible micro­

instruction formats and the position of the two formats 

just discussed on this spectrum. One thing hinted at in 

Fig. Bl is the microprogramming flexibility provided by a 

CC inverting bit such as bit 53 of Fig. A2. For example, 

consider microprogramming the complex format of Fig. Bl. 

Even though two complete stored NA's are in each microword, 

a bit such as bit 53 allows the user to microprogram any 

problem so that, say, the left stored NA of a CB is always 

the one which points to the "non-branch", or most often used, 

path. (If such a bit were not used and a particular value 

of the selected CC always caused use of a particular one 

of the two available NA's, programming situations would 

a r ise in which sometimes the right NA, rather than always 

the left NA, would be pointing to the "non- branch" path.) 

Thus, if the left NA always points to the most often used 

path, it is an easy matter for the hardware algorithm to 

choose, and thereby "favor", this path as it attempts to 
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condense "past" a CB, leaving, generally, the other path to 

be covered later from its beginning. 

At this point, the reader may wonder why the complex 

format on the right of Fig. Bl was not proposed for HMl, since 

indeed this format appears to be the ultimate one in terms 

of microprogramming flexibility, compatibility with the 

ideal CB condensing approach, etc. The obvious answer is 

that this format, with its essentially "double-length" micro­

words, would be completely wasting one control section and 

one stored NA for all non-CB microinstructions. Since non-

CB instructions probably account for the majority of most 

microprograms, such blatantly inefficient bit usage of 

control memory is a ridiculously high price to pay for the 

advantages of this format. 

One obvious scheme, then, to consider at this point is 

a hybrid "single-length/double-length" scheme in which either 

two non-CB instructions or one CB instruction can be stored in 

each essentially double-length microword. Indeed, such a 

scheme at first seems feasible, the only obvious hardware 

requirement being a micromemory single-length/double-length 

read/write capability. The real problems stem from this 

scheme's incompatibility with the present simple, unrestricted 

form of the HMO algorithm. For example, using this scheme, 

whenever the algorithm restored a condensed, conditional, 

double-length result, it would generally be destroying one 

single-length temporary garbage instruction and possibly 

trying to restore this double-length result starting on an 
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"odd" boundary, or the midpoint of a double-length micro­

word [13] (an action not always permitted in single-length/ 

double-length addressing schemes, e.g. IBM 360/Model 50 main 

memory addressing [14]). Fig. B2 is a hypothetical, general 

example illustrating the problems just mentioned for this 

hybrid scheme. 

As might be anticipated, many other microinstruction 

formats are capable of bit-efficiently producing, for CB's, 

an extra set of control information and/or an extra, complete­

ly independent NA. For example, the basic format of one CS 

(control section) and one NA could be augmented to include 

multiple-use fields so that in cs•s a portion of what is 

normally, say, the CS (for non-CB"s) could be "borrowed" to 

create an extra NA (and/or possibly a partial extra CS). 

However, such a "borrowing" of bits from some other essential 

microword section would result in (1) some loss of, in CB's, 

the potential informational content of that section and, 

therefore, (2) generally some loss (due to a needed, added 

"field availability" inhibit function) of CB .. upward" 

condensability (up onto preceding instructions). As a second 

example, consider a scheme in which an 11 0ptional branch 

register" would always be microinstruction-prel·oaded with 

an optional NA so that a CB, when later reached, could 

choose between its stored NA and the "optional branch 

register" contents. Although workable, such a preloading 

scheme would result in potential CB "upward,. condensability 

loss due to the need to ensure appropriate distance (via an 
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added inhibit) between the preloading instruction and the 

corresponding CB itself. (Further note that, if, in the 

interest of bit efficiency, the preloading instruction ob­

tained the optional NA from a self-contained, multiple-use, 

"borrowed" field, then this preloading instruction would 

itself suffer problems (1) and {2) mentioned above for a 

CB employing "borrowed" fields.) The problems incurred, 

then, in these two example schemes, highlight the general 

desirability of having the sources of a CB's extra informa­

tion (extra CS and extra NA) be self-sufficient, with no 

need to infringe upon other essential informational fields 

or to depend upon preceding microinstructions. 

Not surprisingly, prohibiting condensing "past" CB's 

makes workable many other members of that myriad of micro­

instruction format schemes implied in Fig. Bl. Indeed, with 

the elimination of the need for an extra CS and the elimina­

tion of the requirement that the two NA's available to a CB 

be completely independent, the workability of many more in­

struction schemes is to be expected. For example, IBM's 

branch set concept [3], [23] could be used to augment the 

basic "one CS and one stored NA" format, allowing formation 

of, for CB's, a sequential set of interdependent NA's by 

cc "injection" into the lower-order bit(s) of the stored 

NA. However, although allowable when condensing "past" CB's 

is prohibited, such interdependence of CB NA's is still 

deemed undesirable. In the interest of user-program load­

ing flexibility (needed in the face of a control memory 
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conceivably filled with a combination of interlinked con­

densed instructions and an erratically interspersed residue 

of garbage instructions), employing completely independent 

CB NA's avoids the potential difficulty of finding two 

properly (e.g., sequentially) spaced available (garbage­

filled) microwords in which to place the two target instruc­

tions of a CB. 

Obviously, all the possible microinstruction formats 

implied by Fig. Bl cannot be discussed in detail in this 

subsection. However, it should be evident by this point that 

selection of the "best" format scheme would be a formidable 

task, involving the complex, but inevitable, tradeoff areas 

of microprogramming flexibility, complexity of microinstruc­

tion handling hardware, efficiency of control memory bit 

usage, and compatibility with the HMO algorithm in its present, 

simple, unrestricted form. Although the simple instruction 

format represented by the left end of the spectrum of Fig. 

Bl is by no means considered the ultimate format, it was 

chosen for HMl because it is simple yet .more than adequate 

as an initial design base. 

H. CONDENSING APPROACH 

As implied in Fig. 2, the present simple form of __ the HMO 

algorithm allows the next upcoming microword to condense onto 

the condensed result being formed only if the entire upcoming 

cs is condensable (no inhibits active). In other words, 
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this approach might be described as the condense "by-whole­

word-only" (specifically, "by-whole-CS-only") approach, 

an approach in which uninhibited control bits are automati­

cally prohibited from condensing by any other currently 

inhibited control bits. Section II.B and Fig. 5 illustrated 

a possible condensing inefficiency resulting from this 

simple "by-whole-word-only" condensing approach. Section 

II.B further ruled out a more sophisticated hardware con­

densing approach on the basis of several associated, in­

tricate problems. 

Specifically, this sophisticated approach would have 

cycled instructions (to be examined for condensability) up 

through a multilevel first-in-first-out stack in which in­

dividual bit columns were basically independently mobile so 

that individual columns could be moved upward (until in­

dividually inhibited) even though other columns were currently 

inhibited. Thus, in the example of Fig. S(a), assuming that 

instruction 1 is already in the condensing register and 

that instructions 2, 3, and 4 are in the top three rows 

of the stack being scrutinized for condensability, the 

algorithm could look past row 1 (where the column contain-

ing "All+-ACCUM" is currently inhibited by the accumulator 

inhibit) to row 2 to recognize that the independently mobile 

column containing "INDEX+DATA2" is presently uninhibited and, 

in fact, capable of being moved upward so that "INDEX+DATA2" 

enters the condensing register along side of "ACCUM+DATAl". 

Fig. B3 il l us t rates the condensing obtainable with this 

"b¥-individual- bit- column" approach. 
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However, the potential problems associated with this 

more sophisticated approach are many. First, concerning 

hardware complexity, not only is the column-mobile stack re­

quired, but to ensure all columns are inhibitable from all 

stack levels, multiple copies of the inhibits of Fig. A3 

are needed, essentially one copy of each inhibit for each 

level. Furthermore, the simple inhibits of Fig. A3 would 

have to be made individually more complex to prevent prob­

lems such as the one illustrated in Fig. B4. (In Fig. _B4, 

the simple adder inhibit of Fig. A3 did not prevent instruc­

tion 3 from moving up past inhibited instruction 2 into 

the time frame of the previous addition, and thus changing 

the results of that addition. Note, however, that with the 

"by- whole-word-only" ~cheme of Fig. 2, the inhibiting, via 

Fig. A3's adder inhibit, of instruction 2 from condensing 

up onto instruction 1 would have temporarily inhibited all 

instructions following instruction 2.) Second, a potential 

difficulty in assuring condensed code equivalency can be 

demonstrated. If, in Fig. B3, a later "loop-back" occurred 

to instruction 2 (now condensed as shown on the right) , 

this "loop-back" would no longer subsequently incur the "IN­

DEX+DATA2" transfer of instruction 3 as it would have in 

the original, uncondensed code . (Obviously, potential 

"loop-back" equivalency problems also exist for the uncon­

densed code reordering , or pretailoring, employed in Fig. 

S(b) . However, if, as suggested in Section II.B, the soft­

ware compiler is used for this pretailoring, the multiple 
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passes assumed available should make possible the detection, 

and thus prevention,of such potential equivalency problems. 

This is not the case for the HMO algorithm, whose 1-pass 

simplicity renders impossible the predetection of such 

potential loop-back unequivalency problems.) Third, the 

difficulty of determining the NA to be placed in each con­

densed result is increased. Note that if, in Fig. B3, the 

NA from the instruction most recently condensed were used as 

the NA of the condensed result (as implied in Fig. 2), the NA 

found in condensed instruction 1 on the right would in­

correctly be a value of "4". Thus, the "by-individual-bit­

column" condensing approach demands a more complex NA determi­

nation scheme for condensed results. As can be seen, these 

nagging problems associated with the sophisticated "by­

individual-bit-column" scheme make this scheme generally 

unsuitable for use by a hopefully simple, straightforward, 

1-pass hardware algorithm such as HMO. 

Two notes are of interest concerning this more complex 

"by-individual-bit-column" condensing approach. First, 

this approach (with all its problems) is not to be confused 

with the scheme of Section IV.C which, although also using a 

"far-look-ahead" stack, is still a "by-whole-word-only" 

approach (modified to allow adjustment of an inhibit func­

tion ' s "field of view"). Second, the dynamic property of the 

interpretive execution use of the algorithm (see Subsection 

B o f this appendix) could be of use in helping to alleviate 

the second and third problems just cited for this more 
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sophisticated condensing approach. Since interpretive execu­

tion does not alter the microcode in control memory, a later 

return, via some different flow path, to an already passed 

over block of code (such as a "loop-back") would present no 

special problem, as the interpreter would then simply flow 

through the still intact original code in a new manner, 

dynamically collecting an appropriate condensed result. 

Thus, no potential condensed code equivalency problems are 

introduced. Furthermore, since interpretive execution does 

not restore condensed results, but instead immediately executes 

such results and then discards them, there is no need to worry 

about even determining a suitable NA to be restored in each 

condensed result. The interpretive executer would simply 

collect a condensed control section result off the top of the 

stack (which would be kept full, as required, by insertion of 

upcoming microinstructions at the stack bottom), execute it, 

and then begin formulating the next condensed result. 

I. MORE DETAIL ON PRE-PASS CONDENSING COMPILER USE 

Fig. BS shows more of the detail needed for using the 

HMO algorithm as a pre-pass condensing compiler. The RAR, or 

restoration address register, is simply some register in which 

to hold the address pointing to the control memory position 

(the "top" position of the original uncondensed code group) 

where the condensed result will be restored. The use of the 

"condensed" marker bit is, as the name implies, a means of 
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marking restored condensed results as the algorithm proceeds 

through its one a nd only condensing pass. By using these 

marker bits to later distinguish between condensed results 

and yet unchanged code (e.g., "temporary garbage"), the 

algorithm can spot the point at which to stop its pass rather 

than, say, getting futilely entrapped in a "loop-back" situa­

tion where it might endlessly be reexamining already con ­

densed code. In fact, assuming the factory-supplied-and­

condensed routines (such as "FETCH" and "SKIP&FETCH" of Fig. 

A2) were appropriately marked as "condensed" with these 

marker bits, the algorithm could attempt to condense the 

beginnings of such factory-supplied routines, when possible, 

onto the tail end of user routines (but only to the point 

where proceeding further would mean nothing but wastefully 

recycling over nothing but interlinked, already-condensed 

results). Finally, note that in the "DONE" block of Fig. 

BS the possibility of having to go back and cover yet un­

touched code paths is implied. This possibility results 

directly from the algorithm choosing, for CB's, one path 

to work on immediately, thus leaving the other path for later 

attention. Such a residue of paths yet to be covered would 

exist, generally, for most microinstruction formats, with 

the exception of formats like that of HMl (leftmost format 

of Fig. Bl). With such a format, assuming the algorithm 

always chooses the CB's stored NA as the path to work on 

i mmediately, the remaining temporarily untouched NA would 

always point to the beginning of some already condensed, 
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factory-supplied routine which exits from the user-written 

microcode. Obviously, there i s no need to send the algorithm 

back to attempt condensing at the beginning of already con­

densed exit routines, as such attempts would never find any 

condensability. 

J. SOME IMPLEMENTATION CONSIDERATIONS 

It should now be evident that the considerations in­

volved in integrating a new component, such as the HMO algo­

rithm, into a system so that this new component works well 

and smoothly with other system components (e.g., the software 

microprogram compiler, the other hardware of the host machine, 

etc.) are many and complex. Since this research is merely 

the first phase of an overall systems design approach (that 

would eventually lead to a detailed, physical, microprogram­

mable system incorporating an HMO algorithm implementation) , 

it has concentrated primarily on HMO algorithm support con­

siderations aimed at developing a system environment suitable 

for supporting the algorithm (e.g., the algorithm/software 

compiler cooperation and separation areas of Section II, the 

microinstruction format tradeoffs of Subsection G of this 

appendix, etc . ). Indeed, such support considerations are 

the most important first step (as opposed to rushing blindly 

into a physical algorithm implementation) if the eventual 

system is to be a smoothly working system (rather than an ad 

hoc collection of hastily conceived, uncooperative parts). 

However, the remainder of this subsection will present, in 



64 

extreme brevity, some of the actual algorithm implementation 

considerations deemed relevant at this initial design stage. 

One consideration is the type of implementation. For 

example, although a conventional hardware implementation is 

certainly possible, a firmware implementation is deemed 

desirable due to its flexibility (for design changes) and 

its correctability (for design mistakes) . 

Another consideration of interest is how to initiate 

the algorithm. For example, the algorithm could be initiated 

under strictly user control via machine instruction (by use 

of a special combination of addressing mode bits available 

with all operation codes, by use of a separate, unique op 

code solely for condensing, etc.). However, one quite 

logical method would be to have the system's microprogram 

loader itself initiate, if so directed, the algorithm on a 

microprogram immediately following the microprogram load. 

(It must be noted at this point that many techniques employed 

by the algorithm were chosen, at least in part, because of 

the flexibility they allowed in the overall picture. For 

example, rather than insist that some sort of "clean up" 

routine always follow the algorithm to clean up any residue 

of "temporary garbage", which is automatically circumvented 

by the interlinked condensed results anyway, the "condensed" 

marker bits of Fig. BS could be f~rther used to help the 

microprogram loader spot, by the "off" condition of this 

bit, leftover "garbage" positions which can thus be filled 

with uncondensed instructions of a new user program. This 
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loader as, for example, following the loading of one yet un­

condensed, and thus yet unmarked, user program with the 

inunediate loading of another could cause the first program 

to incorrectly appear as unmarked "garbage" to the second 

program. On the contrary, the point here is that it is 

extremely important, in the initial phase of a design project, 

to try to make decisions and choose techniques in such a way 

that other system components are constrained or complicated 

as little as possible. With HMO, for example, these marker 

bits, in addition to their use in determining when the algo­

rithm is done, could be useful in helping prevent the re­

strictive complication that a "garbage clean up" pass be 

performed either by the algorithm or by some other system 

component, such as the microprogram loader.) 

Another consideration of interest, assuming a firmware 

implementation is chosen, is how to allot available control 

memory. For example, rather than have one WCS (writable con­

trol store) contain everything, the author's present in­

clination is to suggest both a WCS (containing at least all 

user microprograms and other routines of pertinence to the 

HMO algorithm as it condenses , such as "FETCH" and "SKIP& ­

FETCH" of Fig. A2, non - user routines which the algorithm may 

be trying to partially condense onto the tail end of user 

routines) and a separate ROM (containing at least the HMO 

algorithm itself and other routines with which the algorithm 
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will cooperate, such as the microprogram loader). Such 

placement of the algorithm in a separate, essentially dedica­

ted ROM not only removes the need to use the more expensive 

WCS for everything but also allows the algorithm to be 

viewed more or less as an extra process simply tacked onto 

the normal host hardware of HMl. Fig. B6 is a crude illustra­

tion of this suggested control memory structure. 



Format Description 
(of 1 microword) 

Total # of NA's 
available to a CB 

Achieves complete 
independence of 
2 CB NA's 

Accommodates 
condensing 
past CB's 

less complex 

1 Cntrl Sect'n, 
1 Stored NA + 
Fixed Option(s) 

2n + # of 
fixed options * 

Yes 

No (not w/o an 
added 2nd 
cntrl sect'n) 

If condensing "past" Yes, thanks to 
CB's used,allows easy flexibility pro­
algorithmic choice of vided by bit # 53 
"non-branch" ** paths of Fig. A2 

No matter which CB 
path is chosen for 
immediate condensing 
use, would generally 
need list of yet un­
used paths for later 
condensing coverage 

No,assuming stored 
NA's covered imme­
diately, remaining 
fixed options 
always point to 
factory-supplied, 
condensed routines 
which exit from 
user microprogram 

No (assuming small 
# of fixed options 
pointing to fac­
tory-supplied rou­
tines), some prob-

6 7 

more complex --more flexible 
microprogramming­

wise 

Myriad 
·····Of······· 
Other 
Schemes 

2 Full Cntrl 
Sect'ns, 

2 Full 
Stored NA' s 

Yes 

Yes 

Yes, if bit 
like # 53 
of Fig. A2 
employed 

Yes 

Yes Allows flexible 
enough CB's to 
directly micro­
program any problem 
within host 
machine's 
capabilities 

1 ems ( e . g . , I I 0 · · · · · · · .... · 
"wait" loops) nec­
essarily relegated 
to machine instr'n 
level (software) 

* "n" is # of bits/stored NA. 
** See 2nd-to-last paragraph of Section I. 

Fig. Bl Spectrum of Possible Microinstruction Formats 
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1""-
1 "even" 

I".. 
"odd" 

I boundary boundary 

I 
I 
12: 

(CS) 

(CS) 

{NA) 1: 

3: 

(CS) to 2; (NA) 

(CS) to 4 i (NA) 

14 (CB) : (CSl) 

to 3; (NA) 

to 5; (NAl) (CS2) to ? ; (NA2) 
/* "?" points to "branch" 

path. */ I 
I 
15: 
I 
I 
I 
I 

{CS) to 6; (NA) 6: (CS) to NEXT; (NA) 
/* NEXT is some "next 

address" of no interest 
here. */ 

NOTE: Above microcode is shown in uncondensed form; 
assume instr'ns 1-6 found condensable. 

NOTE: CS - Control Section, NA - Next Address, 
CB - Conditional Branch 

NOTE: The double-length condensed result would be 
restored "at the top" in positions 1 & 2, thus 
destroying "temporary garbage" instruction 2. 

Fig. B2 Pot~ntial Problems with Hybrid 
Single-Length/Double-Length Format 



1: ACCUM+DATAl; to 2; 

2: Ail+ACCUM; to 3; 

3: INDEX+DATA2; to 4; 

4: AI2+INDEX; to NEXT; 
I* NEXT is some 

"next address" 
of no interest 
here. *I 

uncondensed microcode 
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1: ACCUM+DATAl; INDEX+DATA2; 
to 2; 
I* Above formed from 

instr'ns 1 & 3. *I 

2: Ail+ACCUM; AI2+INDEX; 
to NEXT; 
I* Above formed from 

instr'ns 2 & 4. *I 

3: I* "Temp' garb'," same as 
on left *I 

4: I* "Temp' garb'," same as 
on left *I 

condensed microcode (via 
"by-individual-bit-column" 
approach) 

Fig. B3 Use of "By-Individual-Bit-Column" Approach 



1: Ail+DATAl; AI2+DATA2; 
CI+O; to 2; 

2: ACCUM+AOl; to 3; 

3: AI2+DATA3; to NEXT; 
/* NEXT is some 

"next address" of 
no interest here. 
*I 

uncondensed microcode 
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1: Ail+DATAl; AI2+DATA3; 
CI+O; to 2; 
I* Note that "AI2+DATA3" 

(instr'n 3 of uncon­
densed code) has been 
moved up into the time 
frame of this addition, 
thus changing the added 
result transferred by 
the following instruc­
tion. */ 

2: ACCUM+AOl; to NEXT; 
I* Above instr 'n no long­

er produces results 
equivalent to uncon­
densed code. */ 

3: I* "Temp' garb'," same as 
on left */ 

condensed, unequivalent 
microcode (via "by-individ­
ual-bit-column" approach) 

Fig. B4 Potential Problem with 
"By-Individual-Bit-Column" Approach 



Master 
Register 

DONE (at 
least with 
this 

Save Starting 
Address in RAR 

Load Upcoming Micro­
word into Master 
Register 

Yes 

Condense (via Section 
II.C technique) Upcom­
ing CS into Control 
Register 
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Restore Con­
tents of Master 
Register 

Turn On "Con­
densed" Marker 
Bit in Master 
Register 

NOTE: See Fig. 's 2 & A2 for explanation of "Master 
Register," "Control Register," and "NAR". 

NOTE: CS - Control Section, NA - Next Address, 
RAR - Restoration Address Register (any 
suitable register) 

Fig. BS Flow Chart of HMO Algorithm as 
a Pre-Pass Condensing Compiler 



Separate ROM Main WCS 

* Probably need another optional CB NA (besides FETCH 
and SKIP&FETCH) to implement reasonably efficient 
interrupts on HMl 

Fig. B6 One Possible Control Memory Layout 
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APPENDIX C 

AREAS OF CONCENTRATION FOR FURTHER RESEARCH 
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This appendix lists areas deemed appropriate for con­

centrated research in future phases of the overall design 

of HMO, a hopefully well conceived, orderly, "total-system" 

design eventually leading to actual physical fruition of 

a microprogrammable system with HMO algorithm. As this 

research on hardware microcode optimization has proceeded 

through its first phase (laying an HMO-suitable, environ­

mental, supporting foundation of algorithm properties and 

techniques, compatible machine characteristics, etc.), the 

areas mentioned in the remainder of this appendix have 

naturally evolved as areas worthy of attention in any further 

research. 

First, a concentrated investigation of microinstruction 

formats compatible with the ideal approach of condensing 

"past" CB's (conditional branches) should be pe rformed, the 

aim being to develop the "ultimate" format which is as 

flexible · and powerful as the "strictly double-length" format 

(see extreme right end of Fig. Bl's spectrum) yet free of 

its glaring bit inefficiencies. 

Second, as opposed to using the algorithm strictly 

for either interpretive execution or pre - pass compilation, 

a hybrid "interpretively execute/compile only as needed" 

use should also be analyzed. Since, for CB ' s, this hybrid 

use would compile along the CB path actually being used 

during execution (going back to cover the other CB path 

only when and if it is later used), there would never be 

any need, no matter what the microinstruction format, for 
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an accumulated list of paths yet to be covered (as there 

would be, with some formats, for strictly pre-pass compila­

tion) • 

Third, a skeleton software microprogram compiler should 

be developed at least to a point permitting simulation of 

the overall microcode generation process (including both 

software compiler and hardware algorithm), such simulation 

hopefully enabling, via various simulation-derived measures, 

enlightened design decisions. 

Fourth, the exact areas of "software compiler/hardware 

algorithm" cooperation and separation should be further 

investigated and crystallized, the flexibility of simulation 

here allowing investigatory variation of where and how a 

particular optimization chore is handled, whether primarily 

by software or by hardware or by a combination of both. 

Fifth, some variations of the basic algorithm should 

be examined. For example, rather than allowing the algorithm 

to choose (blindly in its one pass) the starting instruction 

of each successive condensed result as being the first instruc­

tion inhibited from condensing onto the preceding condensed 

result, these condensing- step starting points could be 

adjusted (possibly by appropriate instruction markers planted 

during a software compiler pass preceding the hardware 

algorithm) in the hope of assuring an overall maximally 

condensed program. 



APPENDIX D 

MISCELLANEOUS EXAMPLES 
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1: MAR+ADDRl; READ FF+O; 
WRITE FF+l; CI+O; to 2; 
I* Set up main mem' con­

trol for an upcoming 
"store into 
MEM(ADDRl); "finish 
supplying adder 
inputs. */ 

2: MBR+AOl; to 3; 
I* During next 

microcycle 
following above 
xfer, 
"MEM(ADDRl)~AOl." 

*I 
3: MAR+ADDR2; to NEXT; 

I* Begin setting up 
main mem' con­
trol to work on 
another address. 
(NEXT is some 
"next address" 
of no interest 
here.) *I 

uncondensed microcode 

77 

1: MAR+ADDRl,; READ FF+O; 
WRITE FF+l; CI+O; to 2; 

MBR+AOl; MAR+ADDR2; 
to NEXT; 
I* Here, however, follow­

ing microcycle will 
result in 
"MEM(ADDR2)+A01." Ob­
viously, results here 
no longer equivalent 
to those on left. The 
lack of an obvious 
"finishing" step left 
algorithm unaware 
(even with the MAR and 

MBR input "mutual ex­
clusivity" inhibits in 
original scheme) that 
instr'n 3 should not 
be condensed onto 
instr'n 2 (into the 
time frame of the pre­
vious store-into­
memory process). *I 

condensed, unequivalent 
microcode 

NOTE: This original scheme [13] used the MBR itself (no 
MIR existed) to accept data to be stored. In fact, 
a "store-into-memory" process really had only one 
step (consisting of supplying the storage address, 
storage data, and appropriate storage control in­
formation), the actual memory store being handled 
invisibly by the memory controller during the fol­
lowing microcycle. Thus, although the elements of 
this one step could be spread out over several 
microinstructions, no succeeding instruction was 
required to contain some sort of "finishing" step, 
as with the "WRITE CNTRL" bit of the present main 
memory scheme. 

Fig. Dl Problem with Original, One-Step, 
"Store-Into-Main-Memory" Scheme 



1: MAR+EFF ADDR· to 2)~1}_--~1: ' dense 

2: MIR+INDEX; to 3; 

MAR+EFF ADDR; 
MIR+INDEX; to 3; 
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3: ACCUM+MOR; to 4; 
/* "ACCUM+MEM(EFF 

ADDR) II */ 

ACCUM+MOR; WRITE CNTRL=l; 
to NEXT; 
/* "ACCUM+MEM(EFF ADDR)" & 

"MEM (EFF ADDR) +IND.EX" 
*I 

4: WRITE CNTR=l; to 
NEXT; 
I* "MEM(EFF ADDR) 

+INDEX" (NEXT 
is some "next 
address" of no 
interest here.) 
*I 

uncondensed microcode condensed microcode 

NOTE: The present memory controller (with both MBR and 
MIR) allows both a main memory read (load) and 
write (store) to occur in the same instruction 
(when possible, as in instruction 3 of above 
condensed code). (Specifically, when the con­
densed code is executing, the "MCR+instr'n 3" 
via a major cycle pulse, "MBR(or MOR)+MEM(MAR)" 
at next minor cycle pulse, and "MEM(MAR)+MIR" 
at next major cycle pulse.) However, if instruc­
tions 3 & 4 of the uncondensed code had appeared 
in reverse order, the "read-from-memory" inhibit 
of Fig. A3 would correctly have inhibited their 
condensing together. This inhibiting would be 
necessary since the write (store), then occurring 
first rather than last as above, would directly 
affect the results of the following read (load). 

Fig. D2 A Peculiarity of the Present Memory Controller 



1: Ail+ACCUM; to 2; 

2: Ail+ACCUM; 
ACCUM+MOR; to 3; 
/* Since instr'n 1 

above did not 
alter the ac­
cumulator's con­
tents, the 11 AI1+ 
ACCUM 11 xfer of 
instr'n 2 above 
is "redundant .. 
in that it ac­
complishes noth~ 
ing not already 
accomplished by 
this same xfer 
in instr'n 1. 
However, since 
instr'n 2 is not 
inhibited by 
instr'n 1 (from 
any Fig. A3 in­
hibit}, the con­
densing technique 
of Section II.C 
can be used to 
remove this re­
dundancy. */ 

3: Ail+ACCUM; to NEXT; 
/* Due to the 

"ACCUM+MOR 11 ac­
cumulator change 
of instr'n 2 above, 
the "Ail+ACCUM" 
xfer of instr'n 3 
above is not "re­
dundant."(NEXT is 
some "next address" 
of no interest 
here.) */ 

uncondensed microcode 
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Ail+ACCUM; ACCUM+MOR; 
to 3; 

3: Ail+ACCUM; to NEXT; 

condensed microcode 

Fig. D3 Redundant Transfer Removal 



1: Sil+ACCUM; ESI+O; 
SCNTRL+RSHFT; to 2; 
I* Above will produce, 

at SOl, l 
(O+ACCUM+lost) . *I 

2: Sil+SOl; to 3; 
I* Above will produce, 

at SOl, 
(O+ACCUM+lost) 2 . *I 

3: Sil+SOl; to 4; 
I* Above will produce, 

at SOl, 3 (O+ACCUM+lost) . *I 

4: Sil+SOl; to 5; 
I* Above will produce, 

at SOl, 4 (O+ACCUM+lost) . */ 

5: ACCUM+SOl; to NEXT: 
I* That is, ACCUM

4
gets 

(O+ACCUM+lost) . 
(NEXT is some "next 
address" of no 
interest here.) *I 

uncondensed microcode 
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NOTE: The microcode on the 
left is not con­
densable. Note, for 
example, that al­
though the consecu­
tive string of 
"Sil+SOl" transfers 
(instr'ns 2-4) may 
appear to contain 
redundancy or non­
productiveness, it 
does not. Each such 
transfer is a 
productive transfer 
of transformed shift­
er output data back 
to the shifter input 
for further trans­
formation. The HMO 
algorithm recognizes 
the general nonremov­
ability of such 
direct feedback 
transfers by having 
the associated 
inhibit function 
treat them as both 
a functional unit 
input and output. 
(Specifically, in 
this case, bit 38 
appears in both 
terms of the 
"SHIFTER SOl" 
inhibit of Fig. A3.) 

NOTE: "(O+ACCUM+lost)i" refers to ani-times-repeated 
one-bit accumulator right shift during which the 
left-most bit receives a "0" and the right-most 
bit is lost. 

Fig. D4 Appropriate Handling of Functional 
Unit Direct Feedback Paths 



1: Ail+ACCUM; AI2+MOR; CI+O; 
to 2; 
I* Nonproductiveness of 

"AI2+MOR" in above is 
disguised by 
"ACCUM+AOl" in follow­
ing instruction # 2. *I 

2: AI2+INDEX; ACCUM+AOl; to 3; 
I* Above "ACCUM+AOl" is 

nonproductive. *I 

3: ACCUM+AOl; to NEXT; 
I* NEXT is some "next 

address" of no 
interest here. *I 

uncondensed microcode 

1: Ail+ACCUM; AI2+MOR; 
CI+O; to 2; 
I* Nonproductiveness 

of "AI2+MOR" in 
above no longer 
disguised since 
"ACCUM+AOl" no 
longer in follow­
ing instr'n # 2 
*I 

2: AI2+INDEX; to 3; 

3: ACCUM+AOl; to NEXT; 

uncondensed microcode 

(a) 

(b) 
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NOTE: HMO algorithm (as 
presented) would 
find code on left 
uncondensable. 
Below, "ACCUM+AOl" 
has been removed 
from instruction 
# 2 so that code 
is condensable. 

Ail+ACCUM; AI2+INDEX; 
CI+O; to 3; 

3: ACCUM+AOl; to NEXT; 

condensed microcode 

Fig. DS Disguised, Larger-Scale Nonproductiveness 



1: to (PTRRDY) 2, SKIP&FETCH; 
I* If PTRRDY=O (i.e., 

PTRRDY=l, or printer 
ready), then go to 2; 
else go to SKIP&FETCH 
(and possibly link 
into a "wait" loop at 
machine instr'n level). 
*I 

2: PTR+ACCUM; to 3; 
I* Execute output trans­

fer. (PTR inhibit of 
Fig. A3 treats above 
xfer as "starting" 
step of output 
process.) *I 

3: to (PTRRDY) 4, SKIP&FETCH; 
I* Test for availability 

of output channel for 
another output. (PTR 
inhibit necessarily 
treats above PTRRDY 
test as "finishing" 
step of output process 
begun in instr'n 2.) */ 

4: PTR+ACCUM; to NEXT; 
I* Interestingly, the 

second output xfer in 4 
above will never be 
performed, since instr'n 
3, if reached, will al­
ways find the printer 
still busy from the first 
output xfer in instr'n 2. 
(NEXT is some "next 
address" of no interest 
here.) */ 

uncondensed microcode 
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NOTE: The microcode on 
left is not con­
densable (due to 
noncondensability 
"past" CB's with 
aMl's microinstruc­
tion format and to 
the noncondensabil­
ity of instr'ns 2 
and 3 caused by the 
PTR inhibit of 
Fig. A3). Note 
that if instr'ns 
2 and 3 had been 
condensed together, 
then this condensed 
result, when 
reached from instr'n 
1, would perform the 
first "PTR+ACCUM" 
and simultaneously 
find the PTRRDY CC 
still indicating 
the printer as 
ready, thereby 
causing instr'n 4 
to be performed 
next. (In other 
words, whenever the 
first output xfer 
was found perform­
able, the second 
output transfer 
would immediately 
follow one micro­
cycle later, an 
obviously incorrect 
situation.) 

Fig. 06 Futility of Microprogramming HMl to Perform 2 
Immediately Successive Output (or Input) Transfers 



1: Ail+ACCUM; AI2+INDEX; 
CI+O; ACNTRL+ADD; 
to 2; 
I* Prepare to add 

ACCUM & INDEX . 
(Assume addition 
w1ll take 3 micro­
cycles after this 
instr'n to 
complete.) *I 

2: ACCUM+AOl; to 3; 
I* Place added result 

in ACCUM. *I 
3: Sil+ACCUM; ESI+O; 

SCNTRL+RSHFT; to 4; 
I* Place added result 

in Sil and prepare 
to right-shift it 
once. (Note, 
w.r.t. getting 
added result from 
AOl to Sil, ACCUM 
here appears as 
intermediate (tem­
porary) storage 
station.) *I 

4: INDEX+SOl; to NEXT; 
I* Put right-shifted, 

added result in 
INDEX. (NEXT is 
some "next 
address" of no 
interest here.) *I 

condensed microcode 
(under "1-microcycle 
assumption") 

NOTE: The 1-microcycle 
assumption not 
valid here be­
cause example 
assumes addition 
takes 3 micro­
cycles. However, 
Tomasulo hardware 
could allow exe­
cution to proceed 
as on right. 

83 

I* Begin addition *I 
Ail+ACCUM; AI2+INDEX; CI+O; 
ACNTRL+ADD; (MCR +instr 1 n 2; ) 

I* Added result not ready, 
ACCUM input not ready *I 

ACCUMTAGREG+AOlTAG; 
ACCUMBB+l; 
I* Tag ACCU!-1 "busy awaiting 

AOl It . * I 
(MCR+instr 1 n 3; ) 

I* Added result not ready, 
ACCUM busy, Sil input 
not ready *I 

SilTAGREG+ACCUMTAGREG(=AOl­
TAG); SilBB+l; 
I* Mark Sil "busy awaiting 

whatever ACCUM is 
awaiting (AOl)" *I 

I* Supply available shifter 
inputs *I 

ESI+O; SCNTRL+RSHFT; 
(MCR+instr 1 n 4;) 

I* Added result ready *I 
ACCUM+AOl; ACCUMBB+O; 
I* Added result ready, but 

Sil (& thus SOl) still 
marked "busy awaiting 
AOl" @ start of t *I 

INDEXTAGREG+SOlTAG; 4 

INDEXBB+l; Sil+AOl; SilBB+O; 
I* Here, Sil gets adder 

output directly *I 

I* Shifter output ready *I 
INDEX+SOl; INDEXBB+O; 

corresponding execution sequence 
with Tomasulo-type hardware 

NOTE: BB - Busy Bit, 
TAGREG - Tag Register (for 

holding tags) , 
TAG - Tag (unique # asso­

ciated with a 
particular 
hardware unit) 

Fig. D7 Possible Use of Tomasulo-Type 
Hardware [18], [19] to Aid HMO Algorithm 
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