
Scholars' Mine Scholars' Mine

Doctoral Dissertations Student Theses and Dissertations

1974

Towards a design of HMO, an integrated hardware microcode Towards a design of HMO, an integrated hardware microcode

optimizer optimizer

James Oliver Bondi

Follow this and additional works at: https://scholarsmine.mst.edu/doctoral_dissertations

 Part of the Electrical and Computer Engineering Commons

Department: Electrical and Computer Engineering Department: Electrical and Computer Engineering

Recommended Citation Recommended Citation
Bondi, James Oliver, "Towards a design of HMO, an integrated hardware microcode optimizer" (1974).
Doctoral Dissertations. 285.
https://scholarsmine.mst.edu/doctoral_dissertations/285

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/doctoral_dissertations
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/doctoral_dissertations?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F285&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F285&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/doctoral_dissertations/285?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F285&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

TOWARDS A DESIGN OF HMO,

AN INTEGRATED HARDWARE MICROCODE OPTIMIZER

by

JAMES OLIVER BONDI, 1949-

A DISSERTATION

Presented to the Faculty of the Graduate School of the

UNIVERSITY OF MISSOURI - ROLLA

In Partial Fulfillment of the Requirements for the Degree

DOCTOR OF PHILOSOPHY

in

ELECTRICAL ENGINEERING

1974

T3035
90 pages
c.l

ii

ABSTRACT

This paper discusses an algorithm for optimizing the

density and parallelism of microcoded routines in micro­

programmable machines. Besides presenting the algorithm

itself, this research also analyzes the algorithm's uses,

design integration problems, architectural requirements,

and adaptability to conventional machine characteristics.

Even though the paper proposes a hardware implementation

of the algorithm, the algorithm is viewed as an integral

part of the entire microcode generation and usage process,

from initial high-level input into a software microcode

compiler down to machine-level execution of the resultant

microcode on the host machine. It is believed that, by

removing much of the traditionally time-consuming and

machine-dependent microcode optimization from the software

portion of tills process, the algorithm can improve the

overall process.

ACKNOWLEDGMENTS

The author is very grateful to Paul D. Stigall for

his continued advice and assistance in preparing this

manuscript. The author further wishes to thank James H.

Tracey for his helpful suggestions and comments , and

iii

c. V. Ramamoorthy for his gracious critique of basically

the main body of this manuscript. Finally, the author

acknowledges the willing assistance of Herbert R. Alcorn,

Javin M. Taylor, and Billy E. Gillett.

A special note of thanks goes to my wife, Judy, for

her patient and repeated proofreadings of this manuscript

throughout its development.

TABLE OF CONTENTS

PAGE

ABSTRACT

ACKNOWLEDGMENTS.

ii

. iii

LIST OF FIGURES

INTRODUCTION . . .

vi

1

4 I. DESCRIPTION OF BASIC HMO ALGORITHM.

II. INTEGRATING THE ALGORITHM INTO THE MICRO-

PROGRAMMABLE SYSTEM [10]. 8

A. HANDLING CONDITIONAL BRANCH

MICROINSTRUCTIONS

B. PARALLELING OF COMPLETELY INDEPENDENT

8

TASKS • . • • • • • • . • • • • • • . . 9

C. REMOVING NONPRODUCTIVE TRANSFERS. . 11

III. ARCHITECTURAL REQUIREMENTS [13] . . . • . . . 13

IV.

A. GENERAL CHARACTERISTICS . .

B. MICROINSTRUCTION FORMATS

C. CONTROL MEMORY CHARACTERISTICS

ADAPTATIONS FOR PERFORMANCE ENHANCEMENT [17].

A. USE OF PROGRAMMED WAIT LOOPS ...

13

14

15

17

17

B. INCORPORATION OF ESTABLISHED HARDWARE

PERFORMANCE ENHANCEMENT TECHNIQUES. . . 18

C. USE OF DIFFERENT "FIELDS OF VIEW" FOR

DIFFERENT INHIBIT FUNCTIONS 20

CONCLUSION 22

iv

TABLE OF CONTENTS (continued)

REFERENCES .

VITA

APPENDIX A. HM1 DETAIL.

A. OVERALL DESCRIPTION

B.

c.

D.

E.

MCR LAYOUT

"INHIBIT" FUNCTIONS

CONTROL SECTION ENCODING.

"NEXT ADDRESS" SELECTION.

APPENDIX B. HMO ALGORITHM DETAIL.

A. REQUIREMENTS.

USES. .

GENERAL CHARACTERISTICS AND ASSUMPTIONS

RESULTANT PROPERTIES ..

CONDENSING TECHNIQUE ..

CONDENSING LIMITS . . .

v

PAGE

. . 31

• • 34

• • 3 5

• • 3 6

• • 3 8

• • 39

• • 4 0

. . 41

• • 4 5

• • 4 6

• • 4 6

• • 4 7

• • 4 8

• • 4 9

. . 51

B.

c.

D.

E.

F.

G.

H.

SPECTRUM OF POSSIBLE MICROINSTRUCTION FORMATS .51

CONDENSING APPROACH 57

I. MORE DETAIL ON PRE-PASS CONDENSING COMPILER

USE . 61

J. SOME IMPLEMENTATION CONSIDERATIONS .. .63

APPENDIX C. AREAS OF CONCENTRATION FOR FURTHER

RESEARCH. . . • • 7 3

APPENDIX D. MISCELLANEOUS EXAMPLES .. • • 7 6

vi

LIST OF FIGURES

FIGURE NO. PAGE

1 Subset of HMl (Hypothetical

2

3

4

5

6

Al

A2

A3

Bl

B2

B3

B4

B5

B6

Dl

Machine 1)

Flow Chart of Basic HMO Algorithm.

Some "Before & After" Examples .

"Inhibit" Function Example ..

Paralleling Independent Tasks ..

Nonproductive Transfer Removal

HML Working Hardware

Microinstruction Format & Addressing . .

HMl Inhibit Functions

Spectrum of Possible Microinstruction

Formats.

Potential Problems with Hybrid Single-

Length/Double-Length Format.

Use of "By-Individual-Bit- Column"

Approach

Potential Problem with "By- Individual-

Bit-Column" Approach

Flow Chart of HMO Algorithm as a Pre­

Pass Condensing Compiler

One Possible Control Memory Layout .

Problem with Original, One-Step, "Store-

Into-Main-Memory" Scheme

25

26

27

28

29

30

42

43

44

67

68

69

70

71

72

77

FIGURE NO.

D2 A Peculiarity of the Present Memory

Controller
D3 Redundant Transfer Removal .

D4 Appropriate Handling of Functional Unit

Direct Feedback Paths

DS Disguised, Larger-Scale Nonproductive-

ness . . .

D6 Futility of Microprogramming HMl to Per­

form 2 Immediately Successive Output (or

D7

Input) Transfers .

Possible Use of Tornasulo-Type Hardware

[18], [19] to Aid HMO Algorithm

vii

PAGE

78

79

80

81

82

83

1

INTRODUCTION

Since the advent of microprogrammable machines in

recent years, a frenzy of research has occurred on develop­

ing good software compilers to generate user-designed micro­

programs, or microcode, for chosen target machines [1],

[2]. The traditional argument against such compilers is

that they will never be able to generate the completely

compact microcode needed in a typical high-usage micropro­

gram. The traditionalists thus conclude that the tedious

and complex task of microprogramming is best left solely

to the hardware designers [3], [4], [5], [6]. On the other

hand, many machine users have long desired a machine whose

instruction repertoire they could tailor to their partic­

ular needs [5], [6]. These users argue that a microprogram

compiler would drastically reduce microcode production time,

thus making even medium-to-low-usage, less highly compact

microprograms practical [4].

Two important characteristics usually sought by pro­

ponents of such compilers are (1) a powerful, high-level

input language and (2) a high degree of target-machine

independence for the user. Typical versions of such com­

pilers are structured in two basic phases conducive to

these characteristics. The first phase is a complete com­

piler taking high-level input source into intermediate­

level text. The second phase is a simple, direct translator

2

chosen by the user to transform this intermediate text into

actual microcode for his target machine [3], [7].

Although microprogram compilers such as those just men­

tioned have proved quite promising, one particularly annoy­

ing problem remains. This problem is the compactness, or

degree of optimization, of the microcode output versus the

required compilation time. To be feasible, even medium­

to-low-usage microprograms require a fair degree of optimi­

zation. Furthermore , such microprograms require short com­

pilation times to make them worthwhile producing. These

two requirements are inherently conflicting, especially

since microprograms and their formats are traditionally

highly target-machine-dependent while the compiler attempt­

ing to optimize these microprograms is designed to be highly

target-machine-independent. In other words, it is extremely

difficult to efficiently optimize a machine-dependent process

by means of a machine-independent mechanism [2], [7], [8].

One possible solution to this problem is to relieve

the microprogram compiler of a large part of its optimiza­

tion chores. The author proposes moving many local optimi­

zation duties out of the compiler and across the software­

hardware boundary into the hardware realm of the target

machine. The author's - hardware microcode optimizer, HMO,

is a simple hardware algorithm capable of condensing a

seque nce of essenti ally horizontal microinstructions to

incre ase their bit d e nsity and parallelism. It is reason­

able to expect that a hardware implementation of such a

3

hardware-dependent process can be both fast and cost-effec­

tive [9]. Furthermore, by improving the efficiency of

software microprogram compilers, the HMO algorithm can in­

crease the practicality of a truly user-microprogrammable

computer system.

It must be stressed that the overall microcode optimi­

zation process being proposed in this paper would consist

of two basic levels, or phases. The first level, performed

by the software microprogram compiler, would be the more

complex, global, primarily machine-independent type of

optimization procedures. The second level, performed by

the HMO algorithm and associated hardware (after receiving

the software compiler's generated microcode), would consist

ideally of as much as possible of the less complex, local,

highly machine-dependent type of optimization.

At this point, the reader may wish to familiarize him­

self, at least superficially, with the contents and figures

of Appendices A, B, C, and D. As he reads the remainder

of the main body, he would thus be aware of where, in the

appendices, he might refer for more detail. (For example,

Figures A2 and A3 of Appendix A may be particularly useful

in developing a mental picture of the microinstruction for­

mat and associated "inhibit" functions as the main body is

read.)

4

I. DESCRIPTION OF BASIC HMO ALGORITHM

Consider how the major internal hardware components

of a computer are involved with the flow of data, or informa­

tion, throughout the machine. With respect to the HMO

algorithm, the following classification of such components

is useful: (1) a fixed source, or data constant (e.g., a

pseudo-register which supplies a hardwired constant of 0

or 1 to other components), (2) a data transformer (e.g.,

an adder, shifter, working register, main memory during a

load-from-memory instruction, etc.), or (3) a data sink

(e.g., main memory during a store-into-memory instruction).

However, since the production of data constants is a fixed

operation, with no inputs on which to perform a function,

HMO need not be concerned with such constants. Their con­

trol is inherently covered in the control of the trans­

formers and sinks to which they supply inputs.

Concerning the control of active, functional components,

such as transformers and sinks, two major areas of interest

are the supplying of inputs and the calling for outputs,

with only the former area actually being needed for sinks.

If we consider now a flexible microprogrammable architecture

such as that shown in Fig. 1, these two areas become nothing

more than particular groups of horizontal microinstruction

bits controlling appropriate register transfers. One other

area of interest for both transformers and sinks is timing,

or the time interval required for them to complete their

5

respective functions. This timing requirement implies a

certain needed minimal distance between some microinstruc­

tions, or microwords, in any microinstruction stream.

Assume for now that the microcycle time of HMl in Fig. 1

is such that this needed distance is only one microcycle.

This means, for example, that it is acceptable for one

microword to excite an adder "input supply" and the micro­

word immediately following to excite the corresponding

adder "output call".

Notice that the "latching" type architecture of HMl

affords the microprogrammer virtually complete timewise

independence of when inputs are supplied to a data trans­

former such as the adder. He may, in fact, "latch" in

adder inputs during different microcycles. All he must

do is make certain all desired inputs are fed at least one

microcycle before he calls for the corresponding trans­

former output. Thus, the HMO algorithm can simply sequence

through a stream of microinstructions, condensing (essen­

tially combining) all microinstructions containing "input

supply" bits into one instruction, until it reaches the

point where the next instruction contains an "output call"

bit corresponding to the already condensed "input supplies".

At this point, the algorithm must temporarily stop con­

densing, save (or execute) the newly formed condensed in­

struction, and then proceed to condense again starting with

the next microinstruction in the stream. What all this

means is that the HMO algorithm can produce, from a micro­

instruction stream which exercises HMl's hardware in a

6

purely serial fashion, a corresponding condensed stream

which exercises HMl's hardware in a highly parallel fa s hion.

Unlike data transformers, data sinks, which do not

require noutput call" bits, make it difficult for the HMO

algorithm to spot the point where condensing must temporarily

stop. This problem can be solved by requiring that, follow­

ing the desired sink inputs , a succeeding microinstruction

appear containing a "1" bit which actually excites, or

causes, the sinking of these preceding inputs. By con­

trolling sinks in this manner, these sinks appear identical

to data transformers as far as the HMO algorithm is con­

cerned. It always sees a series of "input supplies" followed

at least one microcycle later by a microword containing

a control bit which, for transformers, calls for passage

of the transformed data to some other point and, for sinks,

causes the actual sinking action to be performed. There­

fore, the HMO algorithm can now handle transformers and

sinks with equal facility. The major hardware needed is

a simple set of combinational logic "inhibit" functions

which are driven both from the condensed instruction being

formed and from the next instruction in the stream. At

least one of these functions is activated when the next

instruction contains an "output call" corresponding to

"input supplies" in the condensed instruction. Further

condensing is thus inhibited and the algorithm starts anew

on the next instruction.

7

Note that Fig. 2 allows the option of either saving

a condensed result for later use (pre-pass compilation) or

executing this result immediately without saving it (inter­

pretive execution). Interpretive execution would be in­

efficient for all but extremely low-usage microprograms,

as it would require repeated condensing of repeatedly exe­

cuted blocks of microcode. Therefore, all discussion that

follows in the main body assumes that the HMO algorithm is

being used as a pre-pass condensing compiler.

Fig. 3 contains two examples illustrating the algorithm's

use. Note that the second example illustrates how the author

would ideally like to handle conditional branch microin­

structions. This ideal method would be essentially to

allow the HMO algorithm to condense "past" conditional

branches along one of the two available paths (hopefully,

the "non-branch" path, or path expected to be taken most

of the time). Then, later, the algorithm could be restarted

separately along the yet untouched (hopefully "branch") path.

Finally, Fig. 4 depicts one example of the "inhibit"

functions which provide the logical signals to control the

HMO algorithm.

II. INTEGRATING THE ALGORITHM INTO THE MICROPROGRAMMABLE

SYSTEM [10]

While Section I presented a brief overview of the

basic HMO algorithm, this section presents some intricate

design problems incurred in evolving the algorithm into

a well integrated system component. Since the algorithm

8

is actually the final phase of the overall microcode com­

pilation process, many of these problems involve considera­

tions of whether to allocate a particular function to the

software compiler or to the hardware algorithm. However,

as will be seen, other problems are not related to such

an allocation and must be resolved on other bases.

A. HANDLING CONDITIONAL BRANCH MICROINSTRUCTIONS

As stated in Section I, the second example of Fig. 3

depicts an extreme, idealistic scheme for handling con­

ditional branches, a scheme which allows, in one condensed

result, condensing not only "up to and including" condi­

tional branches but "past" them as well, down a selected,

"favored" path. The astute reader will notice that, in

the condensed code, the two transfers "Ail+-PGC" and "AI2+- 0"

will always be performed, whereas, in the uncondensed code,

they would have been performed only if the "favored" path

were taken. Obviously, in general, such a situation could

result in erroneous results from the condensed code.

This problem can be solved by (1) allowing room in

the microinstruction format for not only the normal sec­

tion of control bits but also for a conditional section

of control bits to be executed only if the "favored" path

is taken or by (2) simply prohibiting condensing "past"

conditional branches. Although present research results

tend to favor solution (2), it must be pointed out that

9

the choice between these two solutions is virtually un­

related to the compiler versus algorithm allocation ques­

tion. Instead the choice here must be made primarily on

the basis of the tradeoff between the complex microinstruc­

tion format (and related problems) of solution (1) and the

slight microprogram condensability loss of solution (2).

B. PARALLELING OF COMPLETELY INDEPENDENT TASKS

Fig. 5 is an abstract example illustrating a possible

condensing inefficiency. Note that although the groups of

uncondensed code in examples (a) and (b) are equivalent,

the condensed code in example (b) is more compact than

that in example (a). This variance is a direct, but subtle,

result of the HMO algorithm's simple condensing scheme

presented in Section I. For example, the alert reader may

wonder why, in example (a), the algorithm could not have

looked at least two instructions ahead of "ACCUM+DATAl"

to recognize that, even though "Ail+ACCUM" is inhibited

(by an accumulator inhibit function) from condensing, "IN­

DEX+DATA2" could have been brought up past "Ail+ACCUM" and

10

condensed onto "ACCUM+-DATAl". Indeed, it appears that a

scheme in which the algorithm, during any given condensing

step, is allowed to look far ahead and propagate uninhibited

instructions (or parts of instructions) up past inhibited

instructions could produce the compact condensed code of

example (b) directly from the uncondensed code of example

(a). However, suffice it to say that research has demon­

strated many intricate problems (hardware complexity,

difficulty of assuring condensed code equivalency and proper

addressing) with such a scheme.

Rather than resort to such a "messy" scheme, the soft­

ware compiler can instead be used to pretailor, when pos­

sible, the code it feeds to the HMO algorithm. The basic

algorithm works more efficiently when its input (uncon­

densed) code is ordered so that completely independent

tasks do not follow one another in completely serial fashion.

Essentially, the code of Fig. 5 is intended to show two such

independent tasks, a multistep transfer of DATAl to Ail

and a mu l tistep transfer of DATA2 to AI2. In example (a)

these tasks are arranged entirely sequentially while, in

(b), they are overlapped in a slightly more parallel fashion ,

thus allowing the basic algorithm of Section I to produce

a more compact result. Therefore, it should be the job

of the software compiler to search for such completely in­

dependent tasks, or code groups, and reorder them as

needed to ensure they are not left completely sequential.

(Of possible use towards this goal could be techniques for

ll

program segmentation and potential task parallelism detec­

t ion [ll] and allowable code motion [12].) Such paralleling

of independent tasks is a relatively machine-independent,

global process better suited to the software compiler than

the hardware algorithm.

C. REMOVING NONPRODUCTIVE TRANSFERS

Fig. 6 is another abstract example illustrating a

possible condensing problem. Note that the first two

instructions in the uncondensed code both supply information

to adder input Ail. In particular, because the second

instruction "writes over" the information supplied to Ail

during the first instruction without first using the cor­

responding added result (by passing adder output AOl some­

where, for example), the transfer to Ail in the first

instruction is a "nonproductive" ("negated" [12]) transfer.

The basic HMO algorithm of Section I would, in fact,

attempt to condense the two transfers to Ail together.

This condensing can be used beneficially to remove the "non­

productive" transfer as long as an appropriate condensing

technique is used. This technique necessitates partition­

ing the control bits of each microword into the mutually

exclusive, controlwise independent bit sets controlling

each micro-operation (such as the input sets of each hard­

ware register). For example, the Ail input set consists

of control bits 8, 9, and 10 (see Fig. 1). The technique

12

then consists of: (1), for non-zero bit sets in the upcoming

word to be condensed, writing this non-zero set over the

corresponding set in the accumulating condensed result and

(2), for all-zero bit sets in the upcoming word to be con­

densed, leaving the corresponding set in the accumulating

condensed result as is. If such a condensing technique is

used (whenever the inhibit functions permit condensing) ,

the basic HMO algorithm can easily produce the condensed

result shown on the right of Fig. 6 . Thus , "nonproductive"

transfer removal can be handled adequately, at least on

a local scale, by the hardware algorithm , without special

help from the software compiler.

13

III. ARCHITECTURAL REQUIREMENTS [13]

As expected, easy and efficient support of the HMO

algorithm dictates certain architectural characteristics as

desirable. This section presents a summary of the major

characteristics so dictated.

A. GENERAL CHARACTERISTICS

The architecture of HHl must be such that all

fundamental operations under microprogrammed control consist

of two elementary steps which can be intuitively termed the

"starting" and "finishing" steps. As implied in Section I,

two such steps are found quite naturally for data transform­

ing units such as the adder. However, much time and care

went into the rather unusual main memory controller shown

in Fig. 1 so that even the data sinking operation of a

"store into memory" consists of the needed two basic steps.

The "latching" ·, or "register transfer" , type

architecture indicated in Fig. 1 is useful for many reasons,

some of which are (1) it readily supports the "two-step"

structure mentioned above, (2) it gives the microprogrammer

(and the software compiler) much freedom from hardware

timing requirements (e.g., freedom to supply the three

adder inputs of Fig. 1 in sequential fashion, in parallel

fashion, etc.) and (3) it lends itself to pipelining slower

microcontrolled functions to various degrees (a technique

14

which research indicates may be useful in the interest of

machine speed) .

B. MICROINSTRUCTION FORMATS

As the control section format, a horizontal, unencoded

control section having one bit per register transfer is

ideal. This arrangement readily supports a neat, two-level

realization of the algorithm's inhibit functions, allowing

these functions to be driven directly from the control

register (Fig. 2) and from the control memory output lines

feeding · the control register.

Concerning microinstruction addressing schemes,

flexibility is the key requirement. Research has shown

that employment of the algorithm in its simple, one-pass

Section I form yields condensed instructions which are

linked together but interspersed with remaining groups of

"garbage" instructions. During run time, execution will

proceed by "leap frog" style jumps which circumvent these

garbage instructions. Thus, as a minimal base scheme

(from which to build) , a scheme employing one complete

"next address" in each microword (Fig. 2) is needed {as

opposed to, say, the sole use of a separate microprogram

counter, or pointer, register, a scheme better suited to

mostly-sequential addressing) .

As suggested in Section II, use of the ideal

conditional branch condensing philosophy of Fig. 3

15

necessitates a quite complex microinstruction format. How­

ever, if one prohibits condensing "past" conditional branches

many instruction formats between this extremely complex one

and the required minimal one of Fig. 2 become possible.

(This minimal format must, of course, be slightly augmented

to allow production of, for conditional branches, a second

"next address".) However, no matter what overall instruc­

tion format is chosen, present research indicates it is in

all cases desirable, though not always necessary, to have

the "branch" path address be completely independent of the

"non-branch" path address.

C. CONTROL MEMORY CHARACTERISTICS

Although many types of control memory can be used, one

arrangement well suited to supporting the HMO algorithm is

to use the same memory type (and speed) for both main and

(user) control memories. This arrangement, used in varying

degrees on the IBM 360/Model 25 [14] and the Burroughs B

1700 [15], helps to achieve realization of the Section I

assumption that one control memory microcycle is sufficient

to complete any elemental machine operation.

Of the many possible methods which can be used to

actually implement the HMO algorithm, a firmware implementa­

tion's flexibility is particularly attractive. A feasible

firmware implementation can be realized by using two separate

control memories (or, at least, two separate memory sections),

16

one containing the HMO algorithm plus other factory-fixed

routines of no condensing interest to the algorithm and

the other containing the user's microprograms. While

condensing, the factory-fixed, restricted-access memory

would be operating on the contents of the user-accessible

memory. Again, this control memory arrangement employing

both fairly-restricted and easily-accessible memories has

been used in varying degrees on real production machines

like the Burroughs B 1700 [15] and the Microdata 1600

[16] .

17

IV. ADAPTATIONS FOR PERFORMANCE ENHANCEMENT [17]

Up to this point, the simplifying Section I assumption

that one microcycle is sufficient time for all elemental

mach£ne operations has not been questioned. Obviously,

such an assumption, if adhered to rigidly and inflexibly,

could result in a control memory cycle too long to allow

acceptable machine performance.

This section presents some techniques which can help

prevent such possible performance degradation. Basically,

these techniques allow cycling of control memory at a rea­

sonable, chosen speed rather than restricting it to cycling

at least as slowly as the slowest elemental operation under

its control. While the techniques of the first two subsec­

tions are modi.fi.cati.ons of HMl's execution hardware, the

technique of the last subsection is a modification of the

basic HMO algorithm itself.

A. USE OF PROGRAMMED WAIT LOOPS

By incorporating "busy" (or "ready" for the complemen­

tary approach) signal indicators into those operations

which are of longer duration than the contro l memory cycle,

conditional branch microinstructions can be made to branch

to an "increment-the-PGC-and- then-go-to-FETCH" routine. Thus,

conditional machine instructions for such operations can be

microprogrammed so as to simply skip the next machine

18

instruction whenever the desired operational facility is

still "busy" from some previous use.

For example, consider I/0 operations. With such

ma chine instructions available, it is a simple matter to pro-

gram an I/O "transfer/idle" (or "wait") loop at the machine

instruction level. (Note that, given a rich enough address-

ing scheme for conditional branch microinstructions, there

is no real reason why such "wait" loops could not also be

implemented at the microinstruction level.)

B. INCORPORATION OF ESTABLISHED HARDWARE PERFORMANCE

ENHANCEMENT TECHNIQUES

If control memory is to be cycled at a rate too fast to

allow one-cycle completion of some slower elemental opera-

tions, then several established hardware techniques can be

employed to help avoid the implied timing hazards which could

result during execution. For example, "request/reply" control

interfacing can be used to ensure that control memory idles

while awaiting the results of slower, previously initiated

elemental microcontrolled operations.

on the other hand, an adaptation of the Tomasulo algo­

rithm [18], [19] can be employed so that the microprocessor

need not often be idled unproductively. Instead of idling,

the microprocessor can pass appropriate "tags" to the in-

tended destinations of the yet unavailable results and simul-

• II

taneously mark such destinations as "busy awaiting ~nformation.

19

When later available, the actual information itself would

then be passed to all appropriately "tagged" units and the

a ssociated "busy bits" turned off. This Tomasulo-type

hardware can permit a rapidly cycled control memory to

proceed executing even in the face of temporarily unavail­

able information, with the possible beneficial side effect

of eliminating the use of temporary storage stations (also

possible via a Tomasulo-type routine in the software com­

piler [12]) called for in the microcode being executed.

While the other techniques of Section IV are essen­

tially means of compensating for (during execution) micro­

programs which were condensed under the "one-microcycle

assumption" even in situations where this assumption is

not completely valid, pipelining [19] can be a useful tech­

nique in increasing the validity and practicality of the

"one-microcycle assumption". That is, rather than simply

shortening the control memory cycle, pipelining can be

used in conjunction with such shortening to simultaneously

shorten the required time of slower microcontrolled opera­

tions. For example, by insisting that the AOl register of

Fig. 1 be a real physical latching register (which has not

been assumed thus far), the overall process of addition

(from operand source registers to result destination regis­

ters) would then consist of three elemental stages instead

of the present two stages. Thus, pipelining yields more,

but shorter, elemental micro-operations for a given process,

making the "one-microcycle assumption" easier to meet even

20

if the control memory cycle is shortened. (Note, however,

that more micro-operations/process means not only more

required microinstructions/process but also a wider control

memory having more bits/microinstruction.)

C. USE OF DIFFERENT "FIELDS OF VIEW" FOR DIFFERENT INHIBIT

FUNCTI ONS

Unlike the other techniques already presented, the

following technique proposes dropping the "one-microcycle

assumption 11 of the basic HMO algorithm and giving the algo­

rithm the capability to ensure different length "timing

gaps" (in its output stream of condensed microcode) for

different length elemental microcontrolled operations. By

setting each inhibit function's "field of view" equal to the

number of microcycles needed to complete the machine opera­

tion scrutinized by that inhibit function, appropriate

"timing gaps" for all such operations can be produced (where

"field of view" is the number of microinstructions an inhibit

function can look ahead from the condensed result being formed

in the condensing register).

Specifically, by employing a first-in-first-out stack

(through which microinstructions are sequenced up to the

condensing register), inhibit functions could be driven both

from the condensing register and from a particular stack

position appropriate to the desired "field of view". For

example, the second position in the stack would be used to

21

create a "field of view" of two for those operations re­

quiring two control memory cycles for completion. -

22

CONCLUSION

This paper has proposed a hardware algorithm which

could enable a microprogramrnable machine to do its own

local, machine-dependent optimization of user-written micro­

programs, leaving the global, machine-independent optimiza­

tion to an associated software compiler. In fact, one

software microprogram compiler could efficiently serve a

group of logically different, but architecturally similar,

machines, each possessing an implementation of the HMO

algorithm enabling it to do its own machine-dependent con­

densing and "cycle squeezing". Such a system should be

the ideal environment for a software compiler which can

efficiently serve several different machines but still pre­

sent the user with a maximum degree of machine independence

as he writes a microprogram for a particular, chosen

machine.

Section I presented the algorithm in very basic form

and described its optimization approach of transforming

microinstruction streams exhibiting serial machine hardware

utilization into equivalent condensed streams exhibiting

highly parallel hardware utilization [20], an approach in

which the algorithm may accept its input microcode in simple,

even purely vertical, form and then produce as output an

equivalent, more complex, horizontal stream of microcode

[21]. Then, Section II discussed some of the subtle design

details involved in evolving the algorithm into a true system

23

component that works well with other system components.

Next, Section III presented some architectural characteris­

tics suitable to the algorithm's implementation. It is

encouraging to note that these characteristics are not

exotic ones. On the contrary, many are found on real pro­

duction machines, thus implying their cost effectiveness.

Finally, Section IV discussed both possible modification of

the basic algorithm and also incorporation of existing,

established hardware algorithms and control techniques as

useful means of ensuring an acceptable level of machine

performance.

Since the algorithm presented in this paper is new and

untried, many practical questions still remain unanswered.

For example, since the algorithm itself and the horizontally

microcontrolled architecture of HMl were developed jointly

to complement each other, the algorithm's usefulness in direct

application to significantly different hardware layouts (such

as a strictly vertically microprogrammable machine) is un­

certain at this time. Similarly, until the HMO algorithm

and an associated software compiler are actually built and

implemented so that the exact areas of software/hardware

cooperation and separation in the overall microcode optimi­

zation process can be specifically determined, it would be

extremely difficult, if not futile, to attempt to derive

meaningful, precise numerical evaluation measures of the

algorithm'· s efficiency or performance. Indeed, the lack of

appropriate, precise evaluation measures to guide the design

2 4

of novel developments is more often the case than not [22].

As a result, the designer must often rely , at l east initially,

on less precise, more subjective tradeoffs and decisions

(such as those of Section II) to guide his work.

PGC - Program Counter, IRA - Instruction Register
Address Portion,

MIR- Memory Input Register,
MOR- Memory Output Register,
etc.

25

ACCUM 1 AOl

MEM.
BANK

ACCUM

']

AI2

5
ACCUM

8

MAR

14 15
MOR

6

ADDER MIR

16

PGC

* Write cntrl bit determines gating of either MBR or
MIR here.

** These can be real or pseudo registers.

*** This adder cond' code = 1 iff AOl t 0 (cond' code =
0 implies AOl = 0). The algorithm can treat this
cond' code as an adder output.

NOTE: The #'s indicate the microinstruction bit
controlling a transfer.

Fig. 1 Subset of HMl (Hypothetical Machine 1)

Control Register Next Addr.
Register

Master (Control) Register, or MCR
(Contains 1 Microword)

Load Upcoming Microword
into Master Register

Condense Upcoming Control
Section into Control
Register

Load (Write) Upcoming
Next Address into
Next Address Register

26

Save (or
Execute)
Contents of
Master
Register

Fig. 2 Flow Chart of Basic HMO Algorithm

27

The following example illustrates condensing of an "add"
with direct address that performs ACCUM+ACCUM + MEM(IRA);

1: MAR+ IRA; to 2;

2 : AI2+MOR; to 3;

3 : Ail+ACCUM; to 4;

4: CI+O; to 5;

5: ACCUM+AOl; to FETCH;

uncondensed microcode

1: MAR+IRA; to 2;

AI2+MOR; Ail+ACCUM; CI+O;
to 5;

5: ACCUM+AOl; to FETCH;

condensed microcode

NOTE: The label #'s shown above are symbolically repre­
sentative of control memory addresses and thus, in
reality, could correspond to virtually any absolute
physical address.

The following example depicts how the author would ideally
hope to handle conditional branch microwords. The example
is a "mem. increment and skip next instr. if result is 0"
instruction. Note that "EFF ADDR" means Effective Address.

1: MAR+EFF ADDR; to 2;

2 : AI2+MOR; to 3;

3: Ail+O; to 4;

4 : CI+l; to 5;

5: MIR+AOl; to 6;

6: WRITE CNTRL=l; to 7;
I* Above implies

"MEM+MIR" during
data restore *I

7: to(AOlZ) S,FETCH;
I* No reg. xfers in

above, only cond'l
branch on cond'
code AOlZ *I

8: Ail+PGC; to 9;

9: AI2+0; to 10;

10: PGC+AOl; to FETCH;

uncondensed microcode

1: MAR+EFF ADDR; to 2;

AI2+MOR; Ail+O; CI+l; to 5;

5: MIR+AOl; to 6;

WRITE CNTRL=l; Ail+PGC;
AI2+0; to(AOlZ) lO,FETCH;
I* In cond'l branches such

as above, parenthesized
quantity is a binary­
valued cond' code, or
CC. If this CC=O, left
next address (here "10")
is used; if CC=l, right
next address (here
"FETCH") is used. *I

10: PGC+AOl; to FETCH;

condensed microcode

Fig. 3 Some "Before & After" Examples

Inhibit
adder

"Input Supplies"

,__-----------~--------~
14

2
i=7

Control Biti
from condensed
instr'n being
formed in
Master Reg.

28

"Output Calls"

2
Control Biti
from next

• upcoming
microinstr'n

i=2,4,15,16,
AOlZ Bit

<("l:" implies Logical OR
where " " 0

1 ° 0

1 AND . 1mp 1es Log1ca

NOTE: Refer to Fig. 's 1 & 2 for explanation of "Master
Reg.", various control bit #'s, etc. (In above,
"AOlZ Bit" refers to the microinstruction bit which
performs a cond'l branch based on value of AOlZ.)

NOTE: "Inhibit" functions for other components in HMl
are formed in a similar manner to the one shown
above for the adder.

Fig. 4 "Inhibit" Function Example

29

1: ACCUM+DATAl; to 2; 1: ACCUM+DATAl; to 2;

2: All+ACCUM· to 3· rc_9p.,:_~2: Ail+ACCUM 1• INDEX+DATA2 1• 1 1 dense to 4;
3: INDEX+DATA2; to 4;

4: AI2+INDEX; to NEXT;
/* NEXT is some

"next address"
of no interest
here. */

uncondensed microcode

4: AI2+INDEX; to NEXT;

condensed microcode
(a)

1 : ACCUM+DAT Al ; to 2 ; ?-~~~~ e:> 1 :

2: INDEX+DATA2; to 3;)
ACCUM+DATAl; INDEX+DATA2;
to 3;

3: All+ACCUM · to 4 · r_9~-_.;> 3: 1 1 dense

4: AI2+INDEX; to NEXT

Ail+ACCUM; AI2+INDEX;
to NEXT;

uncondensed microcode condensed microcode
(b)

Fig. 5 Paralleling Independent Tasks

1: Ail+ACCUM; to 2;
/* Above is

nonproductive
transfer */

2: Ail+PGC; to 3;

3: MAR+AOl; to NEXT;
/* NEXT is some

"next address"
of no interest
here. */

uncondensed microcode

con-----;> 1: Ail+PGC · to 3 · dense 1 1

3: MAR+AOl; to NEXT;

condensed microcode

Fig. 6 Nonproductive Transfer Removal

3 0

31

REFERENCES

[1] R. K. Clark, "Mirager, the 'Best-Yet' Approach for

Horizontal Microprogramming", Proceedings of ACM '72,

Association for Computing Machinery, New York, 1972,

pp. 554-560.

[2] M. Hattori, M. Yano, and K. Fujino, 11 MPGS: A High­

Level Language for Microprogram Generating System",

Proceedings of ACM ·~, Association for Computing

Machinery, New York, 1972, pp. 572-581.

[3] s. G. Tucker, "Microprogram Control for System/360",

IBM Systems Journal, Vol. 6, No. 4, pp. 222-241, 1967.

[4] R. H. Eckhouse, Jr., "A High-Level Microprogramming

Language (MPL)", AFIPS Conference Proceedings, Vol. 38

(SJCC 1971) I pp. 169-177.

[5] R. F. Rosin, "Contemporary Concepts of Microprogramming

and Emulation", Computing Surveys, Vol. 1, No. 4, pp.

197-212, Dec., 1969.

[6] M. J. Flynn and R. F. Rosin, "Microprogramming: An

Introduction and a Viewpoint .. , IEEE Transactions on

Computers, Vol. C-20, No. 7, pp. 727-731, July, 1971.

[7] s. S.Husson, Microprogramming: Principles and Prac­

tices, Englewood Cliffs, N.J.: Prentice Hall, Inc.,

1970, pp. 125-144.

[8] c. v. Ramamoorthy, M. Tabandeh, and M. Tsuchiya, "A

Higher Level Language for Microprogramming", MICR0 6

32

The Sixth Annual Workshop on Microprogramming, College

Park, Maryland, Sept., 1973 (Preprints), pp. 139-144.

[9] H. Falk, "Hard-Soft Tradeoffs", IEEE Spectrum, Vol.

11, No. 2, pp. 34-39, Feb., 1974.

[10] J. 0. Bondi and P. D. Stigall, "HMO, An Integrated Hard­

ware Microcode Optimizer", Proceedings of the Third

Annual Texas Conference on Computing Systems, Austin,

Texas, Nov., 1974 (Preprints), 12-2-1- 12-2-8.

[11] C. v. Ramamoorthy and M. J. Gonzalez, "A Survey of

Techniques for Recognizing Parallel Processable Streams

in Computer Programs", AFIPS Conference Proceedings,

Vol. 35 (FJCC 1969), pp. 1-15.

[12] R. L. Kleir and C. V. Ramamoorthy, "Optimization

Strategies for Microprograms", IEEE Transactions on

Computers, Vol. C-20, No. 7, pp. 783-794, July, 1971.

[13] J. o. Bondi and P. D. Stigall, "HMO, A Hardware Micro­

code Optimizer", Proceedings of the Second Annual Sym­

posium on Computer Architecture, Houston, Texas; Jan.,

1975 (Preprints) .

[14] c. G. Bell and A. Newell, Computer Structures: Readings

and Examples, United States of America: McGraw-Hill,

Inc., 1971, pp. 567-569, 590-591.

[15] Burroughs ~ 1700 Systems Reference Manual, Preliminary

Edition, Burroughs Corporation, Systems Documentation,

Technical Information Organization, TIC-Central, Detroit,

Michigan, 1972, pp. 1.7-1.8, 1.10, 3.1.

[16] Microprogranuning Handbook, Second Edition, Microdata

Corporation, Santa Ana, California, 1971, pp. 317-318.

[17] J. 0. Bondi and P. D. Stigall, "Designing HMO, An

Integrated Hardware Microcode Optimizer", MICR0
7

33

The Seventh Annual Workshop on Microprogramming, Palo

Alto, California, Sept., 1974 (Preprints), pp. 268-276.

[18] R. M. Tomasulo, "An Efficient Algorithm for Exploiting

Multiple Arithmetic Units", IBM~· of Res. and Dev.,

Vol. 11, No. 1, pp. 25-33, Jan., 1967.

[19] M. J. Flynn, "Very High-Speed Computing Systems",

Proceedings of the IEEE, Vol. 54, No. 12, pp. 1901-

1909, Dec., 1966.

[20] A. K. Tirrell, "A Study of the Application of Compiler

Techniques to the Generation of Micro-Code", Proc. of

ACM SIGPLAN-SIGMICRO Interface Meeting, Harriman, New

York, May, 1973 (Preprints), pp. 67-85.

[21] c. v. Ramamoorthy and M. Tsuchiya, "A High-Level Lan­

guage for Horizontal Microprogramming", IEEE Transactions

on ComEuters, Vol. C-23, No. 8, pp. 791-801, Aug., 1974.

[22] w. T. Wilner, "Design of the Burroughs B 1700", AFIPS

Conference Proceedings, Vol. 41 (FJCC 1972), pp. 489-

497.

[23] T. L. Dollhoff, "Microprogrammed Control for Small

Computers", Computer Design, Vol. 12, No. 5, pp. 91-

9 7 , May , 19 7 3 .

34

VITA

James Oliver Bondi was born on May 29, 1949 in St.

Louis, Missouri, where he received both his primary and

secondary education. He began his college education in

September,l967 at the University of Missouri- Rolla at

Rolla, Missouri, later receiving his Bachelor of Science

degree in Electrical Engineering from this institution in

May, 1971.

He then enrolled in the Graduate School of the Univer­

sity of Missouri - · Rolla in September, 1971, later completing

his Master of Science degree in Electrical Engineering in

July, 1972. A three-year NDEA Fellowship awarded to him has

largely financed his graduate studies to date, including most

of his current Ph.D. endeavors.

APPENDIX A

HMl DETAIL

36

Hypothetical Machine 1, or HMl, is a reasonably prac­

tical machine developed both to support the HMO algorithm

and to facilitate comprehension of algorithmic working

details, condensing examples, design considerations, etc.

The version of HMl here presented is not claimed to be the

ultimate version, but rather a basic, yet sufficiently de­

tailed, version usable as a base for initial design analyses.

A. OVERALL DESCRIPTION

HMl is a high-speed, general purpose, stored-program,

machine-instruction-driven computer. HMl control is obtained

via a horizontal, microprogrammable, writable control store.

Control signals are supplied to HMl's working hardware

(Fig. Al) from the MCR (Fig. A2), subsequently exciting

synchronous transfers via a "major cycle" clock pulse train.

The next microinstruction being addressed through the CMAD

(control memory address decoder) is always placed in the MCR

at the next "major cycle" clock time. Interleaved between

this "major cycle" pulse train is a "minor cycle" pulse

train used to "mark" the intermediate point of the overall

main core memory read-write cycle. Specifically,

"MBR+-MEM(MAR)" at "minor cycle" times while "MEM(MAR) +-either

MBR or MIR (depending on WRITE CNTRL bit)" at "major cycle"

times.

In Fig. Al, the numbers indicate the MCR bit(s) con­

trolling a particular transfer or gating. If the indicated

37

function of MCR bits is "true", the indicated transfer or - -- --- -- --- -- -
gating occurs; otherwise, it does not. Generally, both the

source and destination of all indicated transfers are

obvious, the one exception being the combinational logic

CMAD of Fig. A2. The CMAD does not "latch onto" the various

gated addresses, but merely decodes them to select a partie-

ular microword. The resultant transfer of interest is the

"major cycle" clocking of the selected microword into the

MCR.

To retain flexibility, the MOR, AOl, ESO, and SOl (Fig.

Al) may be either real or pseudo registers, but they will

always contain the outputs of their respective functional

units (without special microprogrammed attention). All

other registers shown are real, physical latches. The

seven CC's (condition codes) shown in Fig. Al have the fol-

lowing definitions: AOlZ=l iff AOl~O, AOlN=l iff AOl <O,

AOlOF=l iff AOl overflow exists, AOlCO=l iff carry out of

AOl's most significant bit exists, ACCUMLSBZ=l iff ACCUM's

least significant bit ~ 0, KBDRDY=l iff KBD (keyboard

buffer) is ready with some input, PTRRDY=l iff PTR (printer

buffer) is ready for some output.

The shifter unit (Fig. Al) is capable of essentially

shifting S!l one bit to the right or left according to the

contents of the SCNTRL register. Additionally, to form the

SOl output, the one-bit contents of ESI are shifted into

the "leading" (depends on direction) bit position vacated

by shifting Sil, and the one-bit ESO output is the bit that

38

would otherwise be "lost" by shifting Sil. This simple

shifter arrangement can be microprogrammed to perform various

types of shifts and circulates of one or more registers.

B. MCR LAYOUT

Fig. A2 illustrates the specific layout of the MCR,

with the control bits basically grouped, for convenience,

into register input sets. Generally, when the "all-zero

state" exists in a given register set (e.g., bits 1,2,3 all

zero for the MAR) , the corresponding register will remain

unchanged at the next "major cycle" pulse. Similarly, if

bits 45-52 are all zero, "normal" microword addressing will

occur with the NAR contents being used unconditionally as

the next address. Finally, if bit 18 is zero, the main

memory will operate in the "read-then-rewrite what was read"

mode. overall, these various types of "zero-state" control

were chosen as the "most natural state of affairs" (e.g.,

for registers, no change). By using "all-zero states" for

these "natural, inactive control modes", these inactive

modes are readily distinguishable from (and subordinated

with respect to) the corresponding "unnatural, active (non­

zero) control modes", thus making a wide range of logical

condensing techniques (e.g., even logical ORing) usable by

the HMO algorithm (as it condenses a microword onto the

condensed result being formed).

39

C. "INHIBIT" FUNCTIONS

Fig. A3 lists the "inhibit" functions which, singly or

ORed together, can be used to control the HMO algorithm on

HMl. Note that although these inhibits are generally used

to ensure proper "one microcycle" timing gaps between func­

tional unit "input supplies" and "output calls", they are

flexible enough to be used for special purposes, such as

prohibiting condensing "past" conditional branches (last

inhibit in Fig. A3). Further note that all inhibits in

Fig. A3 (except the last one) are the boolean product of two

boolean sum terms, the first term, consisting of possible

functional process "starting" steps, being driven from the

MCR (condensed result being formed) and the second term,

consisting of possible corresponding functional process

"finishing" steps, being driven from the control memory out­

put lines (next upcoming microinstruction). However, the

last, special purpose, conditional branch inhibit of Fig. A3

consists of only· one term driven solely from the MCR. Finally

note that the inhibits treat the ACNTRL and SCNTRL modes as

functional unit inputs, treat CC usages as functional unit

outputs, and treat direct feedback data paths (e.g., bit

20 path in Fig. Al) as both functional unit inputs and out-

puts.

40

D. CONTROL SECTION ENCODING

The reader will note that, in general, the control

register of Fig. A2 is arranged in an unencoded (or, at best,

collection of "1-of-n" coded sets) format. This format is

used because using coding, such as binary coding of register

input sets, indiscriminately throughout bits 1-54, would

complicate formation of the "output calls" term (second

term) of the inhibit functions. In other words, encoding

according to register input sets disguises this "output

calls" information so that at least partial decoding is

first required in order to drive the second term of the

inhibits. For example, consider the "READ-FROM-MEMORY" in­

hibit of Fig. A3. Detection of bit 6 in the second term

would require some decoding of the encoded ACCUM input set,

not to mention bits 7 and 29 and similar bits for other

inhibits. The implied complexity becomes evident when one

realizes that this decoding (to drive such second terms)

needs to be done off of the control memory output lines (or,

for the fancy scheme of Section IV.C, off of many positions

of a stack)! Note, however, that binary encoding~ be

readily employed in situations where this encoding does not

hinder driving the second term of ~ inhibit. Such encoding

was thus used, for example, in bits 24-26 and bits 39-40 for

the ACNTRL and SCNTRL registers respectively. Similarly,

encoding could be used for registers such as the CI, which

receives only hardwired constants not used as outputs from

any other functional unit.

41

E. "NEXT ADDRESS" SELECTION

Bits 45-54 (Fig. A2) control the selection of the next

microword. When these bits are used as intended, only one

bit of 45-52 should be "on" in a given microword. If one of

the CC selection bits 45-51 is "on", bits 53-54 then allow

(encoded) selection of one of four possible conditional

branch modes (which involve picking between the NAR and one

of two optional hardwired next addresses). Specifically,

bit 54=0 activates "FETCH" while bit 54=1 activates "SKIP&­

FETCH" (microroutine which increments the PGC by 1 and then

goes to "FETCH") as the optional NA (next address). Further­

more, bit 53=0 causes a "l" value of the selected CC to

pick the optional NA (and a "0" CC value to pick the NAR)

while bit 53=1 causes a "0" value of the selected CC to pick

the optional NA (and a "1" CC value to pick the NAR). A

study of the CMAD address gating functions shown in Fig. A2

will verify the use of bits 45-54 as just described.

42

IRO - Instruction Register Op Code Portion,
ESI - Extended Shifter Input, ESO - Extended Shifter Output,
CMAD - Control Memory Address Decoder,
etc.
(See Fig. 1 for other .abbreviations.)

AI2

KBD

MOR

41

INDEX ~OIRA l~
l~ PGC l~AOl INDEX

AC CUM\ 210 1'1
.,........____.""'"--__, 8 9 s 0 1

'"J.L-....... ...L-&=-;1

24 · 25· 26-ADD
24·25·26-ADDAil
24·25·26-ADDAI2

24 · 25· 26-AND
24·25·26-0R

24· 25· 26-XOR

Sil

MIR AI2 ACCUM INDEX

AOl IRA

MAR Ail

KEYBOARD
CONTROLLER

ACCUM~ 27 ~ l KBD I
KBDRDY4~~t _________ __

PRINTER
CONTROLLER

PTR

Ail PTRRDY~~~-------

Fig. Al HMl Working Hardware

43

NOTE: Bits 1-54 constitute the Control Register (see Fig. 2).

MAR MIR ~ ESI Sil ~ INDEX PGC IR
8 8
z z
(.) u

Ul
~

Ail AI2 CI ACCUM PTR

optional NA selection regular NA (Next Addr.)

cond'l branch
on indicated
cond' code (CC)

Q)

NAR (Next Addr. Reg.) I
/

NAR--_..._~(~L~1~)_+~5~~~

IRO--_...__...__..._~S~2~~-
Ul •
::::1 Ul

:>
::c:
(.)

8 CMAD
~ i·54· (53·CC·+53·CCi)
II

FETCH 1 :

~ i·S4· (53·cc·+53·cc·)
SKIP& 1 1

::::
r-1 FETCH cO c
0

·r-1
+>
~
0

where i=45,46,47,
48,49,50,
51

Fig. A2 Microinstruction Format & Addressing

44

READ (LOAD)-FROM-MEMORY (L: 1-3,18). (L: 6-7 ,41,29)

STORE-INTO-MEMORY (L: 1-5,17). (18)

ADDER/ALU
(L 7-14,19-23,24-26,42)• (L: 2,4,15-16,20,22,30,35,45-48)

SHIFTER ESO (L: 35-38,39-40). (34)

SHIFTER SOl (L: 32-38,39-40) • (L 21,23,28,31,38)

ACCUM (L: 6 , 15 , 2 7-2 8) • (L 5 , 8 , 3 6 , 4 4 , 4 9)

INDEX (L 2 9-31) • (L: 11 , 17 , 3 7)

IR (41) • (L 3, 19,4 2-4 3, 52)

P GC (L: 16 , 4 3) • (L: 1 , 9)

KBD (2 7) • (5 0)

PTR (4 4) • (51)

COND'L BRANCH (& IRO BRANCH) (L 4 5- 51 , 52)

Fig. A3 HMl Inhibit Functions

45

APPENDIX B

HMO ALGORITHM DETAIL

46

A. REQUIREMENTS

It is essential that the HMO algorithm meet the follow­

ing four requirements: (1) the condensed output code must

be equivalent to (yield same results as) the uncondensed

input code, (2) the output code should be as condensed as

possible, (3) the HMO hardware should be as simple as pos­

sible, and (4) the algorithm should perform as fast as pos­

sible. Obviously, requirement 1 is the highest priority

requirement which, if not met, renders the algorithm com­

pletely useless. On the other hand, requirements 2, 3,

and 4 cannot be rigidly ordered by priority because, as

might be expected, they are interrelated by inevitable

tradeoffs.

B. USES

Near the end of Section I, two basic uses for the HMO

algorithm were mentioned, either interpretive execution (of

each condensed result which is then discarded) or pre-pass

compilation (of all condensed results which are saved to form

an entire condensed microprogram). At that point, inter ­

pretive execution was ruled out on the basis that it would

require (1) repeated condensing of repeatedly executed

blocks of microcode . Other disadvantages associated with

interpretive execut i on are (2) the long- time occupation of

control memory space with uncondensed blocks of microcode

47

and (3) the difficulty of assuring any overall speed increase

(control memory would have to be cycled fast enough so that

each condensed result could be formulated by the time the

associated microcontrolled hardware was ready for it). In­

d e ed, these disadvantages seem to make interpretive execution

generally undesirable (with the possible exception of very

low-usage microprograms). However, note that, unlike the

static approach of pre-pass compilation, interpretive execu­

tion is a dynamic type of condensing. This dynamic property,

as will be seen later, could be advantageous in helping to

realize a more complex condensing approach for the algorithm.

Since, in general, so many inherent disadvantages exist

for interpretive execution, this research has concentrated

primarily on the use of the HMO algorithm as a pre-pass con­

densing compiler. Thus, unless otherwise stated, the re­

mainder of this appendix can be assumed as concerned with

the pre-pass compiler use.

C. GENERAL CHARACTERISTICS AND ASSUMPTIONS

To facilitate understanding of the various HMO pre-

pass compiler design considerations, the following general

characteri.stics and assumptions should be kept in mind: (1)

algorithm is "1-pass" (primarily for simplicity) , (2) overall

optimization approach is a 2-level software-then-hardware

approach, (3) uncondensed (partially condensed) microcode

received from software compiler is "directly executable" or

48

"condensable-then-executable" from control memory, (4)

algorithm transforms vertical code (serial hardware utiliza­

tion) into more horizontal code (parallel hardware utiliza­

tion), (5) algorithm proceeds, generally, under the "1-

microcycle assumption" (microcontrolled operations com­

pletable in one control memory cycle), (6) algorithm is

intended for local optimization.

D. RESULTANT PROPERTIES

The above characteristics and assumptions lead to the

definition of many properties for the pre-pass compiler use,

two of which are the following: (1) "restoration at the

top" and (2) "retention of temporary garbage". Property

1 simply means that a condensed result is always restored (in

control memory) at the position initially occupied by the

top, or first, microinstruction of the original, uncondensed

group of microinstructions (see first example of Fig. 3).

This "restoration at the top" allows easiest formation of the

"next address" portion of each condensed result (simply use,

as implied in Fig. 2, the "next address" portion of the last

instruction condensed onto the condensed result) and helps

assure that the "temporary garbage" of property 2 is left

intact. Property 2 simply means that all instructions be­

tween restored condensed results (such as instructions 3

and 4 of the first example of Fig . 3), even though they

appear to be useless garbage (by the time instruction 5 is

49

reached during the single condensing pass), must be retained

in original form at least until the condensing pass is en­

tirely finished. Property 2 and property 1 together are

necessary and sufficient conditions to ensure proper handling

of "loop-backs". For example, it is obvious that instruction

4 must be retained (property 2) in case it is "looped

back to" from some later point in the uncondensed microcode.

Furthermore, by insisting that the condensed result of instruc­

tions 2, 3, and 4 be restored in position 2 (property 1)

rather than, say, position 4, it is certain that such a

"loop-back" to 4 (during the condensing pass) will find

instruction 4 isolated and in its original form (as the

uncondensed code intended) rather than finding a condensed

combination of instructions 2, 3, and 4 (not intended

by uncondensed code) . The reader will notice that properties

1 . and 2 are direct, but subtle, results mainly of the

"1-pass" assumption.

E. CONDENSING TECHNIQUE

Concerning the actual condensing technique used to condense

a microinstruction onto the condensed result being formed,

Section II.C discussed a particular technique suitable for

removing nonproductive transfers (Fig . 6). The reader may

wonder why simply "ORing" the entire upcoming control portion

onto the control register portion of the condensed result be­

ing formed was not suggested as a suitable condensing tech­

nique. Note that application of such a technique in Fig. 6

50

would have produced as the first condensed result an instruc­

tion containing not only "Ail+-PGC" but also "Ail+-ACCUM".

Thus, the condensed code would not even be equivalent to the

uncondensed code. To remedy this obviously unacceptable

situation, "mutual exclusivity" inhibits could be added to

the list of Fig. A3 to prohibit condensing whenever the up­

coming instruction and the condensed result being formed both

contained input transfers to the same register. Thus, in

Fig. 6, for example, an Ail input set "mutual exclusivity"

inhibit would have been used to prevent instruction 2

from condensing onto instruction 1, the result being that

the condensed microcode would then be identical to the

original uncondensed microcode. Obviously, then, the simple

"ORing" condensing technique would not only necessitate more

inhibit functions and associated hardware but also would pre ­

vent HMO removal of nonproductive transfers.

Specifically, to employ the more powerful set-related

condensing technique of Section II.C, the following bit sets

(of bits 1-54 of Fig. A2) should be condensed according to

the two-part rule of Section II.C: bits 1-3, bits 4-5, 17,

bits 32 -3 4, bits 35-38, bits 39-40, bits 29-31, bits 16, 43,

bit 41, bits 8-10, 19-21, bits 7, 11-12, 42, 22-23, bits

13-14, bits 24-26, bits 6, 15, 27-28, bit 44 (all these

groups constituting the various register input sets referred

to in Section II.C), bit 18 (the write control set), and bits

45 - 54 (the optional next address selection set) .

51

F. CONDENSING LIMITS

The reader will recall from Sections II.A and III.B

that one condensing limit of interest was whether or not

to allow condensing "past" (as well as "up-to-and-including")

conditional branch microinstructions. A more detailed dis­

cussion of the ramifications of this condensing limit

appears in Subsection G of this appendix.

Another condensing limit of interest concerns whether or

not to allow the condensing of the beginning of factory­

supplied routines (such as "FETCH" and "SKIP&FETCH") onto

the tail end of user routines (whenever the inhibit func­

tions would so allow). As will be seen later, use of appro­

priate control means (such as "condensed" bit markers) for

determining the end point of the algorithm's condensing pass

could make possible such condensings.

G. SPECTRUM OF POSSIBLE MICROINSTRUCTION FORMATS

The reader will recall from Section III.B that the

microinstruction addressing flexibility necessary to accommo­

date "leap frog" style execution jumps (which circumvent

groups of "garbage" instructions remaining from the HMO

condensing pass) implies the need for at least one complete

"next address" in each microinstruction [13] (Fig. 2, Fig.

A2). Furthermore, to accommodate conditional choice of

"next addresses" (for conditional branch microinstructions),

52

some means of producing at least one other "next address"

must be incorporated. For example, the microinstruction

addressing format of HMl (Fig. A2) allows a choice between

the complete "next address" in the NAR and one of two

optional hardwired "next addresses". This HMl format is,

in fact, a marginally adequate one (as long as condensing

"past" conditional branches is prohibited) representing the

extreme simple end of the spectrum of possible formats.

On the other hand, if one wishes to ideally allow, in

one condensed result, condensing "up to and including and

past" conditional branches (Section II.A) down one of the

optional paths, then microinstruction formats representing

the extreme complex end of this spectrum become mandatory.

Specifically, the second example of Fig. 3 demonstrated that

condensing "past" CB's (conditional branches) necessitated

room in the microinstruction for two sets of con trol informa­

tion (essentially so that the collection of transfers to be

executed could be "conditionally tuned" to the chosen path).

Furthermore, condensing "past" CB's and down one of the

paths results in the algorithm automatically updating the

NA ("next address") originally pointing to the start of this

particular path. Note, however, that the NA pointing to

the start of the other path must remain unchanged. (For

instance, in t he second example of Fig. 3, the NA value of

" 8" originally in CB instruction 7 was updated to a value of

"10" in the condensed result on the right while the other NA

value of "FETCH" necessarily remained unchanged.) The con­

clusion resulting from this requirement is that the two

53

NA's available to a CB instruction must be completely in­

dependent (so that one NA may be changed without changing

the other). Thus, one instruction format suitable to allow­

ing condensing "past" CB's (down one of the paths) is a

format having essentially two complete control sections

and two complete NA's in each microword. (Note, of course,

that one does not need to duplicate the bit group of 45-54 of

Fig. A2 in the second control section.)

Fig. Bl illustrates the spectrum of possible micro­

instruction formats and the position of the two formats

just discussed on this spectrum. One thing hinted at in

Fig. Bl is the microprogramming flexibility provided by a

CC inverting bit such as bit 53 of Fig. A2. For example,

consider microprogramming the complex format of Fig. Bl.

Even though two complete stored NA's are in each microword,

a bit such as bit 53 allows the user to microprogram any

problem so that, say, the left stored NA of a CB is always

the one which points to the "non-branch", or most often used,

path. (If such a bit were not used and a particular value

of the selected CC always caused use of a particular one

of the two available NA's, programming situations would

a r ise in which sometimes the right NA, rather than always

the left NA, would be pointing to the "non- branch" path.)

Thus, if the left NA always points to the most often used

path, it is an easy matter for the hardware algorithm to

choose, and thereby "favor", this path as it attempts to

54

condense "past" a CB, leaving, generally, the other path to

be covered later from its beginning.

At this point, the reader may wonder why the complex

format on the right of Fig. Bl was not proposed for HMl, since

indeed this format appears to be the ultimate one in terms

of microprogramming flexibility, compatibility with the

ideal CB condensing approach, etc. The obvious answer is

that this format, with its essentially "double-length" micro­

words, would be completely wasting one control section and

one stored NA for all non-CB microinstructions. Since non-

CB instructions probably account for the majority of most

microprograms, such blatantly inefficient bit usage of

control memory is a ridiculously high price to pay for the

advantages of this format.

One obvious scheme, then, to consider at this point is

a hybrid "single-length/double-length" scheme in which either

two non-CB instructions or one CB instruction can be stored in

each essentially double-length microword. Indeed, such a

scheme at first seems feasible, the only obvious hardware

requirement being a micromemory single-length/double-length

read/write capability. The real problems stem from this

scheme's incompatibility with the present simple, unrestricted

form of the HMO algorithm. For example, using this scheme,

whenever the algorithm restored a condensed, conditional,

double-length result, it would generally be destroying one

single-length temporary garbage instruction and possibly

trying to restore this double-length result starting on an

55

"odd" boundary, or the midpoint of a double-length micro­

word [13] (an action not always permitted in single-length/

double-length addressing schemes, e.g. IBM 360/Model 50 main

memory addressing [14]). Fig. B2 is a hypothetical, general

example illustrating the problems just mentioned for this

hybrid scheme.

As might be anticipated, many other microinstruction

formats are capable of bit-efficiently producing, for CB's,

an extra set of control information and/or an extra, complete­

ly independent NA. For example, the basic format of one CS

(control section) and one NA could be augmented to include

multiple-use fields so that in cs•s a portion of what is

normally, say, the CS (for non-CB"s) could be "borrowed" to

create an extra NA (and/or possibly a partial extra CS).

However, such a "borrowing" of bits from some other essential

microword section would result in (1) some loss of, in CB's,

the potential informational content of that section and,

therefore, (2) generally some loss (due to a needed, added

"field availability" inhibit function) of CB .. upward"

condensability (up onto preceding instructions). As a second

example, consider a scheme in which an 11 0ptional branch

register" would always be microinstruction-prel·oaded with

an optional NA so that a CB, when later reached, could

choose between its stored NA and the "optional branch

register" contents. Although workable, such a preloading

scheme would result in potential CB "upward,. condensability

loss due to the need to ensure appropriate distance (via an

56

added inhibit) between the preloading instruction and the

corresponding CB itself. (Further note that, if, in the

interest of bit efficiency, the preloading instruction ob­

tained the optional NA from a self-contained, multiple-use,

"borrowed" field, then this preloading instruction would

itself suffer problems (1) and {2) mentioned above for a

CB employing "borrowed" fields.) The problems incurred,

then, in these two example schemes, highlight the general

desirability of having the sources of a CB's extra informa­

tion (extra CS and extra NA) be self-sufficient, with no

need to infringe upon other essential informational fields

or to depend upon preceding microinstructions.

Not surprisingly, prohibiting condensing "past" CB's

makes workable many other members of that myriad of micro­

instruction format schemes implied in Fig. Bl. Indeed, with

the elimination of the need for an extra CS and the elimina­

tion of the requirement that the two NA's available to a CB

be completely independent, the workability of many more in­

struction schemes is to be expected. For example, IBM's

branch set concept [3], [23] could be used to augment the

basic "one CS and one stored NA" format, allowing formation

of, for CB's, a sequential set of interdependent NA's by

cc "injection" into the lower-order bit(s) of the stored

NA. However, although allowable when condensing "past" CB's

is prohibited, such interdependence of CB NA's is still

deemed undesirable. In the interest of user-program load­

ing flexibility (needed in the face of a control memory

57

conceivably filled with a combination of interlinked con­

densed instructions and an erratically interspersed residue

of garbage instructions), employing completely independent

CB NA's avoids the potential difficulty of finding two

properly (e.g., sequentially) spaced available (garbage­

filled) microwords in which to place the two target instruc­

tions of a CB.

Obviously, all the possible microinstruction formats

implied by Fig. Bl cannot be discussed in detail in this

subsection. However, it should be evident by this point that

selection of the "best" format scheme would be a formidable

task, involving the complex, but inevitable, tradeoff areas

of microprogramming flexibility, complexity of microinstruc­

tion handling hardware, efficiency of control memory bit

usage, and compatibility with the HMO algorithm in its present,

simple, unrestricted form. Although the simple instruction

format represented by the left end of the spectrum of Fig.

Bl is by no means considered the ultimate format, it was

chosen for HMl because it is simple yet .more than adequate

as an initial design base.

H. CONDENSING APPROACH

As implied in Fig. 2, the present simple form of __ the HMO

algorithm allows the next upcoming microword to condense onto

the condensed result being formed only if the entire upcoming

cs is condensable (no inhibits active). In other words,

58

this approach might be described as the condense "by-whole­

word-only" (specifically, "by-whole-CS-only") approach,

an approach in which uninhibited control bits are automati­

cally prohibited from condensing by any other currently

inhibited control bits. Section II.B and Fig. 5 illustrated

a possible condensing inefficiency resulting from this

simple "by-whole-word-only" condensing approach. Section

II.B further ruled out a more sophisticated hardware con­

densing approach on the basis of several associated, in­

tricate problems.

Specifically, this sophisticated approach would have

cycled instructions (to be examined for condensability) up

through a multilevel first-in-first-out stack in which in­

dividual bit columns were basically independently mobile so

that individual columns could be moved upward (until in­

dividually inhibited) even though other columns were currently

inhibited. Thus, in the example of Fig. S(a), assuming that

instruction 1 is already in the condensing register and

that instructions 2, 3, and 4 are in the top three rows

of the stack being scrutinized for condensability, the

algorithm could look past row 1 (where the column contain-

ing "All+-ACCUM" is currently inhibited by the accumulator

inhibit) to row 2 to recognize that the independently mobile

column containing "INDEX+DATA2" is presently uninhibited and,

in fact, capable of being moved upward so that "INDEX+DATA2"

enters the condensing register along side of "ACCUM+DATAl".

Fig. B3 il l us t rates the condensing obtainable with this

"b¥-individual- bit- column" approach.

59

However, the potential problems associated with this

more sophisticated approach are many. First, concerning

hardware complexity, not only is the column-mobile stack re­

quired, but to ensure all columns are inhibitable from all

stack levels, multiple copies of the inhibits of Fig. A3

are needed, essentially one copy of each inhibit for each

level. Furthermore, the simple inhibits of Fig. A3 would

have to be made individually more complex to prevent prob­

lems such as the one illustrated in Fig. B4. (In Fig. _B4,

the simple adder inhibit of Fig. A3 did not prevent instruc­

tion 3 from moving up past inhibited instruction 2 into

the time frame of the previous addition, and thus changing

the results of that addition. Note, however, that with the

"by- whole-word-only" ~cheme of Fig. 2, the inhibiting, via

Fig. A3's adder inhibit, of instruction 2 from condensing

up onto instruction 1 would have temporarily inhibited all

instructions following instruction 2.) Second, a potential

difficulty in assuring condensed code equivalency can be

demonstrated. If, in Fig. B3, a later "loop-back" occurred

to instruction 2 (now condensed as shown on the right) ,

this "loop-back" would no longer subsequently incur the "IN­

DEX+DATA2" transfer of instruction 3 as it would have in

the original, uncondensed code . (Obviously, potential

"loop-back" equivalency problems also exist for the uncon­

densed code reordering , or pretailoring, employed in Fig.

S(b) . However, if, as suggested in Section II.B, the soft­

ware compiler is used for this pretailoring, the multiple

60

passes assumed available should make possible the detection,

and thus prevention,of such potential equivalency problems.

This is not the case for the HMO algorithm, whose 1-pass

simplicity renders impossible the predetection of such

potential loop-back unequivalency problems.) Third, the

difficulty of determining the NA to be placed in each con­

densed result is increased. Note that if, in Fig. B3, the

NA from the instruction most recently condensed were used as

the NA of the condensed result (as implied in Fig. 2), the NA

found in condensed instruction 1 on the right would in­

correctly be a value of "4". Thus, the "by-individual-bit­

column" condensing approach demands a more complex NA determi­

nation scheme for condensed results. As can be seen, these

nagging problems associated with the sophisticated "by­

individual-bit-column" scheme make this scheme generally

unsuitable for use by a hopefully simple, straightforward,

1-pass hardware algorithm such as HMO.

Two notes are of interest concerning this more complex

"by-individual-bit-column" condensing approach. First,

this approach (with all its problems) is not to be confused

with the scheme of Section IV.C which, although also using a

"far-look-ahead" stack, is still a "by-whole-word-only"

approach (modified to allow adjustment of an inhibit func­

tion ' s "field of view"). Second, the dynamic property of the

interpretive execution use of the algorithm (see Subsection

B o f this appendix) could be of use in helping to alleviate

the second and third problems just cited for this more

61

sophisticated condensing approach. Since interpretive execu­

tion does not alter the microcode in control memory, a later

return, via some different flow path, to an already passed

over block of code (such as a "loop-back") would present no

special problem, as the interpreter would then simply flow

through the still intact original code in a new manner,

dynamically collecting an appropriate condensed result.

Thus, no potential condensed code equivalency problems are

introduced. Furthermore, since interpretive execution does

not restore condensed results, but instead immediately executes

such results and then discards them, there is no need to worry

about even determining a suitable NA to be restored in each

condensed result. The interpretive executer would simply

collect a condensed control section result off the top of the

stack (which would be kept full, as required, by insertion of

upcoming microinstructions at the stack bottom), execute it,

and then begin formulating the next condensed result.

I. MORE DETAIL ON PRE-PASS CONDENSING COMPILER USE

Fig. BS shows more of the detail needed for using the

HMO algorithm as a pre-pass condensing compiler. The RAR, or

restoration address register, is simply some register in which

to hold the address pointing to the control memory position

(the "top" position of the original uncondensed code group)

where the condensed result will be restored. The use of the

"condensed" marker bit is, as the name implies, a means of

62

marking restored condensed results as the algorithm proceeds

through its one a nd only condensing pass. By using these

marker bits to later distinguish between condensed results

and yet unchanged code (e.g., "temporary garbage"), the

algorithm can spot the point at which to stop its pass rather

than, say, getting futilely entrapped in a "loop-back" situa­

tion where it might endlessly be reexamining already con ­

densed code. In fact, assuming the factory-supplied-and­

condensed routines (such as "FETCH" and "SKIP&FETCH" of Fig.

A2) were appropriately marked as "condensed" with these

marker bits, the algorithm could attempt to condense the

beginnings of such factory-supplied routines, when possible,

onto the tail end of user routines (but only to the point

where proceeding further would mean nothing but wastefully

recycling over nothing but interlinked, already-condensed

results). Finally, note that in the "DONE" block of Fig.

BS the possibility of having to go back and cover yet un­

touched code paths is implied. This possibility results

directly from the algorithm choosing, for CB's, one path

to work on immediately, thus leaving the other path for later

attention. Such a residue of paths yet to be covered would

exist, generally, for most microinstruction formats, with

the exception of formats like that of HMl (leftmost format

of Fig. Bl). With such a format, assuming the algorithm

always chooses the CB's stored NA as the path to work on

i mmediately, the remaining temporarily untouched NA would

always point to the beginning of some already condensed,

63

factory-supplied routine which exits from the user-written

microcode. Obviously, there i s no need to send the algorithm

back to attempt condensing at the beginning of already con­

densed exit routines, as such attempts would never find any

condensability.

J. SOME IMPLEMENTATION CONSIDERATIONS

It should now be evident that the considerations in­

volved in integrating a new component, such as the HMO algo­

rithm, into a system so that this new component works well

and smoothly with other system components (e.g., the software

microprogram compiler, the other hardware of the host machine,

etc.) are many and complex. Since this research is merely

the first phase of an overall systems design approach (that

would eventually lead to a detailed, physical, microprogram­

mable system incorporating an HMO algorithm implementation) ,

it has concentrated primarily on HMO algorithm support con­

siderations aimed at developing a system environment suitable

for supporting the algorithm (e.g., the algorithm/software

compiler cooperation and separation areas of Section II, the

microinstruction format tradeoffs of Subsection G of this

appendix, etc .). Indeed, such support considerations are

the most important first step (as opposed to rushing blindly

into a physical algorithm implementation) if the eventual

system is to be a smoothly working system (rather than an ad

hoc collection of hastily conceived, uncooperative parts).

However, the remainder of this subsection will present, in

64

extreme brevity, some of the actual algorithm implementation

considerations deemed relevant at this initial design stage.

One consideration is the type of implementation. For

example, although a conventional hardware implementation is

certainly possible, a firmware implementation is deemed

desirable due to its flexibility (for design changes) and

its correctability (for design mistakes) .

Another consideration of interest is how to initiate

the algorithm. For example, the algorithm could be initiated

under strictly user control via machine instruction (by use

of a special combination of addressing mode bits available

with all operation codes, by use of a separate, unique op

code solely for condensing, etc.). However, one quite

logical method would be to have the system's microprogram

loader itself initiate, if so directed, the algorithm on a

microprogram immediately following the microprogram load.

(It must be noted at this point that many techniques employed

by the algorithm were chosen, at least in part, because of

the flexibility they allowed in the overall picture. For

example, rather than insist that some sort of "clean up"

routine always follow the algorithm to clean up any residue

of "temporary garbage", which is automatically circumvented

by the interlinked condensed results anyway, the "condensed"

marker bits of Fig. BS could be f~rther used to help the

microprogram loader spot, by the "off" condition of this

bit, leftover "garbage" positions which can thus be filled

with uncondensed instructions of a new user program. This

is not to say that such marker bits are, in themselves,

sufficient means to drive and control the microprogram

65

loader as, for example, following the loading of one yet un­

condensed, and thus yet unmarked, user program with the

inunediate loading of another could cause the first program

to incorrectly appear as unmarked "garbage" to the second

program. On the contrary, the point here is that it is

extremely important, in the initial phase of a design project,

to try to make decisions and choose techniques in such a way

that other system components are constrained or complicated

as little as possible. With HMO, for example, these marker

bits, in addition to their use in determining when the algo­

rithm is done, could be useful in helping prevent the re­

strictive complication that a "garbage clean up" pass be

performed either by the algorithm or by some other system

component, such as the microprogram loader.)

Another consideration of interest, assuming a firmware

implementation is chosen, is how to allot available control

memory. For example, rather than have one WCS (writable con­

trol store) contain everything, the author's present in­

clination is to suggest both a WCS (containing at least all

user microprograms and other routines of pertinence to the

HMO algorithm as it condenses , such as "FETCH" and "SKIP& ­

FETCH" of Fig. A2, non - user routines which the algorithm may

be trying to partially condense onto the tail end of user

routines) and a separate ROM (containing at least the HMO

algorithm itself and other routines with which the algorithm

66

will cooperate, such as the microprogram loader). Such

placement of the algorithm in a separate, essentially dedica­

ted ROM not only removes the need to use the more expensive

WCS for everything but also allows the algorithm to be

viewed more or less as an extra process simply tacked onto

the normal host hardware of HMl. Fig. B6 is a crude illustra­

tion of this suggested control memory structure.

Format Description
(of 1 microword)

Total # of NA's
available to a CB

Achieves complete
independence of
2 CB NA's

Accommodates
condensing
past CB's

less complex

1 Cntrl Sect'n,
1 Stored NA +
Fixed Option(s)

2n + # of
fixed options *

Yes

No (not w/o an
added 2nd
cntrl sect'n)

If condensing "past" Yes, thanks to
CB's used,allows easy flexibility pro­
algorithmic choice of vided by bit # 53
"non-branch" ** paths of Fig. A2

No matter which CB
path is chosen for
immediate condensing
use, would generally
need list of yet un­
used paths for later
condensing coverage

No,assuming stored
NA's covered imme­
diately, remaining
fixed options
always point to
factory-supplied,
condensed routines
which exit from
user microprogram

No (assuming small
of fixed options
pointing to fac­
tory-supplied rou­
tines), some prob-

6 7

more complex --more flexible
microprogramming­

wise

Myriad
·····Of·······
Other
Schemes

2 Full Cntrl
Sect'ns,

2 Full
Stored NA' s

Yes

Yes

Yes, if bit
like # 53
of Fig. A2
employed

Yes

Yes Allows flexible
enough CB's to
directly micro­
program any problem
within host
machine's
capabilities

1 ems (e . g . , I I 0 · · · · · · · ·
"wait" loops) nec­
essarily relegated
to machine instr'n
level (software)

* "n" is # of bits/stored NA.
** See 2nd-to-last paragraph of Section I.

Fig. Bl Spectrum of Possible Microinstruction Formats

68

1""-
1 "even"

I"..
"odd"

I boundary boundary

I
I
12:

(CS)

(CS)

{NA) 1:

3:

(CS) to 2; (NA)

(CS) to 4 i (NA)

14 (CB) : (CSl)

to 3; (NA)

to 5; (NAl) (CS2) to ? ; (NA2)
/* "?" points to "branch"

path. */ I
I
15:
I
I
I
I

{CS) to 6; (NA) 6: (CS) to NEXT; (NA)
/* NEXT is some "next

address" of no interest
here. */

NOTE: Above microcode is shown in uncondensed form;
assume instr'ns 1-6 found condensable.

NOTE: CS - Control Section, NA - Next Address,
CB - Conditional Branch

NOTE: The double-length condensed result would be
restored "at the top" in positions 1 & 2, thus
destroying "temporary garbage" instruction 2.

Fig. B2 Pot~ntial Problems with Hybrid
Single-Length/Double-Length Format

1: ACCUM+DATAl; to 2;

2: Ail+ACCUM; to 3;

3: INDEX+DATA2; to 4;

4: AI2+INDEX; to NEXT;
I* NEXT is some

"next address"
of no interest
here. *I

uncondensed microcode

69

1: ACCUM+DATAl; INDEX+DATA2;
to 2;
I* Above formed from

instr'ns 1 & 3. *I

2: Ail+ACCUM; AI2+INDEX;
to NEXT;
I* Above formed from

instr'ns 2 & 4. *I

3: I* "Temp' garb'," same as
on left *I

4: I* "Temp' garb'," same as
on left *I

condensed microcode (via
"by-individual-bit-column"
approach)

Fig. B3 Use of "By-Individual-Bit-Column" Approach

1: Ail+DATAl; AI2+DATA2;
CI+O; to 2;

2: ACCUM+AOl; to 3;

3: AI2+DATA3; to NEXT;
/* NEXT is some

"next address" of
no interest here.
*I

uncondensed microcode

7 0

1: Ail+DATAl; AI2+DATA3;
CI+O; to 2;
I* Note that "AI2+DATA3"

(instr'n 3 of uncon­
densed code) has been
moved up into the time
frame of this addition,
thus changing the added
result transferred by
the following instruc­
tion. */

2: ACCUM+AOl; to NEXT;
I* Above instr 'n no long­

er produces results
equivalent to uncon­
densed code. */

3: I* "Temp' garb'," same as
on left */

condensed, unequivalent
microcode (via "by-individ­
ual-bit-column" approach)

Fig. B4 Potential Problem with
"By-Individual-Bit-Column" Approach

Master
Register

DONE (at
least with
this

Save Starting
Address in RAR

Load Upcoming Micro­
word into Master
Register

Yes

Condense (via Section
II.C technique) Upcom­
ing CS into Control
Register

71

Restore Con­
tents of Master
Register

Turn On "Con­
densed" Marker
Bit in Master
Register

NOTE: See Fig. 's 2 & A2 for explanation of "Master
Register," "Control Register," and "NAR".

NOTE: CS - Control Section, NA - Next Address,
RAR - Restoration Address Register (any
suitable register)

Fig. BS Flow Chart of HMO Algorithm as
a Pre-Pass Condensing Compiler

Separate ROM Main WCS

* Probably need another optional CB NA (besides FETCH
and SKIP&FETCH) to implement reasonably efficient
interrupts on HMl

Fig. B6 One Possible Control Memory Layout

72

73

APPENDIX C

AREAS OF CONCENTRATION FOR FURTHER RESEARCH

74

This appendix lists areas deemed appropriate for con­

centrated research in future phases of the overall design

of HMO, a hopefully well conceived, orderly, "total-system"

design eventually leading to actual physical fruition of

a microprogrammable system with HMO algorithm. As this

research on hardware microcode optimization has proceeded

through its first phase (laying an HMO-suitable, environ­

mental, supporting foundation of algorithm properties and

techniques, compatible machine characteristics, etc.), the

areas mentioned in the remainder of this appendix have

naturally evolved as areas worthy of attention in any further

research.

First, a concentrated investigation of microinstruction

formats compatible with the ideal approach of condensing

"past" CB's (conditional branches) should be pe rformed, the

aim being to develop the "ultimate" format which is as

flexible · and powerful as the "strictly double-length" format

(see extreme right end of Fig. Bl's spectrum) yet free of

its glaring bit inefficiencies.

Second, as opposed to using the algorithm strictly

for either interpretive execution or pre - pass compilation,

a hybrid "interpretively execute/compile only as needed"

use should also be analyzed. Since, for CB ' s, this hybrid

use would compile along the CB path actually being used

during execution (going back to cover the other CB path

only when and if it is later used), there would never be

any need, no matter what the microinstruction format, for

75

an accumulated list of paths yet to be covered (as there

would be, with some formats, for strictly pre-pass compila­

tion) •

Third, a skeleton software microprogram compiler should

be developed at least to a point permitting simulation of

the overall microcode generation process (including both

software compiler and hardware algorithm), such simulation

hopefully enabling, via various simulation-derived measures,

enlightened design decisions.

Fourth, the exact areas of "software compiler/hardware

algorithm" cooperation and separation should be further

investigated and crystallized, the flexibility of simulation

here allowing investigatory variation of where and how a

particular optimization chore is handled, whether primarily

by software or by hardware or by a combination of both.

Fifth, some variations of the basic algorithm should

be examined. For example, rather than allowing the algorithm

to choose (blindly in its one pass) the starting instruction

of each successive condensed result as being the first instruc­

tion inhibited from condensing onto the preceding condensed

result, these condensing- step starting points could be

adjusted (possibly by appropriate instruction markers planted

during a software compiler pass preceding the hardware

algorithm) in the hope of assuring an overall maximally

condensed program.

APPENDIX D

MISCELLANEOUS EXAMPLES

76

1: MAR+ADDRl; READ FF+O;
WRITE FF+l; CI+O; to 2;
I* Set up main mem' con­

trol for an upcoming
"store into
MEM(ADDRl); "finish
supplying adder
inputs. */

2: MBR+AOl; to 3;
I* During next

microcycle
following above
xfer,
"MEM(ADDRl)~AOl."

*I
3: MAR+ADDR2; to NEXT;

I* Begin setting up
main mem' con­
trol to work on
another address.
(NEXT is some
"next address"
of no interest
here.) *I

uncondensed microcode

77

1: MAR+ADDRl,; READ FF+O;
WRITE FF+l; CI+O; to 2;

MBR+AOl; MAR+ADDR2;
to NEXT;
I* Here, however, follow­

ing microcycle will
result in
"MEM(ADDR2)+A01." Ob­
viously, results here
no longer equivalent
to those on left. The
lack of an obvious
"finishing" step left
algorithm unaware
(even with the MAR and

MBR input "mutual ex­
clusivity" inhibits in
original scheme) that
instr'n 3 should not
be condensed onto
instr'n 2 (into the
time frame of the pre­
vious store-into­
memory process). *I

condensed, unequivalent
microcode

NOTE: This original scheme [13] used the MBR itself (no
MIR existed) to accept data to be stored. In fact,
a "store-into-memory" process really had only one
step (consisting of supplying the storage address,
storage data, and appropriate storage control in­
formation), the actual memory store being handled
invisibly by the memory controller during the fol­
lowing microcycle. Thus, although the elements of
this one step could be spread out over several
microinstructions, no succeeding instruction was
required to contain some sort of "finishing" step,
as with the "WRITE CNTRL" bit of the present main
memory scheme.

Fig. Dl Problem with Original, One-Step,
"Store-Into-Main-Memory" Scheme

1: MAR+EFF ADDR· to 2)~1}_--~1: ' dense

2: MIR+INDEX; to 3;

MAR+EFF ADDR;
MIR+INDEX; to 3;

78

3: ACCUM+MOR; to 4;
/* "ACCUM+MEM(EFF

ADDR) II */

ACCUM+MOR; WRITE CNTRL=l;
to NEXT;
/* "ACCUM+MEM(EFF ADDR)" &

"MEM (EFF ADDR) +IND.EX"
*I

4: WRITE CNTR=l; to
NEXT;
I* "MEM(EFF ADDR)

+INDEX" (NEXT
is some "next
address" of no
interest here.)
*I

uncondensed microcode condensed microcode

NOTE: The present memory controller (with both MBR and
MIR) allows both a main memory read (load) and
write (store) to occur in the same instruction
(when possible, as in instruction 3 of above
condensed code). (Specifically, when the con­
densed code is executing, the "MCR+instr'n 3"
via a major cycle pulse, "MBR(or MOR)+MEM(MAR)"
at next minor cycle pulse, and "MEM(MAR)+MIR"
at next major cycle pulse.) However, if instruc­
tions 3 & 4 of the uncondensed code had appeared
in reverse order, the "read-from-memory" inhibit
of Fig. A3 would correctly have inhibited their
condensing together. This inhibiting would be
necessary since the write (store), then occurring
first rather than last as above, would directly
affect the results of the following read (load).

Fig. D2 A Peculiarity of the Present Memory Controller

1: Ail+ACCUM; to 2;

2: Ail+ACCUM;
ACCUM+MOR; to 3;
/* Since instr'n 1

above did not
alter the ac­
cumulator's con­
tents, the 11 AI1+
ACCUM 11 xfer of
instr'n 2 above
is "redundant ..
in that it ac­
complishes noth~
ing not already
accomplished by
this same xfer
in instr'n 1.
However, since
instr'n 2 is not
inhibited by
instr'n 1 (from
any Fig. A3 in­
hibit}, the con­
densing technique
of Section II.C
can be used to
remove this re­
dundancy. */

3: Ail+ACCUM; to NEXT;
/* Due to the

"ACCUM+MOR 11 ac­
cumulator change
of instr'n 2 above,
the "Ail+ACCUM"
xfer of instr'n 3
above is not "re­
dundant."(NEXT is
some "next address"
of no interest
here.) */

uncondensed microcode

79

Ail+ACCUM; ACCUM+MOR;
to 3;

3: Ail+ACCUM; to NEXT;

condensed microcode

Fig. D3 Redundant Transfer Removal

1: Sil+ACCUM; ESI+O;
SCNTRL+RSHFT; to 2;
I* Above will produce,

at SOl, l
(O+ACCUM+lost) . *I

2: Sil+SOl; to 3;
I* Above will produce,

at SOl,
(O+ACCUM+lost) 2 . *I

3: Sil+SOl; to 4;
I* Above will produce,

at SOl, 3 (O+ACCUM+lost) . *I

4: Sil+SOl; to 5;
I* Above will produce,

at SOl, 4 (O+ACCUM+lost) . */

5: ACCUM+SOl; to NEXT:
I* That is, ACCUM

4
gets

(O+ACCUM+lost) .
(NEXT is some "next
address" of no
interest here.) *I

uncondensed microcode

80

NOTE: The microcode on the
left is not con­
densable. Note, for
example, that al­
though the consecu­
tive string of
"Sil+SOl" transfers
(instr'ns 2-4) may
appear to contain
redundancy or non­
productiveness, it
does not. Each such
transfer is a
productive transfer
of transformed shift­
er output data back
to the shifter input
for further trans­
formation. The HMO
algorithm recognizes
the general nonremov­
ability of such
direct feedback
transfers by having
the associated
inhibit function
treat them as both
a functional unit
input and output.
(Specifically, in
this case, bit 38
appears in both
terms of the
"SHIFTER SOl"
inhibit of Fig. A3.)

NOTE: "(O+ACCUM+lost)i" refers to ani-times-repeated
one-bit accumulator right shift during which the
left-most bit receives a "0" and the right-most
bit is lost.

Fig. D4 Appropriate Handling of Functional
Unit Direct Feedback Paths

1: Ail+ACCUM; AI2+MOR; CI+O;
to 2;
I* Nonproductiveness of

"AI2+MOR" in above is
disguised by
"ACCUM+AOl" in follow­
ing instruction # 2. *I

2: AI2+INDEX; ACCUM+AOl; to 3;
I* Above "ACCUM+AOl" is

nonproductive. *I

3: ACCUM+AOl; to NEXT;
I* NEXT is some "next

address" of no
interest here. *I

uncondensed microcode

1: Ail+ACCUM; AI2+MOR;
CI+O; to 2;
I* Nonproductiveness

of "AI2+MOR" in
above no longer
disguised since
"ACCUM+AOl" no
longer in follow­
ing instr'n # 2
*I

2: AI2+INDEX; to 3;

3: ACCUM+AOl; to NEXT;

uncondensed microcode

(a)

(b)

81

NOTE: HMO algorithm (as
presented) would
find code on left
uncondensable.
Below, "ACCUM+AOl"
has been removed
from instruction
2 so that code
is condensable.

Ail+ACCUM; AI2+INDEX;
CI+O; to 3;

3: ACCUM+AOl; to NEXT;

condensed microcode

Fig. DS Disguised, Larger-Scale Nonproductiveness

1: to (PTRRDY) 2, SKIP&FETCH;
I* If PTRRDY=O (i.e.,

PTRRDY=l, or printer
ready), then go to 2;
else go to SKIP&FETCH
(and possibly link
into a "wait" loop at
machine instr'n level).
*I

2: PTR+ACCUM; to 3;
I* Execute output trans­

fer. (PTR inhibit of
Fig. A3 treats above
xfer as "starting"
step of output
process.) *I

3: to (PTRRDY) 4, SKIP&FETCH;
I* Test for availability

of output channel for
another output. (PTR
inhibit necessarily
treats above PTRRDY
test as "finishing"
step of output process
begun in instr'n 2.) */

4: PTR+ACCUM; to NEXT;
I* Interestingly, the

second output xfer in 4
above will never be
performed, since instr'n
3, if reached, will al­
ways find the printer
still busy from the first
output xfer in instr'n 2.
(NEXT is some "next
address" of no interest
here.) */

uncondensed microcode

82

NOTE: The microcode on
left is not con­
densable (due to
noncondensability
"past" CB's with
aMl's microinstruc­
tion format and to
the noncondensabil­
ity of instr'ns 2
and 3 caused by the
PTR inhibit of
Fig. A3). Note
that if instr'ns
2 and 3 had been
condensed together,
then this condensed
result, when
reached from instr'n
1, would perform the
first "PTR+ACCUM"
and simultaneously
find the PTRRDY CC
still indicating
the printer as
ready, thereby
causing instr'n 4
to be performed
next. (In other
words, whenever the
first output xfer
was found perform­
able, the second
output transfer
would immediately
follow one micro­
cycle later, an
obviously incorrect
situation.)

Fig. 06 Futility of Microprogramming HMl to Perform 2
Immediately Successive Output (or Input) Transfers

1: Ail+ACCUM; AI2+INDEX;
CI+O; ACNTRL+ADD;
to 2;
I* Prepare to add

ACCUM & INDEX .
(Assume addition
w1ll take 3 micro­
cycles after this
instr'n to
complete.) *I

2: ACCUM+AOl; to 3;
I* Place added result

in ACCUM. *I
3: Sil+ACCUM; ESI+O;

SCNTRL+RSHFT; to 4;
I* Place added result

in Sil and prepare
to right-shift it
once. (Note,
w.r.t. getting
added result from
AOl to Sil, ACCUM
here appears as
intermediate (tem­
porary) storage
station.) *I

4: INDEX+SOl; to NEXT;
I* Put right-shifted,

added result in
INDEX. (NEXT is
some "next
address" of no
interest here.) *I

condensed microcode
(under "1-microcycle
assumption")

NOTE: The 1-microcycle
assumption not
valid here be­
cause example
assumes addition
takes 3 micro­
cycles. However,
Tomasulo hardware
could allow exe­
cution to proceed
as on right.

83

I* Begin addition *I
Ail+ACCUM; AI2+INDEX; CI+O;
ACNTRL+ADD; (MCR +instr 1 n 2;)

I* Added result not ready,
ACCUM input not ready *I

ACCUMTAGREG+AOlTAG;
ACCUMBB+l;
I* Tag ACCU!-1 "busy awaiting

AOl It . * I
(MCR+instr 1 n 3;)

I* Added result not ready,
ACCUM busy, Sil input
not ready *I

SilTAGREG+ACCUMTAGREG(=AOl­
TAG); SilBB+l;
I* Mark Sil "busy awaiting

whatever ACCUM is
awaiting (AOl)" *I

I* Supply available shifter
inputs *I

ESI+O; SCNTRL+RSHFT;
(MCR+instr 1 n 4;)

I* Added result ready *I
ACCUM+AOl; ACCUMBB+O;
I* Added result ready, but

Sil (& thus SOl) still
marked "busy awaiting
AOl" @ start of t *I

INDEXTAGREG+SOlTAG; 4

INDEXBB+l; Sil+AOl; SilBB+O;
I* Here, Sil gets adder

output directly *I

I* Shifter output ready *I
INDEX+SOl; INDEXBB+O;

corresponding execution sequence
with Tomasulo-type hardware

NOTE: BB - Busy Bit,
TAGREG - Tag Register (for

holding tags) ,
TAG - Tag (unique # asso­

ciated with a
particular
hardware unit)

Fig. D7 Possible Use of Tomasulo-Type
Hardware [18], [19] to Aid HMO Algorithm

	Towards a design of HMO, an integrated hardware microcode optimizer
	Recommended Citation

	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017
	00000018
	00000019
	00000020
	00000021
	00000022
	00000023
	00000024
	00000025
	00000026
	00000027
	00000028
	00000029
	00000030
	00000031
	00000032
	00000033
	00000034
	00000035
	00000036
	00000037
	00000038
	00000039
	00000040
	00000041
	00000042
	00000043
	00000044
	00000045
	00000046
	00000047
	00000048
	00000049
	00000050
	00000051
	00000052
	00000053
	00000054
	00000055
	00000056
	00000057
	00000058
	00000059
	00000060
	00000061
	00000062
	00000063
	00000064
	00000065
	00000066
	00000067
	00000068
	00000069
	00000070
	00000071
	00000072
	00000073
	00000074
	00000075
	00000076
	00000077
	00000078
	00000079
	00000080
	00000081
	00000082
	00000083
	00000084
	00000085
	00000086
	00000087
	00000088
	00000089
	00000090

