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ABSTRACT 

The double dips, previously observed by Fischer, Anderson, et al., 

which appeared in the reflection spectra of grating surfaces on the 

Te-doped semiconductors GaAs and InSb around the plasmon and phonon 

frequencies have been measured in more detail. In the plasmon region, 

several possible explanations of the phenomenon are discussed. A 

simple equation checked with the rigorous theory is proposed and is 

shown to fit the data well. In the phonon region, the extra dip is 

calculated and identified as being caused by surface phonons . 
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I. INTRODUCTION 

In the derivation of the reflectivity of light from solids, 

Maxwell's equations show that the reflection minima occur very close 

to those frequencies making the real part of the dielectric function 

equal to 1. Usually for single excitation modes, these reflection 

minima are also very close to the resonance frequency, near which 

the real part of the dielectric function equals zero. The Te-doped 

GaAs and InSb semiconductors which are being considered here in the 

far infrared region have only one important phonon mode plus one 

plasmon mode. When the TO-phonon frequency, wTo (or the LO-phonon 

frequency, w ), is much larger or much less than the plasmon 
Lo 

frequency, w , there is no coupling between the two modes. In this 
p 

case the frequ~ncies of the minima or dips occurring in the 

reflection curve are considered to be at w and w , or at w and Lo p To 

w . 
p 

If the surface of the sample is roughened in some manner, a new 

kind of mode which is called a surface mode
2 

can be excited. A thin 

film guided wave is also classified as a surface mode. Surface modes, 

and hence thin film guided waves, can be excited in several ways. A 

grating, the most usual type of periodically regular roughness on a 

sample, is employed in one of the two most important guided wave 

. . d t' 3 
coupling methods used 1n 1ntegrate op 1cs 

Due to their importance in spectroscopy, gratings have been well 

studied. Much effort was concentrated on Wood's anomalies of metal 

gratings. Ritchie4 was the first to show that Wood's anomalies are 

indeed due to a surface plasmons excited by a grating effect. 

1 



Surface plasmons, surface phonons, and other surface polaritons on 

doped semiconductors have been investigated by many people using the 

prism technique. 5 Fischer
6 

is the only one so far to use successfully 

heavily Te-doped InSb and GaAs semiconductors to study surface 

plasmons by the grating technique. 7 Anderson, et al. used samples of 

lower concentrations and spark cut gratings to look at the coupling 

effect of surface plasmons and surface phonons. From the shift of 

the reflection dips of the bulk plasmon and bulk phonon frequencies, 

they concluded that coupling of surface phonons and surface plasmons 

was observed. However, since the shift did not depend on the 

polarization of the incident light or the incident angle as it should 

have, there is doubt that Anderson observed the usual kind of surface 

phonon or surface plasmon. Also after the spark cut layer was etched 

off with the grating still left on the surface, the reflection result 

reduces to ·the bulk case as shown in Fig. 1. Thus we conclude that 

Anderson's result is not due to the grating effect; rather, it may 

be due to the damage layer from the spark cutting on the surface. 

Both Anderson, et al. and Fischer found unexplained phenomena 

in their experiments. In Anderson's case, Fig. l, he found a double 

dip around the phonon region. A maximum between these two dips is 

near the phonon frequency. This effect does not depend on the 

polarization of the incident light or the incident angle. After the 

spark layer was cut on the surface, only a single dip was seen. 

There is no difference between the reflection from a smooth surface 

and the surface with the grating still on it but with the spark cut 

layer etched off. Anderson, et al. observed the double dip only for 

2 



3 

samples of InSb with an impurity concentration of 3.96xlo
17 

3 17 3 
Te-atoms/cm and 2.6xl0 Te-atoms/cm . The effect in the latter is 

weaker. 17 3 
For the third sample he used, n=l.43xl0 Te-atoms/cm and 

only one dip was found. 

In Fischer's experiments,
8 

double dips occurred in both the 

phonon and plasmon regions. Contrary to Anderson's result, they 

strongly depended on the polarization of incident light and the grating 

constants. He ~ound double dips occurring on samples of GaAs, with an 

. . . 4 2 1018 I 3 . 1mpur1ty concentrat1on n= . x Te em , grat1ng constant d = lO~m; 

InSb, with n=l.lxlo
18 

Te/cm
3

, d = 1011rn; and GaAs, with n=4.2xlo
18 

3 
Te/cm , d = 2011m. Only the first one has double dips in the 

reflectivity in the phonon region. Double dips occurred in the plasmon 

region for all of the above three samples. Fischer studied more than 

ten samples, but no special mention was made for the samples other 

than those listed above. According to Fischer, double dips of the 

phonon region occur only when the incident light is polarized with 

the electric field perpendicular to the grooves of the grating, 

while the double dips of the plasmon region occur when the electric 

field is parallel to the grooves of the grating. However, after more 

careful examination, I have found that this statement should be 

modified. 

My work has been to perform more experiments on the double dip 

problem and to formulate a reasonable explanation for this phenomenon. 

In the phonon region, it seems that Fischer's data can be expiained 

as the excitation of surface phonons by a grating. This comparatively 

less complicated work will be described only in the last chapter. I 



have done nothing for Anderson's case. The electron concentrations 

of the InSb samples I used were so high that no phonon experiment 

could be made. This can be seen from my reflection spectra as well as 

from my calculated curves - no phonon dips appear. For this reason 

most of my work concentrated on the double dips around the plasmon 

region. At first we thought these double dips were due to a kind of 

plasmon and phonon emission effect. This is a possible mechanism that 

can convert a reflection minimum into a maximum separating two dips. 

Different kinds of possible emission were assumed but none explained 

the experiments. The emission idea will be discussed in detail in a 

later chapter. I found that a grating on a surface can also produce 

the double dip around the plasmon region. In this work rigorous 

grating theory accompanied with a reasonable assumption was used to 

fit the data. The periodic surface rulings (i.e. the grati ng) did 

not alter the reflection spectra in the nan resonant frequency ranges. 

Only around the "plasma edge" did the reflection dip split in two due 

to the inhomogeneous distribution of the electrons inside the ruled 

area. 

4 
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Il. BASIC THEORIES 

In order to discuss the experimental results, some basic theories 

about the grating and su~face waves are described below. 

l. The criterion of a smooth or a rough surface: There is no 

real, perfectly smooth surface. Optically a surface being 

considered as smooth or rough depends on the wavelength of 

the incident light and the problem of interest. The Rayleigh 

. . 9 . . cr1ter1on for ~ smooth surface 1s def1ned by the rms 

roughness height h < (A/8cos8) , where A and 8 are the 

wavelength and the incident angle of the light, respectively. 

The roughness height h is shown in Fig. 2(a). Fig. 2(b) is 

for a grating case. If the groove area is small compared to 

other portions of the surface, a grating may be considered 

smooth when the grating constant d is much larger or 

smaller than the wavelength A. The usual reflection 

criterion may not be satisfied in some special reflection 

cases. If there exists a surface polariton or thin film 

guided wave coupled with the evanescent wave in the material, 

a grating surface which is smooth in the usual sense shows 

its roughness in allowing excitation of the evanescent wave. 

2. Conservation of momentum amplitude for the light scattered 

from a grating: The momentum amplitude of the light is 

conserved no matter at what angle it is scattered from a 

medium. This can be easily verified from the conservation 

of energy and momentum of the whole system. Since the 

recoil velocity of the medium is so much smaller than the 



velocity of a photon, it turns out that the momentum 

amplitude of the light is not changed. 

3. The momentum component parallel to the grating surface of 

the scattered light: Letting x be the direction along the 

grating surface, then the x-component of the momentum of the 

scattered light is k = k sinS+ 2nn/d, where n=O,±l, ±2···,k 
X 0 0 

is the wave vector (also momentum) of the incident light, 

and d is the grating constant. When light with momentum of 

x-component k sinS is incident on a single groove element of 
0 

a grating, the element scatters this incident light into 

many different modes. After superposition of the 

contributions from all individual elements, most modes will 

interfere destructively. Only those modes with x-momentum 

equaling k sinS + 2nn/d add together constructively by 
0 

matching the phase and hence have significant amplitude. 

The relation k = k sinS + 2nn/d can also be easily obtained 
X 0 

by multiplying both sides of the familiar grating formula 

d(sin8(d) -sinS) = nA by 2n/Ad and noting that k 
0 

k 
. e (d) s1.n 

0 
k 'where e(d) is the angle at which the 

X 

diffracted light is scattered. 

2n/A, 

4. Evanescent waves produced by a grating: Since the momentum 

amplitude of the scattering wave is unchanged, the z-component 

of the momentum (perpendicular to the grating surface) is 

k 
z 

It is possible that for sufficiently large 

absolute values of n such that n > (k d/2n) (l-sin8) or 
0 

n < -(k d/2n) (l+sin~), lsin8(d) I will be larger than 1 and 
0 

6 



k
2 

> k 2 . In this case, k is imaginary, indicating that an 
X 0 Z 

evanescent wave has been produced by the diffraction. It 

is this property that makes the grating a useful tool to 

excite a surface or a thin film guided wave. 10 If no suitable 

surface polariton or thin film guided wave exists in a 

medium, the evanescent wave will not take any energy, and the 

reflection of light will appear as from a smooth surface 

provided that A >> d. 

5. Band effect of the grating: Ritchie11 has shown that there 

exist band gaps for the surface wave at k = nTI/d if this 
s 

. . d b . Ri't h' 12 13 
wave 1s exc1te y a grat1ng. c 1e, Cowan, et al. 

also observed the gaps in their surface plasmon experiments 

using aluminum-coated gratings. There was no prediction 

about the gap width. The band gap is analogous to the band 

effect of solids in one dimension, or it is just the Bragg 

condition in the X-ray diffraction theorem. A wave cannot 

propagate through a periodic medium when the Bragg condition 

is satisfied, because under this condition, a standing wave 

is formed inside the periodic region and no net energy is 

transmitted. This fact has lead to the grating structure 

inside a medium being used as a band pass filter in 

d 
. 3 

integrate opt1cs. 

6. Non-existence of the TE surface modes: Surface waves 

propagate along the interface of two different media, but 

with the amplitude decreasing exponentially perpendicular 

to the interface into both media. If both media are 

7 



non-magnetic, there will be no TE surface modes. To see 

this, let the interface be the z=O plane and let one of the 

media be air occupying the z > 0 space, with the other 

medium occupying the z < 0 space. The TE mode surface waves 

are of the form 

B 

B' 

ik x -az 
(B X+ B z)e X e 

X Z 

ik'x a'z 
(B'x + B'z)e X e 

X Z 

(in air) 

(in medium) 

It is clear that a and a' must be both real and positive for 

surface waves. The boundary conditions for H and B 
X Z 

continuous at z=O yield B = B'/~, k = k' and B - B' 
X X X X Z - z• 

Inserting all these into the expressions of B and B', 

substituting them into the equations V•B ·= -O and V•B' = o, 

one finally gets the relation between a and a' as a/a' = -~, 

where ~ is the permeability of the medium. 

Now, for non-magnetic active material ~=1 and then a= -a'. 

This obviously contradicts the assumption for surface waves. 

Also if a and a' are not imaginary, the wave amplitude will 

become infinite on either side of the interface as lzl+oo. 

For TM surface mode, the argument is just the same except 

B+D, H+E, ~+£ etc. then a/a' = -£. Since the effective 

dielectric function £ can be negative, a surface wave can 

propagate along the surface. 

7. Dispersion relations for nan-radiative surface waves: The 

dispersion relation of a surface wave has been derived by 

8 



14 15 
many people. For a non-radiative mode, it is 

w~ k - -1--, and hence on the air side the wave vector 
S C +E 

component perpendicular to the surface is k = 1~> 2 
- k

2 
z 1\'c s 

; ;{}:. The parameter kz must be imaginary, and therefore 

E < -1 if a surface wave is to exist. Then, k > (w/c) means s 

that the surface wave momentum is always larger than the 

momentum of a photon. Plotting the relation between w and 

k , it is shown that at small value of w, E << -1 and s 

k ~ wjc. As w reaches the asymptotic value w , E = -1 and 
s s 

k +oo. A photon in air cannot match the momentum of the 
s 

surface wave, and hence no coupling is possible between 

them. The prism or the grating technique basically serves 

to produce an evanescent wave of the same form as the surface 

wave, with momentum greater than a free photon, so that 

coupling to the surface wave is possible. 

have shown that for complex E the form k 
s 

16 
Bell, et al. 

w~ . = - --- rema~ns 
C l+E 

unchanged. However, for complex k and real w the real part s 

of k will not go to infinity and will have a bend back 
s 

towards smaller k as w approaches w . Complex E also yields 
s 

complex k . In this case, the surface wave must have a 
z 

somewhat generalized definition. 

8. Radiative surface modes: 
4 17 Ritchie and Ferrell have shown 

that for a sample of finite thickness the non-retarded 

dispersion relation of surface waves in a metal has the 

+ -ka 1/2 
form w-(k) = (w 112> (l±e ) , where a is the thickness of 

s p 

the metal slab. 
+ 

As a+oo, w- = 12w , just the non-retarded 
s p 

9 



limit (k~) of the non-radiative mode in (7). When the 

phase velocity of the surface wave is not much smaller than 

the velocity of light, retardation must be considered. The 

above equation will split into many modes. According to 

18 + ka 112 
Kliewer and Fuchs, w (w j/2) (l+e- ) is called a 

s p 

tangential mode in which the electrons oscillate tangent to 

the metal surface. It is non-radiative, and its splitting 

when retardation is included resembles the non-radiative mode 

described in (7) . The mode with· frequency w 
s 

= (w /h)• 
p 1/2 

(1-e -ka) is the one in which the electrons oscillate 

normally between the two surfaces. This mode splits into 

many branches when retardation is taken into account, and 

some of these modes have phase velocity v > c. These modes 

19 
are radiative with complex frequency essentially equal to 

19 w • They exist only for small thickness a. 
p 

9. Dielectric function and the reflection formula: For an 

isotropic material with one phonon and one plasmon, the 

dielectric function (in the long wavelength limit) is given 

E (w) Eoo + 2 
1 - (w/w ) 

0 

2 4TINe 
* 2 m (w + iw/T) 

where E is the high frequency dielectric constant; w is 
00 0 

considered to be the transverse optical mode frequency wTo 

when r, the damping parameter of the ions, is small; OE is 

2 2 * the strength of the mode, w = 4TINe /m E ; N is the free p 00 

10 



carrier concentration with electron charge e and effective 

* mass m ; and T is the collision time of this plasmon mode. 

For the electric vector perpendicular to the plane of 

incidence, the reflectivity of the light is given by1 

R 
2 2 2 2 [(cose -a) + b ]/[(cose +a) + b ] , 

where 

2 2 1/2 
[(E' -sin 8)

2 + E" ] ±(E' - sin2
8) 

with E I Re(E(W)] 

and E" Im[E (w)] 

For InSb, McMahon has achieved an excellent data fit. As 

for my samples, especially for GaAs, the concentration is 

much higher, and the slope of the calculated curve at just 

below the plasmon frequency seems higher than the 

experimental data. 

11 



III. EXPERIMENT 

The samples were obtained from Fischer and their physical 

parameters are listed in Table I. They are n-type Te-doped 

semiconductors, GaAs and InSb. Gratings were ruled on the optically 

polished samples by a diamond ruling engine. The grooves are about 

l~m deep and wide. The size of the samples is about lcm in diameter. 

Experiments were performed in the wavelength region 

-1 -1 
350cm -900cm using a Beckman IR-12 infrared spectrometer, with a 

-1 
resolution of about 0.25cm . A IGP-225 polarizer (Molectron 

Corporation) was used. The degree of polarization is 99%, and the 

transmission is 70% within the region of interest. From the gratings 

incorporated in the spectrometer, Wood's anomalies appear for the 

polarized light. Two peaks or two dips appear at the wavenumbers 

-1 -1 270cm and 570cm (Fig. 3). When the polarized field is parallel 

to the grating grooves inside the instrument, the anomalies are two 

peaks at the above wavelengths. Also, the intensity increases 

slightly as the wavenumber increases. When the polarized field is 

perpendicular to the grooves of the grating, the behavior is just 

opposite to the previous case. This behavior was also described 

21 
by Stewart and Gallaway. It seems that the p- and s-anomalies 

should compensate each other to produce a flat intensity curve at 

some direction of the polarized field. In fact, the anomalies do 

12 

disappear at a certain orientation of the polarizer. But surprisingly, 

only a small rotation of the polarizer is required to make the 

transmission spectrum through the polarizer flat. This is very 

sensiti~e to the angle of rotation, as can be seen from Fig. 4. 
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Table I. Samples 

Grating 
Sample Concentration Constant 

AlO GaAs 
18 3 

4.2xl0 Te-atoms/cm lOllm 

A20 GaAs 
18 

4.2xl0 Te-atoms/cm 
3 

20llm 

A30 GaAs 
18 3 

4.2xl0 Te-atoms/cm 30llm 

A40 GaAs 
18 

4.2xl0 Te-atoms/cm 
3 

40llm 

BlO InSb 
18 

*l.lxlO Te-atoms/cm 
3 

lOllm 

B20 InSb 
18 3 

*l.lxlO Te-atoms/cm 20llm 

B30 InSb 
18 

*l.lxlO Te-atoms/cm 
3 

30llm 

ClO InSb 
17 

*4.7xl0 Te-atoms/cm 
3 

lOllm 

C20 InSb 
17 3 

*4.7xl0 Te-atoms/cm 20llm 

C30 InSb 
17 

*4.7xl0 Te-atoms/cm 
3 

30llm 

*Concentrations were calculated by fitting 

the normal "plasmon edge". Values originally 

marked by Fischer seem too high. 



In order to do reflection measurements for the samples, an ATR unit 

must be placed behind the polarizer. In this case, the orientation 

of the polarizer must be changed slightly to obtain a flat 

background for different incident angles. Therefore, the experiments 

were performed by first using a mirror at the sample position, 

slightly turning the orientation angle of the polarizer until a· flat 

background was obtained, and then replacing the mirror with the 

sample. Since the direction of the polarized field is only slightly 

different from the normal position, the sample holder needs only a 

little modification. 

The angle of the light incident on the sample mounted on the ATR 

unit can be varied from 15° to larger than 70°. However, not much 

data were taken with this regular arrangement, since the size of the 

samples is so small (~lcm2 } that it was very hard to obtain enough 

signal. An arrangement something like the Litt~ow Mount has been used 

to overcome this difficulty. As shown in Fig. 5, collimated light 

was focused at the sample by a concave mirror. The light then coming 

from the concave mirror is thus collimated. As the beam width is 

small compared to the focal length of the concave mirror, the 

divergence angle of the beam is small. The incident angle in this 

arrangement is limited by the size of the concave mirror to less than 

10°. 

Double beam spectra were taken. A comb screen in the reference 

arm was used to adjust the light to a convenient intensity, hence the 

reflectivity showing in the spectra is of an arbitrary scale. The 

experimental purpose is to observe the anomalous double dips with 

14 



different semiconductors, gratings, free carrier concentrations, 

incident angles, field polarizations, relative orientations among 

the field, incident plane, and grating grooves, higher order 

diffractions, band pass incident waves, etc. 

A summary of the data obtained ·t s listed as Table II. 

Among all samples, AlO shows the double dip effect most strongly. 

Fig. 6 is a comparison of the reflectance of the electric field 

perpendicular [curve (a)] and parallel [curve (b)] to the incident 

plane for sample AlO. Also shown in the figure is the reflectance 

from the smooth surface [curve (c)] which resembles theE parallel 

case. Fig. 7 makes the same comparisons for samples BlO and ClO. 

Both samples are sensitive to the polarization of the incident field. 

The higher reflectivity for the E parallel field is partly due to 

the instrument. Fig. 8 shows the behavior with different grating 

constants (d = lO~m, 20~m, and 30~m) for the samples labeled AlO, 

A20, and A30. Fig. 9 shows the double dips of the standard 

reference case [curve (a), same curve from Fig. 6, curve (a)] compared 

to the case of larger incident angle [curve {b)], different grating 

groove orientation [curve (c)], and a narrower band of incident 

wavelengths [curve {d)] obtained by using a band pass filter cutting 

-1 
out the frequency beyond lOOOcm [curve (d')]. It seems that nothing 

has changed much in any case. The essential feature remains the same 

except the sizes of the two dips differ slightly. An attempt was 

made to get the higher order diffraction spectra for d = 20~m, 

30~m, and 40~m, but not enough signal was detected. For d = lO~m, 

the grating constant is smaller than the wavelength in the double 

15 



Table II. Observed Reflectivity Minima near the Plasma 
Frequency. The Frequency of the Maximum 
between the Minima is also listed. 

Sample 

AlO 

A20 

A30 

A40 

BlO 

B20 

B30 

ClO 

C20 

C30 

Double 
Dips? 

* ** s 

* w 
* ** N 

* * N 

* *S, *Y 

* * N 

* * N 

* * w 

* * N 

* * N 

* *E or *E 
PP sp 

Max. & Min. freq. (cm-l) 
min. 

* **560 

* 640 

* **720 

* *720 

* **620 

* *770 

* *760 

* *420 

* *450 

* *450 

max. min. 

672 740 

672 725 

670 770 

480 540 

* Notes: * - Fischer's data, * - current data 

E 
ps 

Min. freq. 
(cm-1) 

* **680 

* **720 

* *720 

* *740 

* *750 

* *760 

* *450 

* *450 

* *450 

s = yes,strong, W = yes,very weak, Y = yes,not strong, N = no 

E E parallel to incident plane and E perpendicular to 
ps 

grating grooves. 

*E = E parallel to incident plane and E parallel to 
pp 

grating grooves. (By Fischer) 

* *E = E perpendicular to incident plane and E parallel to 
sp 

grating grooves. (By Teng) 
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dip region, so no diffracted order exists. 

Fischer's experimental procedure differed from ~ine. He did the 

experiments in the p-polarized orientation, i.e. he fixed the 

orientation at which the electric field E was parallel to the incident 

plane, then rotated the grating sample with respect to the incident 

field. He found double dips occurred when the grating grooves were 

rotated parallel to the field but only one dip appeared when they were 

perpendicular to each other. In these experiments, I rotated the 

field direction with respect to the incident plane. I always got the 

double dips when E was perpendicular to the incident plane for all 

orientations of the grating grooves with respect to the incident 

plane. When E was parallel to the incident plane, no double dips 

appeared for the case that the grating grooves were perpendicular 

17 

to the electric field E. This agrees with Fischer's result. Combining 

Fischer's and my results, the only common orientation for which 

d?uble dips did not appear is that with E parallel to the incident 

plane and perpendicular to the grating grooves. For all the other 

orientations, double dips were obtained either by Fischer or by me. 



IV. DISCUSSION OF THE RESULTS 

A summary of the experimental results is as follows: 

1. A double dip occurs in some Te-doped semiconductors on both 

sides of the plasmon frequency w • The frequency of the 
p 

maximum is located around the middle point between these two 

dips, and may be larger or smaller than w . 
p 

(Figs. 6, 7) 

2. For an appropriate grating sample, a double dip occurs at 

all orientations except one of the electric field E, the 

incident plane, and the grating grooves. The exception for 

which a double dip does not appear is with E parallel to 

the incident plane and perpendicular to the grating grooves, 

which is the case for which a surface wave may be excited. 

This suggests that a surface wave may have the effect of 

eliminating the double dips. (Figs. 6, 7 and 9) 

3. As a special case of point (2) above, the double dip 

occurs almost independent of the orientation of the grating 

grooves if the electric field E is perpendicular to the 

incident plane. Except for some change of the shape and 

the relative depth of the two dips, the positions of the 

two dips and the maximum remain essentially the same. 

[Fig. 9, curve (c)] 

4. The double dip occurs only for samples with relatively 

smaller grating constants. Except for one sample with 

d = 20~m (which shows a much smaller effect) all samples 

with d > lO~m show no double dips. This suggests that the 

effect .is dependent on the grating constants. (Fig. 8) 
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5. The double dip occurs only for samples having a grating on 

the surface. It does not show up on a smooth or an 

irregularly rough surface. 

The double dips do not depend on the incident angle of the light. 

[Fig. 9, curve (b)]. No systematic effects were found from the 

spectra for various kinds of doped semiconductors or different 

carrier concentrations. 

An emission effect around the plasmon frequency was first 

considered in order to explain the double dip phenomenon. This 

concept included the excitation and subsequent emission of the 

radiative and non~radiative surface plasmon modes. The non-radiative 

surface modes cannot couple with photons directly. With the help of 

the grating on the sample surface, however, these modes can emit 

light as well as be excited by it. In fact, Wood's anomalies 

appeared as dips for some frequencies and peaks for others. In the 

experiments of surface waves on Al-coated gratings, Ritchie, et al. 

observed peaks at the surface plasmon frequencies instead of dips. 

Both radiative and non-radiative modes can radiate light at the 

frequencies consistent with our data but failed in other important 

conditions: (a) the surface plasmon can only couple with light 

polarized parallel to the incident plane; (b) the peak position 

depends on the incident angle of light; (c) 
17 

according to Ferrell, 

the photon intensity and the line breadth of the emitting light from 

a radiative plasmon should have a characteristic angular dependence, 

2 !(8) - cosS/[1 + (8
0
/8) ], where 8

0 
is a constant; (d) the sample 

must be a thin film, as thin as the order of wavelength; (e) in the 

19 



non-radiative case, it should depend on the orientation of the 

. 22 
grat1ng grooves; (f) the shape of peaks appearing in all 

. t f d b R' h' h' h h ll,l2 exper1men s per orme y 1tc 1e, etc. are 1g and s arp. All 

of the above features [(a) through (e)] have not shown up in our 

double dip spectra, and therefore surface plasma radiation must be 

ruled out as explaining the effects. 

Another type of wave transformation process may be considered 

as an emission process. When an incident wave is coupled with a 

medium it is possible for a secondary wave to be generated. Light 

of different frequency may be emitted. Bianconi and Iannuzzi23 were 

able to observe the frequency transformation through thin silver 

films (thickness 200-400A) . They first shone non-polarized light 

of frequency -2~ on the film, then excited a plasmon with a 
p 

p-polarized light at the plasma frequency w . By measuring the p 

reflectance at 2w before and after the plasmons were excited, they 
p 

found that the p-polarized light at frequency w had caused the p 

reflectance to be increased at 2w . In other words, a fraction of 
p 

wave energy at w had been transformed into the frequency 2w by the 
p p 

-2 -1 
thin silver film. This fraction is of the order of 10 -10 , about 

the same order as the peak in the double dip effect. If this 

process can be reversed, i.e. the light at frequency 2w can be 
p 

transformed into frequency w through excitation of the plasmon, this 
p 

could explain the double dips. In order to test this, an experiment 

was performed as described in the preceding chapter. The plasma 

-1 -1 
frequency w of sample A is 680cm , so 2w = 1360cm • A silicon 

' p p 
-1 

filter was used to sharply cut-off the incident light beyond lOOOcm • 

20 



Thus, with the filter there is no light at 2w shining on the sample. 
p 

[see Fig. 9, curves (d) and 'Cd')] If the double dip is caused by 

the above wave transformation process, it should disappear under this 

condition. Nothing other than the overall intensity changed in this 

experiment, meaning that such a transformation process cannot be 

responsible for the effect. 

A band effect can also cause double dips around the surface 

plasmon frequency. Dispersion relations were calculated for the 

samples. Sample AlO has k/2TI 
-1 

976cm at the suspected emission 

frequency w = 680cm-1 ; it is approximately equal to k/2TI 
p 

which is calculated from the gap condition k = nTI/d for d 

-1 
lOOOcm 

1011 and 

n=2. This is just coincidence because to have a band gap, a surface 

wave must have been excited. It is unreasonable to be exciting a 

surface wave by s-polarized but not by p-polarized light. 

Furthermore, if a band gap has been observed at n=2 for AlO, it 

should be more easily seen at n=l, also at n=l,2 for sampie A20 etc. 

But nothing was observed in the spectra for those cases. 

There are two types of Wood's anomalies. 
24 

The first type was 

identified as a surface plasmon resonance and required that the 

electric field be parallel to the incident plane. The second type, 

with the electric field perpendicular to the incident plane, has 

been commonly called "P-anomalies" 25 referring to the fact that the 

electric field is parallel to the grating grooves. In order to 

avoid confusion with the "P-polarized" light, the second type shall 

be called E-mode anomalies and the first type H-mode anomalies. 

26 
The E-mode anomalies were also discovered by Wood, but experiments 

21 
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25 were made in more detail by Palmer. The two most important points 

among the nine characteristics summarized by Palmer are: (a) the 

E-mode anomalies occur only when the grating grooves are sufficiently 

deep compared to the wavelength; (b) both E- and H-mode anomalies 

may have the same appearance or may be entirely different. To explain 

th h H 1 d 1 . 27 d h d h e p enomenon, esse an 0 1ner presente a t eory base on t e 

guided wave approach. They suggested that the E-mode anomalies are 

due to the guided wave propagating inside the grating grooves 

provided that the grooves are deep enough to support the wave. They 

estimated the groove depth h in the range (nA /2) > h > (2n-l) (A /4) , 
g g 

n=l,2;··· where A is the wavelength in the guide. For our double 
g 

dips, the s-polarized light would be consistent with the E-mode 

anomalies. But the depth of the grating grooves as calculated from 

the above relation should be at least h > 3~m, which is not the case. 

The groove depth is about l~m as estimated from photomicrographs. 

Furthermore, the fact that the double dip does not depend on the 

orientation of the grating cannot be understood t;/ith this theory. 

However, the possibility of E-mode anomalies does not have to be 

given up, and a rigorous grating theory is presented in the next 

chapter. The guided wave effect will be automatically included should 

it have any contribution to the double dips. 

An explanation given by Fischer
8 

is that the double dip is due 

to a fraction of bulk plasmon resonance adding to the "plasma edge" 

formed by the individual electron oscillation. If it is so, then the 

bulk plasmon excitation will appear as double dips in many cases. 

The fact in Fischer's explanation that the bulk plasmon resonance 



in these experiments would only be excited by p-polarized light 

cannot be ignored and casts doubts. Also, the role of a grating in 

surface plasmons is to produce its evanescent wave; there is no need 

of an evanescent wave, and hence no need of a grating in exciting 

the bulk plasmon. The data show that no double dips appeared in the 

spectrum from a smooth surface, and the double dips do not depend 

on the orientation of the grating. All these cannot be explained by 

the bulk plasmon resonance. 

23 
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V. A RIGOROUS GRATING THEORY 

The grating theory is a very old subject in optics. A variety of 

theories were worked out by many people using different techniques to 

solve the problem. But we can say that up to the present there is 

still lack of a completely satisfactory one. 

The first grating theory to explain Wood's anomalies was derived 

by Rayleigh. 28 He used an expansion of the form LC eiSzei(ksinS+2Tin/d)x 
n n 

and a periodic boundary condition for a completely conducting material 

(metal) . 
29 

Fano followed his method but assumed seme dielectric 

influence on the surface to avoid the singularities at the Rayleigh 

wavelengths AR = (d/n) (l-sin8) . 
30 

Artmann then made a further 

improvement for the singularities. Their theories qualitatively 

explain the H-mode anomalies quite well but predict no E-mode 

anomalies. After the E-mode anomalies were discovered for gratings 

with deeper grooves, Lippmann
31 

showed the Rayleigh theory to be 

incomplete. He pointed out that both Rayleigh and Fano had neglected 

the incoming waves inside the grating groove region. This is valid 

only for shallow gratings. 
32 Sellberg calculated the Rayleigh 

expansion fields with a computer. He found that in most circumstances, 

the summation of the expansion does not approach a limit, but either 

oscillates between two values or diverges. For example, it 

converges only when the sum of the two base angles is less than 60° 

for triangular grating grooves. Nonetheless, the Rayleigh expansion 

can still be useful in some cases. 

33 
Twersky, et al. developed another approach which is based on 
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multiple-scattering point of view. The total scattered field is 

expressed in terms of the multiple scattering amplitude of one element 

of the grating grooves. This expression then specifies completely all 

the coupling effects from individual elements. For appropriate sets 

of parameters, Wood's anomalies are obtained. Also, the theory 

satisfactorily predicts the location and shape of the anomalies for 

specific forms of gratings. Unfortunately, it is limited to gratings 

of relatively shallow groove depth, because the restriction to 

scatterers is equivalent to requiring that the depth must be small 

compared to the wavelength. Therefore, these multiple-scattering 

results have not exhibited the E-mode anomalies. 

There are also other theories based on small-perturbation 

1 . 1 34 1 d . . arguments. For examp e, Harr1s, et a . emp oye a WKB approx1mat1on 

to solve the problem. Some people (Peng,
35 

et al.) confined the 

problem to special grating shapes, such as sinusoidal and triangular. 

All these are obviously not a general treatment and cannot be valid 

in all cases. 

Oliner and Hessel's
27 

guided wave idea, mentioned in the last 

chapter, is to use a periodic impedance on the boundary surface. The 

periodic impedance contains all information and effects inside the 

grating and grooves, including multi-scattering to match the phase, 

guided wave resonance due to appropriate groove depth, etc. Hence 

no other special conditions, like incoming wave, groove shape and 

depth, or any approximation need be considered directly. 

Theoretically, it may be called a rigorous theory. The problem is how 

to determine the relations between the Fourier components of the 



impedance and the grating shape or the dielectric function inside the 

grating. It seems very difficult. Even for the most simple case, as 

appeared in his examples, it is extremely tedious. 

A rigorous grating theory has recently been worked out by 

Petit, et a1.
36 

It is not ideal in some cases, because the problem 

can only be solved numerically. Before the result has been plotted 

by the computer, it is hard to gain any knowledge simply from the 

equations. However, it is practical and useful to calculate all 

possible classical grating effects in a spectrum. 

The following derivation follows that of Petit with a slight 

modification. The numerical method is similar to the finite

difference technique used by Kalhor, et a1.
37 

The main idea of this theory is to use a periodic dielectric 

function inside the groove area. The dielectric function of a 

material is obtained from 9, Chapter II, then the Fourier 

components of this periodic function can be easily calculated for 

any grating shape. Unlike Hessel and Oliner who solved the problem 

by periodic boundary conditions for the surface impedance which 

contains the details, this theory treats the boundary planes between 

air and the grating surface, the grating surface and the substrate 

in the usual non-periodic way, but leaves the periodic part inside 

the grooves to be automatically solved by numerical methods. 

Figure 10 is a grating in a Cartesian coordinate system. The 

grating surface is at the z=O plane with grooves parallel to the 

y-axis. A rectangular grating is assumed although the theory can 

be applied to any groove shape. 
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The electromagnetic wave in the space without free charge is 

(1) 

where ~=1 for non-magnetic materials and E is the effective dielectric 

function including all current effects inside the medium. ~ can be 

any component of the vector potential, scalar potential, electric 

field vector or magnetic field vector. 

The equation is separated by setting ~(x,y,z,t) = W(x,y,z)T(t). 

a2T 2 
The T(t) equation takes the form ---

2 
+ w T = 0 and has the solution 

at 
T(t) ;.; eiwt. The frequency w will be assumed to have the same value in 

all expressions, and hence eiwt is a common factor in all ~·s to be 

ignored. To consider s-polarized plane waves only, i.e. the electric 

vector is polarized in the y-direction, ~ is taken to be E = E and 
y 

E 
X 

E z 0. Let the incident plane be perpendicular to the y-axis, 

then the field E will be independent of y. 

Now divide the system into three regions. Region (1) with 

z > h, (where h is the height of the grating grooves) and region (3) 

with z ~ 0 are homogeneous; so, the wave equation for the electric 

field E has the Helmholtz form. 

z > h or 0; a. 
z < 0 

2 w 
2 E. 
c 

(2) 

For the inhomogeneous region (2), where 0 ~ z ~ h, E and hence 

a. is a function of ~ and z but periodic with respect to x as can be 

seen from the figure. 
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k 2 
2 

w 
if f(x) a. = 2 z > 

0 c 
(3) 

k 
2

E if z < f (x) 
0 g 

and a.(x,z) a.(x+d,z) (4) 

where d is the grating constant. E is taken to be different from E 
g 

because of the distortion of electron distribution inside the groove 

region. The function f(x) describes the grating profile. 

The Helmholtz equation then takes the inhomogeneous form. 

0; a. (x,z) a. (x+d, z) . (5) 

There is in general no exact solution for this differential equation, 

but as is well known in solid state physics, it has the Bloch form 

in one dimension: 

E "U(x,z)e 
ik t 

X with u(x,z) u(x+d,z) (6) 

The function u is periodic in x with period d, so it can be taken as 

a Fourier expansion of the form 

00 

u(x,z) 
n=-oo 

E (z)einKx, K 
n 

271" 
- and n=O ,±1 ,±2 · · · 

d 

Then, inserting Eq. (7) into Eq. (6) 

00 

0 < z ~ h, E(x,z) = L 
n=-oo 

iy X 

E (z)e n 
n 

(7) 

( 8) 
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where y = k + nK = k sinS + nK. k has been set equal to k sinS 
n X 0 X 0 

in order to have the proper behavior as d+OO and k and S are the wave 
0 

vector and the incident angle, respectively, of the incident wave. 

The solutions in regions (1) and (3) are of course the Rayleigh 

expansion. The x-component of all wave vectors must be y to satisfy 
n 

the boundary conditions, and the magnitudes of the wave vector are k 
0 

for the air side and IE k for the medium side because of the 
0 

conservation of wave vector magnitudes in the grating scattering 

process. So, the z-components of the wave vectors are 

s A 2 2 
if k - yn > y 

n,l 0 0 n 

in air 
.~v 2 - k 2 if k < yn l. y n 0 0 

~ s k 2 2 
in the medium of region ( 3) • and n,3 - yn 

0 

The evanescent waves are produced in the air side in the case 

(9) 

(10) 

k < y . Since the dielectric function E in the medium is usually 
o n 

complex, the evanescent wave for S 3 on the medium side is not n, 

explicitly expressed. 

The Rayleigh expansions in regions (1) and (3) are then 

i(k sin6•x - k cosS•z) 
0 0 

00 iS 
1

z iy x 
B e n, e n 

n h < z, E(x,z) = e 

and 

00 

0 > z, E(x,z) = L 
n=-oo 

+ 
n=-oo 

- i:S 
3
z iy x 

C e n, e n 
n 

( 11) 

(12) 
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where the first term in Eq. (11) represents the incident wave with 

amplitude equaling 1. 

h b d . . ( ) d dE (x, z) [. ( T e oun ary cond~t~on require E x,z an dz ~.e. HY x,z)] 

continuous at z=h and z=O. Equating Eqns. (11) and (8) for z= h, 

yields 

e 
i(k sin8•x 

0 
k cos8•h) 

0 
+ 

(X) 

n=-oo 

iS 1 iy X 
B e n, e n 

n 

(X) 

n=-oo 

iy X 

E (h)e n 
n 

Since the relation holds for any value of x, the coefficients of 
iy X 

e n for each value of n must vanish. Therefore 

e 

and 

-ik cos8•h iS h 
o + B e 0,1 

iS 
1

h 
B e n, 

n 

0 
E (h) 

0 

E (h) for n~O. 
n 

For the derivatives of Eqns. (11) and (8) with respect to z at 

z=h, one has 

-ik cos8•h ik sin8•x 
0 0 

-ik cos8e 
0 

e 

(X) 

+ 
n=-oo 

(X) 

n=-oo 

B i 
n 

dE 
n 

dz 

iS lh iy X n, n 
n, l

e e 

z=h 

iy X 
n e 

(13) 

(14) 

(15) 

again, letting the coefficients of e 
iy X 

n for each value of n equal 

zero, 
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and 

-ik cos8•h iS h 
-ik cos8e 0 + B ·a 0,1 o o~~O,le 

dE 
0 

dy 

iS h 
B iS e n,l 

n n,l 

dE 
n 

dz 
for n;-fO. 

z=h 

(16} 

z=h 

Following the same procedure, one can do the same thing for Eqns. (12} 

and (8} at z=O and for Eqns. (11} and (8} at z=h. The result is, 

for E(x,O} continuous: 

c 
n 

dEl . and for dz cont~nuous: 

z=O 

-c s n n,3 

E (0) 
n 

dE 
n 

dz 
z=O 

(17) 

(18) 

31 

By cancelling B from Eqns. (14) and (16), and also C from Eqns. (17) 
n n 

and (18), one gets the following conditions 

and 

dE 
0 

dz 
z=h 

dE 
n 

dz 
z=O 

+ iS 
3

E (0) 
n, n 

0, 

-2ik cos8e 
0 

-ik hcose 
0 

(19) 

(20) 



dE 
n 

dz 
z=h 

- iS 
1

E (h) 
n, n 

0 for n;to. 

Equations (17) and (18) are actually the boundary conditions for the 

wave function inside the groove at the surfaces z=O and z=h. These 

can be written in matrix form 

d[E] + [L ] [E (0)] 0 
dz 0 

(21) 

z=O 

d[E] 
+ [Lh] [E (h)] [G] 

dz 
(22) 

z=h 

where [E], [L ] , [L ] and [G] are all matrices. Explicitly, 
0 h 

E_3 

E_2 

[E] 
E_l 

Eo 
(23) 

El 

E2 

E3 
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[L ] 
0 

[Lh] 

0 
iS-3,3 0 0 0 0 0 

0 iS-2,3 0 0 0 0 

0 0 iS-1,3 0 0 0 

0 0 0 0 iS0,3 0 0 

0 0 0 0 iS1,3 0 

0 0 0 0 0 iS2,3 

0 0 0 0 0 0 

0 

0 . 
-iS_3,1 0 0 0 0 

0 -iS-2,1 0 0 0 

0 0 

0 0 0 

0 0 

0 0 

0 0 

[G] 

-iS_l,l 0 0 

0 -iSO,l 0 

0 0 -iSl,l 

0 0 0 

0 0 0 

0 

0 
0 
0 

-2ik cos8e 
0 

0 
0 
0 

-ik hcos8 
0 

0 

0 

0 

0 0 (24) 

0 

0 

iS3,3 

0 0 

0 0 

0 0 

0 0 0 (25) 

0 0 

-iS2,1 0 

0 -iS3,1 

(26) 

It can be seen that both [L
0

] and [Lh] are diagonal matrices. [G] is 

related to the incident wave. If no source is applied to the system, 

[G] is zero. 
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We now return to the inhomogeneous Helmholtz Eq. (5) in the 

region 0 < z < h. Since a(x,z) is periodic in x with period d, it 

can be expanded in a Fourier series 

with 

a(x,z) 

d. ( z) 
n 

CXl 

n=-oo 

inKx 
a (z)e . 

n 

_dl Jd -inKx 
d(x,z)e dx 

0 

Substituting Eqns. (27) and (8) into Eq. (5), then yields 

CXl 

0 < z.::. h, y 2
E (z) + I a (z)E {z) 

n n n-m m m=-oo 

Writing Eq. (29) in matrix form: 

[A(z)] [E (z)] 

where [A(z)] is a matrix with elements 

a 
n,m 

2 
-a + y cS • 

n-m n nm 

0 

For the rectangular grating which is considered in Fig. 10, the 

dielectric function inside the grooves is 

E (x) E (x+d) 

(27) 

(28) 

(29) 

(30) 

(31) 

34 



s(x} = 1 

£ 
g 

0 < x < a 

a < x < d 

Therefore the Fourier components are 

and 

Then a 
n 

d
l Jd -inKx 

E s(x}e dx 
n 

0 

1 Ja -[ 
d 

-inKx Jd e dx + -inKxd ] s e x 
g 

0 a 

_!_[(l-£ }e-inKa + 
nKd g 

-inKd 
e - 1] for n~O 

g 

E: 
0 

a + s b 
g 

d 

k 2s is independent of z, and so is [A(z}]. Therefore 
o n 

[A(z}] in Eq. (30} becomes a constant matrix for this special 

grating shape. 

The problem now is to solve the matrix differential equation 

with boundary conditions 

d[E{z}] 
dz 

z=O 

[A] [E (z} ] 

+ [L ][E(O)] 
0 

0 

35 

(30} I 

(21} 



and 
d[E(z)] 

dz 
z=h 

[G] (22) 

To develop a numerical method to solve this problem, let's divide 

h into N equal intervals, ~ = h/N. For sufficiently large N the 

integration identities 

J
(I+l)~ 

dE dz 
dz 

I~ 

and J
(I+l)~ 

d
2

E -- dz 
2 

I~ dz 

can be approximated by 

E{(I+l)~}- E{I~} 

dE 
dz 

z=(I+l)~ 

dE 
dz 

z=I~ 

E{(I+l)~}- E{I~} 
dE 
dz 

•/J. 

and 
dE 
dz 

z=(I+l)~ 

dE 
dz 

z=I~ 

dE 
where I is any positive integer between 0 and N, and all E and dz 

. . h . [ ] d d [E] . 1n the above equat1ons denote t e matr1ces E an ~ as 1n 

Eqns. (21), (22) and (30) '. For simplicity, let 

and 
dE 
dz 

E{ I!J.} - [E (I)] I E{ (I+l) ~} - [E (I+l)] 

- [F(I)] I~ - [F(I+l)]. 

z=I!J. z=(I+l)~ 

36 



Then Eq. (31) becomes 

[E (I+l)] = [E (I)] + [F (I)] •/1 
(32) 

[F(I+l)] = [A]•/1•[E(I)] + [F(I)] 

2 
where Eq. (30) ' has been used to substitute d ~ with [A] [E (I) ] • 

Equation (32) has the matrix form 
dz z=I/1 

[[E (I+l) ]] = [(1] [1]~] [[E(I)]] 
(33) 

[F(I+l)] [A] 11 [1] [F (I)] 

Since [A] is constant, [E (I)] , and [F(I)] can be expressed by 

[E (I-1)] , and [F(I-1)], having the same form as Eq. ( 33) . Doing this 

(I+l) times, one finally gets to the expression 

r[E (I+l) ]1 [[1] 

l[F (I+l) ]J = [A] 11 

[1] /1] I+l [[E (0) ]] 

[1] [F(O)] 
(34) 

From Eq. (21), [F(O)] = -[L] (E(O)] and taking I+l = N, and noting 
0 

d[E] I that [E(N)] = [E(h)] and [F(N)] = ~ , then Eq. (34) becomes 
z=h 

[ 

[E(h)] l 
d [E] I 

dz z=h 

The matrix 

[

[1] 

[A] 11 

[1]11]N[ [1] 01 [[E(O)]l 
[1] -[L] 0 [E(O)] 

fr1] 
l[A]~ 

[l]/1]N = 

[1] 

0 

(35) 
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in Eq. (35) is a constant and all [M .. ] 's can be calculated 
l.J 

numerically. By setting [M
1

] = [M
11

J - [M
12

J [L
0

] and 

[M2 l = [M
21

] - [M
22

J [L
0
], one has 

and 

[E (h) ] 

d[E ,(z)J 
dz 

[Ml] [E ( 0) ] 

z=h 

(36) 

Now substituting Eq. (36) into Eq. (22) to obtain relation between 

[E(O)] and [G], one has 

[M] [E (0) ] [G] 

with 

Then [E(O)] = [M]-l[G] 

and substituting Eq. (38) into Eq. (36) to find [E(h)] and 

d [E (z) ] I 
dz z=h 

and 

[E (h) ] 

d[E(z)] 
dz 

z=h 

-1 
[M

2
] [M] [G]. 

(37) 

(38) 

(39) 

(40) 

The reflectance Rat the zeroth order spectrum is equal IB 1
2 

where 
0 
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B in Eq. (14) has the value 
0 

Setting [T] 

B 
0 

E (h) 
0 

- e 
-ik cos8•h 

0 

then from Eq. (39) 

-ik cos8•h 
E (h) 

0 
T (-2ik cos8e 0 

). 
00 0 

Therefore, from Eq. (41) 

R B B * = j2ik T cos8 + 1j
2 

0 0 0 00 

The significance of the matrix [M] can be seen from Eqns. (38) to 

(40). If the determinant of [M] equals zero, the equations have 

39 

(41) 

(42) 

solutions only for [G] = 0, i.e. no source applied to the system. This 

means a resonance condition occurs inside the grating. In this 

TE-mode geometry,resonance is possible only by exciting a guided 

wave inside the groove area for suitable depth of the grooves. 

In the next chapter, we consider numerical calculations using 

these results. 



VI. NUMERICAL CALCULATIONS 

A. Computation of the Rigorous Theory 

Using the rigorous grating theory presented in the last chapter, 

the reflectance was calculated for the samples discussed previously 

(see Table I). The parameters used are from Willardson and Beer•s38 

book, and McMahon's thesis.
39 

They are listed in Table III. 

Only seven terms starting from the central n=O, going to both 

positive and negative integers and terminating at n=±3, were taken 

for the summations of the infinite series presented in the last 

chapter. This series has been checked and found to converge 

rapidly for the grating constants used here. The N in Eq. (35) of 

the last chapter was taken to be N=lO, which is large enough for h 

to be in the range of micrometers. The possibility of a guided 

wave inside the groove region has been checked but found not to 

exist since the absolute value of the determinant of [M] is still 

large when the groove height is up to S~m. 

The results of the calculation depend upon what is assumed for 

the dielectric functions. 

Case 1: Assume the dielectric function inside the lanes (the 

region labeled g in Fig. 10) of the grating region is the same as 

the bulk value of the material, i.e. E = E. 
g 

The results of this 

assumption are no double dips in the reflectivity as shown in 

Fig. 11, curve (a). The reflection in this case is almost the same 

as if it were from a smooth surface. Here the wavelength is 

larger than the grating constant, and no diffraction effect appeared. 

40 
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Table III. Parameters Used in Calculations 

w m*/m E OE 1/T r To 00 

InSb 181.5 0.015 15.68 2.05 16.2 4.2 

GaAs 268.0 0.08 10.9 1.63 15.0 1.9 

Symbols have been defined in 9, Chapter II. 



Case 2: Assume E > E. This difference is due to the 
g 

distortion of the electron density inside the grating region; so, 

the concentration of electrons as well as damping (and probably 

the force constant) inside this region is not the same as the bulk 

value. In this case, the double dip appears. By choosing suitable 

w (the plasma frequency in region g) for E , the dip positions can pg g 

be fitted. In Fig. 11, curve (b), W 
pg 

-1 
520cm is used for sample 

AlO. The first and the second dips are at 590cm-l and 735cm-l 

respectively. 
-1 

Compared to the experimental values of 570cm and 

-1 
740cm , the discrepancies are less than 5%. Nevertheless, the 

calculated intensity, especially around the first dip position, is 

much higher than the experimental value. 

Case 3: R. W. Gamon and E. D. Palik
40 

in their recent paper 

pointed out that the carrier density, and hence the plasma frequency, 

near the surface is not the same as the bulk value for doped 

semiconductors InSb and GaAs. The variation is about ±7%. They did 

not mention how deep from the surface this variation exists; it 

might be only in the order of angstroms. However, because of the 

damage inside the groove region, and also because of the distortion 

of electron density from the neighboring lanes, it is reasonable to 

make a further assumption that the dielectric function in the region 

s of Fig. lO(b) is not E but Es < E. Fig. 11, curve (c) is a plot 

for sample AlO based on this assumption by taking W pg 
-1 

520cm for 

-1 
E and W = 720cm for E , assuming a layer thickness of l~m on 

g ps s 

the groove surface. The position of dips fits the experimental data. 

The intensity is still too high, although better than the previous 

case. 
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The discrepancy of the calculated intensity with the 

experimental result might be partly explained by considering their 

spectra in the smooth surface case. Taking a=O or h=O in Fig. lO(b), 

the grating theory reduces to the formula of the smooth surface 

case - the same expression as in 9, Chapter II. Although McMahon 

found an excellent fit for his low concentration samples of InSb, 

in these higher concentration samples, it can be seen from Fig. 12, 

curves (a) and (b) , that the reflectance of the frequency region 

between W and W from experiment is much lower than that from 
To p 

calculation. The largest discrepancy, which is about 25%, is around 

the first dip position. · If the calculated results in Fig. 11, curves 

(b) and (c) are reduced by the same fraction, the curve will be 

closer to the experimental result although it is still higher. 

[Fig. 12, curve (c)]. Actually the depth of the dips depends on the 

height which is chosen to have the dielectric function s . By 
s 

choosing a height of 5~m [Fig. 12, curve (d)], the effect from the 

dielectric function E becomes small and the intensity minima of the 

double dips is even lower than the experimental data. But the 

intensity in the maximum position between the dips is still too high 

to fit the data. 

The calculated results of samples BlO and ClO are similar to 

that of AlO described above. Just by choosing suitable values of 

W and W , the double dip positions can always be fitted within an 
pg ps 

accuracy of 5%. The intensities are higher than the experimental 

value. For large grating constants, the dielectric function E 
g 

inside the lane region approaches the bulk value E because of less 
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distortion of the electron densities, so the double dips will 

disappear and will reduce to a usual plasma dip. 

The calculation was only for the special case in which grating 

grooves are parallel to the electric field E and perpendicular to 

the incident plane. ForE parallel to the incident plane, or other 

orientations of the grating grooves, the situation will be much more 

complicated. The model described in the next section will cover 

these cases with a very simple argument. 

B. A Simple Formula to Explain the Observations 

The double dips, if they are due to the distortion of electron 

densities near the grating surface, can be always imagined as 

arising from the combination without interference of two reflectances. 

One reflectance has a dip higher, and the other has a dip lower than 

the bulk plasma frequency, Looking at Fig. lO(b) and as a result of 

an average effect from the change of electron densities, damping 

forces, and force constants inside the lane portion of the grating, 

let W' be the new plasma frequency, T the new damping constant at 
pg g 

the region g, and W' , T the corresponding quantities at the groove 
ps s 

portion s. Then from 9, Chapter II, the dielectric functions' 
g 

and the reflectance R
1 

from the regions g can be calculated with the 

data W' and T • A similar calculation uses sg' to find R2 from the 
pg g 

region s with data W' and T • If interference is neglected because 
ps p 

of the small grating constants compared to the wavelength, the total 

reflectance appearing in the spectrum can be written as 
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R (43) 

where A
1 

is the surface area of the lane portion and A
2 

that of the 

groove portion. Fig. 13, curve (a) is a plot of R by choosing 

A :A . = 7:1, W' -1 
W' = 710cm 

-1 
and 1/T = 1/T = = 52 Scm , , 1/T 1 2 pg ps g s 

-1 
!Scm for sample AlO. The -r's do not affect the dips much, and they 

were all taken to be equal for the sake of simplicity. Fig. 13, 

curve (b) is the experimental data for comparison. The dips and the 

maximum between them are almost coincident with the calculated values. 

The intensity is consistent too. Again, for samples BlO and ClO, the 

fit can also be obtained just by choosing suitable values of W' and 
pg 

W' • 
ps 

Not only the position and intensity of maximum and dips can be 

fitted well by this simple formula, but also all properties as 

summarized in the beginning of Chapter IV can be explained with the 

following arguments. 

1. The plasma frequency inside the lane region is less than the 

bulk value, while inside the groove region it is larger than 

the bulk value. So the plasma frequency W can be at any 
p 

position between the two dips. It can be near the midpoint, 

(Fig. 6), near the lower [Fig. 7(b)], or the higher dip, 

[Fig. 7(a)]. However, the frequency of the maximum 

intensity in these three figures is always near the midpoint 

of the two dips. 

2. The only orientation that does not show double dips is for E 

parallel to the incident plane and perpendicular to the 



grating grooves, which is the case that is supposed to 

have a surface wave excited by the grating. The absence 

of the double dips may be because any surface wave 

excitation causing a third dip lying between the double 

dips washes out the maximum between or it might be because 

of the following reasons. Referring to Fig. lO(b) in a bulk 

wave case, the oscillation of electrons at g is only a 

response to the light shining on g, and that at s is only 

46 

a response of light shining on s. If the dielectric functions 

are different between points g and s, and if interference 

effects can be ignored, the combination of the reflectance 

from these two points will appear as two dips. In case a 

surface wave is excited, even if it is not strong, the 

oscillation of electrons at point g is not only the response 

of the light shining on g, but also a response of the 

longitudinal surface wave coming from points s. Therefore, 

the difference of the dielectric function between those 

points will be averaged out. 

3. From Eq. (43) it can be seen that the double dips only 

depend on the ratio of the areas A
1

:A
2

. This is why they 

do not depend on the orientation of the grating grooves. 

As the direction of the grooves is turned, the damping and 

the plasma frequency on the lane and groove portion might 

change a little and so might the position of dips and their 

intensities. A change of intensity appeared in the 

spectrum, but any change of the positions is too small to 



be observed. 

4. It is also seen from the Eq. (43) that the appearance of 

the double dips must depend on the relative area of the 

lanes and grooves inside the grating. If A
1

:A
2 

is too 

large, R
2 

will have only a very little effect on R
1

. Also, 

the surface becomes closer to the smooth case and every 

parameter will return to the bulk value. So this explains 

why the double dips occur only for smaller grating 

constants. For d = 20~m, 30~m etc., the grating 

constant is larger than the wavelength of interest, so that 

interference becomes important and Eq. (43) is no longer 

valid. However, it is still true that E will approach E 
g 

as the grating constant becomes larger and larger. Then 

the two dips become closer and closer and finally become 

one dip at the bulk frequency. (see Fig. 8). 

5. The important idea for the double dips is that the 

dielectric function must be in the form of exactly two 

major groups. For a smooth surface or a surface that does 

not vary in a regular manner, this condition obviously 

does not hold. This is why the effect has only been 

observed for the grating surface so far. 

c. Connection Between the Simple Formula and the Grating Theory 

The formula given in the previous section which has been 
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described by a very simple model explains the experimental phenomenon. 

It is worthwhile to make the connection between the simple formula 



and the grating theory given in the preceding chapter. Case 3 in 

section (A) gave results very similar to the simple formula in 

section (B). Both showed the double dips in the correct positions 

with almost the same value of parameters. The discrepancy is that 

the result from the simple model can also fit the relative intensity 

of the double dips and the position of the maximum, while the grating 

theory failed to do this. This may mean that the grating theory or 

the calculation assumptions are not completely accurate because the 

factors affecting them are so complicated. 

However, another important characteristic appearing in the 

calculation result of the grating theory is disquieting. Examining 

Fig. 12, curve (b) and (c), one sees that there is only a small 

difference in the spectra between the Cases 2 and 3. This means that 

for a thin layer with dielectric function E , the part contributed 
s 

by E to the reflectance is negligibly small. Actually the 
s 

calculations show that only when the layer thickness reaches 4 to 

S~m [see Fig. 12, curve (d)] does the contribution of E toR become 
s 

comparable to that of E , the dielectric function in the lane 
g 

position. Only in this case can R be considered as the 

superposition of the reflectance from the lane and the groove portion 

of the grating, and then the model described in section (B) is 

correct. This thickness is hard to verify, and is also hard to 

believe. 

If the layer thickness is not large enough, the model of 

section (B) is not valid but Eq. (43) can still be used to describe 

the double dip phenomenon. In this case, F1 = A1/<A1 + A2) and 
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F2 = A2/(A
1 

+ A
2

) only represent some fraction factor, and then 

F
1

R
1 

and F
2

R
2 

are the effective reflectances from the materials with 

dielectric functions s and s, respectively. The double dips are 
g 

still formed from two groups of reflectance. With this idea, the 

experimental properties can still be explained in a similar way. 
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VII. DOUBLE DIPS AROUND THE PHONON REGION 

Fischer found around the phonon region another dip at the 

frequency W = 305cm-l for the sample AlO (GaAs, N = 4.2xlo18 

3 
Te-atoms/cm , d = lO~m) besides the phonon-plasmon coupling minimum 

-1 
at 265cm . The depth of these two dips is approximately the same, 

but the extra one occurs only when E is parallel to the incident 

plane and perpendicular to the grating grooves, which is the case 

for which it is possible to excite a surface wave inside the material. 

This phenomenon is absent in other orientations. Fischer suggested 

an explanation that this is related to a coupled mode of surface 

plasmon and Reststrahlen-phonon. 

However, since the grating constant d equals lO~m, the 

-1 
wavenumber k is always larger than 6280cm • At this large k, no 

surface plasmon can be excited around the phonon region. So if this 

extra dip is a result of surface wave absorption, it can only be 

a surface phonon. 

. f f 38 . -1 The longitud~nal phonon requency o GaAs ~s WL = 297cm ; 

then for large k, the surface phonon frequency (from Anderson's 

-1/2 
thesis) is WsL ~ (l+l/E

00
) WL, so that WsL 

-1 
284cm for E 

00 

To find the reflection dip from this eigenfrequency, the exact 

approach involves grating theory. But instead, we will make 

estimations following Fischer's very simple method.
6 

Ritchie, et a1.
11 

have shown that the excitation of a 

photon-surface plasmon-photon system is equivalent to a typical 

10.9. 

Lorentzian oscillator. Fischer assumed Lorentzian oscillators for 

his surface plasmons and got a fit to the dispersion curve. In 
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addition he also surprisingly found that all parameters except the 

eigenfrequency used in the oscillator are almost the same as the bulk 

values. So, from this assumption, the Lorentzian oscillator for the 

surface phonon contributing to the dielectric function is then 

E(W) (44) 

Assuming nothing couples to this surface wave, the reflection 

minimum will occur at the frequency Wd. , that makes the real part 
~p 

of the refraction index equal to unity, i.e. 

Real(le(Wd. )) - ~p 
1 (45) 

-1 
Using the data WsL = 284cm , and the bulk values for £

00 
= 10.9, 

oe = 1.63 and r = 1.9 in Eqns. (44) and (45), the dip position was 

found by numerical method to be 

Wd. 
~p 

-1 
307cm 

-1 
This fits the experimental value of 305cm • The present experiment 

in this region was performed with a Twyman-Green interferometer, 

which has been described by Anderson in his thesis. The results 

agree with Fischer's (Fig. 14). 

From the above argument, it can be shown that samples 

A20(d = 20~m) and A30(d = 30~m) should have the same position of 

-1 
surface phonon dips at 305cm and A40(d = 40~m) should have a 

-1 
surface phonon dip almost coincident at the position 265cm , which 
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is the common coupling phonon dip for all cases. These dips were 

not clearly observed in my experiment. 

In the last chapter, in order to explain the non-double dip 

case in the plasmon region, a surface plasmon close to the bulk 

frequency has been supposed to be excited for this orientation. It 

seems unreasonable to have assumed nothing couples to the surface 

phonon. If the coupling is included, the calculated value of Wd. 1p 
-1 

should be lowered by 10 to 20 em . 
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VIII. CONCLUSION 

The best fit to the data is made by assuming that in Fig. lO(b), 

the dielectric function E (E < E) extends to a depth of a few 
s s 

micrometers; and that there is no coupling to surface phonons. Since 

the character of a semiconductor usually changes dramatically with a 

few defects in the material, e.g. the huge change of conductivity 

with a small concentration of impurities, it is not unreasonable for 

the grating ruled in the surface to cause the results found in this 

study. 

What was done in this research has been to make experimental 

measurements and to propose a simple model to explain almost all the 

experimental phenomena with an uncomplicated assumption. To confirm 

the idea and to obtain the actual distortion of the electron density 

by a grating with small grating constants, more evidence and more 

work from other aspects are of course still required. 
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Figure 1 

17 3 Reflection spectra of Te-doped InSb (n=3.96xl0 Te/cm ) 

crystal with a spark cut grating with different etch times. 

Curve (a) without etch 

Curve (b) etch time 6 sec. 

Curve (c) etch time 12 sec. 

Curve (d) etch time 57 sec. 
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Figure 2 

{a) a rough surface 

{b) a grating surface 
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(a) 

(b) 

Fig . 2 



Figure 3 

Transmission spectra of the Beckman IR-12 

Spectrometer through a IGP-225 polarizer. 

Curve (a) E polarized vertically 

Curve (b) E polarized horizontally 

Curve (c) without polarizer 
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Figure 4 

Change of the transmission spectra through 

different orientations of the IGP-225 polarizer. 
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Figure 5 

(a) Littrow mount arrangement for the samples. 

(b) The side view of sample-concave mirror system. 
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Figure 6 

Reflection spectra of sample AlO (GaAs, 

18 3 n=4.2xl0 Te/cm , d = lO~m} incident angle~ 6°. 

Curve (a) E perpendicular to the incident pl~ne and 

parallel to the grating grooves. 

Curve (b) E parallel to the incident plane and 

perpendicular to the grating grooves. 

Curve (c) Spectrum of the sample with smooth surface 

(E perpendicular to the incident plane). 

Curve (d) Spectrum of a mirror background (E 

perpendicular to the incident plane. 
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Figure 7 

Reflection spectra of samples. 

(a) BlO 18 3 
d lOllm) , (InSb 1 n=l.lxlO Te/cm 1 = 

orientation same as 6(a). 

(b) ClO 17 3 
d lOllm) (InSb 1 n=4.7xl0 Te/cm 1 = 

orientation as in 6(b). 
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Figure 8 

Reflection spectra for different grating constants of 

samples A (GaAs, n=4.2xlo18Te/cm3) with E parallel to 

the incident plane and parallel to the grating grooves. 

Curve (a) d lO~m 

Curve (b) d = 20~m 

Curve (c) d = 30~m 
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Figure 9 

Reflection spectra from different sample 

conditions,AlO (GaAs, n=4.2xlo18Te/cm3 , d = lO~m) 

E perpendicular to the incident plane and 

parallel to the grating grooves. 

Curve (a) same curve as Fig. 6, curve (a) 
0 

Curve (b) incident ~ngle ~ 45 

Curve (c) grating grooves rotated an angle ~ 60° 

with respect to curve (a) 

Curve (d) a band pass filter placed in front of 

the sample 

Curve (d~ spectrum of the filter used for curve 

(d) only 

(N t C t ff th . t . b d -l o e: u o e 1n ens1ty eyon lOOOcm .) 
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Figure 10 

(a) a grating of arbitrary shape divided 

into three regions. 

(b) same as (a) , but with rectangular grooves. 
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Figure 11 

Calculated reflection spectra from 

the rigorous grating theory. 

Curve (a) e: = e: = e: g s 

Curve (b) e: > £ I e: = e: g s 

Curve (c) e: > £ I e: < e: g s 
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Figure 12 

Some comparison of the reflection spectrum curves. 

Curve (a) calculated from a smooth surface. 

Curve (b) experimental spectrum from a smooth surface. 

Curve (c) a curve obtained from reducing curve 

Fig. 11, curve (c) by a fraction of 

F = [Fig. 12, curve (b)]/[Fig. 12, curve (c)]. 

Curve (d) £ ~ £, £ < £, h = S~m. 
g s 
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Figure 13 

A reflection spectrum calculated from the simple formula 

Eq. (43) compared with the experimental curve. 

Curve (a) calculated spectrum. 

Curve (b) experimental spectrum. 
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Figure 14 

Reflection spectra of sample AlO in the 

phonon region from a Fourier transform 

Michelson spectrometer. Incident angle ~ 20°. 

Curve (a) E perpendicular to the incident plane 

and parallel to the grating grooves. 

Curve (b) E parallel to the incident plane and 

perpendicular to the grating grooves. 
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