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ABSTRACT

The broad effort of the Missouri Plasmoid Experiment is to elucidate the energy

conversion processes in a pulsed inductive discharge due to the presence of plasma. The

test article is a 440 to 490 kHz theta-pinch (or solenoidal) geometry coil with a stored en-

ergy of around 80 joules. In this work experimental hydrogen, helium, argon and xenon

data at back-fill pressures of 10 to 100 mTorr (1.3 to 133.3 Pa) are obtained and interpreted.

Spectral and internal probe studies were performed on MPX Mk.I and Mk.II devices, re-

spectively. IR spectra were acquired in the Mk.I device for argon and xenon. While triple

probe studies on hydrogen, helium, argon, and xenon were performed in the Mk.II device.

Time-resolved electron temperature estimates for argon and xenon during the dis-

charge time frame of 0 to 23 µs are obtained post-process via line intensity ratio meth-

ods. Experimental intensity ratios are compared with those of steady-state corona and

collisional-radiative model assumptions. Electron temperature estimates were highly model

dependent with the steady-state corona model yielding temperatures of around 10 eV or less

and the collisional-radiative model yielding up to 100 eV.

Triple probe measurements provide both time- and radially-resolved electron tem-

perature and density estimates for all four gases. Electron temperatures are seen to be

limited to 20 eV on average with ionization fractions of up to 28%. In addition, probe cur-

rents show substantial evidence of a high charge density wave translating radially inward

with speeds approximately given by the ion acoustic wave speed.

Finally, energy analyses of the triple probe results are performed and compared

against circuit modeling efforts made previously on the same test article. Peak energy in

combined electron heating and ionization accounts for on average around 25% of total

dissipated circuit energy due to plasma. With the exception of xenon in which 40 to 90%

was accounted for.
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1. BACKGROUND AND APPROACH

1.1. PULSED INDUCTIVE PLASMA THEORY

Pulsed inductive plasma (PIP) devices such as the theta-pinch coil used in the fol-

lowing work are an electrode-less type of plasma source often used at high energies in both

research and industry[1–7]. A brief analysis of the fundamental physics involved in cylin-

drical PIP devices such as that used here is provided. As a starting point one considers a

known amount of electrical energy stored in a capacitance, C, at a voltage, V , to give a total

energy stored of 1⁄2CV2. Additionally, the capacitor is electrically connected in series via an

ideal switch with a conductive structure that, by some geometric means forms a complete

circuit back to the capacitor’s opposite terminal. This complete circuit is collectively re-

ferred to as the device. If this switch is then closed current will begin to flow in an effort to

reduce the potential difference across the capacitor and return it to equilibrium (zero volt-

age). In the absence of a plasma gas, electromagnetic fields within the device are governed

exclusively by Maxwell’s laws. An excellent review of the fundamentals of electrodynam-

ics can be found in Griffiths (1999) and a summary of the laws critical to this work are as

follows; Amp-Maxwell’s law written for free-space describes the axial magnetic field that

is induced in vacuum due to current flowing in the inductive coil[8],

∮
~B(t) · ~dl = µo

∫
~J · ~dA +µoεo

∂

∂t

∫
~E · ~dA . (1.1)

Of note is that the magnetic field, ~B(t), is directly proportional to the current flowing in the

device, ~I(t). If the geometry is assumed to be an infinitely long conductive cylinder of zero

resistance and of turns, n, per unit length (1.1) leads to,

B(t) = µonI(t) (1.2)
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inside the cylinder. Thus, the magnetic field inside this idealized solenoid is not spatially

dependent and is uniform through the inner diameter. Two sometimes sizeable effects this

solution neglects are the end effects of a cylindrical geometry of real length, L, and the

azimuthal asymmetry brought on by the physical connection of transmission lines. As

a time-dependent magnetic field is now present in the device Faraday’s law of Induction

comes into focus describing the azimuthal or circular electric field induced due to a time-

varying magnetic field, ∮
~E(t) · ~dl =

−∂

∂t

∫
~B(t) · ~dA (1.3)

Briefly one might return to (1.1) with the realization that the electric and magnetic fields

are coupled, and this would be a correct assessment. However, a quick order-of-magnitude

check to the coefficient pair µ0ε0 yields a factor of 10−17 greatly diminishing electric field

coupling in dielectric materials. Returning to the ideal solenoid geometry (1.3) leads to,

2πrE(t) =
−dB(t)

dt
πr2

or E(t) = −
r
2

dB(t)
dt

. (1.4)

Thus in a cylindrical PIP device absent any plasma species one would expect the internal

electric field to be a maximum at the outer most internal radius which leads to the inductive

coupling taking place primarily just inside the coil. Also and have a time-varying peak

when the change in magnetic field with time is highest. Remembering that the magnetic

field is directly proportional to discharge current leads to a recognition that |~E| ∝ fdischarge.

If the notion of charged species is now introduced the Lorentz Force law governs the motion

of these species in a collisionless regime,

~F = q · (~E + ~V × ~B) (1.5)

Figure 1.1 shows the ideal solenoid field topology during positive dI/dt.
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Figure 1.1. The field topology of an ideal solenoid coil geometry of length, L and radius,
R, with increasing (positive) coil current. Note the azimuthal current & electric fields, ~I &

~E, respectively and axial magnetic field, ~B.

1.2. PREVIOUS WORK IN THE FIELD

In recent years, PIP devices currently being investigated by the fusion and space

propulsion communities utilizing mostly deuterium and xenon, respectively, have provided

promising new results. Detailing effective timing of pre-ionization stages[9, 10], iterating

through various coil geometries and ionization techniques[5, 11–16], and refining high

speed switching capabilities [17], a large volume of work has been put towards pulsed

inductive plasma utilization. Additionally, numerical analysis of these devices has given

some understanding of the field topology[18] and optimal electrical circuit characteristics

for peak inductive coupling[19–21]. Despite this, efforts to differentiate and quantify the

various modes of energy that arise during and after the inductive process are lacking.

1.3. PREVIOUS WORK WITH MPX

The Missouri Plasmoid Experiment (MPX) is a theta-pinch configuration pulsed

inductive plasma device and the original Mk.I test article came online in 2011 with a Mk.II
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test article following in 2014. Work by Pahl and Rovey involved magnetic field sensing

via B-dot probes, energy analysis via circuit modeling, and pre-ionization studies[22–24].

Culminating in a doctoral thesis, energy lost by the circuit due to plasma in that work was

partitioned into either inductive or resistive loads, with transfer to inductive energy being

a reversible process and to resistive (joule) heating being a non-reversible process. It was

reported that inductive energy into xenon was highest at 8.4% of initial MPX energy (6.4

of 79.2 joules) followed by argon then hydrogen[21]. This inductive energy was seen to

decrease with higher pressures up to 100 mTorr. Non-reversible energy loss by resistive

heating is seen to dissipate 16 to 20 joules from 10 to 100 mTorr in argon with hydrogen

and xenon following a similar trend. Also reported in that work was that the highest re-

sistive losses were in xenon at lower pressures (10 to 60 mTorr) and in hydrogen at higher

pressures (60 to 100 mTorr). Comparison with the findings of that work will be made here

in subsequent chapters.

1.4. CONTRIBUTION OF THIS WORK

As mentioned above pulsed inductive devices typically start with a stored capacitive

energy. However, once discharged and by the end of the operational discharge cycle that

energy has been divided among radiative losses (light emission, stray capacitance/induc-

tance, etc.), joule heating (of the device, plasma, and neutral gas), unusable directions in

bulk fluid motion (via poor containment or undesired expansion upon expulsion), and col-

lisional processes. These collisional processes can be divided further still into numerous

electronic modes, many of which do not provide a direct path to ionization. The net effect

of these collective losses is an increase in ionization cost and a reduced effectiveness of the

device.

Specifically within the aerospace community, high power pulsed inductive in-space

electric propulsion concepts have faced three major hurdles in the last few decades keeping

them firmly on the drawing board and in the laboratory rather than on a spacecraft. These
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are; 1.) power sources on the order of 10’s to 100’s of kilowatts, 2.) high-speed, high-power

charging and switching technologies, and 3.) performance and efficiencies comparable to,

or better than, those of state-of-the-art electric propulsion systems in use now. NASA

has acknowledged and is addressing the first of these hurdles through several initiatives.

The second of these is being researched heavily from a number of groups in industry and

academia, some of which were mentioned in Section 1.3. While the third has seen limited

attention. This is partly because the relationships between the discharge energy cost (i.e.,

ionization cost) and the factors shown to affect it are not well understood. Specifically,

factors such as the inductive device geometry, discharge frequency, operating pressure, and

the use of heavy gases suitable for electric propulsion have all been found to have a role in

the performance and effectiveness of these pulsed inductive plasma devices.

To this end, the present work has utilized both external and internal diagnostic tech-

niques to interrogate a simple geometry pulsed inductive plasma and quantify some of the

primary energy modes that occur throughout and after a discharge cycle. Parametric anal-

yses focus primarily on variation of operating pressure and gas species.

1.5. APPROACH

Using a cylindrical geometry pulsed inductive device design plasmas generated in

a variety of gas species and operating pressures are interrogated using multiple diagnostic

techniques. First, spectral analyses of plasma light emission in the near infra-red (near-IR)

range are performed using collisional-statistic modelling to obtain time-resolved electron

temperature profiles. Second, current analyses using internal triple probe diagnostics are

performed to obtain additional time-resolved electron temperature as well as electron den-

sity profiles. Some general volumetric partitioning is then used and total energies entrained

in ions and electrons are quantified and discussed.
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2. TEST ARTICLE, FACILITIES, AND DIAGNOSTICS

2.1. THETA-PINCH DEVICE

2.1.1. MPX Mk.I Coil. The Mk.I coil is constructed from a rolled sheet of 1.5 mm

thick copper and spans approximately 83% of the evacuated length at 76.2 cm (30 in) and

has an inner diameter of 17.8 cm (7.0 in). A photo of the Missouri Plasmoid Experiment

(MPX) Mk.I device with call-outs can be seen in Figure 2.1.

2.1.2. MPX Mk.II Coil. The Mk.II coil is a 11-segment design constructed from

milled billets of aluminum assembled in parallel with an inner diameter equal to that of the

Mk.I of 17.8 cm and a slightly increased length of 78.4 cm (30.8 in). An equal inner diam-

eter to that of the Mk.I design matched with the same quartz tube ensures the best chance

for an equal amount of coil to plasma coupling between the designs. To provide some con-

fidence in achieving this goal main current discharge profiles in vacuum are compared and

can be seen in Figure 2.2. The MPX Mk.II test article can be seen in Figure 2.3.

2.1.3. Discharge Circuit. The discharge circuit consists of a single Maxwell Tech-

nologies 0.7 µF, 70 kV rated high-energy capacitor with a 0.05 µH series inductance and a

Perkin-Elmer GP-14B spark-gap trigger with maximum hold-off voltage of 36 kV. Charge

voltage on the capacitor was maintained at 15 ± 0.02 kV for all tests. A DC glow discharge

electron source, commonly referred to as a type of pre-ionization source, was placed at one

end of the discharge chamber out of the line-of-sight of the optical emission pick-up and at

least 30 cm (12 in) from triple probes to assist with reliable plasma formation at all tested

conditions. The DC source was maintained at approximately 500 volts and was current lim-

ited to 1 milliamp. Upon transitioning to the Mk.II design this DC source was continued

and placed in a similar location to maintain continuity between designs. Figure 2.4 shows

two typical current discharge profiles to highlight the deviation from vacuum when plasma
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Figure 2.1. Missouri Plasmoid Experiment Mk.I rolled copper sheet single-turn coil
design.

Figure 2.2. MPX Mk.I and Mk.II currents compared to show comparable frequencies and
amplitudes.
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Figure 2.3. Missouri Plasmoid Experiment Mk.II segmented single-turn coil design along
with integrated probe assembly.

is present. Attenuation due to mutual inductance can be observed when plasma is present,

and this is a well-known effect observed in similar devices[25, 26]. This mutual inductance

affects the discharge profile two-fold; 1.) it reduces the LRC time-constant decaying the

discharge earlier and 2.) it increases the discharge frequency. Performing Fourier analysis

on all discharge current profiles reveals that the discharge frequency at base pressure is 462

kHz while pressurized discharge frequencies where plasma is present average 490 kHz.

MPX Mk.II showed a slight decrease in characteristic frequency with plasma to around

460 kHz.

2.2. MAIN VACUUM FACILITIES

2.2.1. Large Vacuum Facility. Spectroscopy and triple probe studies were per-

formed using different vacuum pumping facilities. During spectroscopy studies the MPX

cylindrical quartz vacuum vessel was connected at one end to a much larger cylindrical

vacuum chamber of length 3 m (10 ft) and diameter 1.8 m (6 ft). This large chamber was

pumped using up to four 0.8 m (32 in) Varian diffusion pumps backed by a 2-stage (Ed-

wards EH-4200 roots-blower → Tokuda KP-7500BG rotary-vane) roughing pump. The
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Figure 2.4. Typical MPX Mk.I discharge profiles with and without plasma. Time zero
represents when the data acquisition system received its trigger subsequently showing a

delay of around 2 µs before capacitor discharge.

large vacuum facility can be seen in Figure 2.5 and achieves a base pressure of 10−6 Torr

monitored with a Adixen (model: ACC2009, cold cathode+Pirani) full-range gauge. The

2-stage roughing pump can be seen in Figure 2.6. During backfill to operational pressures

in MPX Mk.I the quartz tube was isolated using an aluminum plate attached via armature

to a translation stage located within the larger chamber. When sealed the quartz tube main-

tained a vacuum of less than 0.1 mTorr. MPX quartz tube pressures were measured directly

with an MKS capacitance manometer (baratron model: 626, range: 10−5 to 10−1 Torr) as

shown in the upper-right of Figure 2.3. Additionally, gas species of interest in this work are

detailed in Table 2.1 and backfilled using an Alicat Scientific 0 to 20 sccm flow controller.

2.2.2. Small Vacuum Facility. In the interim between studies the decision was

made to disconnect the quartz tube from the large chamber and pump it directly with a sep-

arate smaller pump combination. Which consisted of a Adixen MDP-5011 molecular drag

pump backed by a Edwards 3-Series rotary-vane roughing pump. This new configuration

can be seen in Figure 2.3 and the corresponding pump combination in Figure 2.7.
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Figure 2.5. Large main chamber with diffusion pumps (seen in green) supporting MPX
Mk.I. MPX quartz tube connected via a center port (18 inch diameter) at the rear.

Figure 2.6. 2-stage roughing pump backing of high vacuum diffusion pumps. Upper left:
roots-blower. Lower-right: rotary-vane pump.

Table 2.1. Gas species characteristics used in this work.

gas species H2 He Ar Xe

weight, Mi (10−27 kg) 3.35 6.65 66.3 218

1st ionization pot. (eV) 15.44 (diatomic) 24.59 15.76 12.13
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Figure 2.7. Small pump combination located downstream of the Mk.II device (in the
upper-right corner of Figure 2.3).

2.3. EXTERNAL DIAGNOSTICS

A number of plasma interrogation techniques have been pioneered and refined over

the last roughly half century[27–38]. Two primary diagnostics are utilized in this work.

Namely, spectroscopy (an external diagnostic) and electrostatic probes (an internal diag-

nostic).

2.3.1. Czerny-Turner Spectrometer. A Princeton Instruments SP-2356 Czerny-

Turner (C-T) spectrometer with a 0.3 m focal length, triple grating turret with gratings of

300, 1200, and 2400 g/mm, and a 14 mm high slit with width adjustable from 10 µm to 3

mm was borrowed from the Energetics and Pulsed Power Laboratory group at the Univer-

sity of Missouri - Columbia campus. Grating and slit width used here were 300 g/mm and

50 µm, respectively, yielding a spectral resolution of 0.134 nm per pixel. Interfaced with

the spectrometer was a PI-MAX intensified CCD camera with a 1024 by 1024 pixel array
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CCD camera

grated 
surface

mirror #1

mirror #2

intensifier

MPX 
discharge

transmission 
via fiber cables

Figure 2.8. Basic Czerny-Turner spectrometer operation with MPX as the light source
lacking certain wavelength bands.

and a ST-133 controller with built-in PTG trigger module for repetitive (used in this work)

or sequential external triggering. Basic C-T spectrometer operation is detailed in Figure

2.8.

2.3.2. Optical Transmission. Light emission was transmitted from the experiment

to the spectrometer slit via a 7.5 m long, 200 µm core, VIS/NIR (low OH) Ocean Op-

tics fiber. The fiber was mounted perpendicular to the coil axial direction pointing to-

ward the center of the discharge tube. This optical configuration is similar to that used by

Yokota[39]. Figure 2.9 also provides further clarification of this orientation. The spectral

band during argon testing was 696 to 834 nm while for xenon testing was 803 to 938 nm.

2.4. INTERNAL DIAGNOSTICS

2.4.1. Probe Assembly. The main probe body is constructed of two sizes of alu-

mina tubing. The first of which is a four-bore 4.8 mm (0.19 in) outer diameter tube and

second is a single-bore 8.1 mm (0.32 in) outer diameter tube with inner diameter sized to

accommodate the four-bore tube O.D. Alumina (Al2O3) is a ceramic based material with



13

SP-2356 
spectrometer

7.5 m

76.2 cm

38.1 cm

coil fiber tungsten filament

DC electron
source

ground plane
 (aluminum)

(end-on)

(side)

32 cm

18
.1

 c
m

12
.7

 c
m

Figure 2.9. MPX Mk.I with single optical fiber to the Czerny-Turner type SP-2356
spectrometer.

non-ablative, non-conductive, and non-reactive attributes ideal for direct exposure environ-

ments. To alleviate low signal-to-noise currents by the probe a 0.53 mm (0.021 in) diameter

and 8 mm (0.315 in) length tungsten wire was used providing a 13.4 mm2 (0.021 in2) sur-

face area for current collection. To mitigate RF pick-up from the fast switching spark-gap

and capacitive coupling with the main coil multiple features were built into the probe and

accompanying signal output assembly. Minimizing unshielded lengths of wire the probes

pick-ups transition quickly into solid-shielded co-axial cable (see Figures 2.10 and 2.11)

with a 1 mm diameter copper jacket and 28 AWG (0.32 mm dia.) solid inner conduc-

tor. With four wires in total the bundle is then twisted immediately following the tungsten

termination to the remaining length of the probe assembly. Figures 2.10, 2.11, and 2.12

provide additional clarification of the probe circuit assembly.

2.4.2. Probe Integration. Integration into MPX was facilitated through a 30.5 cm

× 30.5 cm (12 in × 12 in) by 1.27 cm (0.5 in) thick acrylic (dielectric) plate mounted at one

end of the device sealed to the quartz tube with a ’L’-shaped rubber gasket and a pressure fit

maintained with four bolts. Transition of the probe assembly from vacuum was facilitated
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4.8 mm

1.6 mm

to 
battery 
bank

variable depth

vacuum 
passthrough

transfer to solid-
shielded co-ax cable

Figure 2.10. Triple probe schematic showing transition to twisted co-ax cable with a
shared ground shielding.

through a customized Swagelok-style compression fitting refitted with o-rings (see Figure

2.11) which allows for axial translation of the probe assembly without loss in vacuum down

to millitorr levels. Radial translation is afforded through elongated mounting holes at the

four bolt locations allowing the entire acrylic plate to slide along the gasket. Both o-ring

and ’L’ gasket are sealed with Dow Corning high vacuum grease that eases translation

while maintaining a seal. As with axial translation, radial translation of the probe can also

be done without loss of vacuum. Additionally, the remainder of the probe circuitry along

with the battery supplies and dual Pearson model 4100 current monitors are all housed in a

mobile conductive enclosure providing direct shielding to ground. Figure 2.12 shows this

assembly and integration.
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Figure 2.11. Triple probe construction showing transition to twisted co-ax cable before
being potted with two-part epoxy along with Swagelok-style vacuum passthrough.

(end-on)
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78.4 cm
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Figure 2.12. Missouri Plasmoid Experiment Mk.II segmented coil design with probe
assembly integrated. DC pre-ionization in the Mk.II was purposely placed in a physically

similar location to that of the Mk.I testing.
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3. SPECTROSCOPY

3.1. SPECTRAL THEORY

3.1.1. Line Emission. Collisions that occur in a plasma can be very broadly sepa-

rated into two main categories; those in which the total kinetic energy carried by the collid-

ing species is conserved as kinetic energy (i.e., the conservation of momentum), and those

in which some amount of the total kinetic energy is lost, or more appropriately, transferred

to another energy mode. These categories are referred to as elastic and inelastic collisions,

respectively. The latter of these can then be further refined based on the energy mode, or

modes, that have been introduced by the collision. Of primary interest here are collisions

in which some amount of kinetic energy has been transferred to electronic energy. That

is, the collision has increased or excited one or more valence electrons orbiting the species

of interest. From this point the now excited electron will execute one of two actions. Ei-

ther it will eventually decay back to it’s original energy level, referred to as spontaneous

decay, emitting a photon (light emission) with energy equal that of the difference between

the excited and original electronic states. Or, if collisions are frequent enough, it may be

given further energy to leave the orbit of the parent atom, leaving said atom in an ionized

state with charge approximately equal to that of the elementary charge, e (= 1.6× 10−19

coulombs). If the wavelength, λ, can be observed, energy of the photon can be calculated

using Planck’s constant (h = 6.63×10−34 J-s) and the simple formula,

Eλ =
hc
λ

(J) (3.1)

where c is the unabated speed of light (3.00×108 m/s). Dividing by e gives this energy in

electron-volts (eV). Figure 3.1 shows estimates of these energy levels in eV’s for argon[40].
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Figure 3.1. Energy level diagram for argon assembled by the Atomic Collisions Group at
the University of Wisconsin.

3.1.2. Collisional Statistic Modeling. Modeling based on collisional statistics is

most often divided into three broad categories, or regimes, depending on the level of colli-

sionality. These are, from lowest to highest collisional frequency: 1.) Steady-State Corona

(SSC) models or simply corona models which assume depopulation of light-emitting species

is exclusively by spontaneous radiative decay if species are excited or radiative recombi-

nation if species are ionized. 2.) Collisional-Radiative (CR) models which assume de-

population of light-emitting species is done by appreciable levels of both radiative decay

and collisional de-excitation. 3) Local Thermal Equilibrium (LTE) models which assume

collisional processes dominate and depopulation of all species is governed by the princi-

ple of detailed balance. From here models in all three regimes can be further refined to

accommodate specific problems of interest. For a complete list of the assumptions and cri-

teria involved in each model a discussion such as that by McWhirter[29] can be found in

literature.
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3.1.2.1. Coronal Approximation. As a first approximation steady-state corona

(SSC) assumptions are used to estimate time-resolved electron temperature via the line

intensity ratio technique[29, 41]. In SSC models population of the jth excited state is given

by the rate balance equation,

〈σv〉0 jnen0 = N j

∑
i< j

A ji, (3.2)

where ne, n0, and N j represent number densities of electrons, ground-state atoms, and the

excited species, respectively, 〈σv〉0 j represents the electron collision rate coefficient (inte-

grated over a Maxwellian velocity distribution) for ground to jth excited level collisions,

and A ji is the spontaneous transition decay rate from the jth (upper) level to any ith (lower)

level. Intensity (photon counts) of emission through solid angle fraction, ω/4π, integrated

over plasma depth ds (here ds would be a radial chord; see Figure 2.9) is given by the rate

equation,

I(λ ji) =

(
ω

4π

)
(τα)λ, j→i A ji

∫
N jds, (3.3)

where (τα)λ, j→i is the overall OES transmission efficiency at wavelength λ ji. For spectra

obtained along the same collection path and assuming approximately equal transmission

efficiencies for transitions j→ i and k→ l, combining (3.2) and (3.3) yields for intensity

ratio I(λ ji)/I(λkl);
I(λ ji)
I(λkl)

=
〈σv〉0 j

〈σv〉0k

A ji∑
n< j A jn

∑
n<k Akn

Akl
. (3.4)

The decay rate fractions are usually symbolically reduced by defining what is referred to

as a branching ratio, B ji (≡ A ji/
∑

n< j A jn). In this work the corona model is applied to

the neutral excited state transitions of 2p2→ 1s5 and 2p3→ 1s4 (in Paschen notation) for

argon. Bp2s5 and Bp3s4 are found to be 0.181 and 0.245, respectively. With the assumption

of a Maxwellian electron thermal distribution collision rate coefficients can be calculated

given well-known argon collision cross-sections. From (3.4) then, intensity ratios as a
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Figure 3.2. Intensity ratio results of the steady-state corona model applied to the
transitions 2p2→ 1s5 (696.5 nm) over 2p3→ 1s4 (738.4 nm).

function of electron temperature may be easily obtained. Figure 3.2 shows this result in the

temperature range of 0.1 to 20 eV for the line intensity ratio I696.5/I738.4.

3.1.2.2. Collisional-Radiative Approximation. As the background neutral popu-

lation becomes predominantly ionized corona model assumptions cease to be valid and a

new model is required to more appropriately estimate the plasma state. In this work a pre-

viously published and well-assessed CR model for argon by Iordanova and Koleva[42, 43]

and a CR model developed for use with xenon Hall-effect thrusters (HETs) at the U.S.

Air Force[44, 45] are utilized for Te estimates. The Iordanova model uses numerically ob-

tained collisional cross-sections that have been validated against multiple experimental data

sets[46, 47] while cross-sections of backward processes are obtained from the principle of

detailed balance. Collisional processes involving the ground state of argon (denoted as the

0th state) as well as the first fourteen (ordered by energy) excited neutral states (denoted

1st-14th states) are included. In Paschen notation these are represented by 1s5−2 and 2p10−1.

For estimation of electron temperature the Iordanova model uses a cross-point method in

which multiple line intensity ratios are plotted verses both temperature, Te, and electron

density, ne. Plots for two different line ratios are then compared against each other for a

common point of intersection, or cross-point. To narrow the iterative process necessary
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to correctly estimate electron temperature generally an approximate range of foreseeable

electron density can be made a priori. This range is also bounded by those densities appli-

cable to collisional-radiative models. Here this electron density range is taken to be 1010 to

1014 cm−3.

As done with the SSC model a rate equation is written, here for each of the fourteen

excited states, thus necessitating the simultaneous solution of fourteen rate balance (i.e.,

steady-state) equations. For the jth excited species this rate equation takes the general

form,

populating terms︷               ︸︸               ︷ de-populating terms︷                        ︸︸                        ︷∑
i, j

〈σv〉i→ jneNi

+
∑
i> j

Ai jNi =

(
〈σv〉 j→ionne +

1
τ j

)
N j

+
∑
k, j

〈σv〉 j→kneN j

+
∑
k< j

η jkA jkN j

+
∑

k

〈σv〉(k j)→ionNkN j . (3.5)

Similar nomenclature to that found in the SSC model discussion above is reused here

along with new additional terms. Namely these are; the characteristic times of diffusion of

metastables to the cylinder walls, τ, and escape factors, η, that represent the re-absorption

of light emission based on the level of opacity of a cylindrical plasma slab. The last term

on the right hand side of (3.5) represents inelastic collisions leading to ionization. It is

emphasized that (3.5) is generalized and for a given species not all terms would be uti-

lized. One example would be (3.5) written for the metastable species 1s5 and 1s3 would

include the diffusion times, τ5,3 but not the spontaneous decay term for de-population (the

right-hand side). The latter of these considerations comes by definition of a metastable

species in which there is no allowed electron decay directly from these states[48]. For a
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complete discussion of the terms present per species the reader is referred to the original

model publication[42].

3.2. RAW SPECTRAL DATA

Pressures of 10, 30, 50, and 100 mTorr were tested using xenon and argon gases

back-filled from less than 0.1 mTorr. It was noted that emission activity tapered off dra-

matically as back-fill pressure was reduced below around 7 mTorr. Two different data

collection schemes were performed at all four pressures for each gas. The first set of data

were long-exposures of 20 µs to capture all dominant emission activity over the entire dis-

charge oscillation time. Four to five of these spectra were acquired per pressure and then

averaged to provide a measure of consistency. Figures 3.4 and 3.3 show the results of

these averaged long-exposures for argon and xenon, respectively. The standard deviation

of emission intensity was calculated and a bandwidth averaged standard deviation, σ, can

be found in Table 3.1 along with the percentage of maximum intensity each σ represents

per pressure. It will be shown in the next chapter that substantial plasma activity is ob-

servable well past the end of the discharge. However, optical studies gave evidence that

light emission activity tapered off at or near the end of the discharge by showing negligible

further light accumulation out to 30 µs. Despite this, evidence of plasma activity appeared

in probe studies out to 100’s of µs. Celik et al. have shown in RF afterglow studies with

argon that upon power-off a dark period of very low light emission can occur followed by

a re-illumination delayed up to 0.5 ms[49]. Given this insight it should be noted that pos-

sible light emission in MPX could be occurring long after the end of the main discharge

cycle but was not captured in emission studies presented here. Because of this, no MPX

spectroscopy studies are available to compare against probe current activity at later times

(>20 µs).

The second set of data were obtained to provide a time-resolved intensity profile.

This was achieved by fixing CCD gate width (exposure time) to 0.25 µs and delaying gate
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Figure 3.3. (a) 10, (b) 30, (c) 50, and (d) 100 mTorr 20 µs MPX discharge exposures for
argon (equivalent vertical scales).
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Figure 3.4. (a) 10, (b) 30, (c) 50, and (d) 100 mTorr 20 µs MPX discharge exposures for
xenon (equivalent vertical scales).
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Table 3.1. Mean shot-to-shot standard deviation, σ (and its percentage of maximum
spectral intensity), for 20 µs exposures seen in Figures 3.4a-d and 3.3a-d.

Pressure (mTorr) σ (counts) % of max int.

Argon:

10 54.7 1.1

30 44.9 1.2

50 66.7 1.8

100 43.0 1.2

Xenon:

10 37.8 <1.0

30 47.2 1.4

50 40.3 1.6

100 36.4 1.4

turn-on time starting from the initial trigger, t0 ≈ 0.0 seconds and extending to 20 µs. Ac-

tual initial start time is approximately 0.03 µs due to machine delay. Thus time-marching

a short exposure window forward to build the time-resolved profile. The decision to use

0.25 µs was a compromise due to the low light intensity plasma. At gate widths less than

0.25 µs the light intensity became effectively unusable against the background continuum.

The ratio of these intensities against the background continuum is referred to throughout

the remainder of this work as the signal-to-noise ratio, or SNR. At each delay time between

two and five spectra were acquired depending on whether or not plasma activity was ob-

served. The primary reason necessitating multiple shots per delay time was the presence

of a significant temporal jitter (up to ± 100 ns) between discharges attributed to operat-

ing the spark-gap switch at only 42% of its maximum hold-off voltage. Unfortunately,

this could not be compensated for due to the method of synchronized triggering of both the

data acquisition system and spectrometer. Figures 3.5 and 3.6 show MPX spectral emission

time-resolved via post-process for argon (750.4 nm) and xenon (823.2 nm) tests, respec-

tively. 10 and 30 mTorr short duration argon tests in Figure 3.5 appear truncated due to



25

unrelated facility issues. Testing was terminated early because of malfunctioning vacuum

equipment and unable to be resumed in a timely fashion before returning the spectrometer

to UM-Columbia.

Inspection of the 20 µs spectral data shown in Figures 3.3 and 3.4 shows that excited

neutrals cannot account for all activity in the bandwidth observed. Two possible sources

for the additional emission activity in this bandwidth are; 1.) contaminant spectra from

other gas species such as those in air left behind during evacuation, and 2.) second-order

spectra from the higher energy UV-band. Second (and higher) order spectra appearing in

lower wavelength bands is a very well understood optical effect of using diffraction grating

based spectrometry[50]. Both of these possibilities are explored via studies in the UV-band

with xenon. Figure 3.7 shows both xenon (b) and air (c) UV-band spectra taken during

MPX discharges in 50 mTorr and compares them with the IR-band 50 mTorr xenon spectra

(a) from Figure 3.4. Figure 3.7 also provides answers to both earlier questions regarding

the added emission activity mentioned above. This is achieved by observing that; 1.) none

of the dominant lines in the air spectra appear in the xenon spectra when comparing the

two UV-band tests which confirms that the method of backfill was sufficient to remove

contaminant species to a negligible level, and 2.) the dominant UV peaks in xenon are

clearly repeated at double their respective wavelengths in the IR-band (clarified by the

callouts). In addition to the aforementioned repeatability for the IR-band spectra, the UV-

band spectra seen in Figure 3.7 consist of three independent data sets each.

From here additional verification of second-order spectra for both argon and xenon

is performed by cross-referencing with the National Institute of Standards and Technology

(NIST) spectral database for documented lines in both the UV and near-IR bands. Figures

3.8 and 3.9 show overlays of this cross-referencing (blue and red data points) onto the 50

mTorr discharges shown in Figures 3.3 and 3.4 for argon and xenon, respectively. This

overlay accounts for all dominant intensities with the exception of a line at 777 nm in

argon. This exception is attributed to an atomic oxygen triplet. It was found that a 3 to 5
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Figure 3.5. 0.25 µs MPX discharge exposures for the 750.4 nm argon line at; (a) 10, (b)
30, (c) 50, and (d) 100 mTorr (equivalent vertical scales).
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Figure 3.6. 0.25 µs MPX discharge exposures for the 823.2 nm xenon line at; (a) 10, (b)
30, (c) 50, and (d) 100 mTorr (equivalent vertical scales).
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shot ‘cleansing’ procedure was needed to remove this contaminant spectra from the data

after any re-pressurization of the vacuum facility to atmosphere. This has been encountered

before in PIP device operation and is generally thought to be the result of oxygen impurity

deposition to the inner walls of the quartz vacuum vessel.

3.3. COLLISIONAL MODELING RESULTS

3.3.1. Corona Model. Time-resolved intensity ratios were compared against the

curve shown in Figure 3.2 and subsequent electron temperature estimates can be found in

Figure 3.10a along with a reference discharge current in Figure 3.10b. It is noted that tem-

perature profiles in Figure 3.10a do not start at t0 = 0.0. At times earlier than those plotted

for each pressure insufficient spectral activity forced unreliable temperature analyses.

3.3.2. Collisional-Radiative Model. Figure 3.11 shows the results of the collisional-

radiative approach for discharge pressures of 50 and 100 mTorr. These results are for the

cross-point method described in-brief above and in further detail in Ref.[42] applied to

the combination I696.5/I738.4 and I801.5/I794.8. In addition, the SSC results of Figure 3.10a

extended to roughly 20 µs and previously published xenon collisional-radiative results are

provided for reference. Electron temperature estimates can be seen to range from SSC

model minimums of around 1 to 2 eV up to and exceeding 80 eV estimated by the CR

model. Gaps in high-level temperature estimates are a result of the experimental intensity

ratios falling outside the regime allowed by the CR model. It is speculated that at these

times collisional de-excitation greatly dominates over radiative decay processes and the

gas is approaching a fully ionized state. Gaps in low-level temperature estimates represent

periods where the electron population has shrunk and cooled significantly and collisional

processes have fallen off in favor of spontaneous radiative decay.

Results of the CR approximation agree reasonably with results of previous theta

pinch experiments of similar conditions using a variety of diagnostic methods[9, 39]. Fig-

ure 3.12 shows resulting time-resolved electron temperature from 250 kHz, 1.2 kJ of stored



29

360 380 400 420 440 460 480

20 000

10 000

5 000

15 000

25 000

400360 380 420 440 460 480

2 000

4 000

1 000

3 000

5 000

800 900820 840 860 880 920 940

0

2 000

1 000

500

1 500

Figure 3.7. (a) 50 mTorr near-IR full discharge spectra (Figure 3.4c). UV spectra (3 sets
each) for MPX at 50 mTorr in; (b) xenon, and (c) air. Callouts show the shared spectra in

the UV (1st order) and near-IR (2nd order) ranges.
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Figure 3.8. 20 µs discharge of MPX at 50 mTorr argon. Dominant peaks are nearly all
accounted for by taking into account second order diffraction of Ar II. Second order peaks

compiled from NIST data.
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Figure 3.9. 20 µs discharge of MPX at 50 mTorr xenon. Dominant peaks are all accounted
for by taking into account second order diffraction of Xe II. Second order peaks compiled

from NIST data.
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Figure 3.10. Selection of time-resolved electron temperature estimates for MPX at 15 kV
(80 J) and 490 kHz based on the argon 696.5 to 738.4 nm transition intensity ratio and

steady-state corona model assumptions.
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Figure 3.11. Results of collisional-radiative model assumptions along with corona model
assumptions of the same data. Previous xenon work also included for reference.
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Figure 3.12. Reported data from Ref.[9] on an argon co-axial theta-pinch pre-ionization
using a triple probe analysis at 10 mTorr.

energy on a single turn co-axial theta pinch test article. The data shown was taken during

pre-ionization testing at a 10 mTorr argon backfill. Electron temperature in Figure 3.12 was

arrived at via internal triple probe analysis[37, 51]. Figure 3.13 shows electron temperature

estimates in a 100 mTorr slow frequency (15.6 kHz) and high energy (32 kJ) helium theta-

pinch discharge[39] overlay onto 100 mTorr MPX data, both as a function of characteristic

discharge half-cycles (≈ 1 µs for MPX, ≈ 32 µs for Yokota). The results of Yokota are based

on steady-state corona and collisional-radiative models as well. However, the collisional-

radiative model used by Yokota is based on experimentally derived (i.e., apparent) helium

cross-sections rather than numerically derived cross-sections like those used in this work.
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Figure 3.13. 100 mTorr argon work presented here along with reported data from Ref.[39]
overlaid as functions of discharge half-cycles.
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4. INTERNAL PROBES

4.1. PROBE THEORY

4.1.1. Langmuir Probe Theory. The Langmuir probe is an electrically biased

conductor, generally simple in geometry (flat, cylindrical, or spherical), designed to mea-

sure numbers of impinging charge carriers in the form of an electric current. Because

collection of individual ions and electrons is typically both grossly large in frequency and

incredibly small in magnitude, current collected from a Langmuir probe is more readily

seen as a net total current. The magnitude of which is dependent primarily on the number

of charge carriers (plasma density), particle kinetic energies (or macroscopic temperature),

and exposed probe surface area. Additionally, gas species can play an implicit role by way

of particle mobility and ionization potential. Pioneered by Mott-Smith and Langmuir in the

late 1920’s[52] the Langmuir probe is one of the most expanded upon and still very much

relevant plasma diagnostic tools common across industry, research, and academia today.

Extensive analyses of probe current collection theory can be found in texts by Lieberman

& Lichtenberg[53], Chen[28], and Hutchinson[54]. Some basic concepts of Langmuir

probe current collection are outlined here. While additional concepts specifically relevant

to double and triple Langmuir probes are the topics of the next two sections.

The typical current-voltage trace of a cylindrical Langmuir probe can be seen in

Figure 4.1 where the convention is to place electron current positive. Addressing Figure

4.1 from left to right, a probe bias voltage, Vprobe or simply Vp, that is very negative will

collect predominantly ions, repealing all but the most energetic electrons and yielding what

is known as the ion saturation current, Ii,sat. As the probe is brought close to zero volts the

flux of electrons and ions becomes comparable and eventually balance yielding a net zero

current by definition at the floating potential, V f , which is the voltage potential an insulated
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probe would adopt. As electrons are much more mobile than heavy ions a comparably

small increase into positive voltages yields large electron currents quickly surpassing ion

saturation magnitudes in an exponential fashion. If electrons are assumed to be thermalized,

or governed by a Maxwellian energy distribution, this exponential relationship for electron

current is given by[55],

Ie = Ie,sat exp
(
e(Vp−Vs)/(kBTe)

)
(4.1)

where Ie,sat is now the electron saturation current. Electron saturation current is typically a

few orders of magnitude higher than ion saturation and occurs near the plasma (or ‘space’)

potential, Vs. Ideally, electron saturation current would be a limit approached asymptot-

ically. However, as voltage is increased the sheath surrounding the probe (typically of a

few Debye length, λD, in thickness) grows with saturation current following proportion-

ally. Regarding the value of Vs, the random flux of particles from the system favors the

light mobile electrons and for plasmas that have access to a grounded conductive surface

(e.g. a chamber wall) Chen gives an order of magnitude approximation of 5kBTe for Vs[55].

Thus Vs is typically slightly positive due to a mild imbalance in the quasi-neutral assump-

tion. However, it should be noted that there is no defined ‘zero’ probe voltage in Figure

4.1. This is because the location of the exponential transition region in this characteristic

is very dependent on both probe and discharge device. Several base assumptions are gen-

erally adhered to in Langmuir probe analysis and are also verified to apply throughout this

work as well. For cylindrical geometry probe operation these are namely:

1. Probe currents are small compared to discharge current injecting a minimal distur-

bance.

2. Probe radius is large compared to Debye length.

3. Probe radius is large compared to sheath thickness (rp/ds >> 1).
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Figure 4.1. Typical I-V characteristic trace of a cylindrical Langmuir probe.

4. Probe radius and therefore sheath thickness is small compared to the dominant colli-

sional mean free paths, primarily λie leading to a collisionless sheath (ds << rp << λie

or simply λie/rp >> 1).

5. Electrons are governed by a Maxwellian (thermal) energy distribution.

Table 4.1 summarizes the relevant probe characteristics. Sheath thickness is estimated

by[53],

ds = λD

√
2

3

(
2eφps

kBTe

)
(4.2)

where φps = Vp −Vs ≈ Vp is the voltage potential between the probe and the plasma. Vs

is assumed to be much smaller than Vp as this work focuses on a dynamic plasma with

no close grounded surfaces provided within the chamber. For operating condition calcu-

lations the larger bias battery voltage of approximately 20 volts is used to provide a more
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Table 4.1. Triple probe design specifications.

diameter, 2rp 0.53 mm (0.021 in)

tip length 8.0 mm (0.315 in)

number of probe tips 4 (1 insulated)

tip separation, s 1.6 mm (0.063 in)

collection area, Ap 13.4 mm2 (0.021 in2)

conservative estimate. λD is the Debye length for a given plasma temperature, Te, given by,

λD =

√
ε0kBTe

e2n0
. (4.3)

Lieberman and Lichtenberg give experimental elastic scattering and charge transfer colli-

sion cross-sections, σ, for heavy particle (ion-neutral) collisions in helium and argon as

ranging between 2× 10−16 and 8× 10−15 cm2 in the TeV range of 4 to 100 eV. For a gen-

eral mean free path defined as λ = (n0σ)−1 and neutral densities ranging from 1014 cm−3

for 10 mTorr to 1015 cm−3 for 100 mTorr these cross-section limits yield 10−1 < λ < 101

cm. This puts the lower limit one order above the characteristic probe radius with the up-

per limit at three orders above, satisfying collisionless sheath criteria. In addition, Table

4.2 summarizes other relevant operating parameters for the estimated bounds of this work.

Mean free path for collisions between charged particles (e− − e−, e−-ion, ion-ion) is given

approximately by[56],

λie ≈ λee ≈ λii ≈ 3.4×1013 T 2
eV

n0 lnΛ
, (cm) (4.4)

where the natural log of the impact parameter, lnΛ, is assumed to be 10. It can be seen

from Table 4.2 that 100 mTorr represents an upper limit for this probe design with higher

pressures requiring a smaller probe radius.



40

Table 4.2. Conditions for valid probe operation.

pressure (mTorr) 10 100

neutral density (1020 m−3) 3.3 32.9

Te (eV) 5 50 5 50

λie/rp 10 970 1 97

rp/ds 129 230 410 729

4.1.2. Double Probe Theory. Expanding the Langmuir probe concept the devel-

opment of double probes aims at providing reliable probe measurements in a plasma envi-

ronment with no well-defined reference voltage and a time-dependent space potential[57].

This is done while maintaining a minimum level of disturbance to the plasma from probe

currents. These requirements are achieved by adding a second probe tip in the immedi-

ate vicinity of the first. The second probe acts as the current source (or sink depending

on the direction of bias) thereby truncating and localizing the current path to a distance

approximately that of the separation between probe tips. Now the probe circuit can be iso-

lated from ground, requiring no need of an external reference. Furthermore this isolated

probe circuit can float with the time-varying plasma space potential maintaining a reliable

measure of plasma properties. An additional benefit of the double probe technique is that

currents only approximately that of the ion saturation current are required thus further re-

ducing disturbance to the plasma with the added benefit of requiring only a few 10’s of

volts of bias to adequately capture the full profile. Of primary concern when introducing

this second (or any additional) probe tip is the requirement of a tip separation distance, s,

to be much greater than the thickness of the sheath that is formed around both biased probe

tips. This is to ensure that the sheath of one probe does not contaminate the pick-up of

the other maintaining a probe current dependent on the bulk plasma properties rather than

a localized atypical plasma. Values for s are listed in Table 4.1. Also, based on the rp/ds
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values found in Table 4.2 along with the knowledge that s ≈ 2.4× rp it is clear that this

condition is met.

Double probe theory then follows with the assertion that the current to both probes

is limited by the ion saturation current of the negatively biased probe to maintain current

conservation through the isolated probe circuit. For equal probe surface areas, Ap, this ion

saturation current limit is the same for both probes and the current as a function of applied

probe bias voltage and electron temperature (assuming a Maxwellian distribution) is given

by[28],

Ip(Vp) = Ii,sattanh
(
Vp/(2TeV)

)
. (4.5)

Using experimental data a function of probe current in the form of (4.5) can then be fitted to

estimate Ii,sat and TeV . With these two parameters along with the assumptions of Te >> Ti,

ion saturation approximately constant over the applied voltage range, a single species ion

density, and a quasi-neutral plasma (ne ≈ ni), electron density is given by the Bohm sheath

criterion for ion current in the sheath, namely,

ne ≈ ni,sat ≈ ni =
Ii

Ap exp(−1/2)euB
(4.6)

where uB =
√

eTeV/Mi, the familiar Bohm velocity. If a pulsed inductive plasma device is

assumed to yield a repeatable plasma, various double probe bias voltages can be selected

and reversed to sufficiently fill out the I-V space as a function of time. This is precisely

what is done in Subsection 4.2.2 and provides estimates for TeV and ne to compare against

triple probe estimates for validation.

4.1.3. Triple Probe Theory. While the double probe provides many advantages

over the single Langmuir probe it is still considered a ‘slow’ probe in some respects and

the post-processing task of curve fitting a hyperbolic tangent function can be error inducing

and cumbersome. Thus the advent of the triple probe by Chen and Sekiguchi in 1965[37].

By introducing a third probe biased with respect to the other two into a double probe cir-
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cuit, triple probe theory yields a relation for the ratio of currents between probes as a

function of electron temperature. The physical arguments dictating a triple probe parallel

those of the traditional Langmuir and double probes subject to the ‘thin sheath’ and probe

separation criteria outlined above. The electron saturation current density is found to be

Je = nee
√

kTe
2πme

. Or more conveniently,

Je = ne

√
e3TeV

2πme
(4.7)

where TeV is now electron temperature in electron-volts. These base principles are then

applied to a probe assembly consisting of three separate probe tips to yield electron tem-

perature and electron density directly using fixed bias voltages. The theory is as follows;

First, an electrically isolated triple probe, allowed to penetrate a quasi-neutral plasma via

insulated vacuum pass-throughs as shown in Figure 4.2 is considered. Since these probe

circuits are isolated the entire assembly is maintained at the floating voltage, V f . If at this

point, two bias voltage sources (i.e., isolated DC batteries), Vd2 and Vd3, are introduced

between probe tips 1 & 2 and 1 & 3, respectively, the individual probe voltages would

deviate from the floating potential accordingly. However, as the sources are isolated, the

probe assembly would remain centered about V f . Furthermore, with these newly added

potential differences being applied across adjacent probe tips, charge carriers within the

plasma would permit currents I1, I2, and I3 to flow within the system. These concepts are

illustrated in Figure 4.3. This current relation is then simply a function of the known bias

voltages and electron temperature only given by,

I1 + I2

I1 + I3
=

1− exp(−Vd2/TeV)
1− exp(−Vd3/TeV)

. (4.8)

Graphical representation of (4.8) at the voltages used in this work can be seen in Figure

4.4 stylized similar to that presented by Chen and Sekiguchi. Based on the assumption
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Figure 4.2. Triple probe assembly floating at V f when no bias voltage (i.e., batteries)
present. Current I1 = I2 = I3 = 0.

of mono-energetic ions and thermalized electrons the current to each probe tip can be de-

scribed and combined for equal area probes to yield an ion current density,

Ji =
1

Ap

{
I3− I2 exp[(Vd2−Vd3)/TeV]

1− exp[(Vd2−Vd3)/TeV]

}
(4.9)

where Ji is assumed constant for all probe tip voltages. Finally, for equal electron and ion

densities at the sheath edge, density is found by,

ne = Ji exp(1/2)
(
Mi/e3TeV

)1/2
. (4.10)
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Figure 4.4. Functional dependence of triple probe current ratio on electron temperature
from theory. Shown for the bias voltage combination used in this work and styled around

that presented by Chen and Sekiguchi (1965).
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4.2. PROBE RESULTS

Nomenclature introduced in Section 4.1.3 is continued here where probe tips 2

(TP2) and 3 (TP3) have voltages with respect to probe tip 1 of Vd2 and Vd3, respectively,

and collect currents I2 and I3, respectively. While the shielding efforts described in Section

2.4.1 helped significantly to reduce RF interference and increase signal-to-noise ratio, the

spark-gap switch still imposes a substantial high-frequency switching noise at early times

from around -1.5 µs to +0.5 µs. To mitigate influence of this noise all current data, both

double and triple probe based, are run through a 5 MHz low-pass filter post-process be-

fore being used in analysis. Bode plot representation of this filter is provided in Figure 4.5

showing a negligible level of attenuation up through double MPX frequencies ( fMPX ≈ 466

kHz). Some slight phase delay is introduced by filtering and is corrected for in all data

presented here.

To confirm conservation of current as triple probe theory demands, preliminary tests

were done monitoring current on probe tip one, I1, in addition to tips two and three. All

three current monitors were placed to measure positive electron current to the probe tips.

Therefore, if working properly, the current sensed on probe one should be the negative

sum of the currents sensed on probes two and three as depicted in Figure 4.3. Figure 4.6

confirms this to be the case at sample conditions of 90 mTorr in argon.

4.2.1. Repeatability of Triple Probe Currents. Probe currents were collected at

radial locations of r = 0 (centerline), 1/4 R, 1/2 R, 3/4 R, and R for all four gases; hydrogen

(diatomic, H2), helium, argon, and xenon. Effort has been made to verify the repeatabil-

ity of the MPX discharge through the analysis of triple probe data collected between 10

and 100 mTorr. Between two and four shots were taken at all of these locations and for

all gases. Figures 4.7(a-d) show the shot-averaged currents along with the shot-to-shot

standard deviations, σI , at 1/2 R for all gases at 50 mTorr.

Figure 4.8 shows the average standard deviation between shots, σ, at all pressures

and gases species at the 1/2 R radial location. This figure shows quantitatively the high
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Figure 4.5. 5 MHz low-pass filter Bode plot representation.

Figure 4.6. Confirmation of current conservation across triple probe assembly.
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(a) (b)

(c) (d)

Figure 4.7. Average current (red) and standard deviation (black) at the 1/2 R location in 50
mTorr (a) hydrogen, (b) helium, (c) argon, and (d) xenon.
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degree of erratic plasma formation exhibited at low pressures with deviations of more than

100 mA at 20 and 40 mTorr decreasing to 5 mA or less for all gases and currents at 90

mTorr and above. Also, this trend of increasing repeatability for higher pressures agrees

qualitatively with trends seen previously in MPX by Pahl and Rovey[58].

Figure 4.8. Average standard deviation of probe current for all pressures and gas species
tested at the 1/2 R probe location.

4.2.2. Triple Probe Validation through Double Probe Analysis. To provide con-

fidence in the triple probe results presented here studies with a double probe configura-

tion were compared with those of the triple probe. This approach has been successfully

performed previously with double probe temperature and density agreements reported by

Mackel et al. of within 30% and 9%, respectively, below triple probe estimates and tem-

perature and density agreements between probes of within 7.5±4.5% and 8.5±5.5%, re-

spectively, reported by Naz et al.[9, 59, 60]. Double probe studies in argon at 10, 30, 50,

70, and 90 mTorr and at the r = R/2 location were compared with triple probe studies in the
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same conditions and location using the same probe assembly. Double probe currents were

sourced from multiples of high-current lantern batteries ranging from none (±0V) to six

batteries in series yielding a peak applied bias of ±39.34 volts. Figure 4.9b shows a sam-

ple of collected double probe currents at 90 mTorr. While Figure 4.9a is the reconstructed

I-V double probe trace accompanied by a least-squares curve fit with a functional form of

(4.5). Each current data point and current trace in Figures 4.9a and 4.9b, respectively, are

the resulting average of three tests done at the voltage indicated. Negative voltages were

achieved by simply reversing the wiring to the probes. These resulting double probe cur-

rents were also used in the selection of appropriate bias voltages for triple probe studies

based on the following observations. Visual inspection reveals that the ±6.58 volts applied

(1 battery) yielded a significant undesired asymmetric current. Also, at voltages of ±26.25

volts (4 batteries) and above it became increasingly difficult to avoid test results where an

undesired arc across probe tips resulted at some time during collection. This is also why

Figure 4.9b is truncated at 15 µs. Avoiding these two adverse issues, a combination of Vd2

= 13.1 volts and Vd3 = 19.6 volts, or two and three batteries, respectively was chosen for

use in all triple probe studies presented in this work. These voltages for MPX (∼ 80 J stored

energy) fall well within those found in literature with Byrne et al. (2001) using 3 and 18

volts for low energy (20 J) pulsed plasma thruster plume studies and Kirtley (2008) using

13 and 38 volts for high energy (up to 1 kJ) pulsed inductive plasma studies[9, 61].

Figures 4.10a-d show comparisons between double and triple probe Te and ne esti-

mates in argon at 30 to 90 mTorr. Triple probe data seen here are the resulting average of

two to four tests at the given conditions and in most cases standard deviation between tests

was below 10% for electron temperatures and less for electron densities. Close agreement

between the two probe methods can be seen until around 8 to 12 microseconds with worst

case percent differences of 25.5±23% and 11.5±9% for temperature and density, respec-

tively, in that time frame. This late-time divergence between probes is believed to be the

result of a thin layer of higher density plasma, translating radially inward and intercepting
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Figure 4.9. (a) Reconstructed double probe current sampled at 3.334 µs plotted as a
function of probe voltage. (b) Double probe current verse time in 90 mTorr argon backfill

and all positive and reversed bias voltages tested from 0 to 15 µ.
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the probe residing at this R/2 location. This phenomenon will be the subject of discussion

in Section 4.2.3. Upon departure from this high-density encounter the two probe methods

can be seen to settle back into the same level of agreement as that of the early times which

is interpreted here as an indication that electron temperature and density estimates past the

initial encounter are still accurate.

Brief mention of the results of the 10 mTorr comparisons between double and triple

probe estimates (shown in Figure 4.11) is made to highlight the observation that plasma

formation was difficult at this pressure. Specifically, it was found that across all gas species

tested an operating pressure of 10 mTorr represented an approximate lower threshold for

reliable plasma formation. Despite the presence of a DC glow pre-ionization source results

at 10 mTorr proved difficult to verify, generating plasma activity comparable to higher

pressures only once every five to seven shots.

4.2.3. Triple Probe Current and Evidence of a Plasma Wave. In addition to

the early times (< 15 µs) of the discharge, attention was given to the later times in the

context of what appeared to be a radially translating high density wave. Figures 4.12 to

4.15 show probe current profiles hydrogen, helium, argon, and xenon, respectively, in a

sample pressure of 50 mTorr. Currents in hydrogen and helium can be seen to have the

highest magnitudes at the 3R/4 location while currents in argon and xenon are seen to have

a highest magnitude at the R location and reduce steadily as the probe is moved radially

inward. By inspection it can be seen from Figures 4.14 and 4.15 for argon and xenon,

respectively, and to a lesser degree in Figure 4.13 for helium that a higher charge density

region (inducing higher probe currents) is moving radially inward. As an example the

reader is directed to Figure 4.14 at approximately 8, 10, 18, 28, and 33 µs for the R, 3R/4,

R/2, R/4, and r = 0 probe locations, respectively, where currents can be seen to ramp-

up. Additionally, this region appears to apex at approximately the center (r = 0) location

and then propagate radially back out at around the same rate. Using known radial probe

locations and times corresponding to the initial ‘knee’ in probe current I3 a radial velocity,
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(a) (b)

(c) (d)

Figure 4.10. Comparison between double and triple probe methods at (a) 30, (b) 50, (c)
70, and (d) 90 mTorr.

vr, of the high density front has been calculated. This time in the current I3 profile was

perceived as the time when the complete transition from pre-wave to full wave densities has

occurred. In many cases this time was very apparent. However, in the lighter gases at lower

pressures this point was less obvious due to either main current coupling at early times

(e.g. Figure 4.12), high noise, or non-repeatable phenomena (i.e., instabilities) corrupting

the average. For these reasons accurate velocities in the lighter gases became difficult to
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Figure 4.11. Comparison between double and triple probe methods at 10 mTorr argon.

discern and thus trends are less clear. Nonetheless, Figure 4.16 shows the radial velocities

found for each gas species as a function of pressure by this method. These velocities are a

four position (3/4 R to 0 R) average.

Figure 4.16 demonstrates that these radial velocities are dependent on species and

pressure. Or alternatively, on Mi and (nkBT ). As a point of reference the ion acoustic wave

speed for one-dimensional compression with isothermal electrons is given by[56],

vs =

(
kBTe +γikBTi

Mi

)1/2

(4.11)
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Figure 4.12. Triple probe currents in 50 mTorr hydrogen as a function of radial position.
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Figure 4.13. Triple probe currents in 50 mTorr helium as a function of radial position.
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Figure 4.14. Triple probe currents in 50 mTorr argon as a function of radial position.
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Figure 4.15. Triple probe currents in 50 mTorr xenon as a function of radial position.
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Figure 4.16. Average high density wave velocity in all gases as a function of backfill
pressure.

where γi is the ratio of specific heats for the ions and Mi is the ion mass as given in Table

2.1. If the assumption of Te >> Ti is made then (4.11) becomes,

vs ≈

(
kBTe

Mi

)1/2

(4.12)

For an electron temperature of Te = 5.8×104 K (TeV = 5 eV) in argon (4.12) gives a wave

speed of vs = 3474 m/s. Returning to Figure 4.16 this agrees reasonably well with calcu-

lated average speeds for argon. If vs is taken to be Vr with the overbar to mean a radially

averaged Vr and (4.12) is rearranged to give a power law relationship,

logVr

log(kBTe/Mi)
=

1
2

, (4.13)

then excellent agreement (maximum over all pressures of less than 7% deviation from 1/2)

can be seen in Figure 4.17 by assuming an average temperature of 5 eV and using the wave
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Figure 4.17. Power law relationship of the average radial high density wave velocity for a
constant electron temperature, TeV = 5 eV.

velocity estimates seen in Figure 4.16. The approximation in (4.12) will be revisited in

Section 4.2.4 in the context of electron temperature estimation.

4.2.4. Electron Temperature and Density During Discharge. Since primary in-

terest is on energy dissipation by the main discharge current to the plasma, electron tem-

perature and density studies focus primarily on results within the discharge time from 0 to

approximately 20 µs. Figures 4.18 to 4.21 show radially resolved electron temperature and

density estimates from triple probe current analyses at the sample pressure of 50 mTorr in

this time frame. One striking feature is immediately apparent when comparing the time-

resolved electron temperatures and densities of the lighter species (H2, He) to those of the

heavier species (Ar, Xe): The lighter species are seen to fluctuate at a frequency of double

that of the main discharge ( fMPX ≈ 466 kHz) at near 1 MHz while heavier species appear to

fluctuate at the same frequency as the main discharge. Furthermore, the higher frequency

in activity associated with the lighter gases appears primarily in electron temperature varia-

tion while the lower frequency in activity associated with the heavier gases appears mostly

confined to plasma density variation. It can also be seen from Figures 4.18 to 4.21 that

80% to 90% of all temperature estimates fall below 20 eV. This temperature limit was also

observed in the steady-state corona model results of the previous chapter. Of particular
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note is that Figures 3.10 and 4.20 should be directly comparable for the 50 mTorr argon

case and this comparison is made in Figure 4.22.

Figure 4.23 shows electron temperatures and densities radially resolved and time-

averaged over the 0 to 20 µs discharge time for all tested pressures and species. As expected

higher temperatures (∼ 15 eV) and densities (> 1019m-3) are seen to reside near the wall

of the cylindrical MPX quartz tube where coupling with the main coil is maximum. This

being complementary to lower temperatures (∼ 5 eV) and densities (< 1019m-3) seen near

the centerline. Temperatures in hydrogen can be seen to increase with pressure more than

all other species with a radial average of 3.8 eV. This agrees qualitatively with previous

MPX work by Pahl and Rovey in which it was reported that ohmic (heating) losses to

the plasma increased overall with pressure and increased more in hydrogen than in argon

and xenon[21]. Additionally, plasma density in Figure 4.23 is seen to increase with radial

location for higher pressures with a species average at 100 mTorr of 9.5×1017, 2.5×1018,

7.3×1018, 2×1019, and 5.8×1019 per m3 for r = 0, R/4, R/2, 3R/4, and R, respectively. This

follows with the theory that higher backfill pressures (i.e., increased neutral densities) will

make it more difficult for plasma created primarily at R by mutual inductance to penetrate

to the centerline before dispersion via collisions.

Time-averaged density levels relative to a 1% and 10% ionization fraction (solid

lines) at the r = R probe location can be seen in Figure 4.24. Here heavier gases can

be seen to maintain a higher ionization fraction than lighter gases. Perhaps more telling

however, is that increased ionization levels seen in Figure 4.24 across species corresponds

approximately with the reduced energies required to ionize seen in Table 2.1. That is with

the exception of hydrogen. However, if the much lower energy to dissociate diatomic

hydrogen of 4.5 eV is considered along with the energy of 13.6 eV required to ionize now

single hydrogen atoms, a combined ionization potential for H+ of 18.1 eV is found bringing

it closer to that of helium than previously considered.



61

Figure 4.18. Electron temperature and density estimates for hydrogen at 50 mTorr.
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Figure 4.19. Electron temperature and density estimates for helium at 50 mTorr.
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Figure 4.20. Electron temperature and density estimates for argon at 50 mTorr.
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Figure 4.21. Electron temperature and density estimates for xenon at 50 mTorr.
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Figure 4.22. Comparison between triple probe and steady-state corona model
spectroscopy results for 50 mTorr argon. Triple probe result is the radially averaged

temperature.

Briefly, a return to (4.12) is made with the substitution for vs of Vr giving the radial

wave velocity as a function of electron temperature and species mass. Rearranging for

temperature one finds,

TeV =
MiVr

2

e
(4.14)

with the overbar once again to mean the radial average and mass species, Mi, given in Table

2.1. Now, using measured average velocities, Vr from Figure 4.16 electron temperatures

can be estimated and Figure 4.25 shows these estimates for all gases as a function of pres-

sure. Average temperatures from this method do show an opposite trend to that of Figure

4.23a which is attributed here to divergence in Vr from plane-wave theory that (4.11) is

based upon as the wave moves radially inward.
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(a) (b)

Figure 4.23. Time-averaged electron (a) temperature and (b) density during discharge as a
function of pressure and radial position for all gas species.
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Figure 4.24. Time-averaged density as a function of pressure and species at r = R. Solid
lines represent a constant ionization fraction.

Figure 4.25. Using the ion acoustic wave speed as a measure of the average electron
temperature.
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5. ENERGY ANALYSIS

5.1. CALCULATION OF ELECTRON AND ION ENERGIES

With the temperature and density data obtained, a quantitative look at the energy

entrained in the plasma can be performed. Specifically, energies in electrons with a tem-

perature, TeV, and in ions with ionization potential, Eiz, are calculated and presented as

a function of time, radial location, species, and/or pressure. A simple radial integration

scheme was applied to allow for volumetric total energy estimates. There where five radial

locations for which triple probe data were collected. However, the r = R probe location ex-

perienced significant signal issues. Most notably were non-physical current ratio readings

of I2/I3 > 1 at early times when inductive coupling with the main coil was still dominant.

This was generally the cause of missing regions of data in electron temperature and den-

sity estimates at the r = R location such as those seen in Figures 4.18 to 4.21. To avoid

this issue and provide more complete accounts of plasma energy, temperature and density

estimates from the r = 3R/4 to r = 0 locations were used. The total cylindrical volume was

then partitioned into four concentric tubular volumes with bounding radii and characteris-

tics outlined in Table 5.1 and highlighted in Figure 5.1. Energies were calculated by the

following: Energy per electron with a temperature of Te is equal to kBTe. Or for conve-

nience here eTeV with temperature in volts. Total energy in volume, V , then with density,

ne is given by,

total thermal electron energy = eneVTeV. (5.1)

Energy in ions is generally more involved. However two assumptions are made here to

simplify calculation. One is that as stated earlier ion temperatures are much less than

electron temperatures, Ti << Te. The other is that any kinetic energy in the ions is negligible

compared to the ionization energy, Eiz, that was required to produce them. Thus the total
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Table 5.1. Radial volume partitioning used in energy analysis.

radii

label inner outer volume, V (cm3)

A 3R/4 R 6468

B R/2 3R/4 4620

C R/4 R/2 2772

D 0 R/4 924

four probe locations used

four volumes for
energy partition

D

C
B
A

Figure 5.1. Additional clarification of volume partitioning scheme applied for energy
analysis. Note the four inner probe locations were used in energy calculations.

energy entrained in ions with density, ni ≈ ne is given by,

total ion energy = eneVEiz. (5.2)

Figures 5.2 and 5.3 show results of radially integrated energy in electrons and ions

for all four species at 50 and 100 mTorr, respectively. Note that the red data are energy

in electrons only and blue data are the sum of ion and electron energies. This allows the

reader to readily see the percentages of energy entrained in electrons and ions separately
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while still providing the total energy profile. As mentioned in the double probe validation

section, electron temperature and density estimates have shown good accuracy after the

high density wave encounter. With this assumed, Figures 5.2 and 5.3 show that electron

and ion energies both take longer to dissipate for heavier species. Hydrogen appears to

lose nearly all of it’s energy by 20 µs while helium loses most of it’s energy within 20

to 30 µs but retains about 10 to 15% past 50 µs in ion energy. Energy dissipation in the

heavier gases appears to happen much slower. In 50 mTorr Argon retains approximately

1.25 J in ion energy from 10 µs out to around 50 µs. Xenon demonstrates this further

still by retaining 1 J in ions from 15 to 90 µs (and later for higher pressures). In both of

the heavy gases as well as helium it appears that once the high charge concentration wave

intercepts the probe upon return from the centerline outwards the energy stored in electrons

diminishes substantially.

Energy data for all species appears to verify that ion energy entrainment slightly

lags that of electron energy by 1 to 2 µs. This agrees with intuition as the light mobile

electrons are always the first medium through which electrical energy is transferred. Fol-

lowing via collisions to other outlets such as excitation, ionization, losses to the walls, etc.

Complementary to this energy in electrons consistently appears to dissipate first as well.

Figure 5.4 shows the time-resolved radially integrated sum of ion and electron energies for

all species and pressures. Figure 5.4a for hydrogen shows that consistently at all pressures

tested energy in H2 plasma is precipitously lost following (or even preceding, at higher

pressures) the end of the main discharge at around 23 µs. While xenon in Figure 5.4d is

shown to retain energy out to multiple discharge time scales.

Figure 5.5 shows peak electron and ion energy separately against pressure for all

gas species. Peaks here were found within a much larger time frame than the discharge

time. Namely, peaks within a time frame of 0 to 100 µs were used to capture full activity

in all gas species. It is noted here that data for hydrogen at 40 mTorr is omitted due to

an invalidated data set. Inspection of Figure 5.5 concludes that peak energy in electrons
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(a) (b)

(c) (d)

Figure 5.2. Time-resolved energy in electrons (eTeV) and ions (eEiz) radially integrated
over total volume for (a) hydrogen, (b) helium, (c) argon, and (d) xenon at 50 mTorr. Note

the different scale for (d).



72

(a) (b)

(c) (d)

Figure 5.3. Time-resolved energy in electrons (eTeV) and ions (eEiz) radially integrated
over total volume for (a) hydrogen, (b) helium, (c) argon, and (d) xenon at 100 mTorr.

Note again the different scale for (d).
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(a) (b)

(c) (d)

Figure 5.4. Time-resolved total energies (ion+electron) in (a) hydrogen, (b) helium, (c)
argon, and (d) xenon at all pressures. Note equal vertical logarithmic scales from 0.01 to

100 J for all gas species.
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consistently exceeds that in ions with the former out weighing the latter by a factor of

3.7+2.0
−1.2, 1.2+0.7

−0.7, 1.6+1.7
−0.5, and 5.8+1.9

−3.3 on average for hydrogen, helium, argon, and xenon,

respectively. Peak electron energy in xenon is also consistently higher than all other gas

species for all pressures with peaks on average for xenon being 2.6+2.0
−1.5, 7.3+6.9

−4.4, and 5.4+4.0
−3.9

higher than hydrogen, helium, and argon, respectively. Peak energy in ions is a much more

mixed result with xenon being highest at 2.6 J in 10 mTorr to helium being highest at 1.6

J in 100 mTorr. All gas species except helium exhibited an overall decrease in ion energy

from 10 to 100 mTorr with xenon seeing the largest decrease of 52% over the total pressure

range.

Figure 5.6 shows the peak in the total, or the sum of the energies over the pressure

range for all species. This should not be confused with the sum of the peaks that would

be obtained by simply adding the energies seen in Figures 5.5a and 5.5b. As peak ion and

electron energy may occur at different times it is important to make this distinction. Figure

5.6 shows a peak total energy result similar to that of peak electron energy in that xenon

is consistently higher than all other species across the entire pressure range. Specifically,

total energy in xenon is 2.4+1.8
−1.2, 4.7+4.5

−2.3, and 3.7+2.4
−2.2 times higher on average than hydrogen,

helium, and argon, respectively. Change in peak total energy over the entire pressure range

tested concludes that peak total energy goes down from 10 to 100 mTorr. Figure 5.6 data

yields a decrease in peak total energy of around 21% for both hydrogen and helium, and

argon & xenon losing around 6% and 5%, respectively.

5.2. COMPARISON WITH PREVIOUS MPX WORK

It should be noted that only thermal energy in electrons and minimum direct ion-

ization energy are quantified. In the context of total energy and energy loss mechanisms

several are not taken into account with this approach. Some of these include energy in

un-absorbed light emission, lost via particle flux losses to the walls and ends, and directed

motion such as induced azimuthal currents. In addition, the radial probe location r = R
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(a)

(b)

Figure 5.5. Radially integrated electron (a) and ion (b) energy peak between 0 and 100 µs
as a function of pressure. Hydrogen data at 40 mTorr omitted due to an invalid data set.
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Figure 5.6. Radially integrated total (ion+electron) energy peak between 0 and 100 µs as a
function of pressure. Hydrogen data at 40 mTorr omitted due to an invalid data set.

is not included in this analysis which could be withholding significant additional energy.

With these considerations in mind, energy magnitudes seen in this work consistently (and

as expected) come up short of total energy losses estimated in MPX previously.

Total dissipated energy levels reported in previous work are as much as 21 J in

hydrogen[21]. Pahl and Rovey stated that hydrogen, argon, and xenon “show increased

ohmic energy dissipation as pressure increases.” Returning to Figure 5.4 mixed results

are observed. No appreciable increase in the sum of ion and electron energies appears to

be taking place for increased pressure for any of these three gases. Retention of energy,

or the observation of a species to lose energy more slowly does show a weak pressure

dependence. However argon and xenon exhibit an opposite trend to that of hydrogen.

Trends seen in Figure 5.5b for peak ion energy do follow those seen by Pahl and Rovey for

inductive plasma energy with that work reporting a drop of 14%, 8%, and 14% inductive

energy from 10 to 100 mTorr in hydrogen, argon, and xenon, respectively. While Figure
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Table 5.2. Percentage of total dissipated energy reported by Pahl and Rovey (2014)
accounted for in this work by the sum of ionization and electron thermalization.

pressure (mTorr)
species 10 100

H2 27 15
Ar 32 24
Xe 54 40

5.5b shows a drop in peak ion energy of 21%, 38%, and 51% for the same from 10 to 100

mTorr.

Finally, Table 5.2 shows the percentage of the total dissipated circuit energy re-

ported in [21] accounted for in this work by the peak sum of ionization and electron ther-

malization in 10 and 100 mTorr. It is seen here that electron and ion energy in xenon at 10

mTorr accounts for over half of the reported total energy dissipated for that pressure and

species. Then peaking at almost 90% at 40 mTorr only to reduce to 40% at 100 mTorr. In

comparison, this work can only account for a maximum of 27% and 32% in hydrogen and

argon, respectively. Given this information it is concluded that, of the gases tested, xenon

provides the greatest percent transfer of initially stored capacitive energy to ionization and

electron thermalization, or heating. It is further concluded that this is primarily the result

of two contributing factors; 1.) that xenon has the lowest ionization potential of the four

species tested and, 2.) due to its higher mass it is allowed to remain in close proximity to the

increased-coupling radial edge region for longer periods, giving more time for ionization

and electron heating.
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6. CONCLUSIONS

Pulsed inductive plasma studies were preformed on hydrogen, helium, argon, and

xenon over a pressure range of 10 to 100 mTorr. The main inductive discharge was of a

cylindrical geometry with a characteristic under-damped frequency of around 440 to 460

kHz and stored capacitive energy of 79 joules.

Analysis of full discharge time-integrated argon and xenon spectra demonstrates

the absence of contaminant species during testing by accounting for all dominant peaks.

These long duration spectra show excellent agreement with NIST cross-referencing as well

as a complete lack of off-species spectra. Collisionl-statistics modeling utilizing neutral

excited state transitions from the 2p to 1s orbital sub-shells appearing in the IR-band al-

lowed for a first-approximation of time-resolved electron temperature in argon and xenon

backfill pressures of 10 to 100 mTorr. Different modeling schemes and their associated as-

sumptions provide different regimes of temperature estimation. Steady-state corona model

assumptions yield a time-resolved electron temperature limited to around 10 eV in argon.

While collisional-radiative model assumptions yield temperatures in the 10’s of volts up to

100 eV in both argon and xenon.

Comparison between results obtained by line-ratio methods and by internal probe

methods concludes that the inductive plasma studied in this work is best described by

corona model assumptions with electron temperatures typically not more than 20 eV. Dou-

ble probe studies performed at 10, 30, 50, 70, and 90 mTorr argon and at the r = R/2 radial

probe location are used to validate triple probe results. Agreement between the probe meth-

ods within 26% and 12% for electron temperature and density, respectively, is seen in early

times out to around 12 µs or roughly the first half of the discharge time. Upon which some

divergence is seen due to what is best described as an ion acoustic wave translating across

the probe radially inward. After which probe agreement returns. Estimated ionization lev-
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els are limited to less than 1% in hydrogen and helium. While argon transitions from 10

to 3% from 10 to 100 mTorr and xenon transitions from 28 to 4.5% from 10 to 100 mTorr,

repectively. Time-resolved electron temperature and density profiles in hydrogen an helium

plasmas are seen to oscillate at approximately double main inductive discharge frequencies.

While the same in argon and xenon plasmas are seen to oscillate at the same frequency as

the discharge.

An energy analysis using triple probe temperature and density estimates shows that

the heavier gases of argon and xenon are able to retain energy in thermalized electrons

and ionization out to nearly 100 µs. While the lighter hydrogen and helium gases lose this

energy before or shortly after the main discharge end of 23 µs. Peak energy in electrons is

consistently higher than that in ions by a factor of 1.2 to 5.8 with xenon being the greatest.

Peak electron energy in xenon is also consistently higher than that in the other three gases

by a factor of 2.6 for hydrogen to 7.3 for helium. Peak energy in ions is seen to decrease

with increased pressure by as much as 52% from 10 to 100 mTorr. Peak total energy also

favors xenon by a factor of 2.4 to 4.7 compared to hydrogen and helium, respectively. Peak

total energy is also seen to decrease from 10 to 100 mTorr by 21% for the lighter gases and

around 5 to 6% in the heavier gases.

Comparison with previous MPX work that focused losses by the discharge circuit

shows that trends in energy losses to electron thermalization and ionization follow reported

trends for inductive energy loss by going down from 10 to 100 mTorr. While the overall

increase in dissipated circuit energy with pressure is not observed here. Finally, this work

was able to account for between 15 and 54% of the total dissipated circuit energy reported

previously as being entrained in electron thermalization and ionization.
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