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MEASUREMENTS OF PULSATING TURBULENT WATER FLOW IN A TUBE

S.-Z. Lu and R. J. Nunge, Department of Chemical Engineering

F. F. Erian and M. Mohajery, Department of Mechanical Engineering 

Clarkson College of Technology, Potsdam, N. Y. 13676

ABSTRACT

The experimental method associated with ob­

taining meaningful information from the hot-film 

anemometer signals in fully developed pulsating 

turbulent flow where the pulsations are sinusoidal 

in time is discussed. The results of a number of 

experiments in water reveal the nature of the long­

time and short-time average velocity and pressure. 

Velocity measurements between 0.95 radii and the 

centerline demonstrate that the long-time average 

velocity distribution is coincident with that for 

steady turbulent flow at the same Reynolds number. 

Also, no significant differences between the long­

time average axial pressure drop in the pulsating 

and steady flows were noted, although this re­

quires further investigation in view of the in­

creases in the Reynolds stress observed in pulsa­
ting air flow.

The distribution of the measured pulsating 

velocity component depends upon the dimensionless 

turbulent frequency. At the lowest values of the 

frequency, the profile is turbulent-like, while 

at higher values, the maximum in the velocity 

shifts from the centerline towards the wall and a 

uniform speed region exists over the central por­
tion of the tube.

An eddy viscosity model displays many of the 

important characteristics of the observed pulsating 

velocity. Using the results of this model and the 

experimental observations, limits of the laminar 

frequency parameter which delineates the response 
of the flow are suggested.

Recordings of the instantaneous velocity sig­

nal suggest the short-time behavior of the axial 

turbulence intensity to be generally that of in­

creasing during deceleration of the flow and de­

creasing during acceleration.

INTRODUCTION

The problem of unsteady flow is a very general 

one, since regular and irregular oscillations occur 

widely in nature and in industry. The behavior of 

pulsating laminar flow in a cylindrical pipe away 

from the region affected by the ends is well under­

stood (6,12,19). However, existing knowledge of 

pulsating turbulent flow is limited.

One of the earliest investigators in this field 

was Schultz-Grunow (17) who found from experiments 

that the time averaged friction factor for pulsating 

turbulent flow did not differ considerably from the 

steady flow value. That is, the instantaneous fric­

tional loss could be predicted from the instantane­

ous mean velocity and steady flow friction factor, 

thus suggesting a quasi-steady behavior.

Recently, the quasi-steady model, was further 

investigated by several investigators (1, 11, 18). 

However, at least two important questions have not 

been discussed in sufficient detail by the above 

authors: first, what are the parameter ranges in 

which the quasi-steady model applies; and second, 

what are the critical parameters for understanding 
pulsating turbulent flows?

375



An answer to the first question was attempted 

by Brown et al. (4), who provided an analytical 

development for the frequency response to small 

amplitude fluctuations. Three frequency regimes 

were suggested: for low frequency pulsations, the 

flow is quasi-steady; for high frequency pulsations 

the flow is stationary or frozen; and for inter­

mediate frequency pulsations, the eddy viscosity 

profile changes in a complex way. The intermedi­

ate frequency range was suggested to be 
„2

0.01 Res<^-<Q.l Res with a break frequency of

about 0.025 Re . However, Brown et al. neglected s _
the acceleration term, 3U/3t, in the quasi-steady 

model equation for the first regime. This approx­

imation may lead to an underestimation of the fre­

quency range in which the quasi-steady model ap­

plies (13).
The second question was addressed by Karlsson 

(8) who conducted an experimental investigation 

of pulsating parallel flow in a wind tunnel sys­

tem. Karlsson found that when the pulsation amp­

litude is less than about 35%, there is no effect 

of the amplitude on the unsteady component of pul­

sating velocity. That is, if the local unsteady 

component of pulsating velocity is made dimension­

less by the centerline unsteady component of the 

pulsating velocity, the resulting dimensionless 

velocity is independent of the pulsation amplitude 

over the frequency range of 0 to 48 cycles/sec.

The effect of the pulsation frequency on the 

mean flow structure was studied by Gerrard (7) 

and Karlsson (8). Each of these workers presented 

experimental data on the mean flow profiles and 

they observed that the shape of the unsteady com­

ponent of the pulsating velocity profile depends 

on the frequency parameter. Essentially, there 

exist two frequency parameters of interest, to' and 

toj., in pulsating flow studies. The first remains 

constant and can be thought of as the ratio of 

two times, the time of molecular diffusion over a 
radius R, divided by the period of pulsation, TQ . 

The second, to|, which represents the ratio of tur­

bulent diffusion time to the pulsation period, 

changes value over the radius since e depends on 

spatial location. Denote these as the viscous 

and turbulent times; except near the wall, the

viscous time is much larger than the turbulent 

time because e»v. Hence, when the flow is turbu­

lent at all times during the pulsation cycle, the 

turbulent mechanism is expected to be the dominant 

transfer mechanism for the pulsating component ex­

cept very near the wall where e is effectively 

damped out. Now, as the pulsation time, T , is 

very large, the turbulent diffusion time is small 

compared to Tq and the oscillating velocity profile 

is expected to follow a turbulent distribution at 

all times during a cycle; i.e., as suggested by 

Gerrard the oscillating profile follows a (l-y)^n 

distribution from center-line to the wall. As the 

pulsation time, T , is small, the turbulent diffu­

sion time is larqe compared to Tq and Gerrard and 

Karlsson show that there exists in the oscillating 

velocity profile a uniform speed region over the 

center part of the pipe.

Nonstationary turbulence in periodic turbulent 

pipe flow was also studied by Cheng (5). However, 

there is evidence indicating that Cheng's measure­

ments were not made in a fully developed turbulent 

flow. The distance from the test section to the 

tripping ring was only about 15 pipe diameters. 

Furthermore, Cheng compared the velocity profile 

of stationary flow Reg= 5.97x10^ with Laufer's (10) 

data at Res=4.05 x 10® instead of 4.05x10^. This 

indicates that Cheng's flow is plug like and not 

fully developed.

Most of the preceeding studies provide a hy­

drodynamic view of the effect of pulsations on tur­

bulent flow. Little is known about the behavior 

of the turbulence structure. Benson (2) measured 

the axial pulsating turbulent intensity at the 

pipe centerline in a water system at a mean flow 

Reynolds number of 10^, with frequencies of 0.5 

to 1.6 cps, and with pulsation amplitudes up to 

0.45. He concluded that the overall effect of puls­

ing the flow on the centerline turbulence level is 

small. The axial pulsating turbulence intensity 

averaged over several imposed pulsation cycles dif­

fered from the steady turbulent flow value by a max­

imum of 5%. Within experimental error, Karlsson 

(8) also found that there is no effect of pulsations 

on the long time averaged axial turbulent intensity.
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Information about the instantaneous pulsating 

turbulent characteristics is very limited. By ob­

serving the recorded instantaneous turbulent sig­

nal, Benson (2) and Gerrard (7) noted that the 

turbulence intensity generally decreased during 

the acceleration period and increased during the 

deceleration period.

The purposes of the experimental investiga­

tion reported upon here were:

1. To study the suitability of making meas­

urements of turbulence properties in pulsating 

water flow using the constant temperature, hot- 

film anemometer.

2. To determine the effects of pulsations 

on fully developed turbulent pipe flow in order 

to shed some light on the frequency response in 

the intermediate frequency regime with pulsations 

of a significant but small amplitude compared to 

the mean flow so that mean flow reversals do not 

occur. These studies were made coincident with 

and complementary to a more detailed measurement 

of statistical properties of such flows in
air  (1 6 ).

3. To compare experimental results with the
predictions of a model developed by Lu and Nunge 

(13,14). Experiments were run for the parameter 

ranges 16000<Res<81600, 0<Gu/Gs<8.4, and

CKw'<3130. These dimensionless quantities for 

water flow correspond to a real frequency of 0 to 

0.7 cps and centerline velocity amplitudes of 0 
to 25% of the mean flow.

EXPERIMENTAL APPARATUS

The experimental system was designed so as to 

insure that the quantities of interest were mea­

sured in the fully developed region of the pipe 

flow. Two types of flow were generated, one in 

which the flow was steady, and the other in which 

the flow was varied in a periodic manner. The 

equipment consisted of a water loop system, a pul­

sation generator, a hot-film probe calibrating 

tank, and the electronic equipment for turbulence 
measurements.

Flow System

The major features of the water loop are 

shown schematically in Figure 1 and its detailed 

description is given in (13).

Since water purity is essential in this study, 

non-corrosive materials were used to construct the 

flow loop. Plastic pipes, valves, and fittings 

were selected for the construction of the test sec­

tion and auxiliary lines. All wetted metal parts, 

such as the rotameter float, pump, and tank were 

made with 316 stainless steel and Epoxy coated steel.

Steady flow was maintained by gravity feed from 

a constant head tank located 28 ft. above the exit 

constant head tank. A constant head was achieved 

by placing a baffle with an overflow in the tank, 

and by keeping the flow rate in the return line 2, 

greater than in the feed line 1. The water loop was 

closed by a 5 hp centrifugal pump in the return line, 

and by connecting an overflow line 3, between the 

two constant head tanks. The flow rate was control­

led by a diaphram valve and read out from a rotameter.

A one-foot long section of the inlet pipe was 

lined with #40 mesh stainless wire screen followed 

by a 1/16-inch high tripping ring to aid flow de­

velopment. The flow development and test sections 

were constructed with four lengths of 2-inch I.D. 

and 2.5-inch O.D. Cast Acrylic Resin Tube supplied 

by Kaufman Glass Company. The ends of these tubes 

were carefully squared, and then joined together by 

four tightly fitting slip couplers and sealed with 

silicone. The test stations were located at 34, 55, 

79 and 83 pipe diameters away from the end of the 

ring, respectively. The third station, which has a 

distance 79 pipe diameters from the end of the trip­

ping ring was the main station where the velocity 

and turbulence measurements were taken.

A system for calibrating hot-film probes in 

water was located near the exit head tank. This sys­

tem consisted of a 10-inch diameter by 28-inch high 

acrylic tank and a PVC controllable overflow unit.

The water was fed into the calibrating tank from 

the upper constant head tank, and discharged to the 

exit constant head tank. The nozzle for the water 

jet was carefully designed to prevent separation
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between the flow and the nozzle wall, and to ensure 

that the flow fills the throat. The probe was 

placed in the water jet at the nozzle exit for cal­

ibration at constant velocity.
The pulsations were generated by a MRI-79-92 

SM Simplex Mil royal pump which has a plunger diameter 

of 2-1/2 inches.The pump stroke could be varied be­

tween 0 to 3 inches and its frequency between 16 

to 92 cycles per minute. The suction and discharge 

check valves were removed in order to prevent any 

net pumping.
A number of precautions have been taken in 

preparing the water to prevent drift in the anemo­

meter readings. Distilled water was used through­

out the loop and a filter and ion exchange unit 

was used in the return line to maintain water puri­

ty and to remove solid particles down to 1-3 microns.

Part of the data (Reynolds stress) was mea­

sured in an air flow system with a 6-inch inside 

diameter pipe. For the detailed structure of the 

air system, the reader is referred to (16). 

Measurement System
The major components of the measurement sys­

tem for pulsating turbulence measurements are shown 

schematically in Figure 2.
Turbulence measurements were made with DISA 

equipment. A fiber film probe 55F09 was used in 

the velocity and axial turbulence intensity measure­

ments and a DISA 55F07 45° slanting sensor type 

fiber probe was used in the Reynolds stress measure­

ments. The probes were operated by a linearized 

DISA constant temperature anemometer system. The 

anemometer outputs were partially processed in a 

Kohn Hite filter, model 3323, and the various out­

puts either recorded on a Clevite 15 two-channel 

recorder or read directly from appropriate volt­

meters.
The root mean square value was read out from 

a TSI Model 1060 RMS meter. This unit provides 

a maximum time constant value of 100 sec.

The wall static pressures of the steady and 

pulsating flows were measured by a Kistler Model 

311 pressure transducer. This pressure transducer 

is basically a D.C. device but has a perfect fre­

quency response up to 10 Hz.

MEASUREMENT TECHNIQUE 

Data Reduction
Before proceeding to the discussion of the 

techniques used in reducing the experimental data, 

it is useful to distinguish between the terms 

"short-time" average and "long-time" average, each 

of which refers to time-averaging of mean and turbu­

lent signals.
There are two time scales of concern in the 

pulsating flow experiments: the time scale of the 

turbulent fluctuations and the time scale of changes 

in the mean velocity. All of the experiments and 

the analysis have been done for the case in which 

the time scale of changes in the mean velocity is 

much larger than the time scale of the turbulent 

fluctuations. Hence, short-time averaging means 

averaging over the time scale characteristic of 

the turbulent fluctuations. For example, the 

short-time average of u is zero, but the short-time 

average of the total velocity is the mean velocity 

which, in the case of pulsating flow, is time de­

pendent. The long-time average is an average over 

the period of pulsation; thus the long-time average 

mean velocity is independent of time.

Linearized probes were used to make the tur­

bulence measurements. Thus the instantaneous vol­

tage output from the anemometer is linearly related 

to the instantaneous velocity, V, through

E = KV , (1)e

where K is a constant determined from the calibra­

tion and V is the velocity causing heat transfer 

from the probe sensor.

The following relation is obtained for long­

time averaging:

E = KU, , (2 )e 1

where the double overbar indicates a long-time aver­

age. Equation 2 indicates that the base velocity 

upon which the pulsations and fluctuations are im­

posed can be obtained by finding Eg, which in prac­

tice is achieved by processing the anemometer signal
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Figure 2. Flow diagram illustrating the electronic pro- 
Figure 1. Schematic diagram of the water flow system. cessing of the probe signal.



through a D.C. voltmeter with a high damping fac­

tor. The results of these measurements (see Fig­

ures 3 and 4 for examples) indicate that is co­

incident with the steady flow velocity distribution 

at the same mean Reynolds number such that the in- 

stantaneous velocity in the axial direction U can 

be written as

U = Us(r) + Ut(ut,r) + u (3)

where Us(r) = U-j and Ut is the pulsating velocity 

component superimposed on the base flow.

In order to recover the pulsating component 

of the axial velocity, U.t, from the anemometer 

signal, it is necessary to suppress the portion of 

the signal due to Us and u. Since Us produces 

Eg, it is a simple matter to subtract this part. 

With pulsations at a known frequency u>, the main 

contributions of u were attenuated electronically 

by filtering. The signal was low-pass filtered to 

remove all input having a frequency above the known 

frequency of pulsations. In practice, the cutoff 

frequency for the low-pass filter was set at some 

value nui where n>l.

Two errors are introduced in the resultant 

recordings of Ut by the filtering. These are the 

attenuation of the amplitude of the pulsations 

and a phase shift. The amount of attenuation and 

phase shift is a function of the cutoff frequency 

set on the filter. For large values of n, less 

attenuation occurs but more contributions from the 

turbulent fluctuations are evident in the recorded 

signal. To correct for the attenuation, the fil­

ter was calibrated using a sine wave generator.

The attenuation factors for the cutoff frequencies 

used in the low-pass filtering at various pulsa­

tion frequencies were obtained. The attenuation 

factor is defined as the ratio of the peak-to-peak 

voltage of the sine wave after filtering to that 

before filtering. The attenuation factor which 

is independent of the input voltage, was used to 

correct the recorded values of the imposed pulsa­

tions .
The phase shift effect of the filter can be 

determined by using the Clevite recorder to mark 

on the recording paper whenever the piston of the

reciprocating pump goes to a peak position.

The value of was sinusoidal over most of 

the pipe radius except near the wall. It is prob­

able that distortions are due to the increased in- 

tensit.y of the turbulent f 1 uctuations below the cut- 

off frequency as the wall is approached.

In order to obtain reproducible data, the 

velocity at a particular radial location for a par­

ticular time in a cycle was arrived at by averaging 

the values for several cycles of pulsation. Deter­

mination of the number of cycles required led to 

adopting an averaging over 10 cycles near the cen­

ter line, over 20 cycles close to the wall and over 

15 cycles in the region between.
The phase shift caused by the filtering is 

critical in determining the phase relationship be­

tween the pressure and the pulsating velocity.

Thus, to determine the phase difference between the 

center line velocity and the wall pressure, both 

signals were recorded simultaneously without fil­

tering. The phase lag of the center line velocity 

could then be used as a reference value to deter­

mine the phase lag at other radial locations. These 

determinations are relatively inaccurate because of 

the small differences in the phase of the veloci­

ties at different radial locations.

In order to obtain the unsteady turbulent quan­

tities, the imposed velocity variations have to be 

removed, since the amplitude of the pulsations is 

much larger than the amplitude of the turbulent 

fluctuations. The response equations for the axial 

turbulent intensity and the Reynolds stress measure­

ments are

e2 = K2(u2 + 2ua sin wt + a2sin2wt) (4)

and

__ 2 2
uv , vasinwt 

“,2

1 (61 e2 ■

«.2
4 ' = 2 

E1 I 2' L2

The interaction and sinusoidal terms in Equation 4 

and the interaction term in Equation 5 can be re­

moved by passing the signal through a high pass 

filter which attenuates the frequency w. In prac­

tice, the cutoff frequency on the filter has to be
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set at nu where n has a value between 5 and 10 de­

pending on the value of w. Since this filtering 

is necessary in order to yield results for the tur­

bulence structure itself, it was decided to com­

pare the pulsating flow data obtained in this man­

ner with steady flow results filtered in the same 

way. Thus the two could be compared on the same 

basis. This, of course, ignoresthe changes in the 

low frequency structure of the flow by the pulsa­

tions. The possibility existed for band pass fil­

tering of the signal; i.e., processing the signal 

through both a high and low pass filter. However, 

unless a more efficient filter was used, this 

would not be effective. Since the results to be 

discussed do not show any startling differences 

between the steady and pulsating results for the 

axial turbulence intensity, the present techniques 
were felt to be adequate.

Since only the short-time average mean pressure 

gradient is of interest in this study, the pressure 

signal from the pressure transducer was low pass 

filtered to remove the turbulent pressure fluctua­
tions above the known frequency of the pulsations.

As discussed before, a correction factor for the 

attenuation was obtained by comparing the sine wave 

signal before and after passing through the filter. 

Within the experimental error, estimated at +5%, 
the results of the pulsating pressure measurements 

indicate that the steady component of the pressure 

gradient in the unsteady flow is coincident with 

the steady flow pressure gradient at the same mean 

Reynolds number. By recording the pulsating pres­

sure component at three locations, it was possible 

to show that its amplitude has a linear relation 

with the axial distance in the fully developed re­

gion. The amplitude of the unsteady component of 

the pressure gradient during one cycle can be cal­

culated from the slope of the straight lines. 

Therefore, the instantaneous pressure gradient can 
be written as

3P

3z^“ = Gs + Gu Sin “ 'T (6)

A single slanting sensor type probe was used 

to measure the Reynolds stress. Unfortunately, the 

measurements were not satisfactory (13) and 

Reynolds stress data in a pulsating air flow 

system are reported instead (16),

Experimental Techniques

A problem of probe drift was observed in this 

study even though distilled water and a mechanical 

filter were used in the flow system. It is be­

lieved that the drift was caused by suspended par­

ticles smaller than about 2 microns, because the 

filter can remove particles down to this size. The 

effect of drift on the measurements was observed in 

the following manner: If measurements started at 

the pipe center line, a different voltage output 

was obtained from the anemometer when the probe was 

relocated at the pipe center after a few measurements 

at other radial locations. However, it was found 

that the resulting drift is less than 5% if the 
operating time of the probe was less than about 25 

min. The original calibration curve of the probe 

could be reestablished within +3% if the probe was 

cleaned with a fine brush and agitated in acetone.

The procedure used was to check the output voltages 

with the film located at the pipe center every 20 

minutes. If the readings were within 3% of those 
obtained when the film was clean the experiment was 

continued. If the error was more than 3% but less 
than 5%, the film was taken out and cleaned before 
proceeding. If more than 5%, the film was taken 

out for cleaning and the data of the last 20 minutes 
were discarded.

Before proceeding to discuss the results, it 

is worthwhile to make clear the meaning of the term 

"side-by-side run". It will be seen that the effect 

of pulsations on turbulent structure is small in the 

parameter range studied here. Unfortunately scatter 

in the data is of the same order of magnitude as the 

effects introduced by the pulsations and the results 

are thus difficult to analyze. The data acquisition 

was improved, and the data scatter was reduced by 

taking measurements in the following manner: one 

unsteady flow measurement was taken at a fixed posi­

tion and then one steady flow measurement was taken 

at the same position and at a Reynolds number equal to
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the time averaged mean Reynolds number of the un­

steady flow; finally an attempt was made to repro­

duce the unsteady flow quantity at the same para­

meters as the first measurement. About 5 minutes 

elapsed between each measurement to allow the tur­

bulence to become fully established. The data 

were accepted only when the first data point was 

reproduced by the third measurement. This proce­

dure is termed a "side-by-side run",

MODELING PULSATING FLOW

If one adopts an eddy diffusivity approach to 

modeling turbulence then one is faced with the crit­

ical question of the form of the eddy diffusivity 

in pulsating flow. It seems physically reasonable 

that in the limit of small frequency, the turbulence 

would follow a quasi-steady behavior and the instan­

taneous eddy diffusivity distribution could be de­

termined from the time-dependent Reynolds number 

of the flow and the eddy diffusivity for steady 

flow as a function of the Reynolds number. Further­

more, if the amplitude of the pulsations is restric­

ted to small values, then variations of the Reynolds 

number with time can be ignored since the steady 

state eddy diffusivity is known to be relatively 

insensitive to the Reynolds number. These assump­

tions were made in the present work and the Cess' 

expression for the eddy diffusivity (3,13) was used 

for computational convenience. The extent to which 

the model predictions agree with experimental mea­

surements of the pulsating velocity component is 

explored subsequently.

The sinusoidal pressure gradient given by 

Equation 6 is the forcing function of the flow.

Under the present assumptions, the short-time aver­

aged equation of motion can be written as:

3u

ay
1  ( t ,  o ) =  0 (7d)

The linearity of Equation 7 allows one to divide 

the pulsating turbulent flow velocity into two 

parts: a steady part upon which the pulsations and 

fluctuations are imposed and an unsteady part which 

is affected by the pulsations. Thus,

U-, = us(y) + ut(x,y) (8)

Upon substituting Equations 6 and 8 into Equation 7, 

the result can be solved by using the Duhamel the­

orem and separation of variables. The expressions 

for the two parts of the short-time average velo­

city are given below; details of the solution are 

given in Reference (13).

U1 = 2 Gs f 1 T+e7v dy

“n2 V / ;  (/l T ^ A T dy)V dy]
+ E
n=l

2/ yV dy 
o

G (a sinw'T-w'coSM'T] 
u n ______

(an ) +(a> )
(9)

where ap2 is the nth eigenvalue and Yn is the nth 

eigenfunction, which satisfy

dY ?
%  j i w » i aj11 * «„ - 0 (10a)

Y (1) = 0 (10b)
n

dY

d T (0) = 0
(10c)

!!i = i
3x y 3y (y (1

3u.
+ -) — b -

v ay 1
3P-,

u-j (0 ,y) = us 

u.| (t ,1 ) = 0

, Equation 9 has been successfully used to predict the 
(7a) ^

dispersion phenomena in pulsating turbulent pipe 

flow (14).
(7b) A useful relationship between the bulk velocity

and the pressure gradient can be obtained from a 

(7c) simple derivation. In the quasi-steady regime, by 

space-averaging the equation of motion, one obtains
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for the short-time averaged velocity

1  3 P + 3j(t) + fU2(t) , Q 
P 8x at 2D

It can be seen from Equation 16 that a linear re­

lation exists between the amplitude of the unsteady 

component of the bulk velocity and the amplitude 

of the unsteady component of the pressure gradient.

The friction factor can be evaluated from the 

steady flow equation using the instantaneous bulk 

velocity. If the Blasius equation is used, one 
has

0.25
f = 0.3164[^— ] (12)

DU(t)

Let us assume that the bulk velocity has a sinu­
soidal form

U(t) = u + B cos tot o (13)

where uQ is the steady component of the bulk velo­

city and B is the amplitude of the bulk velocity 

variation. The steady component satisfies

0 = 1  /dP 
ldX

f u ‘ s o
2D (14)

If Equations 12 and 13 are substituted into Equa­

tion 11 and Equation 14 is subtracted from the 
result, one obtains

J a p  i  ap, , l a p ,  
ax ' p ax's; " “ p ax' (15)

= A uqu> sin ut + c uQ1-75 (1.75A cos ut

+ 0.656A2 cos2 ut + ....)

where

C = 0.1582D'1,25v°‘25

If the amplitude of the pulsating velocity is small

enough relative to the steady component of the bulk 
o

velocity, such that A and higher order terms can 

be neglected relative to A, Equation 15 becomes

B(u sin ut + 1.75 C u^'75 cos ut) = - 1  9P| 
p  ax't (16)

RESULTS AND DISCUSSION 

Mean Flow Structure

Figures 3 and 4 show the dimensionless long­

time average mean velocity and the steady flow vel­

ocity measured at the same mean Reynolds number 

plotted versus dimensionless radial distance.

Within experimental error, the two experimental 

velocity profiles are the same, thus indicating 

that over the parameters studied, the mean Reynolds 

number determines the base flow velocity upon which 

the pulsations are superimposed.

Figures 3 and 4 also show the velocity distri­

bution for steady flow predicted using the eddy 

viscosity of Cess. For Res=45,000 the predicted 

velocity profile is somewhat high (3%) over a part 
of the radius; for Res=81,600, the agreement is 

better across the entire radius. Absolute agree­

ment is not to be expected, but the deviations at 

lower Reynolds numbers evident in Figure 3 may have 

some effect on the extent to which the eddy-viscos­

ity model is able to predict the pulsating velocity. 

We will return to this point later.

The quasi-steady model developed here suggests 

that ut/Gu is independent of G , as shown in Equa­

tion 9. The experimental results of the dimension­

less ratio of unsteady velocity and pressure gradi­

ent are shown in Figure 5 at Re =45,000', w' = l,336 

and Gu/Gs=0.253, 0.760, and 1.265. Various times 

over a pulsation cycle are plotted as a parameter. 

Within experimental error, the experimental data in

Figure 5 indicate that u./G is independent of G .t u r u
This finding agrees with the result of Karlsson (8). 

It is also to be noted on Figure 5 that the distri­

bution of velocity shows only qualitative agreement 

with the predictions of the model; this will be dis­
cussed later.

It has been shown in Equation 16 that a linear 

relation between the amplitude of the unsteady com­

ponent of the bulk velocity and the amplitude of 

the unsteady component of the pressure gradient can
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Figure 3. The dimensionless velocity versus the dimension- Figure 4. The dimensionless velocity versus the dimension­
less radial distance for several sets of para- less radial distance for several sets of para­
meters. meters.
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exist only when the pulsating velocity is small 

enough relative to the steady component of the 

velocity. Thus, Equation 15 indicates that at 

some point the amplitude of the unsteady pressure 

qradient becomes an important parameter. For the 

range of amplitudes covered in this study, the 

second order term dropped in formulating Equation 

16 does not exceed 5% of the first order terms re­

tained. No experiments were made in the large 

amplitude range because of limitations of the 

available equipment.
Figures 6 to 9 show comparisons between the 

pulsating component of the velocity obtained by 

experiment and from the model at different times 

in a pulsation cycle. The angle designations 0 

correspond to a cycle of the sinusoidal pressure 

gradient. It can be seen that in Figures 6 and 7, 

the deviation between the theoretical and experi­

mental results is about 5% at the peak centerline 

velocity, but in Figures 8 and 9 the deviation is 

more than 25% at the peak centerline velocity.

This suggests that different mechanisms, not con­

sidered in the model, are significant. Some possi­

ble reasons for the discrepencies are discussed 

in the following paragraphs.

The deviation between the theoretical and ex­

perimental results shown in Figures 6 and 7 may be 

due to the following reasons: 1) One assumption 

made in the theoretical analysis was that when 

the amplitude of the pulsation velocity was rela­

tively smaller than the time-averaged mean veloci­

ty, the eddy diffusivity could be evaluated at the 

time-averaged mean Reynolds number instead of the 

instantaneous value. Unfortunately, the error in­

volved in this assumption is impossible to deter­

mine analytically, unless the exact solution of 

the momentum equation with time-varying eddy vis­

cosity is available. This error is not expected 

to be large, since the amplitude of the velocity 

variation is only 6 to 8% of the time-averaged 

mean velocity and it is well known that at high 

Reynolds numbers in steady flow, the mean velocity 

distribution is relatively insensitive to the 

Reynolds number. 2) The eddy diffusivity used 

in this analysis may introduce some deviation be­

tween the theoretical and experimental results.

However, the 3% deviation existing in Figure 3 for 

the steady flow results shows a strong dependence 

on the position over the pipe cross section, but 

the deviations shown in Figures 6 and 7 are about 

the same over the entire pipe cross section. This 

suggests that the differences between Figures 6 

and 7 are not entirely introduced by the eddy dif­

fusivity function. 3) The measurement of Gu is 

accurate to within 5% which is indicated by an 

arrow on Figures 6 and 7 to show the effect of this 

uncertainty on the unsteady component of the velo­

city profile. 4) As an internal check of the con­

sistency of the results, the area average pulsating 

velocity at its maximum value was checked against 

the maximum speed of the piston forcing the flow.

From continuity these should be the same. It was 

found that about 7% systematic error is involved 

in the velocity measurements. It is believed that 

the differences between model and experiment evi­

dent in Figures 6 and 7 are entirely due to these 

factors. It is thus tentatively concluded that 

the quasi-steady model applies to pulsating turbu­

lent flow under the conditions shown in these fig­

ures .

Figures 8 and 9 show that there is more than 

25% deviation between the theoretical and experi­

mental results for the conditions described in these 

figures. The factors discussed in the previous para­

graph involved only small differences and therefore, 

it appears that the quasi-steady model is no longer 

applicable.

Table 1 summarizes the parameters which were 

used by various investigators to study the quasi­

steady model in pulsating turbulent flow. It can 

be seen from the table that the formula suggested 

by Brown, 0.01 Res>w', underestimates the range 

over which the quasi-steady model applies. The 

following equation gives a better estimate of the 

range in which quasi-steady model applies:

0.025 Res>w' (17)

It is believed that the differences between 

the experimental data and theoretical model illus­

trated in Figures 5,8, and 9 are due to frequency
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Figure 7. u./u versus y for Re =81,600, G /G =0.79 and
L S 0 S U S

u'=l,781 with 9 as a parameter.

Figure 9. ut/uSQ versus y for Res=45,000,
Gu/Gs-6.80 and to1 =3,130 with 6 as a 

parameter.

Figure 8. ut/uso versus y for Res=45,000,
G /G =1.265 and w1=1,336 with 0 as a u s
parameter.
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Figure 10. The effect of pulsating amplitude on 
the axial turbulent intensities for 
Re =81 ,600 and to1 =4,140.
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Table 1. A comparison of known experiments with pulsating turbulent flow.
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range of the experiments which is outside the 

quasi-steady range suggested by Equation 17. If 

this is the reason for the deviations between the 

model and experiment, then it can be concluded 

from Figure 5 that for amplitudes within the range 

studied here, the amplitude of the pulsation is 

not a significant parameter inside or outside of 

the quasi-steady frequency range.

It is also believed that the model should be 

able to predict the flow behavior in the "frozen" 

viscosity, or high frequency, region as suggested 

by Brown. In essence, we have assumed that the pul­

sating velocity component is governed by the turbu­

lent diffusion mechanism. Since the instantaneous 

Reynolds number does not change over wide ranges, 

it is assumed that the eddy viscosity can be evalu­
ated from the long-time averaged Reynolds number,

It can be seen from Figure 9 that the velocity 
profiles possess a plateau over the central region 
of the pipe. This phenomena may be explained qual­
itatively by the value of the frequency parameter, 
r2

where R is the tube radius and e/w is the 
length scale of vorticity. This parameter measures 

the ratio of the tube radius to the distance through 

which vorticity produced at the wall will diffuse 

in one period of the pulsation. For simplicity, the 

cross-sectional mean-eddy diffusivity is replaced 

by the pipe center line eddy diffusivity eQ . The

calculated values of —  for the conditions studied
e0

in Figures 6 to 9 range from 9 to 40. The largest 
value is at the conditions studied in Figure 9; 
that is, at these conditions the tube radius is con­

siderably larger than the distance through which 
vorticity produced at the wall will diffuse in one 

period of pulsation. Figure 9 shows that in the 
center part of the pipe, there exists a uniform 
speed region where vorticity never has time to dif­

fuse before being annulled by oppositely signed 
vorticity.
Axial Turbulence Intensity

It was found that the pulsations have a small 

effect, less than +5%, on the long-time averaged 
axial turbulence intensity over the parameters 
studied in this work. This effect depends upon 
the following parameters: the time-averaged mean 

Reynolds number, pulsating frequency and amplitude, 
and radial distance.

Since the effect of pulsations on the turbu­

lence intensity was small, only side-by-side runs 

can give conclusive results. The effect of ampli­

tude on the axial turbulence intensity is shown in 

Figures 10 and 11 for different radial locations.

A clear trend can be seen from these figures. The 

pulsation amplitude can intensify the effect of pul­

sations on axial turbulence intensity; i.e., at a 

particular set of conditions, if the local axial 

turbulent intensity is decreased by the imposed 

pulsations, it will be further decreased with in­

creasing pulsating amplitude. If the local axial 

turbulence intensity is increased by the pulsations, 

it will increase with increasing pulsating amplitude.

Since only a small range of pulsating frequency, 
0 to 1.0 cps, has been studied in this work, no sig­

nificant effect of frequency on the axial turbulent 
intensity is observed.

Although the time variation of the turbulent 

intensity during the pulsing cycle was not measured, 

it was observed from the linearized anemometer sig­

nal that the intensity of the turbulent fluctuations 

is generally larger during deceleration than accel­
eration.

Reynolds Stress

The Reynolds stress measurements in this work 
were not successful as compared with Laufer's data 

for the steady flow case. The reason for the dif­

ficulties in the Reynolds stress measurements is 

not clear. The Reynolds stress measurements were 

obtained by a single wire inclined at 45° to the 

flow direction; thus two measurements were required 

to calculate the Reynolds stress at one radial pos­

ition. This may introduce some error in the meas­
urement (9, 15).

In order to complete the discussion, the Rey­
nolds stress was measured using a x-wire probe in 

an air system. Excellent agreement with Laufer's 

data for steady flow was obtained. Figure 12 shows 

the effect of pulsations on the long-time-averaged 

Reynolds stress. The Reynolds stress of the pulsa­

ting flow turbulence was compared with the steady 

flow turbulence at the same long-time average para­

meters and both signals were high pass filtered at 

2.5 cps which was sufficient to attenuate completely 

the main flow pulsations. It can be seen from this
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figure that an increase of up to 9% near the wall 
region is observed for the pulsating flow over the 
steady flow values.

One can show easily that the long-time aver­

aged momentum equation for pulsating turbulent flow 
satisfies

uv R_ dP 
2p dX (18)

It was concluded previously that the long-time-av­

erage mean velocity U for the pulsating flow is 

equal to Us (the base steady flow mean velocity), 
so that:

dr dr

The long-time-averaged axial pressure gradient ^

is equal to the axial pressure gradient of the 

base steady flow. From Equation 18 one would con­

clude that the long-time averaged Reynolds stress 

uv should be equal to the Reynolds stress in the 

base steady flow. Figure 12, however, shows that 

a small but definite increase is observed in the 

value of the long-time averaged Reynolds stress. 

This apparent inconsistency between the experimen­

tal results (especially at points near the solid 

boundary) and Equation 18 is not yet fully explain­

ed. The pressure measurements in this work are 

the least accurate of the measurements performed 

and are accurate to within +5% by static calibra­

tion. It is then possible that the measured axial 

pressure gradient may be in error by as much as 

10%. Equation 18 can be solved to obtain values 

of the pressure gradient using the measured values 

of the Reynolds stresses and long-time average mean 

velocity gradients and will result in higher long­

time averaged axial pressure gradients (i.e., lar­

ger friction factors) for the pulsating flow than 

the steady turbulent flow at the same long-time- 
averaged Reynolds number.

1. The quasi-steady model can be used to pre­
dict the hydrodynamic quantities of a pulsating tur­
bulent flow system within the parameters range of
of 0.025 Re >u‘. s

2. When the pulsating velocity amplitude is
small compared to the mean velocity, the Reynolds 
number and the dimensionless pulsating frequency 
are the two critical parameters, whereas when the 
pulsating amplitude is not small compared to the 
mean velocity, the pulsating amplitude becomes an 
additional parameter. 2

3. At small values of (|-̂ ), the profile of 
the unsteady component of veloSity follows the tur­
bulent flow type distribution. At large values of

from the center line to the region near the wall 

during part of the pulse cycle and a uniform speed 

region exists in the central part of the pipe.

4. The long-time averaged pulsating flow vel­

ocity is the same as the steady flow velocity at 

the same mean Reynolds number.

5. Over the parameters investigated in this 

study, pulsations have a small effect on the long­

time averaged statistical turbulent quantities in 

the core of the flow. The pulsating amplitude can 

intensify the effect of pulsations on the axial tur­

bulence intensity, but the pulsation frequency ap­

pears to have a negligible effect.

6. In agreement with previous work, the ane­

mometer signal indicates that the magnitude of the 

turbulent velocity fluctuations are greater during 

deceleration than acceleration.
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NOMENCLATURE

CONCLUSIONS

The major conclusions drawn from this investi­
gation are summarized below:

A dimensionless pulsating amplitude of the bulk 
velocity (B/uq )

Aq the ratio of the pulsating amplitude of the 
center line velocity to the time-averaged cen­
ter line velocity
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a pulsating amplitude of the local velocity ut unsteady part of the dimensionless velocity,
V Un

B pulsating amplitude of the bulk velocity L 0

D pipe diameter or diameter of the wire V the velocity causing heat transfer from the 
probe sensor

E the bridge voltage, E, and E~ are referred to 
the probe position V velocity fluctuation in the radial direction

Ee the linearized anemometer output w velocity fluctuation in the angular direction

o' ~ 2 ~2
long-time mean-square voltage of u, e. and e„ 
are referred to the probe position

X axial coordinateLe
Yn eigenfunction

f friction factor y dimensionless radial distance from pipe center 
line, r/R

f. steady flow friction factor os Z dimensionless axial coordinate, Xv/u R
G, dimensionless steady component of pressure 2

0
b gradient “n eigenvalue

G dimensionless amplitude of unsteady component £ the steady flow eddy diffusivity
u of pressure gradient

£ pipe center line eddy diffusivity
K a constant, defined in Equation 1

2 0 degree

pi dimensionless pressure, P/pu„
V kinematic viscosity

p time-smoothed pressure
P density

R pipe radius 2
T dimensionless time, tv/R

Re, steady-flow Reynolds number or time mgans Reynolds number for unsteady flow, uuo 03 frequency

r

V

radial coordinate from pipe center line 03*
r2

dimensionless frequency, ---
V o

Tn period of pulsation “t
. .D̂

dimensionless frequency,

t time

U the mean local velocity

U(t) instantaneous bulk velocity

Us

Ut

U1

U*

u

u.

so

long-time-averaged local velocity

pulsating part of the local velocity (a sin cot)

Us+Ut

friction velocity

velocity fluctuation in the axial direction 

dimensionless velocity, U/u

u

steady-flow mean velocity or time-mean bulk 
velocity

dimensionless steady flow velocity, Us/uq

dimensionless steady flow velocity at pipe 
center line

short-time-averaged quantity 

long-time-averaged quantity
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