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Effects of local pH on the formation and regulation of cristae morphologies
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Cristae, folded subcompartments of the inner mitochondrial membrane (IMM), have complex and dynamic
morphologies. Since cristae are the major site of adenosine triphosphate synthesis, morphological changes of
cristae have been studied in relation to functional states of mitochondria. In this sense, investigating the functional
and structural significance of cristae may be critical for understanding progressive mitochondrial dysfunction.
However, the detailed mechanisms of the formation and regulation of these cristae structures have not been fully
elucidated. Among the hypotheses concerning the regulation of cristae morphologies, we exclusively investigate
the effects of the local pH gradient on the cristae morphologies by using a numerical model. An area-difference
induced curvature of the membrane is modeled as a function of local pH. This curvature is then applied to the
finite element model of a closed lipid bilayer in order to find the energetically favorable membrane configuration.
From this study, we substantiate the hypothesis that a tubular crista structure can be formed and regulated by
the local pH gradient. Through the simulations with various initial conditions, we further demonstrate that the
diameter of a crista is mainly determined by the local pH gradient, and the energetically favorable direction
of crista growth is perpendicular to the longitudinal axis of a mitochondrion. Finally, the simulation results at
the mitochondrial scale suggest that the cristae membrane may have a lower local pH value and/or a higher
cardiolipin composition than the other parts of the IMM.

DOI: 10.1103/PhysRevE.90.022702 PACS number(s): 87.16.Tb, 87.16.A−

I. INTRODUCTION

Mitochondria have been recognized as the primary cellular
powerhouses, because their main function is synthesizing
adenosine triphosphate (ATP) by oxidative phosphorylation.
During oxidative phosphorylation, the electron transport chain
pumps protons across the inner mitochondrial membrane
(IMM) by using free energy released from a series of redox
reactions. The resulting electrochemical gradient of proton
is used for synthesizing ATP via ATP synthase [1,2]. These
protein complexes involved in ATP synthesis are located in
the IMM. In particular, a subcompartment of the IMM called a
crista has been considered to be the major site of ATP synthesis
since proteins comprising ATP synthase and electron transport
chains are more concentrated on cristae membranes [3,4].

The biophysical effects of complex, diverse, and dynamic
cristae morphologies have been studied in relation to mi-
tochondrial functions. Folded cristae structures have been
speculated as the capacity enhancer for ATP synthesis by
providing greater surface area and electrochemical poten-
tial [5–7]. Moreover, experimental studies have shown that
mitochondria can present distinctive cristae morphologies with
respect to their functional and disease states. For example,
enlarged cristae were observed in mitochondria with high
respiratory activity, while contracted cristae were shown in
mitochondria with low respiratory activity [8,9]. Also, loss
of cristae structures were observed in neurodegenerative
diseases (e.g., Alzheimer’s disease, Parkinson’s disease, and
Huntington’s disease) [10,11].

As such, the literature suggests that the cristae morpholo-
gies are closely related to mitochondrial functions. Therefore,

*Corresponding author: weilu@umich.edu

investigating the biophysical and functional effects of cristae
structures may be an instrumental step for understanding
progressive mitochondrial dysfunction such as aging and
neurodegeneration. Moreover, analyses of the cristae mor-
phologies may help differentiate the multiplicity of known
disease and normal states. However, mechanisms of how
these cristae structures can be formed and regulated and how
this morphology regulation may be related to mitochondrial
function have not been fully understood.

To explain the formation and regulation of cristae struc-
tures, two hypotheses have been proposed: (i) Cristae mor-
phologies may be related to the distributions of protein
complexes [7,12,13], and (ii) cristae morphologies may be
regulated by the local pH gradient generated from oxidative
phosphorylation [14–16]. The first hypothesis is supported by
the experimental observation [by using electron microscopy
with three-dimensional (3D) image reconstruction] showing
long ribbons of ATP synthase dimers located at the apex of
cristae membranes [13]. Even though these dimer ribbons
may contribute to the formation of cristae structures by
bending the membrane, this hypothesis does not provide a
sufficient explanation on how the cristae morphologies can
be associated with the respiratory activities (or functional
states) of mitochondria. The second hypothesis is based
on the fact that area per lipid headgroup decreases as pH
decreases. Thus the local pH difference across the membrane
can induce the curvature by the area mismatch between two
layers of the membrane, and consequently regulate the cristae
morphologies. Therefore, in this case, the cristae morphologies
can reflect the functional state of a mitochondrion because the
local pH gradient, which is controlled by respiratory activities,
directly represents the functional state and determines the
viability of a mitochondrion.
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The above hypothesis of the cristae regulation by the
local pH gradient was proposed by Khalifat et al. [14].
They experimentally showed that the local pH gradient
can form a cristaelike invagination on the giant unilamellar
vesicle (GUV). The local pH gradient on the GUV was
generated by the microinjection of acid. The cardiolipin
(CL) containing GUVs presented dynamic and reversible
changes of the cristaelike invaginations by acid delivery. They
also provided theoretical explanations of observed cristaelike
invaginations. Theoretical values of the radii and lengths
of cristaelike tubules were calculated and compared with
their experimental results. However, this study could not
successfully explain why the cristaelike structures have tubular
shapes and whether this shape is energetically favorable.
Moreover, the mechanism proposed in this study needs to
be validated at the mitochondrial scale because of the large
size difference between mitochondria and GUVs (i.e., to form
a crista at the mitochondrial scale, a much higher local pH
gradient may be required because a small crista has a higher
curvature than a large crista of similar shape).

However, the experimental validation of this mechanism at
the actual mitochondrial scale is restricted by optical resolution
and control of the local pH profile. Therefore, simulation
models are not only plausible supplements for resolving those
experimental limitations, but also excellent techniques for
presenting a theoretical understanding of existing observa-
tions. For example, a thermodynamic model was used to
provide theoretical explanations of experimentally observed
cristae morphologies [17–19]. The dynamics of lipid bilayer
membranes was modeled and validated with the well-known
biological membrane dynamics [20–26]. To date, however,
numerical models simulating morphological changes of the
IMM associated with the local pH gradient have not been
developed.

In this paper, we introduce a model simulating the mor-
phologies of the IMM at the given pH profiles. In Sec. II,
an area-difference induced curvature depending on the pH
difference across the membrane is modeled. In addition to
the estimation of the curvature, the finite element model
of lipid bilayer membranes developed by Feng, Ma, and
Klug [21,23] is applied to find the energetically favorable
membrane configuration. In Sec. III, we present simulation
results and investigate (i) how a tubular crista structure can
be formed by and disappear due to the local pH gradient,
(ii) which factors can affect the cristae membrane morpholo-
gies, and (iii) whether the same mechanism proposed by
Khalifat et al. can be applicable at the mitochondrial scale.
Finally, the validity and limitations of this study are discussed.

II. METHODS

Our model system is composed of a closed lipid bilayer with
homogeneous composition (the effects of protein compositions
are not considered). To reduce the computational cost, we limit
our study to two-dimensional (2D) axisymmetric geometries.
We first calculate the area-difference induced curvature of the
membrane at a given pH difference across the membrane. Fi-
nally, to find the membrane configuration having the minimum
energy, this curvature is plugged into the lipid bilayer model
developed by Feng, Ma, and Klug [21,23].

H+ H+H+

t

dAin,0=dA0

dAout,0=dA0

r dAin, pHin

dAout, pHout

(a)

(b)

FIG. 1. Curvature of the lipid bilayer induced by local pH. (a)
Illustration of a curvature induced by locally introduced protons.
(b) Modeling of the pH-dependent area change and resulting area-
difference induced curvature.

A. Local pH and curvature of the lipid bilayer

During oxidative phosphorylation, protons are pumped out
from the matrix by the electron transport chain and by generat-
ing the pH difference across the IMM. This pH difference can
induce a curvature by mismatched areas between two layers of
the membrane. As illustrated in Fig. 1(a), positively charged
protons (or hydrated hydrogen ions) introduced on the outer
side of the membrane neutralize the negative charges of lipid
headgroups. This electrical neutralization reduces repulsive
forces between headgroups and consequently the area per
headgroup. This decreased area of the outer layer results in
area mismatch between the inner and the outer layer. Finally,
the curvature of the lipid bilayer can be induced by this area
mismatch.

First, we model the pH-dependent area change similar to
thermal expansion by assuming that the area changes linearly
with change in pH (this assumption is further discussed in
Sec. IV B).

A = A0(1 + αA�pH), (1)

where A and A0 are areas of the layer before and after pH
change, respectively; αA is the area expansion coefficient; and
�pH is the pH difference (�pH = pH–pH0).

From Eq. (1), the infinitesimal areas of the inner and the
outer layer after pH change dAin and dAout [see Fig. 1(b)] are

dAin = dA0(1 + αA�pHin), (2)

dAout = dA0(1 + αA�pHout). (3)

On the other hand, dAin and dAout can also be calculated
by assuming that the inner and outer layers form concentric
spherical surfaces.

dAin = (r − t/2)2 sin θdθdφ, (4)

dAout = (r + t/2)2 sin θdθdφ, (5)

where r is the radius of the midplane of the membrane, t

is the thickness of the membrane, θ is a polar angle, and φ
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is an azimuth angle of a spherical coordinate system. From
Eqs. (2)–(5), the area-difference induced curvature of the
membrane at the given pH (C0) is

C0 = 2

r
= 4(c − 1)

t(c + 1)
, where c =

√
dAout

dAin

=
√

1 + αA�pHout

1 + αA�pHin
. (6)

Therefore, C0 can be determined by the given pH values
of the inner and outer surfaces of the membrane. The details
of pH profiles used in this simulation will be explained in
Sec. II E.

B. Area expansion coefficient (αA)

The area expansion coefficient (αA) can be estimated from
the measurements of the mean area per lipid molecule at
different pH values. For the GUV simulations, we use the
mean area per lipid measured in Ref. [14]. The mean area
per lipid molecule in monolayers composed of 90 mol % of
phosphatidylcholine (PC) and 10 mol % of cardiolipin (CL)
was measured at pH 8 and 4. The mean area decreased �8.6%
as pH decreased from 8 to 4. From Eq. (1), this corresponds
to αA of 0.0214. We use this value for the area expansion
coefficient of the GUV (αGUV = 0.0214).

For the simulations at the mitochondrial scale, we apply
different values of αA. Since the lipid composition of the
IMM is different from that of the GUV, the IMM can have a
different αA. In particular, the IMM has higher CL composition
(�20%) [27,28], which is considered to be the main contrib-
utor for the pH-dependent area change [14,16,29,30]. Thus,
this higher CL composition can provide greater αA than αGUV.
Moreover, it has been speculated that the CL composition in
the cristae membrane is even higher [31,32]. However, more
work needs to be done in estimating accurate CL composition
in the cristae membrane. Therefore, we perform simulations
with various αA in the range between αGUV and 10αGUV.

C. Lipid bilayer model

To simulate the lipid bilayer mechanics, we employed the
model developed by Feng, Ma, and Klug [21,23]. We modify
the model suitable for the 2D axisymmetric geometry and large
deformation. Since the lipid bilayer mechanics is not a main
focus of this study, we will briefly explain the lipid bilayer
model (see Ref. [23] for more detailed descriptions of the lipid
bilayer model).

Following Ref. [23], the total energy functional of the
membrane I can be written as

I = � + I con + I reg, (7)

where � is the potential energy, I con is the constraint energy,
and I reg is the regularization energy. The potential energy (�)
is constructed from the Helfrich functional [33–35].

� =
∫

1

2
K(2H − C0)2Ads, (8)

where K is the bending modulus, H is the mean curvature,
C0 is the area-difference induced curvature, and Ads is the

infinitesimal surface area element. The potential energy is
only composed of the bending energy because we assume no
work is done by external forces. The Gaussian curvature term
in the Helfrich functional is neglected by the Gauss-Bonnet
theorem; if we assume no topological change (i.e., fixed Euler
characteristic) during membrane deformation, the integral of
the Gaussian curvature over the closed membrane surface
remains constant. To enforce area and volume constraints,
the constraint energy (I con) is established by applying the
augmented Lagrangian approach.

I con = μV

2
(V − V0)2 − pnV + μA

2
(A − A0)2 + αnA, (9)

where V and V0 are the enclosed volumes of the current
configuration and the initial shape, respectively. A and A0

are the surface areas of the current configuration and the initial
shape, respectively (a detailed description of the initial shape
is provided in Sec. II E). μV and μA are penalty parameters
for the volume and area constraints, respectively. pn and αn

are Lagrange multiplier estimates for the volume and area
constraints at the nth iteration, respectively. By employing
both penalty terms and Lagrange multiplier estimates in
Eq. (9), the augmented Lagrangian approach can enforce
the volume and surface area constraints without having very
large penalty parameters. However, the constraint energy
(I con) can only impose global constraints. This constraint
does not penalize in-plane deformations of finite element
nodes and does not enforce local incompressibility. Especially
in large deformation problems, these in-plane deformations
may induce degenerate modes. To resolve this problem, we
use dashpot regularization energy (which penalizes in-plane
deformations) introduced by Ma and Klug [23].

I reg =
∑

edge ab

k

2
(lab − Lab)2, (10)

where k is a spring constant, lab and Lab are lengths between
nodes a and b of current and reference configurations,
respectively.

From the principle of minimum potential energy, the weak
form of the energy functional is derived from the variation of
a functional.

δI = δ� + δI con + δI reg, (11)

δ� =
∫ [

K(2H − C0)δ(2H )A + 1

2
K(2H − C0)2δA

]
ds,

(12)

δI con =
∫

[−pn+1δV + αn+1δA]ds, (13)

δI reg =
∑

edge ab

k(lab − Lab)δlab, (14)

where pn+1 = pn − μV (V − V0) and αn+1 = αn + μA(A −
A0). (The derivations of δH , δA, and δV in a 2D axisymmetric
coordinate system can be found in Appendix A.) This weak
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x1

x2 x3

x4=-3

=-1
=1

=3

Interpolated curved line element

Nearest-neighbor nodes

)b()a(

r

z

n=(nr, nz)
s

FIG. 2. 2D axisymmetric coordinate system and geometry of
the surface represented by curved line elements. (a) The membrane
surface is parametrized by curvilinear coordinates: x = x(s). (b) A
curved line element is obtained from interpolating four node points
including nearest-neighbor nodes.

form of the energy functional is used to find the conjugate
direction for the numerical optimization method.

D. Finite element approximation and energy minimization

Curved line elements are used to approximate the mem-
brane surface in the 2D axisymmetric coordinate system.
Because a curvature calculation requires the second derivative
of a function, the interpolation (or shape) function needs to be
at least a quadratic polynomial in order to have a nonzero
curvature. To implement this, we use a cubic polynomial
function as a shape function. As can be seen in Fig. 2(b), shape
functions are obtained from interpolating four node points
including nearest-neighbor nodes.

x(ζ ) =
4∑

i=1

Ni(ζ )xi , (15)

where x is a position vector of the membrane surface, Ni is a
shape function, and xi is a node-point vector (see Appendix B
for more details). The total energy functional and its weak
form are discretized by substituting the position vector x
with a node-point vector xi . At the given node positions,
the numerical values of these discretized equations [Eqs. (7)
and (11)] can be evaluated by using a three-point Gaussian
quadrature. Finally, simulations are performed by applying the
nonlinear conjugate gradient method. The nonlinear conjugate
method is used to find the local minimum of the total
energy functional without deriving the stiffness matrix. The
weak form of the total energy functional is used to find
the steepest descent direction and the conjugate direction
for the numerical optimization. In this study, we use the
Polak-Ribière-Polyak formula for calculating the conjugate
gradient update parameter [36,37].

E. Initial configurations, pH profiles, and postprocessing

We use oblate and prolate spheroids as initial shapes
because the simulations are performed in 2D axisymmetric
geometries. These initial shapes are parametrized by the
equivalent radius (R0) and the reduced volume (ν).

R0 =
√

A/4π, (16)

ν = V

(4π/3)R3
0

. (17)

crista

lcrista

Aaff

)b()a(
Aaff, pHaff

pH0

FIG. 3. pH profile on the membrane surface and morphological
parameters of a cristaelike structure. (a) The area affected by acid
delivery (Aaff ) is set on the top center part of the membrane.
(b) Morphological parameters are calculated from the shaded area
(enclosed by the affected area).

Since these initial shapes are not in equilibrium, the
equilibrium shapes of these initial shapes are obtained by
performing simulations with zero area-difference induced
curvature. Finally, these equilibrium shapes are used as the
initial configurations.

To simulate the experimental conditions described in
Ref. [14], we define the area affected by acid delivery (Aaff).
As can be seen in Fig. 3(a), we set the affected area on the
top center part of the membrane surface. To study the effects
of the affected area, we change the percentage of the affected
area (Paff).

Paff = Aaff

A0
. (18)

We assign pH values at the node points of the affected
area (pHaff), while pH values elsewhere are assumed to
remain at 8 (pH0). For numerical integration, pH values
at the Gauss points are linearly interpolated from the nodal
values. We decrease pH values of the affected area from pH0

with a decrement of 0.1. However, during this process, the
affected area can change due to the updates of node points.
This problem is resolved by repositioning the node points.
After every energy minimization step, the node points are
repositioned along the surface of the membrane in order to
have the same affected area. The overall simulation procedure
is summarized as follows:

(i) Set initial parameters and the reference configuration X .
(ii) Solve for the current configuration x at the given pH

profile by the total energy minimization.
(iii) Reposition the node points.
(iv) Update the reference configuration: X = x.
(v) Update parameters (μV , μA, pn, and αn).
(vi) Repeat steps (ii)–(v) until |ν − ν0|/ν0 < 10−5 and

I reg/I < 10−5.
After solving for the configuration at each pH step, the

morphology of a cristaelike structure is quantified. Figure 3(b)
shows an example of a cristaelike structure. To quantify this
morphology, we calculate a length (lcrista), a radius (rcrista), an
aspect ratio (RA), and a surface-to-volume ratio (RSV ) of the
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cristaelike structure.

rcrista =
√

− ∫
crista πr2z′ds

πlcrista
, (19)

RA = lcrista

2rcrista
, (20)

RSV =
∫

crista 2πr(r ′2 + z′2)1/2ds

− ∫
crista πr2z′ds

. (21)

[Note: a radius (rcrista) of a crista was defined as a radius
of an equivalent cylinder.] Finally, we analyze the simulation
results with these morphological parameters.

III. RESULTS

We first simulate the morphological change of the mem-
brane at the GUV scale (R0 = 30 μm). The formation and
disappearance of the cristaelike structure with respect to the
pH values on the affected area (pHaff) is studied. We also
investigate the factors which may affect the morphology of
the cristaelike structure and examine which morphological
parameters may represent functional states of mitochondria.
Finally, simulations are performed at the mitochondrial scale
(R0 = 1 μm). At this smaller scale, we examine the conditions
required for the tubular cristae formation.

A. Formation and disappearance of the cristaelike structure at
the GUV scale

The morphological change of the membrane is studied at
the GUV scale. We use an oblate spheroid with ν = 0.95
and R0 = 30 μm as an initial shape and the area expansion
coefficient (αA) of 0.0214 (αGUV).

First, the equilibrium shape of the membrane is simulated
at pH 8 (zero area-difference induced curvature). We assign
the affected area at the top center of the membrane surface
as described in Sec. II E. The percentage of the affected area
over the total surface area (Paff) is maintained at 0.5%. We
decrease the pH value of the affected area (pHaff) from 8
to 7 with a decrement of 0.1. As can be seen in Fig. 4,
the affected area starts to form a concave geometry due
to the negative area-difference induced curvature. As pHaff

decreases, a single spherical shape of a cristaelike structure
emerges at pHaff = 7.6. Then the affected area evolves to
a structure of connected spheres (or nearly spherical shapes)
with smaller radii. This structure of connected spheres may
not be a configuration that globally minimizes the potential
energy. Instead, it may be a selected configuration, which
locally minimizes the potential energy, among multistable
configurations. At the given area-difference induced curvature,
a radius of a sphere minimizing the bending energy is larger
than that of a tubule or a cylinder (i.e., because one of the
principal curvatures of a cylinder is zero, the other needs to
be two times greater than that of a sphere in order to have the
same mean curvature). Thus the structure of connected spheres
requires less deformation and emerges as an intermediate
configuration before finally forming a tubular cristaelike struc-
ture. This cristaelike structure formation process (including
intermediate configurations) is consistent with those observed
in the GUV experiment [14]. Moreover, in the presence of

pHaff=7.8pHaff=8

pHaff=7.6 pHaff=7pHaff=7.4 pHaff=7.3 pHaff=7.2

FIG. 4. (Color online) Formation process of the cristaelike struc-
ture at selected pHaff . An oblate spheroid with ν = 0.95 and R0 = 30
μm is used as an initial shape. αA of 0.0214 (αGUV) and Paff of 0.5%
are used

mechanical anisotropy (or misfit strains), shape transitions
among multistable morphologies (e.g., flat shell, helical
ribbon, saddle shape, and cylindrical configuration) have been
found in many other physical and biological systems [38–40].

To study the reversibility of this membrane deformation,
we increase pHaff from 7 to 8 with an increment of 0.1. The
membrane configuration at pHaff = 7 in Fig. 4 is used as
an initial configuration for this simulation. Figure 5 shows
the disappearance of the cristaelike structure with increasing
pHaff . At the same pHaff , the morphologies of the cristaelike
structure shown during the disappearance process (Fig. 5)
are very similar to those shown during the formation process
(Fig. 4). Even though our numerical methods search for a local
minimum, the optimized membrane configuration at the given
pH profile is minimally affected by the initial condition or
path. Therefore, cristae morphologies may be good indicators

pHaff=7.8 pHaff=8

pHaff=7 pHaff=7.2 pHaff=7.3 pHaff=7.4 pHaff=7.6

FIG. 5. (Color online) Disappearance process of the cristaelike
structure at selected pHaff . The membrane configuration at pHaff = 7
in Fig. 4 is used as an initial configuration. αA of 0.0214 (αGUV) and
Paff of 0.5% were used.

022702-5



SONG, PARK, PHILBERT, SASTRY, AND LU PHYSICAL REVIEW E 90, 022702 (2014)

FIG. 6. The effects of the percentage of the affected area (Paff ) on the morphological parameters of a cristaelike structure. (a) Change in
the radius of a cristaelike structure. (b) Change in the length of a cristaelike structure. (c) Change in the aspect ratio of a cristaelike structure.
(d) Change in the surface-to-volume ratio of a cristaelike structure.

of local pH, which is typically difficult to directly measure
due to limitations in experiments. Finally, the cristaelike
structure is completely removed and the membrane is fully
recovered to the original configuration when the local pH
gradient disappears (pHaff = 8). Therefore, if a mitochondrion
loses its pH gradient across the membrane, it can also
lose its cristae structures as observed in a dysfunctional
mitochondrion [10,11].

B. The effects of Paff and initial shapes

To investigate the factors determining the morphology
of the cristaelike structure, membrane models with different
Paff and initial shapes are simulated. The morphology of the
cristaelike structure at each pHaff is analyzed by using four
morphological parameters described in Sec. II E: rcrista, lcrista,
RA, and RSV .

The morphological changes of the cristaelike structures
with three different Paff (0.4%, 0.5%, and 0.6%) are analyzed.
The same initial configuration (oblate spheroid with ν = 0.95
and R0 = 30 μm) and the area expansion coefficient (αA)
of 0.0214 are used. As can be seen in Figs. 6(b) and (6c),
the cristaelike structure developed from a larger affected area
is longer and consequently has a higher aspect ratio. On the
other hand, the percentage of the affected area does not show
significant effects on both rcrista and RSV [Fig. 6(a) and (6d)].
Because these two morphological parameters are mainly
determined by the area-difference induced curvature (which

is directly related to the local pH), they are only associated
with pHaff . Thus, rcrista and RSV may be key morphological
parameters reflecting the functional states of mitochondria.

To study the effects of the initial shape, four different initial
configurations are simulated at the same conditions (R0 = 30
μm, αA = 0.0214, Paff = 0.5%). Figure 7 shows the effects
of the initial shapes on the morphological parameters. Oblate
spheroids with two different reduced volumes (ν = 0.95 and
0.85) exhibit almost identical morphological parameters over
the entire range of pHaff , whereas prolate spheroids show
delayed growth of tubular cristaelike structures. In the case of
the oblate spheroid, the initial pH value for tubular cristaelike
structure formation is 7.2. The prolate spheroids with ν =
0.95 and ν = 0.85 start to form a tubular cristaelike structure
at pH 7.1 and 7, respectively. Moreover, the prolate spheroids
develop initially thicker and shorter cristaelike structures. This
delayed formation and development of the cristaelike structure
from the prolate spheroids may be contributed from the higher
positive mean curvature of the affected area (i.e., the membrane
invagination may be hindered by the more convex affected area
of prolate spheroids). However, after the cristaelike structures
are fully formed, the morphological parameters of prolate
spheroids are converged to those of oblate spheroids.

C. Cristae formation at the mitochondrial scale

The morphological change of the membrane is finally
simulated at the mitochondrial scale. We investigate whether
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FIG. 7. The effects of the initial shape on the morphological parameters of a cristaelike structure. Oblate and prolate spheroids with ν =
0.95 and 0.85 are used as initial shapes. (a) Change in the radius of a cristaelike structure. (b) Change in the length of a cristaelike structure.
(c) Change in the aspect ratio of a cristaelike structure. (d) Change in the surface-to-volume ratio of a cristaelike structure.

the same mechanism applied at the GUV scale can still be
valid at the smaller mitochondrial scale. An oblate spheroid
with ν = 0.95 and R0 = 1 μm is used as an initial shape. We
maintain the percentage of the affected area (Paff) of 0.5%,
while pHaff is decreased from 8 to 4.

As can be seen in Fig. 8(a), when αA of 0.0214 (αGUV) is
applied, the affected area forms a concave geometry instead of
a tubular cristaelike structure. This is due to the higher negative

)c()a(

(b)
A= GUV

A=5 GUV

FIG. 8. (Color online) Cristae formation at the mitochondrial
scale. (a) The membrane morphology simulated with αGUV at
pHaff = 4. (b) The membrane morphology simulated with 5αGUV

at pHaff = 4. (c) Critical pH values required to form tubular cristae
with different area expansion coefficients.

area-difference induced curvature required to form a smaller
crista.

The higher negative area-difference induced curvature can
be achieved by a higher local pH gradient (lower pHaff) or
a greater αA. Since the applicable range of pHaff is limited
(a pHaff lower than 4 might not be feasible due to the lipid
degradation in acid), we perform simulations with greater area
expansion coefficients (αA is increased up to 10 times αGUV).
When αA = 5αGUV, a tubular cristaelike structure is fully
developed at pHaff = 4 [Fig. 8(b)].

We further investigate a critical pH value (pHcrit) required
to form a tubular cristaelike structure. From the simulation
results, we calculate the pHcrit where the membrane forms a
crista with a diameter (2rcrista) of 40 nm. Figure 8(c) shows the
pHcrit with different αA. To form a tubular crista at pH 5 and
6, αA of the cristae membrane should be greater than 6.4 times
and 9.5 times αGUV, respectively. As explained in Sec. II B,
for the actual cristae membrane, this much greater αA may be
achieved by a much higher CL composition of the cristae mem-
brane. However, the accurate CL composition and the area ex-
pansion coefficient of the cristae membrane are still unknown.

IV. DISCUSSION

In this section, by comparing the existing experimental
observations, we first discuss the validity of the major findings
in this study. In addition to the validation, the limitations from
the model assumptions and simplifications are discussed.
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A. Comparison with existing experimental observations

Through the simulation model, we showed that a tubular
cristae structure can be formed and regulated by the local
pH gradient. Even though the model did not reproduce
complex and entangled geometries (due to the application of
simple axisymmetric geometries), early steps of the cristaelike
structure formation and final steps of the disappearance (from
a tubular structure to connected spheres, a single sphere, and
a concave geometry) were consistent with those observed in
Ref. [14]. This morphological change was more clearly seen
during the disappearance of a cristaelike structure (see figures
in Ref. [14]). This might be due to the fact that the complete
disappearance of the local pH gradient after removing acid
delivery takes more time than the development of the local
pH gradient, and this slower process can provide more
time for having a fully equilibrated membrane configuration
similar to those simulated by the energy minimization method.
Furthermore, the simulation results, which showed a decrease
in the tubular crista radius accompanied by an increase in the
local pH gradient, correspond to the experimental observations
of actual distinctive cristae structures: swollen cristae were
observed in mitochondria at state 3 (low local pH gradient),
while narrow tubular cristae were shown in mitochondria at
state 4 (high local pH gradient) [8].

Additionally, we investigated the effects of the affected area
and the initial shape. First, the simulation results suggested
that the affected area can only change the length, but not the
diameter of a crista. From these simulation results, we can
infer that the diameter of each crista may be nearly uniform, if
the local pH values on the cristae membranes are comparable.
This inference is supported by the observations that found
relatively small variations in tubular cristae diameters (20–
40 nm) [41,42]. Second, we showed that the initial shape
can affect the growth of a tubular crista: The initial tubular
cristae formation on the membrane with higher positive
mean curvature requires more local pH gradient. Thus the
tubular cristae formation on a flat or concave surface is more
favorable. This finding explains the direction of tubular cristae
that is mostly perpendicular to the longitudinal axis of a
mitochondrion [41,43].

Simulations at the mitochondrial scale were performed with
a range of area expansion coefficients. At this small scale,
developing a tubular crista requires a greater area expansion
coefficient and higher local pH gradient. In reality, the area
expansion coefficient of the cristae membrane may be much
greater than that estimated from the GUV due to higher
CL composition. Additionally, the higher local pH gradient
can be obtained by the locally concentrated protons on the
cristae membrane (proton trapping by its concave geometry
and higher CL composition) [14,16,29,30]. According to our
simulation results, the local CL composition and pH gradient
on the cristae membrane might be higher than those speculated
in the existing literature. However, due to the limitations in
optical resolution and diffusion, these local values have not
been accurately measured.

B. Model assumptions and limitations

We discuss the limitations from the model assumptions and
simplifications. As mentioned earlier, we limited our study to
the 2D axisymmetric coordinate system in order to reduce the
computational cost and avoid numerical instabilities by apply-
ing extremely fine elements. Because of the symmetric geome-
tries and pH profiles, detailed membrane morphologies that
deviated from symmetric conditions could not be simulated.

In addition, we did not consider the effects of pH on
mechanical properties of the membrane, such as the area
expansion coefficient (αA) and the bending modulus (K).
However, studies have found that these mechanical properties
can be altered by pH [44–46].

Figure 9(a) shows the pH-dependent area changes esti-
mated from the GUV experiment [14] and the molecular
dynamics (MD) simulation [45]. The MD simulation results
show that the area expansion coefficient does not depend
considerably on pH (i.e., almost linear relationship between
the mean area per headgroup and pH). In the GUV experiment,
however, the functional form of the correlation between the
area per headgroup and pH cannot be determined because the
mean area per headgroup was measured only at two different
pH values (pH 4 and 8). Since the compositions of lipid used in

FIG. 9. The effects of pH on the mechanical properties of lipid bilayers. (a) The correlation between the mean area per headgroup and pH
estimated from the GUV experiment and the molecular dynamics (MD) simulation. (b) Bending modulus as a function of pH.
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FIG. 10. The effects of the pH-dependent bending modulus on the morphological parameters of a cristaelike structure (oblate spheroid
with ν = 0.95, R0 = 30 μm, αA = αGUV, Paff = 0.5%).

the MD simulation and the GUV experiment are different, the
validity of our assumption of the linear relationship between
the area per headgroup and pH is not yet conclusive.

As can be seen in Fig. 9(b), the bending modulus may be a
function of pH. In order to examine whether the pH-dependent
bending modulus may affect the simulation results, we model
the bending modulus as a function of pH [K = f (pH),
where f is a cubic polynomial function] by curve fitting the
experimental data in Ref. [44]. This bending modulus is then
applied to our simulation model. Within the range of pH
values used in this study (from pH 6.5 to 8), applying the
pH-dependent bending modulus does not notably affect our
simulation results (Fig. 10). Thus, the bending modulus of the
IMM may be assumed as a constant (pH independent) within
the feasible pH range of mitochondria.

Next, with an assumption of a homogeneous lipid mem-
brane, the effects of protein complexes were not modeled.
However, the insertion of a protein complex such as ATP
synthase has been hypothesized to bend the membrane [12,13].
Thus, in conjunction with the local pH gradient, the sponta-
neous curvature of the protein complex may contribute to the
formation and regulation of cristae structures.

Finally, we assumed localized protons on the cristae mem-
brane (or the affected area by acid delivery) without modeling
the diffusion of protons along the membrane surface. Even
though the meticulous modeling of the pH profile may provide
more precise cristae dynamics, it requires consideration of
many modeling parameters and physics (such as activities
of proton source and sink, electric potential, and transport

of proton), which may complicate the effects of the local pH
on cristae morphologies.

V. CONCLUSIONS

The complex and widely varied cristae morphologies have
been studied in relation to mitochondrial functions. However,
the mechanisms of how these cristae structures can be regu-
lated and are related to energetic functions of mitochondria
are not clear. To date, the formation and regulation of cristae
morphologies have been hypothesized (i) by the distributions
of protein complexes and (ii) by the local pH gradient. Among
these two hypotheses, we exclusively investigated the effects
of the local pH gradient by using a numerical model.

To develop a numerical model simulating the morphologies
of the IMM at the given pH profiles, we first modeled an area-
difference induced curvature induced by the pH difference
across the membrane. This curvature was then applied to the
finite element model of a closed lipid bilayer in order to find
the energetically favorable membrane configuration.

From this study, we developed a numerical model simu-
lating the morphological changes of cristae structures from
which we substantiated the hypothesis that tubular cristae
structures can be formed and regulated by the local pH gradient
and investigated the effects of the local pH gradient on the
morphological parameters of the cristae structures. Moreover,
through the simulations with various initial conditions, we
provided the potential explanations of the relatively uniform
diameter and direction of the tubular cristae (experimentally
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observed from mitochondria in the orthodox configuration):
the diameter of a crista is mainly determined by the local pH
gradient, and the energetically favorable direction of a crista
is perpendicular to the longitudinal axis of a mitochondrion
(the initial formation of a crista on a less convex membrane
surface requires less pH gradient). Finally, we presented
that the formation of the tubular cristae structure at the
actual mitochondrial scale requires a greater area expansion
coefficient (even in high local pH gradient) than that estimated
from the GUV experiment. This simulation result supports
the hypothesis that the cristae membrane may have a higher
composition of CL than the other parts of the IMM.
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APPENDIX A: VARIATION OF THE MEAN CURVATURE,
SURFACE AREA, AND ENCLOSED VOLUME

As can be seen in Fig. 2(a), the normal vector n is

n = (nr,nz) =
[

z′

(r ′2 + z′2)1/2
,

−r ′

(r ′2 + z′2)1/2

]
, (A1)

where the prime (′) denotes a partial differentiation with
respect to the parameter s.

From the definition of the mean curvature and Eq. (A1), the
mean curvature can be derived as

2H = ∇ · n = 1

r

∂(rnr )

∂r
+ ∂nz

∂z

= r ′z′′ − z′r ′′

(r ′2 + z′2)3/2
+ z′

r(r ′2 + z′2)1/2
. (A2)

By the first variation of Eq. (A2), δH can be obtained as

δ(2H ) = c1δr + c2δr
′ + c3δr

′′ + c4δz
′ + c5δz

′′, (A3)

where c1 = − z′
r2(r ′2+z′2)1/2 , c2 = z′2z′′−2r ′2z′′+3r ′r ′′z′−(r ′z′3+r ′3z′)/r

(r ′2+z′2)5/2 ,

c3 = − z′
(r ′2+z′2)3/2 , c4 = −r ′2r ′′−3r ′z′z′′+2r ′′z′2+(r ′4+r ′2z′2)/r

(r ′2+z′2)5/2 , and c5 =
r ′

(r ′2+z′2)3/2 .
The total surface area can be calculated as

Atot =
∫

Ads =
∫

2πr(r ′2 + z′2)1/2ds.

From the above equation, the infinitesimal surface area is

A = 2πr(r ′2 + z′2)1/2. (A4)

Then, the first variation of A is

δA = 2π [(r ′2 + z′2)1/2δr + rr ′(r ′2 + z′2)−1/2δr ′

+rz′(r ′2 + z′2)−1/2δz′]. (A5)

Similarly,

Vtot =
∫

V ds =
∫

πr2z′ds, V = πr2z′, (A6)

δV = (2πrz′)δr + (πr2)δz′. (A7)

APPENDIX B: FINITE ELEMENT SHAPE FUNCTION

A finite element shape function is obtained from interpo-
lating four node points. As can be seen in Fig. 2(b), these
four node points are two end points of the element and
two nearest-neighbor nodes. To construct isoparametric shape
functions, the following conditions are applied.

N1(−3) = 1, N1(−1) = 0, N1(1) = 0, N1(3) = 0,
N2(−3) = 0, N2(−1) = 1, N2(1) = 0, N2(3) = 0,
N3(−3) = 0, N3(−1) = 0, N3(1) = 1, N3(3) = 0,
N4(−3) = 0, N4(−1) = 0, N4(1) = 0, N4(3) = 1.
Because there are four conditions for each equation, we use

cubic polynomial functions.
From the above conditions, the resulting shape functions

are

N1 = 1
48 (−x3 + 3x2 + x − 3), (B1)

N2 = 1
48 (3x3 − 3x2 − 27x + 27), (B2)

N3 = 1
48 (−3x3 − 3x2 + 27x + 27), (B3)

N4 = 1
48 (x3 + 3x2 − x − 3). (B4)

APPENDIX C: MODEL VERIFICATION

For the model verification, we simulate the equilibrium
shapes of the membranes with different initial shapes and
zero local pH gradient (i.e., zero area-difference induced
curvature). The normalized potential energy (�/8πK) cal-
culated from the equilibrium shape is compared with the
result obtained from Seifert et al. [47]. Figure 11 shows the
normalized potential energy and equilibrium shapes of oblate
and prolate spheroids with different reduced volume. As can be
seen in this figure, our simulation results are in good agreement
with those from Seifert et al.

FIG. 11. Comparison of the normalized potential energy calcu-
lated in this study with those obtained from Ref. [47]. Equilibrium
shapes of oblate and prolate spheroids at selected reduced volumes
are presented in the inset.
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