
Missouri University of Science and Technology Missouri University of Science and Technology

Scholars' Mine Scholars' Mine

Computer Science Faculty Research & Creative
Works Computer Science

01 Jul 2018

The Automated Design of Probabilistic Selection Methods for The Automated Design of Probabilistic Selection Methods for

Evolutionary Algorithms Evolutionary Algorithms

Samuel N. Richter

Daniel R. Tauritz
Missouri University of Science and Technology, tauritzd@mst.edu

Follow this and additional works at: https://scholarsmine.mst.edu/comsci_facwork

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
S. N. Richter and D. R. Tauritz, "The Automated Design of Probabilistic Selection Methods for Evolutionary
Algorithms," Proceedings of the 2018 Genetic and Evolutionary Computation Conference Companion, pp.
1545-1552, Association for Computing Machinery (ACM), Jul 2018.
The definitive version is available at https://doi.org/10.1145/3205651.3208304

This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been
accepted for inclusion in Computer Science Faculty Research & Creative Works by an authorized administrator of
Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for
redistribution requires the permission of the copyright holder. For more information, please contact
scholarsmine@mst.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Missouri University of Science and Technology (Missouri S&T): Scholars' Mine

https://core.ac.uk/display/229262578?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/comsci_facwork
https://scholarsmine.mst.edu/comsci_facwork
https://scholarsmine.mst.edu/comsci
https://scholarsmine.mst.edu/comsci_facwork?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F576&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F576&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1145/3205651.3208304
mailto:scholarsmine@mst.edu

The Automated Design of Probabilistic Selection Methods for
Evolutionary Algorithms

Samuel N. Richter
Missouri University of Science and Technology

Rolla, Missouri, U. S. A.
snr359@mst.edu

Daniel R. Tauritz
Missouri University of Science and Technology

Rolla, Missouri, U. S. A.
dtauritz@acm.org

ABSTRACT
Selection functions enable Evolutionary Algorithms (EAs) to apply
selection pressure to a population of individuals, by regulating
the probability that an individual’s genes survive, typically based
on fitness. Various conventional fitness based selection methods
exist, each providing a unique relationship between the fitnesses
of individuals in a population and their chances of selection.
However, the full space of selection algorithms is only limited
by max algorithm size, and each possible selection algorithm is
optimal for some EA configuration applied to a particular problem
class. Therefore, improved performance may be expected by tuning
an EA’s selection algorithm to the problem at hand, rather than
employing a conventional selection method. The objective of this
paper is to investigate the extent to which performance can be
improved by tuning selection algorithms, employing a Hyper-
heuristic to explore the space of search algorithms which encode
the relationships between the fitnesses of individuals and their
probability of selection. We show the improved performance
obtained versus conventional selection functions on fixed instances
from a benchmark problem class, including separate testing
instances to show generalization of the improved performance.

CCS CONCEPTS
• Computing methodologies → Genetic programming; •
Theory of computation → Design and analysis of algorithms;
• Software and its engineering → Genetic programming;

KEYWORDS
Selection, Genetic Programming, Hyper-heuristic

ACM Reference Format:
Samuel N. Richter and Daniel R. Tauritz. 2018. The Automated Design of
Probabilistic Selection Methods for Evolutionary Algorithms. In GECCO ’18
Companion: Genetic and Evolutionary Computation Conference Companion,
July 15–19, 2018, Kyoto, Japan. ACM, New York, NY, USA, 8 pages. https:
//doi.org/10.1145/3205651.3208304

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5764-7/18/07. . . $15.00
https://doi.org/10.1145/3205651.3208304

1 INTRODUCTION
Evolutionary Algorithms employ selection functions to control the
probability that an individual’s genes are selected for recombination
and survival. Various conventional fitness-based selection methods
exist, each providing a unique relationship between the fitness
of individuals in a population and their chances of selection.
Because of this, each selection algorithm plays a significant role in
determining the selective pressure of the EA, and thus, the average
performance of the EA’s search through the space of solutions [14].
Many selection algorithms are parameterized, allowing for further
variance in the selective pressure they provide. In cases where
parameterized selection algorithms are applied, the parameters can
be carefully tuned, either manually or with tuning software, to
maximize the performance of an EA on a particular problem or
problem class.

New selection algorithms can be designed in cases where the
performance offered by existing algorithms is insufficient, even
with well-tuned parameters. However, the full space of selection
algorithms is only limited by the maximum algorithm size, and so
it is highly unlikely that any designed algorithm offers the optimal
selection behavior for the EA. According to the "No Free Lunch"
theorem, each possible selection algorithm is optimal for some EA
configuration applied to a particular problem class [13]. Therefore,
a performance gain can be expected from exploring the space of
selection algorithms to find one that offers better performance
than any previously considered. Previous work has confirmed this
hypothesis, prompting our approach to use a Hyper-heuristic and
a custom representation of selection functions to explore the space
of new selection functions [16].

Our approach employs a Hyper-heuristic to explore the space of
selection algorithms, with each search algorithm represented by a
binary Koza-style GP-tree [8]. Each tree controls the probability that
an individual will be selected for recombination, as a mathematical
function with various terminal values, including the individual’s
fitness, fitness ranking in the population, and the size of the
population.

The rest of this paper is organized as follows: Section 2 gives
an overview of previous work related to this subject matter,
including an overview of Hyper-heuristics, automated algorithm
design, and the targeted improvement of Evolutionary Algorithm
Components. Section 3 describes our methodology for encoding
selection functions and searching through the space of selection
functions. Section 4 describes the setup and parameters used in
our experiment. Section 5 shows our results, which we analyze and
discuss in Section 6. We then summarize our experiment and state
our conclusions in Section 7 and discuss avenues for future work
on this subject in Section 8.

1545

https://doi.org/10.1145/3205651.3208304
https://doi.org/10.1145/3205651.3208304
https://doi.org/10.1145/3205651.3208304

GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan Samuel N. Richter and Daniel R. Tauritz

2 BACKGROUND
The field of Hyper-heuristics encompasses many different
approaches for the evolution of new algorithms. Methods may
utilize offline learning, in which computation is done a prioiri
to develop a heuristic, or online learning, in which a heuristic
is developed dynamically alongside a running problem. Hyper-
heuristic searches can be perturbative, in which complete solutions
are considered individually, or constructive, in which solutions
begin partially built and are extended iteratively [1].

A major application of Hyper-heuristics is the automated design
of algorithmic components, which various algorithms have been
shown to benefit from. Hyper-heuristics have been used to evolve
new algorithms from components of existing algorithms for Ant
Colony optimization algorithms, Boolean Satisfiability solvers, local
search heuristics, and iterative parse trees representing Black Box
Search Algorithms [2, 7, 9, 11]. This experiment applies the same
concept to selection functions, using Hyper-heuristics to build
selection functions from smaller components to search the space
of new selection functions.

There is also published work on improvement of targeted
components of EAs, including the evolution of new mutation
operators, mating preferences, genetic representation of individuals,
and crossover operators [3–5, 12, 17]. Methods for generating
selection algorithms, in particular, have been investigated. A
random walk through the space of register machines that compute
and return a probability of selection for each individual showed that
such custom-tuned selection algorithms can outperform typical
selection algorithms [16]. In the previous work involving the
evolution of Black Box Search Algorithms, the parse trees include
evolved selection functions, although the selection functions are
limited to two conventional selection functions (k-tournament
and truncation) with evolved parameters. An evolutionary search
through selection functions developed with Grammatical Evolution
showed that better selection functions can be developed using
a Hyper-heuristic, and that the performance of these selection
functions can generalize to new instances within the same problem
class [10]. The work described in this paper expands on these ideas
with a new representation for selection algorithms: an encoding of
the relationship between an individual’s fitness and its probability
of selection for recombination within a Koza-style GP-Tree.

3 METHODOLOGY
Here we discuss the methodology of our meta-EA. We outline the
format we use to represent selection strategies in the meta-EA, and
show how typical selection strategies, such as fitness-proportional
and k-tournament, would be represented in this format. We then
discuss how we will use the meta-EA to evaluate and search for
new selection strategies.

3.1 Encoding Selection Functions
Most typical selection functions are formatted as a series of
algorithmic steps to perform on a population of individuals, that
ultimately returns the selected individual(s).While we could explore
the entire combinatorial space of algorithmic steps to find new
selection functions, doing so could generate many algorithmswhich
are not valid selection functions, or even functional algorithms.

Therefore, we need a representation of selection functions that
is both robust enough to represent a wide variety of selection
functions, yet restrained enough that we can effectively search
within it to find new, valid selection algorithms.

We represent selection functions as binary Koza-style GP-
trees [8], with one tree representing one selection function. Rather
than encoding entire programs within the GP-Tree, which could
result in an infeasably wide search space of selection algorithms, the
GP-Trees instead encode mathematical functions [15]. To perform
selection on a population, the function is evaluated once for each
member of the population. The output values are normalized
to positive values if any of them are negative, then a weighted
random selection is performed, using the values as weights for each
corresponding individual in the population. This method is very
similar to fitness proportional selection, but instead of using the
fitness of each individual as its proportional chance to be selected,
the output of a mathematical function encoded in a GP-tree is used.
The terminals of the GP-tree, and thus the inputs to the function,
include the individual’s fitness, the individual’s fitness ranking
among the population members, the total size of the population,
constants, and random terminals, which return a random number
within a closed range. Binary operators in the GP-Tree include
mathematical functions (+, -, *, /) and the step function, which takes
two inputs and returns 1 when the first input is greater than the
second, and 0 otherwise. The GP-tree also includes a single bit that
determines whether the selection is performed with or without
replacement. If the bit is disabled, then the GP-Tree will not select
the same individual twice within the same generation.

An example of this representation is shown in Figure 1. The
figure shows an example of the GP-Tree that represents the function
evaluated for each individual, as well as the status of the bit
determining whether selection is performed with replacement. The
psuedocode for this method of selection is shown in Algorithm 1.
Note the WeightedSelection procedure, which is the final step in
all selection functions of this representation, which takes the output
weights provided by the GP-Tree, normalizes them if necessary,
and then performes a weighted selection. Also note the code at line
24, which removes selected individuals from the candidate pool
if selection is being performed without replacement. This line is
omitted in strategies that select with replacement.

Figure 2 shows how, for a hypothetical sample population
of nine individuals, different selection functions will result in
different probabilities of each individual being selected. The graph
also includes the selection probabilities for the custom selection
algorithm represented by the GP-Tree in Figure 1. This graph
visualizes the notion that the probability of an individual being
selected is a direct function of the selection method used, and that
new selectionmethods can provide new distributions for probability
of selection over the population.

3.2 Representing Typical Selection Functions
In order to be able to make a fair comparison between selection
algorithms encoded in this representation and the selection
algorithms typically used in Evolutionary Algorithms, we must
show that such typical selection algorithms can be encoded in this
representation. Thus, we must find GP-Trees which have the same

1546

The Automated Design of Probabilistic Selection
Methods for Evolutionary Algorithms GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan

Figure 1: Example of a generated selection function,
encoded in a GP-Tree. With this selection function, the
probability of any individual being selected is directly
proportional to the individual’s fitness rating plus 5,
multiplied by the individual’s ranking in the population
ordered by fitness. The bit to indicate selection with
replacement is set to False, so this selection function will
not select the same individual more than once within the
same generation.

Algorithm 1 Example Selection Function

1: procedure WeightedSelection(P ,W)
2: wmin ←minimum(W)
3: s ← 0
4: for allw ∈W do
5: if wmin < 0 then
6: s ← s + (w −wmin)
7: else
8: s ← s +w
9: end if
10: end for
11: r ← random(0, s)
12: i ← 1
13: while r >W (i) do
14: r ← r +W (i)
15: i ← i + 1
16: end while
17: return P (i)
18: end procedure

19: procedure ExampleSelection(P , replace)
20: for i ← 1,n do
21: W (i) ← (P (i).Fitness + 5) · P (i).FitnessRank
22: end for
23: selected ←WeightedSelection(P ,W)
24: remove selected from P
25: return selected
26: end procedure

probability of selecting individuals in the population as the typical
selection functions in their standard, algorithmic form.

The probability Pi of an individual i being selected by a selection
function encoded by a GP-Tree is given as

Figure 2: A comparison of the chances that each member of
a sample population, with fitnesses as listed, will be selected,
under each of the typical selection strategies listed, as well
as the custom selection strategy shown in Figure 1.

Pi =



Ri/
∑n
j=1 Rj if Rmin ≥ 0

(Ri − Rmin)/
∑n
j=1 (Rj − Rmin) if Rmin < 0

(1)

where Ri is the relative selection probability of individual i , output
by the function encoded in the GP-Tree, Rmin is the minimum value
R output for the current population, and n is the size of the pool
of candidates available for selection. If the GP-Tree does not select
with replacement, then the population member is removed from
the selection pool after it is selected, and the probability of selection
is recalculated for the remaining individuals.

The simplest selection function to represent with the GP-Tree is
fitness proportional selection. In fitness proportional selection, the
fitness of the individual is directly used as the relative probability of
selection, so the GP-Tree only needs to include the fitness terminal
value as its single node, and Ri is calculated as follows:

Ri = f itnessi (2)

where f itnessi is the fitness of individual i . Similarly, fitness-
ranking selection ranks the individuals in the population from
greatest to least fitness, and uses each individual’s fitness ranking
as the relative probability of selection. Because the fitness-ranking
is also a simple terminal value in the GP-Tree, Ri can be calculated
as follows:

Ri = f itnessRanki (3)
where f itnessRanki is the fitness ranking of individual i . In both
cases, the GP-Tree will select with replacement, so an individual
may be selected more than once.

In truncation selection, the top N individuals are selected, where
N is exactly the number of individuals who must be selected
(typically twice the number of children to be produced, if each
child requires two parents to produce it). To represent this function,
we must have a GP-Tree that assigns a non-zero relative probability
of selection to the top N individuals in the population, and a zero
relative probability of selection to all others. This can be described
as follows:

1547

GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan Samuel N. Richter and Daniel R. Tauritz

Ri =



1 if f itnessRanki > popSize − N

0 otherwise
(4)

where popSize is the size of the population. This stepwise behavior
can be achieved by the GP-Tree with the step operator, which
returns 1 if the left operand is greater than or equal to the right
operand, and 0 otherwise. Such a GP-Tree will effectively select
individuals at random from the top N individuals, since each
of those individuals is assigned the same relative probability of
selection. However, if the GP-Tree does not select with replacement,
then each individual can only be selected once, and since the
GP-Tree will select N individuals, it will select all of the top N
individuals.

Modeling k-tournament selection with a GP-Tree is less
straightforward. To be selected by k-tournament selection, an
individual must both be selected to be in a tournament, and have
the highest fitness of all individuals in that tournament. Thus, the
probability that an individual is selected by k-tournament selection
is equal to the probability of being selected for a tournament, times
the probability of winning the tournament:

Pi = P (individual i selected f or tournament)

·P (individual i wins tournament)
(5)

The probability of being selected for a tournament is simply the
size of the tournament k divided by the population size:

P (individual i selected f or tournament) = k/popSize (6)

To win a tournament, every other individual in the tournament
must have a fitness rank less than the to-be winner’s fitness rank.
This can be modeled as another product of probabilities:

P (individual i wins tournament) =

k−1∏
j=1

P (f itnessRankj < f itnessRanki)
(7)

The probability that individual j has a lower fitness rank than
individual i can be calculated as a function of the population size
and f itnessRanki , with subtractions to account for the fact that
individuals cannot be chosen twice for the same tournament. This
probability is as follows:

P (individual i wins tournament) =

k/n ·
k−1∏
j=1

f itnessRanki − j

n − j

(8)

Thus, the full probability that an individual is selected by k-
tournament is the product of equations 6 and 8. Because this
probability sums to 1, and is positive for every individual i the
population, no normalization step is necessary, and so Ri = Pi .
Thus, the full relative probability of selection Ri for k-tournament
can be calculated as follows:

Ri = Pi = k/popSize ·
k−1∏
j=1

f itnessRanki − j

n − j
(9)

This formula can be expanded into a form that uses only the
basic mathematical functions and the terminals used by the GP-
Tree, and so we can represent k-tournament selection using our
GP-Tree representation.

Example GP-Trees encoding the selection functions discussed
here are displayed in Figure 3. The psuedocode for the selection
strategies represented by these GP-Trees is shown in Algorithms 2,
3, 4, and 5.

Algorithm 2 Fitness Proportional Selection

1: procedure FitnessProportionalSelection(P)
2: for i ← 1,n do
3: W (i) ← P (i).Fitness
4: end for
5: selected ←WeightedSelection(P ,W)
6: return selected
7: end procedure

Algorithm 3 Fitness Ranking Selection

1: procedure FitnessRankingSelection(P)
2: for i ← 1,n do
3: W (i) ← P (i).FitnessRank
4: end for
5: selected ←WeightedSelection(P ,W)
6: return selected
7: end procedure

Algorithm 4 Truncation Selection

1: procedure TruncationSelection(P , t)
2: for i ← 1,n do
3: if P (i).FitnessRank > t then
4: W (i) ← 1
5: else
6: W (i) ← 0
7: end if
8: end for
9: selected ←WeightedSelection(P ,W)
10: remove selected from P
11: return selected
12: end procedure

3.3 Search Methodology
We use a meta-EA to explore the space of selection functions by
evolving the GP-trees described in Section 3.1. The quality of each
selection function is determined by running an underlying EA on a
suite of static training instances from a benchmark problem class.
All parameters of the bottom-level EA are kept constant, aside from
the parent selection strategy. Each run of the bottom-level EA is
terminated when the fitness of the population converges. The best

1548

The Automated Design of Probabilistic Selection
Methods for Evolutionary Algorithms GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan

Figure 3: The GP-Trees encoding the selection probabilities for typical selection functions, including a) Fitness proportional,
b) Fitness Ranking, c) Truncation (T=40), and d) k-tournament (k=2).

Algorithm 5 k-tournament Selection

1: procedure KTournamentSelection(P ,k)
2: for i ← 1,n do
3: W (i) ← k/n
4: for j ← 1,k − 1 do
5: W (i) ←W (i) · (P (i).FitnessRank − j)/(n − j)
6: end for
7: end for
8: selected ←WeightedSelection(P ,W)
9: return selected
10: end procedure

fitness achieved in the final population of the underlying EA is used
as a measure of the EA’s performance, and the average performance
of all runs of an EA using a particular selection function is used as
the fitness of that selection function in the meta-EA.

When the meta-EA concludes, the bottom-level EA utilizing
the best selection function from the meta-EA is run on a set
of separate testing instances from the same problem class to
test the generalization of the selection function’s performance.
For comparison, the same EA is run with a suite of typical
selection functions, including fitness-proportional, fitness-ranking,
k-tournament (using several values for k), and truncation selection.

The benchmark problem class used for the underlying EA is
the NK-Landscape class of problems. [6]. This benchmark was

chosen because the properties of the fitness landscape can be easily
controlled with the N and K parameters, as well as the policy with
which the fitness values of the loci are generated. With one set
of parameters, a wide range of new NK-Landscapes can be easily
generated, making it easy to provide both a variety of training
landscapes to tune a selection algorithm to, and a variety of new,
separate landscapes to use for testing the generalization of the
selection algorithm.

4 EXPERIMENTAL SETUP
Table 1 shows the parameters used in the meta-EA, which were
selected with manual tuning to ensure the best performance of the
meta-EA.

Table 2 shows the parameters used for each run of the bottom-
level EA and the benchmark function. The benchmark parameters
were selected to ensure that each benchmark problem was difficult
enough to warrant the use of an EA, while not being so difficult
that the meta-EA would quickly trend toward attractive but low-
quality selection functions, such as aggressive hill-climbers. The
bottom-level EA parameters were chosen so that the performance
of the EA would vary heavily with the selection function used, so
that high-quality selection functions could be easily exposed by the
bottom-level EA.

For the bottom-level EA, the parent selection is performed by
the evolved selection function, and random selection is used for
survival selection. Because the survival selection is random, the

1549

GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan Samuel N. Richter and Daniel R. Tauritz

Table 1: Meta-EA Parameters

Parameter Value

Population Size 50
Offspring Size 50

Evaluation Count 2500
Max GP-Tree Initialization Depth 3

Parent Selection k-tournament, k=10
Survival Selection Random

Mutation Subtree Regeneration
Crossover Subtree Crossover

Parsimony Pressure Coefficient 1
Mutation Rate 0.1

Training Instances 20
Runs per Training Instance 3

Testing Instances 50
Runs per Testing Instance 100

Range for Constant Terminals [-100, 100]
Range for Random Terminals [-100, 100]

Table 2: Bottom-level EA/Benchmark Function Parameters

Parameter Value

Population Size 100
Offspring Size 20

Genome Length (N) 40
Locus Length (K) 8

Locus Minimum Value 0
Locus Maximum Value 8
Survival Selection Random

Termination Criteria Convergence
Generations to Convergence 25

Mutation Random Bit Flip
Mutation Rate 0.05
Crossover Per-Bit Crossover

selection pressure must be supplied by parent selection in order for
the EA to be effective, to encourage the evolution of good selection
strategies at the meta-EA level.

When generating the NK-Landscape training and testing
instances, the values for N (genome length) and K (locus length)
are kept constant. To generate each landscape, the locus epistatis
is randomized, and each locus is assigned a random fitness value,
selecting an integer between 0 and the locus length. Randomizing
these two components for every instance of the benchmark problem
leads to a wide variety of fitness landscapes for training and testing
instances.

5 RESULTS
After running the meta-EA, a bottom-level EA using the best
selection function was run against each of the 50 testing instances
for 100 runs each. The GP-Tree representation of this selection
function is shown in Figure 6. The bottom level-EA is run on the
same testing instances with a suite of typical selection functions,

Figure 4: The best fitness achieved by the underlying EA on
one of the testing functions, using evolved and conventional
fitness functions, averaged over all runs.

and the results are compared to the performance of the EA using
the custom selection function. A two-sided t-test is run on the
final best fitnesses achieved by the EA using the custom selection
function versus the final best fitnesses achieved when using each
of the typical functions.

For 46 of the 50 testing instances, the EA using the custom
selection functions significantly outperformed each EA using a
typical selection function, with significance P<0.001 in all cases. For
the remaining 4 testing instances, there was one selection function
in the suite of typical selection functions whose performance was
not significantly different from the custom selection function; the
custom selection function outperformed all other typical selection
functions in these 4 cases.

Table 3 shows the final best fitness achieved by the underlying
EA on the first 5 testing instances, using a number of conventional
selection functions and the best custom-tuned selection function
found by the meta-EA, to give a general idea of the performance
achieved by the custom selection function on the testing
instances. For these 5 testing instances, all differences between the
performance of the custom selection algorithm and the performance
of the typical selection algorithms are statistically significant, with
P<0.001.

Figure 4 shows the average performance over time of an EA
using the best evolved selection functions on one testing instance,
compared to the performance of the same EA using typical selection
functions. Similar results were observed on the other testing
instances. Figure 5 shows a boxplot comparing the final best fitness
values achieved on all of the runs on the same testing instances by
the EA using the best evolved selection function and the typical
selection functions.

6 DISCUSSION
The results show that the search algorithm found by the meta-EA
can outperform several conventional selection algorithms, and that
the improved performance of this search algorithm generalizes well
to new instances within the same problem class.

Despite the wide success in generalization of the custom
selection function, there were a few testing instances where
the custom selection algorithm performed on par with a typical

1550

The Automated Design of Probabilistic Selection
Methods for Evolutionary Algorithms GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan

Table 3: Final best fitness achieved by bottom-level EA on each testing instance, averaged over all runs, for the first 5 test
instances.

Test Instance 1 2 3 4 5

Custom Selection Function 225.18 220.03 208.78 207.39 218.49
k-tournament (k=2) 187.52 186.48 175.94 165.3 186.0
k-tournament (k=3) 193.11 191.57 177.86 168.32 189.39
k-tournament (k=5) 211.18 199.46 186.71 183.52 197.57
Fitness Proportional 182.73 183.99 171.4 162.17 183.47
Fitness Ranking 187.9 187.02 174.98 164.23 185.88
Truncation 204.22 192.56 180.07 171.63 191.63

Figure 5: A boxplot of the final best fitness values achieved
by the underlying EA on one of the testing functions, using
evolved and conventional fitness functions. Here, each box
encloses the data points within the first and third quartiles,
and the whiskers enclose the furthest data points that still
liewithin 1.5 *IQR fromeach quartile, where textitIQR is the
interquartile range.

selection algorithm. It is likely that these generated testing instances
were simpler landscapes that the typical selection functions were
sufficient to find high quality solutions in. It can also be observed,
in Figure 5, that some of the best fitnesses achieved by the typical
selection functions are within the interquartile range of the best
fitnesses achieved by the evolved selection function. However,
the performance increase of the evolved selection function is still
statistically significant, to a degree of P<0.001.

When looking at the final best selection algorithm in its GP-Tree
form, it is not exactly intuitive what sort of selective strategy it
is employing. However, this exemplifies one of the key strengths

Figure 6: One of the best custom selection functions
produced by the meta-EA.

of Evolutionary Algorithms and Hyper-heuristics, which is that
they are unconstrained by human predispositions and biases.
With Hyper-heuristics, we can develop new algorithms that are
judged purely by their performance, and not necessarily to their
conformance to an existing standard or idea.

By examining the trends in fitness of the bottom-level EA using
the custom selection algorithm, versus the conventional selection
algorithms, it is clear that the custom selection algorithm is better
able to promote gradual growth in the fitness of the individuals
without getting stuck in a poor local optimum. In some cases,
the algorithm even enables the bottom-level EA to converge on a
high optimum faster than other selection functions reach a subpar
optimum, improving the efficiency of the EA.

One interesting observation is a particular pattern of subtree
often observed in the population: a series of Fitness-Rank terminals
being multiplied together. The meta-EA likely developed this
sequence to introduce a stronger selection pressure than the basic
terminals can provide. Intuitively, in a large population, the Fitness-
Rank terminal alone does not provide a high selection pressure, as
the individual with the second-highest fitness is almost as likely to
be selected as the individual with the highest fitness. To achieve a
high performance on the benchmark fitness function likely required
more selection pressure, especially because the random survival

1551

GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan Samuel N. Richter and Daniel R. Tauritz

selection scheme provided no selection pressure at all. Multiplying
the Fitness-Rank by itself effectively maintains the same order of
individuals in the ranking, but with their selection probabilities
more spaced out, and thus, when normalized, individuals with
higher ranks are relatively more likely to be selected over lower-
ranking individuals than they were before. However, this pattern
does not appear in all high-performing selection functions, and
it did not appear in the final best performing selection function
developed by the meta-EA. This suggests that, if the meta-EA did
need to increase the selective pressure imposed by the selection
function, it had found more than one way of doing so.

7 CONCLUSION
We hypothesized that a Hyper-heuristic search through the space of
selection functions for EAs could improve the performance of an EA
on a particular problem class by discovering a specialized selection
function. We developed a representation of selection functions that
uses a Koza-style GP-Tree to relate an individual’s fitness value and
fitness ranking to its relative probability of selection, and used a
meta-EA to search through the space of selection functions in this
representation. After finding a selection function that improved
the performance of the EA on the training instances of a problem
class, we applied the same EA, with the same selection function, to
separate testing instances of the same problem class, and showed
the generalization of the performance improvement.

We have shown that, with a meta-EA, it is possible to generate
new selection functions, tuned to a particular benchmark problem,
that can enable an EA to significantly outperform conventional
selection functions on those problems. Thus, we show that, in order
to discover the optimum selection method for an EA operating on
a particular problem, it is not sufficient to use any of the static
conventional selection functions tested. We have also shown that
this performance increase from a custom selection algorithm will
generalize to similar problems in the same problem class. Therefore,
if one expects to run the same EA on many problems from the same
problem class, one might expect to gain a performance increase by
doing some a prioiri calculation to develop a specialized selection
algorithm trained on instances of that problem class, which would
then enable an EA utilizing that selection function to perform better
on all instances of that problem class.

8 FUTURE WORK
The work presented in this paper opens a number of potential
avenues for future research. Of primary concern is the fact that
the meta-EA presented in this paper requires a large amount of a
prioiri computation to generate a high-quality selection function.
While this computational cost may be worth it for EAs that will
run on problems from the same problem class many times, a more
efficient method of finding good selection functions has a much
greater potential to benefit EAs in general.

The NK-Landscape benchmark problem was used as the problem
to be solved by the bottom-level EA, and this experiment showed
increased performance on that problem class with a specialized,
evolved selection function. Future experiments may investigate the
performance benefit that can be gained for other problem classes,

including real-world problem classes, to more generally explore the
practical benefit of specializing selection functions.

Because the objective of this paper is similar to the work done
to develop selection algorithms via Grammatical Evolution, it
remains to be seen which cases each method is more effective
for, and a direct comparison of the two methods on the same
benchmark problemmay yield more insight into which offers better
performance benefits under certain conditions.

The parameters for both the meta-EA and the bottom-level EA
were manually tuned for this experiment, and further exploration
of optimal parameters, either with software-automated tuning or
dynamic adaptation, could improve performance of the EA at both
levels. Additionally, both the generated selection functions and
the conventional selection functions tested use static parameters
throughout the evolution, and more work will be needed to
investigate the feasibility of searching the space of more dynamic
selection functions.

REFERENCES
[1] Edmund K Burke, Michel Gendreau, Matthew Hyde, Graham Kendall, Gabriela

Ochoa, Ender Özcan, and Rong Qu. 2013. Hyper-heuristics: A survey of the state
of the art. Journal of the Operational Research Society 64, 12 (2013), 1695–1724.

[2] Edmund K Burke, Matthew R Hyde, and Graham Kendall. 2012. Grammatical
evolution of local search heuristics. IEEE Transactions on Evolutionary
Computation 16, 3 (2012), 406–417.

[3] Brian W Goldman and Daniel R Tauritz. 2011. Self-configuring crossover. In
Proceedings of the 13th annual conference companion on Genetic and evolutionary
computation. ACM, 575–582.

[4] Lisa MGuntly and Daniel R Tauritz. 2011. Learning individual mating preferences.
In Proceedings of the 13th annual conference on Genetic and evolutionary
computation. ACM, 1069–1076.

[5] Libin Hong, John Woodward, Jingpeng Li, and Ender Özcan. 2013. Automated
design of probability distributions as mutation operators for evolutionary
programming using genetic programming. In European Conference on Genetic
Programming. Springer, 85–96.

[6] SA Kaufmann. 1993. The origins of order. (1993).
[7] Ashiqur R KhudaBukhsh, Lin Xu, Holger H Hoos, and Kevin Leyton-Brown. 2009.

SATenstein: Automatically Building Local Search SAT Solvers from Components..
In IJCAI, Vol. 9. 517–524.

[8] John R Koza. 1994. Genetic programming as a means for programming computers
by natural selection. Statistics and computing 4, 2 (1994), 87–112.

[9] Manuel Lopez-Ibanez and Thomas Stutzle. 2012. The automatic design of
multiobjective ant colony optimization algorithms. IEEE Transactions on
Evolutionary Computation 16, 6 (2012), 861–875.

[10] Nuno Lourenço, Francisco Pereira, and Ernesto Costa. 2013. Learning selection
strategies for evolutionary algorithms. In International Conference on Artificial
Evolution (Evolution Artificielle). Springer, 197–208.

[11] Matthew A Martin and Daniel R Tauritz. 2013. Evolving black-box search
algorithms employing genetic programming. In Proceedings of the 15th annual
conference companion on Genetic and evolutionary computation. ACM, 1497–1504.

[12] Eric O Scott and Jeffrey K Bassett. 2015. Learning genetic representations for
classes of real-valued optimization problems. In Proceedings of the Companion
Publication of the 2015 Annual Conference on Genetic and Evolutionary
Computation. ACM, 1075–1082.

[13] David H Wolpert, William G Macready, et al. 1995. No free lunch theorems for
search. Technical Report. Technical Report SFI-TR-95-02-010, Santa Fe Institute.

[14] John R Woodward. 2010. The necessity of meta bias in search algorithms. In
Computational Intelligence and Software Engineering (CiSE), 2010 International
Conference on. IEEE, 1–4.

[15] John R Woodward and Ruibin Bai. 2009. Why evolution is not a good paradigm
for program induction: a critique of genetic programming. In Proceedings of
the first ACM/SIGEVO Summit on Genetic and Evolutionary Computation. ACM,
593–600.

[16] John Robert Woodward and Jerry Swan. 2011. Automatically designing selection
heuristics. In Proceedings of the 13th annual conference companion on Genetic and
evolutionary computation. ACM, 583–590.

[17] John R Woodward and Jerry Swan. 2012. The automatic generation of mutation
operators for genetic algorithms. In Proceedings of the 14th annual conference
companion on Genetic and evolutionary computation. ACM, 67–74.

1552

	The Automated Design of Probabilistic Selection Methods for Evolutionary Algorithms
	Recommended Citation

	Abstract
	1 Introduction
	2 Background
	3 Methodology
	3.1 Encoding Selection Functions
	3.2 Representing Typical Selection Functions
	3.3 Search Methodology

	4 Experimental Setup
	5 Results
	6 Discussion
	7 Conclusion
	8 Future Work
	References

