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RESEARCH ARTICLE
10.1029/2018GC007474

Characteristics of the Mantle Flow System Beneath the
Indochina Peninsula Revealed by Teleseismic Shear Wave
Splitting Analysis
Youqiang Yu1 , Stephen S. Gao2 , Kelly H. Liu2 , Ting Yang3, Mei Xue1 , Khanh Phon Le4, and
Jinyao Gao5

1State Key Laboratory of Marine Geology, Tongji University, Shanghai, China, 2Geology and Geophysics Program, Missouri
University of Science and Technology, Rolla, Missouri, USA, 3School of Oceanography, Southern University of Science and
Technology, Shenzhen, China, 4Faculty of Oil and Gas, Hanoi University of Mining and Geology, Hanoi, Vietnam, 5Second
Institute of Oceanography, State Oceanic Administration, Hangzhou, China

Abstract Numerous geoscientific investigations have been conducted on the southeastern Tibetan Pla-
teau and adjacent areas for understanding crustal and mantle deformation associated with the indentation
of the Indian Plate into Eurasia. A number of key issues, such as the causes of a sudden change of fast polar-
ization orientations from N-S to almost E-W at approximately 268N revealed by shear wave splitting (SWS)
studies, and the geodynamic implications of the transition still remain enigmatic, partially due to the lack of
sufficient SWS measurements on the Indochina Peninsula. Here we employ the SWS technique to systemati-
cally illuminate upper mantle anisotropy beneath the Indochina Peninsula with an unprecedented data cov-
erage. The resulting 409 SWS measurements from 29 stations show that upper mantle anisotropy beneath
the vast majority of the study area is characterized by dominantly E-W fast orientations which are nearly
orthogonal to the strike of most of the major tectonic features in the study area, ruling out significant litho-
spheric contributions to the observed anisotropy. This observation, when combined with results from seis-
mic tomography, numerical modeling, surface movement, and focal mechanism investigations, suggests
that the observed azimuthal anisotropy is mostly the consequence of absolute plate motion or the west-
ward rollback of the oceanic Indian slab. The flow system induced by the rollback or absolute plate motion
may experience regional alteration from mantle upwelling along the eastern edge of the slab and through
a previously detected slab window, leading to local variations in the observed splitting parameters.

1. Introduction

Situated to the southeast of the eastern Himalayan syntaxis, the Indochina Peninsula (Figure 1) has mainly
experienced two tectonic movements over the past 50 million years. The first is a clockwise rotation since
35 Ma as the result of the indentation of the Indian Plate into Eurasia, and the other is the subduction of the
Indo-Burma Plate along its western margin (e.g., Huchon et al., 1994; Tapponnier et al., 1982). Tectonically,
the Peninsula is mainly composed of the Indochina and Shan-Thai blocks, and is separated from the South
China and Burma blocks by the Red River fault to the northeast and Sagaing fault to the northwest, respec-
tively (Figure 1). The prominent Sagaing fault absorbs about 20 mm/yr of dextral motion induced by the
highly oblique Indo-Burma convergence (Argus et al., 2011; Steckler et al., 2016). The initiation of the strike-
slip faults probably started in the middle to late Eocene when the collision force between the Indian and
Eurasian plates began to take effect. Extensive palaeomagnetic studies show that the Indochina Block has
behaved as a rigid block since the Cretaceous and experienced clockwise rotations without significant inter-
nal deformation (e.g., Achache et al., 1983; Sato et al., 2007; Takemoto et al., 2009). Important constraints on
past and current tectonic deformation can be obtained by exploring the patterns of seismic azimuthal
anisotropy that they would generate (Silver & Chan, 1991).

Seismic azimuthal anisotropy reveals past and present deformation patterns in the crust and upper mantle,
and is mainly attributed to lattice preferred orientation of intrinsically anisotropic crystals such as olivine
(e.g., Silver, 1996; Silver & Chan, 1991; Zhang & Karato, 1995), and to shape preferred orientation of melt
pockets or aligned cracks in the crust (e.g., Crampin, 1984) and mantle (Gao et al., 1997). Past tectonic
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processes can generate anisotropic fabrics preserved in the lithosphere as fossil anisotropy, and present-
day progressive simple shear at the base of the lithosphere due to its movement relative to the underlain
asthenosphere is another well-established mechanism for generating azimuthal anisotropy (Zhang & Karato,
1995). When propagating through a transversely isotropic medium with a horizontal axis of symmetry, a
shear wave with a near vertical path of propagation would split into two (fast and slow) components with
orthogonal polarization orientations. Such a phenomenon is called shear wave splitting (SWS). Azimuthal
anisotropy is characterized by two splitting parameters, including the polarization orientation of the fast
component (/) and the delay time (dt) between the fast and slow components.

SWS measurements in subduction zones reflect an integrated effect of anisotropy in the subslab mantle,
slab, and mantle wedge with possible contributions from the overriding plate (Long & Wirth, 2013). A com-
pilation of worldwide SWS measurements shows that the fast orientations vary with the distance to the
trench (Long & Silver, 2008). Stations closer and farther to the trench are generally characterized as possess-
ing trench-parallel and trench-perpendicular fast orientations, respectively. Complex patterns of fast orien-
tations in some subduction areas were also observed (Long & Wirth, 2013). Azimuthal anisotropy observed
above subducting slabs revealed from SWS measurements has been attributed to a series of factors such as
slab pull, trench migration, effects of slab edges and morphology (Long & Wirth, 2013), as well as anisotropy
originating from metastable olivine in the subducted slab (Liu et al., 2008). Possible existence of other oliv-
ine and/or serpentinite fabric types may also contribute to alter seismic anisotropy in the vicinity of subduc-
tion zones (Jung & Karato, 2001).
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Figure 1. Shear wave splitting measurements of Southeast Asia. Red and blue bars indicate station-averaged SWS meas-
urements from this and previous studies (Flesch et al., 2005; Huang et al., 2015a; Lev et al., 2006; Singh et al., 2006; Sol
et al., 2007; Wang et al., 2008), respectively. White bars represent spatially averaged (in radius 5 18 circles) SWS parame-
ters from previous studies. Red dots indicate stations with all-null measurements, and white and gray arrows represent
the absolute plate motion direction according to the NNR-MORVEL56 model (Argus et al., 2011) and the HS3-NUVEL-1A
model (Gripp & Gordon, 2002), respectively. Black solid and dashed lines are major faults and sutures modified from Take-
moto et al. (2009). RRF, Red River Fault; SF, Sagaing Fault; TPF, Three Pagodas Fault; and WCF, Wang Chao Fault.
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Previous SWS investigations in the areas affected by the Tibet-India collision have mostly focused on the
Tibetan Plateau and the northern part of the Indochina Peninsula, while the central and southern Peninsula
was sampled by a relatively limited number of stations (Figure 1). One of the most dramatic features of the
splitting measurements in the region to the east and southeast of the Eastern syntaxis is a conspicuous
change of the dominant fast orientations from approximately N-S in the area north of 268N to E-W in the
south (Figure 1; Flesch et al., 2005; Huang et al., 2015a; Lev et al., 2006; Sol et al., 2007; Wang et al., 2008).
The nearly N-S fast orientations closely follow the surface tectonic fabrics and were interpreted as the result
of vertically coherent lithospheric deformation (Flesch et al., 2005; Lev et al., 2006; Wang et al., 2008). How-
ever, the mechanisms responsible for the observed E-W fast orientations south of 268N remain enigmatic.
Proposed models include a transition from complete crust-mantle coupling at the north to complete decou-
pling at the south (Flesch et al., 2005; Sol et al., 2007; Xue et al., 2013), variations of lithospheric rheology
(Lev et al., 2006), eastward asthenospheric flow from Tibet to eastern China (Bai et al., 2009; Huang et al.,
2015a, 2015b), an eastward flow system induced by the subduction of the Indian Plate south of 268N (Sol
et al., 2007), and possibly westward rollback of the subducted Indian Plate (Lev et al., 2006; Sol et al., 2007).

In this study, we explore the upper mantle anisotropic structure and related mantle deformation beneath
the Indochina Peninsula using the SWS technique with a spatial coverage that is more extensive than any
of the previous regional-scale SWS studies (Bai et al., 2009; Xue et al., 2013), for the purpose of providing
new constraints on various crustal and mantle deformation and circulation models.

2. Data and Method

The data set used for this study was recorded by 29 broadband seismic stations. Data from 19 stations were
obtained from the Incorporated Research Institutions for Seismology (IRIS) Data Management Center (DMC).
Five of the stations were operated by Tongji University over the period of 2009–2012 (Yang et al., 2015),
and the other five were deployed in Vietnam by the University of Tokyo from early 2000 to late 2005 (Bai
et al., 2009). In this study, three kinds of core refracted shear waves, including PKS, SKKS, and SKS (hereafter
collectively called XKS), were utilized in the epicentral distance range of 120–1808, 95–1808, and 84–1808

(Figure 2), respectively (Liu & Gao, 2013). The cutoff magnitude of the
events is assigned as 5.6 for events with focal depths shallower than
100 km, and 5.5 for deeper events for the purpose of taking advan-
tage of the sharper waveforms for deeper events. The true orientation
of the N-S component determined by Yu et al. (2017a) was used to
correct for station misorientation prior to the SWS analysis.

Splitting parameters were measured by following the set of proce-
dures of Liu and Gao (2013), which was developed based on the mini-
mization of transverse energy technique (Silver & Chan, 1991). The
seismograms were initially windowed in the time period of 5 s before
and 20 s after the predicted XKS arrival times, and then bandpass fil-
tered using a Butterworth four-pole two-pass filter with corner fre-
quencies of 0.04–0.5 Hz. All the SWS parameters were first
automatically measured and ranked and then manually screened to
verify the reliability in an interactive procedure. If necessary, the mea-
suring parameters such as the beginning and end of the XKS time
window, quality ranking, and filtering parameters, are manually
adjusted (Liu & Gao, 2013; Yu et al., 2015).

The ranking of each SWS measurement was determined by consider-
ing such factors as the quality of the original and corrected seismo-
grams, the remaining energy on the corrected transverse component,
and the convergence and uniqueness of the optimal SWS parameters
on the contour map of the transverse energy (Liu et al., 2008; Liu &
Gao, 2013). The resulting splitting measurements were categorized as
A (outstanding), B (good), C (poor), and N (null) based on the evalua-
tion criteria of Liu and Gao (2013). A measurement is ranked as null
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Figure 2. Spatial distribution of the 273 events used in this study (red circles).
The size of the circles is proportional to the number of high-quality SWS meas-
urements from each event. The red triangle represents the center of the study
area.
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when there is strong XKS energy on the original radial but no observable energy on the original transverse
component. Figure 3 shows examples for the three XKS phases recorded at different stations. (Note that
similar plots for all the measurements can be found at http://web.mst.edu/%7Eyyqkc/Indochina-sws.)

3. Results

A total of 409 pairs of Quality A or B SWS parameters were obtained from 273 events (Figure 2) recorded at
26 stations, including 40 PKS, 85 SKKS, and 284 SKS measurements, and no reliable A or B but only null
measurements were obtained for the remaining three stations. The resulting spatial distributions of the
station-averaged and individual measurements are shown in Figures 1 and 4, respectively. Details of the
station-averaged and individual well-defined (Quality A and B) splitting parameters can be found in Table 1
and supporting information Table S1, respectively. In addition to the well-defined measurements, we also
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Figure 3. Examples of well-defined shear wave splitting measurements for each of the XKS phases (PKS, SKKS, and SKS) used in the study observed by three differ-
ent stations. For each of the measurements, the top plot shows the original and corrected radial and transverse components, the middle plot shows the fast (red)
and slow (black) components, and associated with the particle motion pattern (left) before and (right) after applying the optimal splitting time, and the bottom
plot shows a contour map of transverse component energy as a function of candidate / and dt. The red dot on the contour map indicates the optimal splitting
parameters.
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observed 213 null measurements (Figure 5), which are characterized by clear XKS arrivals on the radial com-
ponent but unobservable energy on the original transverse component. They are the results of an absence
of net azimuthal anisotropy along the XKS ray path from the core mantle boundary to the recording station,
or reflect the situation when the back azimuth of the XKS event is parallel or perpendicular to the fast orien-
tation (Liu & Gao, 2013; Silver & Chan, 1991).

The resulting fast orientations are dominantly E-W with a circular mean of 93.5623:2
�
, which is statistically

identical to the absolute plate motion (APM) direction of the Eurasian Plate (105
�
) calculated based on the

NNR-MORVEL56 model (Argus et al., 2011). The simple mean of the splitting time is 1.29 6 0.37 s and is
slightly larger than the global average of 1.0 s for continents (Silver, 1996). The thickness of the anisotropy
layer is estimated to be 144 6 41 km if a 4% anisotropy is assumed (Silver & Chan, 1991). Regional variations
are revealed in the Shan-Thai Block located at the NW part of the study area (Figures 1 and 4), where the
fast orientations vary spatially from N-S or NW-SE in the north to E-W in the south. In the southernmost part
of the Indochina Peninsula, only two well-defined SWS measurements were obtained, both have relatively
small splitting times (0.90 6 0.14 s), although data from a total of three stations are available in this area
where Bai et al. (2009) and Xue et al. (2013) were unable to obtain reliable observations.

To investigate the existence of multilayered anisotropic structure which is characterized by systematic back-
azimuthal variations of the splitting parameters with a period of 908 (Rumpker & Silver, 1998; Silver &
Savage, 1994), we plot the individual splitting parameters against modulo-908 BAZ (Figures 6–8). The limited
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Figure 4. Individual splitting parameters plotted above the ray-piercing point at 110 km depth. Circles represent stations,
and the red circles are stations with all-null measurements. The background image shows the thickness of the mantle
transition zone (Yu et al., 2017b).
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BAZ range for most of the stations prevents a reliable determination of the existence or absence of complex
anisotropy, although in general, the measurements from events with different back azimuths are quite con-
sistent. For stations MHIT and CHTO (Figure 8), the splitting parameters vary slightly as functions of the ray-
piercing point location (Liu & Gao, 2013). In the absence of clear periodic back-azimuthal variations of the
individual splitting parameters, in the following, we assume that a single transversely isotropic layer with a
horizontal axis of symmetry is responsible for the splitting measurements.

4. Discussion

4.1. Relationships With Lithospheric Fabrics and APM
Vertically coherent lithospheric deformation can lead to the development of lithospheric anisotropy with
fast orientations parallel to the strike of lithospheric fabrics, possibly attributed to mineralogical alignment
in response to regional shortening or extension (Silver, 1996; Silver & Chan, 1991). The predominantly E-W
fast orientations observed at the majority of the stations are significantly different from the strike of
regional tectonic features (Figure 1) such as the well-developed strike-slip Red River and Wang Chao faults
(mostly in the SE-NW direction). In addition, if lithospheric fabrics are the main source of the observed azi-
muthal anisotropy, the splitting times are expected to increase near the shear zones, where lithospheric
deformation and strain localization are the most intensive. This correspondence is not revealed from the
resulting SWS measurements (Figures 4 and 9), suggesting limited contributions from lithospheric fabrics.

The relative movement between the lithosphere and asthenosphere can induce simple shear strain, which
would align mantle olivine and form APM-parallel fast orientations (Liu et al., 2014; Zhang & Karato, 1995),
but only when the asthenosphere is stationary or moving at the opposite or same direction (with a different
rate) relative to the plate. The HS3-NUVEL-1A model (Gripp & Gordon, 2002) developed under the assump-
tion of a fixed Pacific hot spot reference frame indicates that the Indochina Peninsula is moving toward the
WNW direction (about 277

�
measured clockwise from the north) at a rate of 23 mm/yr. In comparison, a

no-net rotation APM model, NNR-MORVEL56 (Argus et al., 2011), predicts a speed of about 30 mm/yr and

Table 1
Station-Averaged SWS Measurements

Station name Lon. (8) Lat. (8) / (8) dt (s) No. of events

CHTO 98.940 18.810 95.5 6 11.8 1.31 6 0.03 148
CMAI 99.050 19.930 136.8 6 8.3 1.24 6 0.06 11
CMMT 98.940 18.810 99.2 6 9.5 1.25 6 0.07 27
CRAI 100.370 20.230 152.2 6 11.1 0.71 6 0.07 6
DBVO 103.020 21.390 101.9 6 5.1 1.36 6 0.12 8
DLV 108.480 11.950 55.0 6 15.0 1.00 6 0.33 1
HTCN 105.370 18.500 122.5 6 18.1 0.93 6 0.03 2
HUVO 107.580 16.410 47.9 6 10.3 1.20 6 0.12 3
LOEI 101.620 17.510 66.0 6 3.5 1.75 6 0.40 1
MHIT 97.960 19.310 0.8 6 18.6 1.28 6 0.13 12
NAYO 101.320 14.320 62.8 6 6.6 1.10 6 0.12 6
NONG 103.150 18.060 106.0 6 11.1 1.23 6 0.09 12
NTCN 108.890 11.640 151.0 6 17.0 0.80 6 0.25 1
PBKT 100.970 16.570 59.1 6 8.1 1.35 6 0.04 28
PHRA 100.230 18.500 102.8 6 4.1 1.78 6 0.12 13
PLVO 106.630 20.810 89.2 6 5.8 1.29 6 0.09 9
PRAC 99.790 12.470 92.4 6 13.1 0.96 6 0.06 13
PTCN 105.250 21.450 102.2 6 11.9 1.17 6 0.06 14
QIZ 109.840 19.030 100.9 6 14.9 1.10 6 0.10 12
SLV 103.910 21.330 93.5 6 9.5 1.35 6 0.05 50
SPVO 103.840 22.340 90.7 6 7.5 1.65 6 0.07 13
SRDT 99.120 14.390 90.1 6 9.4 0.93 6 0.09 5
SRIT 99.600 8.600 102.4 6 10.2 1.65 6 0.17 6
UBPT 105.470 15.280 79.0 6 6.1 1.10 6 0.05 5
VICN 105.650 18.710 104.0 6 10.5 0.70 6 0.15 1
VIVO 105.700 18.650 84.0 6 8.1 0.77 6 0.17 2
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an almost opposite direction (105
�
). Despite the difference in the predicted directions from the APM mod-

els, the orientation of the APM from both HS3-NUVEL-1A and NNR-MORVEL56 models approximately paral-
lels to the observed fast orientations in most regions of the Peninsula, except for the southernmost one-
third of the Peninsula and beneath the three stations located at the northwestern corner of the study area
(Figure 1).

Previous SWS studies (e.g., Huang et al., 2011; Liu et al., 2008) suggested that the fast orientations observed
at most of the stations in mainland China are consistent with predictions from the HS3-NUVEL-1A model.
One of the areas showing significant discrepancies between the two is southeastern Tibetan Plateau, where
the fast orientations and the APM are almost perpendicular to each other. The N-S oriented anisotropy in
the area is attributable to either vertically coherent lithospheric deformation (e.g., Flesch et al., 2005; Wang
et al., 2008) or southeast or south directed asthenospheric flow in response to the northward indentation of
the Indian lithosphere (Bai et al., 2009; Huang et al., 2015a, 2015b), among other proposed mechanisms.
Under these hypotheses, anisotropy produced by lithospheric deformation or mantle flow beneath south-
eastern Tibetan Plateau must be strong enough to overprint anisotropy produced by the APM.

If we assume that the E-W fast orientations observed on the Indochina Peninsula are APM-related, the spa-
tial distribution of the observations has several important geodynamic implications. First, vertically coherent
lithospheric deformation related to the continental collision has insignificant effects on the Peninsula. This
is consistent with the low topography and lack of shallow earthquakes in the interior of the Peninsula. Sec-
ond, south and southeast directed mantle flow system related to the collision terminates at about 268N,
and may turn eastward at this latitude (Figure 1). Third, as detailed below, upwelling flow beneath the
southern part of the Peninsula might be responsible for reducing the strength of APM-related flow.
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Figure 5. Observed null measurements from this study (black bars) plotted on top of S wave velocity anomalies at
110 km depth (Yang et al., 2015). For each null measurement, two bars are plotted at the station, with orientations being
parallel and perpendicular to the back azimuth of the event, respectively.
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4.2. Mantle Flow Induced by Slab Subduction and Rollback
Another possible cause of the dominantly E-W fast orientations observed on the Peninsula is a corner flow sys-
tem induced by the eastward subduction of the Indian Plate, an anisotropy-forming mechanism that is fre-
quently proposed for SWS measurements above mantle wedges (e.g., Long & Silver, 2008; Long & Wirth, 2013).
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Figure 6. Fast orientations plotted against modulo-908 back azimuth for each station. The blue lines indicate the station-averaged values.
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While seismic tomography (e.g., Bijwaard et al., 1998; Li et al., 2008; Pesicek et al., 2008) and receiver func-
tion studies (Yu et al., 2017b) have demonstrated that the Indian slab has reached the mantle transition
zone (MTZ), the key issue of whether the subduction is still active remains debated. A recent focal
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Figure 7. Same as Figure 6 but for splitting times.
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mechanism study reveals that the P axis of earthquakes in the Benioff zone beneath the Burma Block has a
predominantly NNE direction, which is similar to the direction of relative plate motion between the Indian
and Eurasian plates, and argues against active subduction (Rao & Kumar, 1999). In addition, the
intermediate-depth earthquakes under the accretionary wedge of the Indo-Burmese arc are characterized
as intraslab type instead of occurring at the contact surface between the wedge and the subducted slab
(Kundu & Gahalaut, 2012), probably as the result of reactivation of the preserved geological fabrics within
the slab (Gahalaut et al., 2013).

Under the assumption that the subduction is inactive, slab rollback is an alternative mechanism responsible for
the observed E-W fast orientations, besides APM-related simple shear strain (Figure 10). It has been suggested
that slab rollback can initiate subhorizontal mantle return flow and generate tectonically significant shear stresses
at the base of the overriding plate (Chen et al., 2016), leading to trench-orthogonal fast orientations. Beneath the
Indochina Peninsula, three-dimensional thermomechanical modeling indicates that mantle flow due to slab roll-
back plays the dominant role in modulating the surface strain and kinematics (Sternai et al., 2014).
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The toroidal component of the mantle flow system (Faccenna et al., 2010; Singh et al., 2006; Sternai et al.,
2014) can explain the N-S or SE-NW fast orientations observed at the three stations located at the NW edge
of the study area (Figure 10), although other mechanisms such as strong lithospheric contributions cannot
be ruled out due to limited spatial coverage by the seismic stations. Another possible cause of the SE-NW
fast orientations observed at the three stations is the presence of other olivine fabric types (besides the
A-type), especially the B-type, which develops under low temperature conditions in a subduction system
and can produce fast orientations that tend to be orthogonal to the flow direction (Jung et al., 2006; Long &
Silver, 2008).

4.3. Mantle Upwelling Beneath the Southern Indochina Peninsula
One of the possible causes of the weak and spatially varying anisotropy observed beneath the southern
part of the Peninsula (Figure 1) may be mantle upwelling along the eastern edge of the subducted slab and
through a slab window (Figure 10). The location of the eastern edge of the subducted plate and the pres-
ence of a slab window have been revealed by seismic tomography and receiver function studies (Li et al.,
2008; Pesicek et al., 2008; Yu et al., 2017b). The upwelling flow is also suggested from geodynamic modeling
(Faccenna et al., 2010) and geochemical (Hoang & Flower, 1998) studies, and is thought to be responsible
for the low seismic velocity anomalies in the upper mantle (e.g., Huang et al., 2015b; Pesicek et al., 2008;
Yang et al., 2015). It might also be the cause of the thinner than normal MTZ thickness (Yu et al., 2017b;
Figure 4), which is an indicator of higher than normal temperature.

Subvertical shear strain near the center of the mantle upwelling may result in weak or negligible anisotropy,
with spatially varying fast orientations (Walker et al., 2001). As demonstrated in Figure 4, the spatial corre-
spondence between the characteristics of the splitting measurements and the thickness of the mantle
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Figure 9. Station-averaged SWS measurements from this and previous studies (red bars) plotted on top of P wave velocity
anomalies at 110 km depth (Li et al., 2008). Red dots indicate stations with all-null measurements from this study.
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transition zone is remarkable, as all the three stations with all-null measurements and the two stations with
splitting parameters that are inconsistent with those found at the majority of the stations are located in
areas underlain by an MTZ that is 5 or more kilometers thinner than the global average of 250 km. We
would like to emphasize that due to the limited station coverage and lack of high resolution seismic tomog-
raphy images, the existence of the mantle upwelling and thus the causes of the azimuthal anisotropy
beneath the southern part of the Peninsula remain speculative. Additional observational and geodynamic
modeling studies are required in order to pinpoint the mantle deformation field beneath this part of the
study area and to provide robust explanations for the observed azimuthal anisotropy.

5. Conclusions

XKS splitting measurements with an unprecedented spatial coverage indicate that the E-W fast orientations
previously observed in the northern Indochina Peninsula extend to the whole Peninsula. The mostly N-S
oriented mantle anisotropy observed on SE Tibetan Plateau is limited to about 268N, in spite of the fact that
N-S directed crustal structures extend further south into the Peninsula, beneath which mantle flow induced
by APM or the westward rollback of the subducted Indian Plate becomes the dominant mechanism in gen-
erating the mostly E-W fast orientations. Upwelling of mantle flow beneath the southern part of the Penin-
sula might be responsible for the spatially varying fast orientations and weak anisotropy.
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