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Receiver Function Imaging of Mantle Transition Zone
Discontinuities Beneath the Tanzania Craton
and Adjacent Segments of the East African
Rift System

Muchen Sun1,2 , Kelly H. Liu2 , Xiaofei Fu1 , and Stephen S. Gao2

1College of Earth Science and Research Institute of Unconventional Oil and Gas, Northeast Petroleum University, Daqing,
China, 2Geology and Geophysics Program, Missouri University of Science and Technology, Rolla, MO, USA

Abstract The mantle transition zone (MTZ) discontinuities beneath the Tanzania Craton and the Eastern
and Western Branches of the East African Rift System are imaged by stacking over 7,100 receiver functions.
The mean thickness of the MTZ beneath the Western Branch and Tanzania Craton is about 252 km, which is
comparable to the global average and is inconsistent with the existence of present-day thermal upwelling
originating from the lower mantle. In contrast, beneath the Eastern Branch, an up to 30 km thinning of the
MTZ is observed and is attributable to upwelling of higher temperature materials from either the upper
MTZ or the lower mantle. The observations are in agreement with the hypothesis that rifting in Africa is
primarily driven by gradients of gravitational potential energy and lateral variations of basal traction force
along zones of significant changes of lithospheric thickness such as the edges of the Tanzania Craton.

1. Introduction

The initiation and development of the East African Rift System (EARS), which is an archetype of continental
rifts, remain enigmatic in spite of numerous studies (Burke & Wilson, 1972; Ebinger & Sleep, 1998; Foulger
et al., 2013; Koptev et al., 2015; Rychert et al., 2012; Stamps et al., 2014, 2015). One of the frequently involved
features in rifting models for the EARS is the African superplume, a low-velocity feature in the lower mantle
(Nyblade & Robinson, 1994; Ritsema et al., 1999). Previous seismic tomographic studies have reached con-
trasting conclusions about whether superplume materials have reached the upper mantle, and if they have
played a significant role in the development of the EARS (Chang et al., 2015; Corchete, 2012; Debayle et al.,
2001; Fishwick, 2010; Mulibo & Nyblade, 2013a; O’Donnell et al., 2013; 2016 Priestley et al., 2008; Ritsema
et al., 1998).

The debate is particularly intensive for the central part of the EARS, where the African lithosphere is divided
into the Nubian and Somalian plates and the Victoria and Rovuma microplates by the Eastern and Western
Branches which are separated by the Archean Tanzania Craton (TC) (Figures 1 and S1 in the supporting
information) (Chorowicz, 2005). This controversy is most likely caused by the limited vertical resolution of
the tomographic techniques and the pervasive use of relative (rather than absolute) travel time residuals
(Foulger et al., 2013), as well as the wavefront healing effects of deep and thin (relative to the wavelength)
mantle plumes (Montelli et al., 2004).

Petrophysical, geodynamic modeling, and observational studies conducted over the past several decades
have demonstrated that the topography of the mantle transition zone (MTZ) discontinuities found ubiqui-
tously at the globally averaged depths of approximately 410 km (d410) and 660 km (d660) are functions of MTZ
water content and in situ temperature in the vicinity of the discontinuities (Flanagan & Shearer, 1998; Hirose,
2002; Ringwood, 1991; Shearer & Masters, 1992). Specifically, a depression of the d410 indicates a higher
than normal temperature due to the positive Clapeyron slope of the olivine-wadsleyite transition, while an
uplifted d660 is anticipated for areas with thermal upwelling from the lower mantle, as a result of the negative
Clapeyron slope of the ringwoodite to bridgmanite and ferropericlase phase transition (Helffrich, 2000;
Ringwood, 1975; Tschauner et al., 2014). If the temperature at the bottom of the MTZ increases from the
estimated normal value of approximately 1600∘C to higher than 1800∘C, the dominant phase transition asso-
ciated with the d660 becomes the transition from majorite to perovskite, which has a positive Clapeyron slope
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Figure 1. Topographic relief map of the study area showing the center
of radius = 1∘ bins (filled circles), and major tectonic boundaries (solid black
lines). The color of the circles represents the number of RFs per bin. The blue
triangles are seismic stations used in the study, and the green lines are
national boundaries. The red rectangle in the inset map shows the
study area.

of +1.0 MPa/K (Hirose, 2002). Anomalously high-water content in the MTZ
has similar effects as low temperature, that is, leading to an uplifted d410
and depressed d660 and consequently a thicker than normal MTZ (Litasov
et al., 2005; Ohtani et al., 2004).

Several studies of MTZ discontinuities have been conducted in the EARS,
frequently with controversial conclusions regarding the thermal state
of the MTZ and rifting mechanisms. Owens et al. (2000) and Huerta
et al. (2009) imaged the structure of the MTZ beneath the EARS based
on the 3-D model of Ritsema et al. (1998) and the 1-D IASP91 model,
respectively. Both studies revealed a locally depressed d410 beneath the
Eastern Branch and a widely depressed d660 beneath the TC and adja-
cent areas and suggested the existence of a mantle plume traversing
both the d660 and d410 and reaching shallow mantle depths. Mulibo and
Nyblade (2013b) corrected the depths of the d410 and d660 by using a
3-D velocity model (Mulibo & Nyblade, 2013a). Their results implied that
the superplume induced a thinning of the MTZ beneath a broad area of
Eastern Africa, including the Eastern Branch and the central and south-
ern regions of the TC, and advocated for pervasive thermal upwelling of
superplume-originated material through the MTZ and its active role in rift
development.

Results from some other MTZ studies, however, are inconsistent with the
existence of mantle plumes rising from the lower mantle traversing the
MTZ. Julia and Nyblade (2013) utilized 2,557 P wave receiver functions

from 30 permanent broadband stations in Africa to image the MTZ discontinuities and found no significant
thinning of the MTZ beneath the EARS. Tauzin et al. (2008) conducted a global study and found no clear evi-
dence for the thinning of the MTZ beneath the EARS. Beneath the Afar Depression and Ethiopian Plateau,
Reed, Gao, et al. (2016) reported that velocity perturbations in the upper mantle are the major factors for an
apparent 40–60 km depression of both MTZ discontinuities. Similarly, beneath the nonvolcanic Okavango
Rift in Botswana (Yu, Liu, et al., 2015) and the Malawi Rift which is the southward extension of the Western
Branch, no significant thinning of the MTZ is observed (Reed, Liu, et al., 2016).

In this study, we utilized an unprecedented volume of high-quality receiver functions (RFs) to image the MTZ
discontinuities beneath the TC and the surrounding Western and Eastern Branches, for the purpose of provid-
ing additional constraints on the role that the African superplume may play on the initiation and development
of the EARS.

2. Data and Methods

All the broadband seismic data used in the study were obtained from the Incorporated Research Institutions
for Seismology (IRIS) Data Management Center (DMC). We requested all the available teleseismic data
(epicentral distance range 30–100∘) recorded by broadband stations located in the area of −10∘N to 5∘N and
25∘E to 45∘E during the recording period from May 1994 to March 2017. The cutoff magnitude (Mc) is deter-
mined using the epicentral distance (Δ) and focal depth (D) according to the equation Mc = 5.2+(Δ−30.0)∕
(180.0 − 30.0) − D∕700.0 (Liu & Gao, 2010). A four-pole, two-pass band-pass Bessel filter with a frequency
range of 0.02–0.2 Hz was applied to the original three-component seismograms. The seismograms with a
first-arrival signal-to-noise ratio (SNR) on the vertical component below 4.0 were not used in the study. The
SNR is obtained by max |As|∕ ̄|An|, where max |As| is the maximum absolute amplitude on the vertical seis-
mogram 8 s before and 17 s after the predicted IASP91 arrival time for the first P wave, and ̄|An| is the
mean absolute amplitude in the time window of 10–20 s before the predicted P wave arrival time (Gao &
Liu, 2014a, 2014b). The remaining seismograms were converted into radial RFs using the frequency-domain
water-level deconvolution procedure with a Gaussian factor of 5.0 (which corresponds to a high-pass corner
frequency that is greater than that of the Bessel filter, so that the filtering is solely performed by the latter)
and a water level of 0.03 (Ammon, 1991; Clayton & Wiggins, 1976). Before calculating the RFs, we adopted a
set of exponential weighting functions to reduce the strong PP arrivals which are found to degenerate the RFs
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Figure 2. (a) Results of stacking all available normal moveout-corrected RFs
in 1∘ radius bins with a minimum of six high-quality RFs, plotted with the
sequentially increasing depth of the d410. (b) Similar to Figure 2a but for
sequentially increasing depth of the d660.

(Gao & Liu, 2014a). A total of 7,139 high-quality RFs from 1,871 events
recorded by 87 stations were utilized for this study (Figures 1 and S2).

A non–plane wave assumption approach (Gao & Liu, 2014a) was employed
to migrate and stack the P-to-S converted phases generated from the MTZ
discontinuities. By considering the difference in ray parameters between
the direct P wave and the converted S wave, this approach can more
accurately estimate the discontinuity depths and lead to sharper discon-
tinuity images than approaches assuming a plane wavefront. Using the
1-D IASP91 Earth model (Kennett & Engdahl, 1991), the geographic coor-
dinates of the ray-piercing point for each of the RFs were computed at
the middle of the MTZ (535 km depth). The moveout-corrected RFs within
1∘ radius circular bins, which are one geographic degree apart from the
neighboring bins (Figure 1), were then stacked to form a depth series for
each of the bins. Results from bins with less than six RFs are not used.
A bootstrap resampling procedure with 50 resampling iterations (Efron
& Tibshirani, 1986; Liu et al., 2003) was used to compute the mean and
standard deviation of the MTZ discontinuity depths and MTZ thickness
for each bin. Detailed description of the migration and stacking proce-
dures and specific data processing parameters can be found in Gao and
Liu (2014a, 2014b).

3. Results

For each of the stacked traces, the optimal depth of a MTZ discontinuity
is determined using the following steps. First, the depth corresponding to

the maximum stacking amplitude in a fixed depth range (380–440 km for the d410 and 650–710 km for the
d660) is automatically determined and marked on the trace. Second, the automatically determined depth
is visually verified to reject the ones with ambiguous and weak arrivals that are significantly different from
neighboring bins. Third, for a small fraction of the traces, the search range is adjusted so that the picked
depth is consistent with neighboring bins. A total of 162 bins with clearly observable d410 or d660 peaks
were obtained (Figure 2), among which 147, 139, and 124 have reliable peaks for the d410, d660, and both,
respectively. Profiles of the resulting depth series along all the 14 latitudinal lines (from 10∘S to 3∘N with a 1∘

increment), together with the mean depths and the error bar, are shown in Figure S3, and all the observed
depths of the discontinuity arrivals and the MTZ thicknesses are listed in Table S1.

The observations (Figure S1) were fitted with a continuous curvature surface gridding algorithm (Smith &
Wessel, 1990) (Figure 3) with a tension factor of 0.5, in order to generate spatially continuous images for the
observed depths and MTZ thicknesses. The standard deviation of the resultant MTZ thickness is less than 6 km
for the majority of the study area (Figure 3d). The mean apparent depths of the d410 and d660 over the region
are 423± 12 km and 672± 9 km, respectively, and the vast majority of the depths exceed the global averages
in the IASP91 Earth model of 410 and 660 km, respectively. The apparent depths of both the d410 and d660
increase systematically toward the northeast part of the study area (Figure 3). The resulting apparent depths
of the d410 range from about 390 km beneath the southeastern part of Tanzania to a maximum value of
460 km at the northeastern corner of the study area (Figure 3a). A trend similar to the d410 is observed for the
apparent depths of the d660 (Figure 3b).

4. Discussion

The depths of the MTZ discontinuities are calculated under the 1-D IASP91 Earth model, and thus, the depths
are apparent rather than true depths. The true depths can only be achieved when absolute (rather than rel-
ative to the mean values of a study area) velocity anomalies of both the P and S waves are available for
the entire crust, upper mantle, and MTZ (e.g., Gao & Liu, 2014b, for the contiguous United States). Due to
the discrepancies in previous seismic tomographic studies, as well as the fact that the vast majority of the
studies only reported relative P or S wave (but not both) velocity anomalies for the shallow upper mantle
(e.g., Adams et al., 2012; Fishwick, 2010; Pasyanos & Nyblade, 2007; Priestley et al., 2008; Slack & Davis, 1994),
such corrections using results from any of the existing tomographic studies would not lead to trustful results.
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Figure 3. (a) Spatial distribution of resulting d410 apparent depths. (b) Same as Figure 3a but for the d660. (c) MTZ
thickness measurements. Red triangles represent Cenozoic volcanoes. (d) Standard deviation (SD) of the MTZ thickness
measurements.

Therefore, in the following we utilize the observed apparent discontinuity depths to infer velocity, thermal,
and water content anomalies.

As discussed in various previous studies, three factors have been recognized to affect the apparent depths of
the MTZ discontinuities (see Mohamed et al., 2014, for a more detailed discussion). The first factor is veloc-
ity anomalies in the upper mantle, that is, above the d410 associated with temperature, partial melting, and
compositional heterogeneities. The presence of low and high-velocity anomalies in the upper mantle causes
simultaneous apparent depressions and uplifts of both the d410 and d660, respectively, leading to positively
correlated apparent d410 and d660 depths, as exemplified by the spatial similarities between the d410 and
d660 depths shown in Figures 3a and 3b (correlation coefficient = 0.54). Velocity anomalies in the MTZ can
lead to apparent undulations of the d660 but not the d410 and thus reduce the correlation coefficient. The
second factor is the temperature anomalies near the d410 and d660, which are related to velocity anomalies
by a scaling factor of dVp/dT = −4.8×10−4 km s−1 ∘C−1 (Deal et al., 1999). For example, assuming a Clapeyron
slope of +2.9 MPa/K (Bina & Helffrich, 1994) for the d410 and −1.3 MPa/K (Fei et al., 2004) for the d660,
a 300∘C temperature increase around the d410 and d660 corresponds to a 25 km depression of the d410
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and a 11 km uplift of the d660 for an assumed Vs and Vp relative anomaly ratio (dln(Vs)/dln(Vp)) of 1.8 (Gao
& Liu, 2014b; Mohamed et al., 2014). Note that because the observed depth undulations are relative to the
globally averaged values, for a given depth, the temperature anomalies derived from such undulations are rel-
ative to the globally averaged temperature at the same depth. The third factor is the presence of the hydrous
materials in the MTZ, which depresses the d660 and uplifts the d410 (Ohtani et al., 2004).

4.1. Normal MTZ Thicknesses Beneath the TC and Western Branch
Beneath the TC, an ∼10 km depression for both the d410 (420 ± 7 km) and d660 (672 ± 7 km) and a
close-to-normal MTZ thickness are observed (Figure 3). The simplest explanation for the observations is a
low-velocity upper mantle with a mean Vp anomaly of −0.86%, which is calculated based on Gao and Liu
(2014a) using a dln(Vs)/dln(Vp) value of 1.8, a value that is between that suggested for the stable central United
States and the tectonically active western United States (Gao & Liu, 2014b; Schmandt & Humphreys, 2010).
Additionally, both the weak deepening of the d410 and the normal thickness of the MTZ suggest negligi-
ble effect of temperature on the MTZ (Deuss, 2007; Tauzin et al., 2008). Reed, Gao, et al. (2016) quantitatively
discussed the possibility of the existence of a mantle plume rising from the lower mantle beneath an area
with a normal MTZ thickness and suggested that a mantle plume only exists under a specific combination of
temperature, hydrous materials, and velocity anomalies. However, this specific combination would be difficult
to exist everywhere beneath the entire TC. Therefore, we propose a nonplume model with lateral velocity
variation in the upper mantle beneath the TC to explain the apparently depressed MTZ discontinuities with a
normal MTZ thickness.

The mean MTZ thickness (252 ± 12 km) and the apparent discontinuity depths beneath the Western Branch
are comparable to those of the TC. Those observations are consistent with the previously observed similar-
ity in lithospheric thickness between the two areas (Chesley et al., 1999; Vauchez et al., 2005) and imply the
absence of both significant thinning of the mantle lithosphere (Davies, 1994; Rychert et al., 2012) and ther-
mal upwelling of lower mantle materials beneath the Western Branch, favoring a passive rifting mechanism
for this section of the EARS.

4.2. Anomalously Thin MTZ Beneath the Eastern Branch
The most prominent feature in the study area is an up to 30 km apparent thinning of the MTZ beneath the
Eastern Branch. This thinning is associated with a 50 km apparent depression of the d410 and a 20 km depres-
sion of the d660 (Figure 3). Since the depressed d410 and the thinned MTZ can be interpreted as a result of
thermally perturbed structure in the upper mantle as well as in the MTZ, two models with and without a ther-
mal upwelling from the lower mantle (“plume and nonplume models”) are discussed in the following in order
to quantitatively interpret the observed results.
4.2.1. Plume Model
The existence of an active mantle plume beneath the Eastern Branch (Figure S4a) has been proposed based
on seismic tomography (Mulibo & Nyblade, 2013a), MTZ topography studies (Huerta et al., 2009; Mulibo
& Nyblade, 2013b), geodynamic modeling (Koptev et al., 2015), and geochemical studies (Roberts et al.,
2012). In order to produce the observed ∼50 km depression of the d410, a −1.8% mean Vp and associated
high-temperature anomalies in the upper mantle are required. The total depression of 50 km would include
a 22 km apparent depression due to the low-velocity upper mantle, and an additional 28 km true depres-
sion from the 340∘C temperature increase corresponding to the low-velocity anomaly (estimated using a
Clapeyron slope of +2.9 MPa/K; Figure 4a). Similarly, the downward extension of the low-velocity zone into
the lower mantle would produce a 35 km apparent depression of the d660, and a 12 km true uplift of d660
(calculated using a Clapeyron slope of −1.3 MPa/K (Fei et al., 2004)), leading to a 23 km net depression of the
d660. Therefore, the plume model would produce a net 27 km thinning of the MTZ, which is similar to the
observed MTZ thickness beneath the Eastern Branch (Figures 3c and 4a).

One potential problem with the plume model is that the low MTZ velocities associated with the plume may
correspond to an anomalously high-temperature environment in the vicinity of the d660, in which the domi-
nant phase transition is majorite (rather than ringwoodite) to perovskite. Specifically, the normal temperature
at the bottom of the MTZ is estimated to be about 1600∘C (Ito & Katsura, 1989), while the plume model
(Figure 4a) requires a 340∘C thermal anomaly at the base of the MTZ, leading to a temperature as high as
1940∘C. This required temperature is higher than the 1800∘C temperature above which the dominant phase
transition becomes majorite to perovskite, which has a positive Clapeyron slope of +1.0 MPa/K (Irifune et al.,
1996, Hirose, 2002, Hirose et al., 2001). Applying a +1.0 MPa/K Clapeyron slope for the transition, the d660
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Figure 4. Schematic models to explain the observed depressions of the MTZ discontinuities beneath the Eastern Branch.
(a) The plume model, in which a thermal plume with a velocity anomaly of −1.8% and a corresponding thermal anomaly
of 340∘C rises from the lower mantle. (b) The nonplume model, in which a velocity anomaly exists in the upper mantle as
well as the uppermost MTZ. The dashed lines represent the apparent depths of the discontinuities due to the presence
of the low velocities, and the solid lines are the final depths. The models produce a 27–28 km thinning of the MTZ.

would depress about 9 km corresponding to the temperature increase. Together with the 35 km apparent
depression of the d660 due to the low-velocity upper mantle and MTZ, the d660 would depress about 44 km
in total. Because the d410 has a 50 km depression due to both the velocity and thermal effects, the amount of
MTZ thinning under the plume model is about 6 km, which is significantly smaller than the observed ∼30 km.
It should be noted that those estimates are based on a number of experimentally determined quantities with
large uncertainties and variably limiting temperature-pressure conditions, including the velocity and temper-
ature anomaly scaling factor, the dln(Vs)/dln(Vp) value, and the Clapeyron slopes (see Tauzin & Ricard, 2014,
for some of the reported values). The existence of partial melts in the upper mantle and the MTZ can also
affect the estimated depths. The required temperature anomaly to produce the apparent depression of the
discontinuities would reduce if partial melt exists in the upper mantle and MTZ. If a certain amount of melt is
present, the temperature in the vicinity of the d660 could be lower than 1800∘C, so that the phase transition
across the d660 would be from ringwoodite (rather than majorite) to perovskite. Therefore, the existence of a
thermal upwelling from the lower mantle cannot be confidently ruled out solely based on those arguments.
4.2.2. Nonplume Model
In this model (Figure S4b), a low-velocity zone with a Vp anomaly of−1.8% reaches the d410 and only extends
to the uppermost MTZ (Figure 4b). The low velocities result in an apparent depression of 22 km for both the
d410 and d660. In addition, the high temperature associated with the low velocities leads to an additional
28 km depression of the d410, resulting in a 28 km thinning of the MTZ which is comparable to the observed
value beneath the Eastern Branch.

Relative to the plume model, the nonplume model is simpler and can more easily explain the spatial
correspondence between the surface expression of the rift and the thinned MTZ. However, the cause of
the high-temperature anomaly associated with the observed depression of the d410 remains problem-
atic. Upwelling of higher temperature material from the upper MTZ to the upper mantle can certainly
increase mantle temperature in the vicinity of the d410, but it is difficult for this process to produce such
a high-temperature anomaly. Additionally, this process requires that the MTZ be a thermal boundary layer
from which a thermal plume originates, a hypothesis that is inconsistent with geodynamic modeling results
(e.g., Schubert et al., 1995).

4.3. Implications on Rifting Mechanisms
The above discussions suggest that ambiguities still remain regarding the existence or absence of thermal
upwelling from the lower mantle beneath the northern part of the Eastern Branch, and thus, additional stud-
ies are needed in order to resolve this critical issue. However, as detailed below, such uncertainty plays an
insignificant role when rifting mechanisms are discussed in light of the new MTZ discontinuity measurements
presented in this study.
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The possible existence of a thermal upwelling from the lower mantle (under the plume model) beneath the
northern part of the Eastern Branch seems to be consistent with the active rifting model. However, a lack of
such upwelling in the rest of the Eastern Branch and the entire Western Branch makes such a rifting mech-
anism unlikely for the Eastern and Western Branches. The absence of significant thermal upwelling from the
lower mantle beneath other segments of the EARS has also been inferred for the Afar Depression (Reed, Gao,
et al., 2016), the Malawi Rift of the EARS (Reed, Liu, et al., 2016), and the Okavango Rift (Yu, Liu, et al., 2015)
and is suggested by geodynamic modeling (Quere & Forte, 2006; Stamps et al., 2014; 2015).

The observations presented in the study are consistent with the hypothesis that rifting in East Africa is
driven by gradients of gravitational potential energy probably originating from the African superplume
(Lithgow-Bertelloni & Silver, 1998; Moucha & Forte, 2011; Stamps et al., 2014, 2015), and by lateral variations
of horizontal basal traction forces applied to the lithosphere in areas with sudden changes of thickness. The
latter has recently been exemplified in the EARS by a number of shear wave splitting investigations (Gao & Liu,
2016; Reed et al., 2017; Yu, Gao, et al., 2015). The significant difference in lithospheric thickness (e.g., Ritsema
et al., 1998) between the TC and the surrounding rift segments makes the edges of the TC ideal locations for
rift development.

5. Conclusions

We have imaged mantle transition zone discontinuities beneath the TC and the surrounding Eastern and
Western Branches of the EARS. A parallel 10 km depression of the apparent depths of MTZ discontinuities
and normal MTZ thickness reveal a −0.86% mean upper mantle Vp anomaly, and a lack of significant ther-
mal anomaly in the MTZ beneath most of the Tanzania Craton and the Western Branch. In contrast, a 30 km
thinning of the MTZ is found beneath the Eastern Branch associated with a 50 km apparent depression of
the d410 and a 20 km depression of the d660. Quantitative analyses of the effects of velocity and thermal
anomalies on the observed discontinuity depths suggest that the most plausible and simplest explanation of
the observed apparent depressions and the MTZ thinning is a low-velocity zone with a Vp anomaly of −1.8%
extending from the surface to the uppermost MTZ. Those observations may suggest the present-day exis-
tence of thermal upwelling from either the lower mantle or the uppermost MTZ beneath the northern part
of the Eastern Branch and is comparable with the hypothesis that gradients of gravitational potential energy
from the African superplume and lateral variations of basal traction force applied to areas with significant
changes of lithospheric thickness are probably responsible for rift development in East Africa.
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