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The production of particles with shape-specific properties is reliant upon the separa-
tion of micro-/nanoparticles of particular shapes from particle mixtures of similar
volumes. However, compared to a large number of size-based particle separation
methods, shape-based separation methods have not been adequately explored. We
review various up-to-date approaches to shape-based separation of rigid micro-/
nanoparticles in liquid phases including size exclusion chromatography, field flow
fractionation, deterministic lateral displacement, inertial focusing, electrophoresis,
magnetophoresis, self-assembly precipitation, and centrifugation. We discuss sepa-
ration mechanisms by classifying them as either changes in surface interactions or
extensions of size-based separation. The latter includes geometric restrictions and
shape-dependent transport properties. Published by AIP Publishing.
https://doi.org/10.1063/1.5052171

I. INTRODUCTION

The need for novel techniques to separate particles based on shape has recently received
increased attention due to the developing applications of particularly shaped micro/nanoparticles.
Shape-dependent physico-chemical properties of metal nanoparticles have recently been studied for
solar energy storage (Hoggard et al., 2013) as well as biomedical applications including cell
imaging and cancer treatment (Sharma et al., 2009a; 2009b), while polystyrene rods have been
studied for improved efficiency in drug delivery (Barua et al., 2013 and Thompson et al., 2013).
Cell sorting by shape has been an important technique for enhancing biofuel production
(Velmurugan et al., 2014), and the shapes of cells have been used to determine their growth state
as well as being early indicators of disease (Mitragotri and Lahann, 2009). Particles with desired
shapes necessary for these applications can be synthesized in a variety of methods; however, purifi-
cation is often required. For example, the most popular approach to gold nanoparticle production
today is the one-pot approach first documented by Michael Faraday in 1856 (Liz-Marzán et al.,
2015 and Yang et al., 2017). While this approach is widely popular due to its simplicity, products
often contain a wide range of nanoparticle shapes and sizes. While the size dispersity of the
product can be reduced via centrifuging, the separation of nanoparticles solely by shape is a more
complex matter. Therefore, the ability to reliably separate nanoparticles ranging from nanorods to
living cells based on their shapes alone will prove a critical tool in the advancement of a variety of
technologies.

Despite the importance of the shape-based particle separation, its studies and development are
still largely unexplored compared to those of size-based particle separations (Lenshof and Laurell,
2010; Kowalczyk et al., 2011; and Sajeesh and Sen, 2014). We review various approaches
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employed for shape-based separation including chromatography, microfluidic devices, electropho-
resis, magnetophoresis, and centrifugation. Note here that our review focuses on micro-/nanoscale
separations of rigid particles in liquid phases. Therefore, we exclude shape-separation processes of
powders or particles with larger than microscale size (>10 μm), such as microsieves (Furuuchi
et al., 1993), cyclones (Niazi et al., 2017), and other powder separation processes (Furuuchi and
Gotoh, 1992). Approaches with differential mobility analyzers (Beranek et al., 2012), where parti-
cles are dispersed in a gas phase, are also excluded. Interesting shape-dependent particle dynamics
are reported, such as the self-steering motion of rigidly connected disks in microfluidic channels
(Upsal et al., 2013), Brownian motion of boomerang-shaped particles (Chakrabarty et al., 2013),
and rod migration toward the center of rotating flows (Park and Butler, 2010). However, we focus
on methods applied in actual separation devices.

The purpose of this review is not only to summarize various shape-based separation methods,
but also to identify the principles of shape-based separations from size-based separations to shed
some light on how particularly shaped samples can be obtained. We give an overview of the
current shape-based separation approaches in terms of separation mechanisms (Sec. II) and review
methods falling into the categories of chromatographic approaches (Sec. III), microfluidic
approaches (Sec. IV), electrophoresis/magnetophoresis (Sec. V), and precipitation/centrifugation
approaches (Sec. VI).

II. OVERVIEW OF SHAPE-BASED SEPARATION APPROACHES

In our opinion, one issue of the current shape-based separation methods is that there is no
general approach: One successful method for a specific condition may be found by trial and error
but is often not developed into a model to design other methods. Here, we propose a perspective to
generalize the current methods. We classify the shape separation mechanisms into (1) changes in
surface interactions and (2) shape-specific extensions of a size separation. The former applies to
size exclusion chromatography (SEC), electrophoresis, and self-assembly precipitation, while the
latter corresponds to the rest of the current shape separations. The separation mechanism for a size
separation is typically based on either the geometric restriction of the device or a difference in size-
dependent particle transport properties, which assume particles are spherical. However, if the parti-
cle is non-spherical, the properties become more complicated. For example, the diffusivity of a
spherical particle can be estimated as a scalar value using the Stokes-Einstein law, while the diffu-
sivity of a non-spherical particle has different values according to its orientation and must be esti-
mated in a tensor form. Therefore, multiple length scales and orientations of non-spherical particles
must be considered in shape-based separation.

As seen in Fig. 1(a), particles with different shapes often have different sizes. The equivalent
radius, req, of a particle is defined as the radius of a spherical particle with the same volume. In
Fig. 1(a), the req of the axisymmetric rod-like particle is the same as that of the smaller spherical
particle. If the req of particles is considerably different, the separation is practically made by size
and is often confused with shape separation. However, if the particles have a similar req and there-
fore similar volume, as in cetyltrimethylammonium bromide (CTAB) gold nanoparticle synthesis,
separation by size is no longer possible. Comparing the geometries of spherical and non-spherical
particles, as in Fig. 1(b), a sphere has only one length scale, a diameter or a radius, whereas non-
spherical particles have multiple length scales: ln, where n is the number of length scales of a parti-
cle. For example, axisymmetric rod-like particles have two length scales: a length of the principal
axis, l1 and a thickness, l2. Consider a hypothetical separation device with a critical length scale of
DC, where DC is the threshold length scale which is determined by the device geometry and operat-
ing condition. If a sphere and a rod with req <DC were placed in this device, the sphere would pass
through, while the rod would only pass depending upon its geometry. If the rod has l1 >DC and l2
<DC, the rod may have req <DC but could still be oriented to be caught by the filter. Note that
Fig. 1 is a simplified example of such a device. Therefore, the actual dimension involved in the
separation may not be exactly l1 or l2 due to flow condition and Brownian rotation. However, this
example still shows that the inherent differences between shapes are the key to both their unique
properties and to their separation.
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Before reviewing each method, we define some common variables: L is a rods length (l1), d is
a rods thickness (l2), and Ar = L/d is a rods aspect ratio.

III. CHROMATOGRAPHY

A. Size exclusion chromatography

Size exclusion chromatography (SEC) is a chromatographic technique used to determine the
molecular weights of substances suspended in solution. SEC uses the pores of the preferred station-
ary phase as the mechanism of separation. As the mobile phase flows through a column packed
with the stationary phase, the smaller, lighter molecules flow through the pores uninhibited and the
larger, heavier molecules travel through the packing with resistance. The longer path of the smaller
molecules allows the larger molecules to elute quicker, which causes an effective separation (Barth
et al., 1994).

SEC is best known for its use in separating particles by size; however, one study performed by
Wei et al. (1999) used SEC to separate particles by shape as well as by size. The separation of
gold nanorods, with a mean L = 46.6 nm and mean Ar = 4.8, and gold spherical particles, with a
mean diameter of 19.3 nm (the volume of the sphere is 1.09 times larger than that of the rod), was
achieved by adding a mixed-surfactant system containing sodium dodecyl sulfate (SDS) and
poluoxyethylene (23) dodecanol (Brij-35) in the eluent. The SDS surfactant affected how the nano-
particles adsorbed onto the column packing materials, limiting the loss of nanoparticles to the
packing. It is possible that when enough SDS is introduced to the gold nanoparticles and packing
material, both surfaces induce a negative charge to their respective surface. The surfaces are then
electrostatically repulsed by one another and no adsorption can occur. Nanorods have a larger
contact, or surface, area than spheres, and therefore would be more effectively repelled from the
column packing materials with the same surface charge. Consequently, nanorods elute earlier than
spherical particles. Wei et al. (1999) also showed that using just SDS as an eluent does not separate
the shapes effectively. Instead, using a mixture of SDS and Brij-35 enables low adsorption onto
the column packing, as well as a large separation between rods and spheres. This result suggests
that SEC employed with the correct surfactants can separate differently shaped nanoparticles.

B. Field-flow fractionation

Field-flow fractionation (FFF) is a size-based particle/macromolecule separation technique in
which a parabolic channel flow carrying mixed particles in the axial direction is exposed to a per-
pendicular, or cross-sectional, force as demonstrated in Fig. 2. According to the type of the cross-
sectional force field, different acronyms are used to denote the fractionation such as FlFFF (flow
field), SdFFF (sedimentation or centrifugation), EFFF (electric field), and many more. FlFFF is the
most common type of fractionation and is further modified to AsFlFFF (Asymmetric FlFFF) for
commercial processes (Schimpf et al., 2000 and Messauda et al., 2009).

FIG. 1. (a) The volume of the left spherical particle is larger than that of the rod-like particle, which is equivalent to that of
the right spherical particle. (b) Schematic representation of a hypothetical shape separation device which separates particles
by a critical length scale of DC. Whereas a spherical particle can pass through the device as long as its req <DC, a
non-spherical particle has multiple lengths scales and can only pass through with the proper orientation.
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As demonstrated in Fig. 2, while an injected particle mixture flows in the channel, the cross-
sectional particle distribution is determined by the competition between the cross-flow field, which
pushes the particles toward the accumulation wall, the bottom of the channel, and the opposing
transport process, resisting the cross-force field. The opposing transport process is varied by parti-
cle properties and flow condition, or “operation mode.” The most common mode is the “normal”
mode where the opposing transport process is the particle diffusivity and smaller particles, having
larger diffusivities, are distributed further from the accumulation wall. Because the axial flow has a
parabolic velocity profile, particles with stronger opposing transport processes tend to be distribu-
ted to a higher velocity region, which results in faster elution. Therefore, understanding the various
mechanisms that determine the cross-sectional particle distributions according to the operating
mode is important (Schimpf et al., 2000). Theoretical models describing the shape effect of
rod-like particles on the separation behaviors in FFF have been developed by a series of works by
Park and Mittal in 2015, Park in 2014, and Alfi and Park in 2014, based on earlier works by
Phelan and Bauer in 2009 and Beckett and Giddings in 1997. As suggested by Beckett and
Giddings (1997) as well as Park and Mittal (2015), the condition for each mode is classified in
terms of D⊥/U where U is the cross-flow rate and D⊥ is the rod diffusivity perpendicular to its
main axis, approximated by slender-body theory (Batchelor, 1970):

D? ¼ kBT ln (2Ar)
4πηL

: (1)

Here, kB is the Boltzman constant, T is the absolute temperature in Kelvin, and η is the dynamic
viscosity of the medium. The rod separation mechanism in each mode is summarized below.

The typical condition for a rod in normal mode is approximately 0.5 L <D⊥/U, where L is the
length of the rod on its major axis. As mentioned in the previous paragraph, the difference in the
particles diffusivity according to their size is the separation mechanism in this mode. However,
when evaluating the diffusivity of a rod-like particle, the orientation of the rod relative to the direc-
tion of transport must be considered because the rods diffusivity is expressed in a tensor form as a
function of its orientation. Additionally, the orientation of the rod is determined by both the shear
of the axial flow and the Brownian rotation (Park, 2009). Therefore, the rods diffusivity should be
expressed in terms of the average orientation which is a function of the Peclet number, Pe, a ratio
between the shear rate and the rods rotational diffusivity (Alfi and Park, 2014). Chun et al. (2008)
calculated the diffusivities of carbon nanotubes by estimating nanotubes as slender-bodies
(Batchelor, 1970) aligned in the axial flow and compared the elution results of the carbon nano-
tubes with that of the spherical polystyrene particles with known sizes to determine the nanotube
lengths. Alfi and Park (2014) calculated the rod diffusivity more accurately in terms of Pe by con-
sidering the average orientation of rods that were not perfectly aligned (Park, 2009). Based on that

FIG. 2. Schematic diagram of the FFF device and the particle separation behaviors in the normal mode. Smaller spherical
and rod-like particles have the same volume. Upward arrows represent the opposing transport process (particle diffusivity
for the normal mode) to the cross-force field.
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calculation, Park and Mittal (2015) showed that rods have lower diffusivity than spheres with the
same volume and that the diffusivity values decrease with increasing Ar, which results in slower
elution. However, those predictions also show that the elution order is more sensitive to size differ-
ences than differences in Ar. In other words, compared to a standard particle, the elution difference
of a particle twice as large with the same Ar is comparable to the difference of a particle of standard
size with an Ar of an order of magnitude larger as experimentally observed by Runyon et al. (2013).

In the steric mode, with typical conditions for a rod being D⊥/Ux < 0.5d, where d is the thick-
ness of a rod, when the cross flow is relatively stronger, particles flow while rolling on the accumu-
lation wall, as in Fig. 3(a). Therefore, the excluded volume effect is the opposing transport process
and particles with a center-of-mass further from any wall can elute faster. As shown in Fig. 3(a),
when comparing spherical particles of different sizes, larger spheres elute faster. Comparing a rod
and a sphere of the same volume, the rod elutes later because the rods half thickness (0.5d) is
smaller than the radius of the sphere (Phelan and Bauer, 2009).

The steric-entropic mode is a mechanism unique to non-spherical particles, which occurs
between the steric and normal mode (0.5d <D⊥/Ux < 0.5L). Beckett and Giddings (1997) originally
proposed this mode for rod-like and disk-like particles. As shown in Fig. 3(b), the orientation dis-
tribution of a particle in the near wall region, the region where a rods center-of-mass is less than
0.5L from a wall, is restricted by the excluded volume effect of the wall. As the bulk orientation
distribution is restricted, the particle distribution is pushed away from the wall. As a result, rods
with higher Ars and disks with larger diameters are predicted to elute faster. Gigault et al. (2013)
observed that the elution of gold nanorods increased with the Ar of the rods; clay nanodisks
elution was also found to confirm the proposed elution mechanism (Tadjiki and Beckett, 2018).
The distance the particle distribution is pushed from the wall is calculated in terms of the steric
factor, which is equivalent to the ratio between the allowed distribution restricted by the wall and
the unrestricted distribution (Beckett and Giddings, 1997). Park and Mittal (2015) considered the
rod orientation change due to the flow condition and the distance from a wall to improve this
model. Park and Mittal (2015) also found that due to the size dependence of D⊥, the Ar-enhanced
elution trend is not always possible, although the steric-entropic effect pushes more particles away
from the wall. Later, Nguyen et al. (2015) observed that gold nanorods with higher Ars elute oppo-
site to the Ar-enhanced elution trend. Monjezi et al. (submitted) extended the model by Park and
Mittal (2015) to ellipsoidal rods, as the slender body model is only valid for high Ar rods, using
more rigorous rod distribution calculations (Monjezi et al., 2018a; 2018b). This mechanism can
qualitatively predict the experimentally observed trend that higher Ar rods elute faster regardless of
size. However, for improving quantitative agreement in predictions, further development of the model
considering the particle surface charge effect is suggested (Kim et al., 2012 and Kato et al., 2018).

Lastly, in the lift-hyperlayer operation mode, particles are separated by shear-induced lateral
migration [see Fig. 3(c)]. Various migration mechanisms have been identified for this mode
(Leighton and Acrivos, 1987; Agarwal et al., 1994; and Feng et al., 1994a; 1994b). Typically, if
the axial flow rate is high enough to produce an inertial effect on the particles, larger particles
experience a stronger migration effect and elute faster (Giddings, 1983). However, there is another
shear-induced migration which is specific to rods in non-inertial flow conditions (Park et al., 2007

FIG. 3. Schematic diagram of each operating mode in FFF: All the rod-like particles have the same volume as that of the
smaller spherical particles. (a) In the steric mode, d of a rod is involved in the separation mechanism. (b) For the
steric-entropic mode, dashed arcs represent the unrestricted orientation distribution in bulk whereas the solid arc is the orien-
tation distribution restricted by the wall. The ratio between the restricted orientation probability and the unrestricted bulk ori-
entation probability controls the separation behavior. (c) In the lift-hyperlayer mode, shear-induced migration affects the
separation.

051503-5 Behdani et al. Biomicrofluidics 12, 051503 (2018)



and Park and Butler, 2009). Alfi and Park (2014) predicted that rods with higher Ars migrate more
and consequently elute faster in a high axial flow condition such as Pe > 100.

In summary, FFF has been experimentally applied for the shape-based separation of rod-like
and disk-like particles. Theoretical models for the shape-based separation have been extensively
studied, especially for rod-like particles. However, there are still limitations in quantitative agree-
ment between model predictions and experimental data.

IV. MICROFLUIDIC DEVICES

A. Deterministic lateral displacement

Deterministic lateral displacement (DLD) has been applied for particle sorting based on shape,
size (Huang et al., 2004), and deformability (Ghasemi et al., 2012). DLD is generally categorized
as a passive method, i.e., the method is based on precisely designed microchannels and internal
forces and not external forces (McGrath et al., 2014). However, external forces, e.g., electric (Liu,
2016) and gravitational (Jiang et al., 2015) forces, have been coupled with DLD in some studies.

A typical DLD device and its separation principle are demonstrated in Fig. 4. A DLD device
is comprised of an array of micro-sized obstacles, or posts, arranged in several rows. Rows are
offset from each other, so flow from previous rows always encounters obstacles in the current row.
In most cases, there is a laminar flow between obstacles. Flow in the gap between obstacles can be
divided into three streams. If in one row streams are named 1, 2, and 3, from left to right, in the
next row they become 3, 1, and 2, respectively. After three rows, all streams are reunited into one
in the same horizontal position as they began. Particles, based on their size, behave in different
ways. For small particles that locate in one specific stream, the movement is the same as the
streams, and after three rows, they are set in the same horizontal position. This kind of motion is
called zigzag mode. Larger particles, which are unable to center in a stream, cannot return to their
original horizontal positions (Huang et al., 2004). After several rows, larger particles will have
migrated a considerable distance away from their original horizontal positions. This motion is
called displacement mode. There is a critical diameter (DC) for separation in DLD devices.
Particles with diameters larger than the DC will experience displacement mode, while particles
with diameters smaller than the DC will experience zigzag mode. The migration angle of a particle
is defined as the angle of its trajectory with respect to the direction of the entrance stream intro-
duced to the DLD device. For effective separation, particles should have different migration angles
so they exit from different outlets.

DLD has been utilized to separate particles based on their shapes including separating para-
sites from red blood cells (RBCs) (Holm et al., 2011), separating RBCs with different shapes
(Beech et al., 2012), separating 3D printed particles with different shapes including spheres,

FIG. 4. (a) Streams in the gap between obstacles do not mix with each other and reunite after three rows. Small particles
follow the path of their stream. (b) Larger particles cannot follow streams back to their original horizontal position since
their center cannot locate in first stream. Reproduced with permission from Science 304(5673), 987–990 (2004). Copyright
2004 The American Association for the Advancement of Science.
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tetrahedrons, cubes, and pyramids (Jiang et al., 2015), separating elliptical and cylindrical particles
(Liu, 2016), and separating chiral particles (Bogunovic et al., 2012).

The shape separation mechanisms in DLD can be classified into two categories: Differences in
the length scale involved in the separation and differences in transport properties. It is preferred
that the largest length scale of a non-spherical particle is involved in the separation (Recall Fig.1(b)
of Sect. II). This guarantees that the particle is in displacement mode and enables separation.
Involving the largest length scale of a particle in the separation can be achieved through orientation
control. In some studies, the orientation is controlled through particle confinement. Beech et al.
(2012) used particle confinement to orient and sort RBCs with different shapes based on their
involved length scales. In deep confined channels, non-spherical particles tend to be aligned and
their smallest dimension is involved in the separation, while in shallow devices, the rotation of par-
ticles is limited and their largest length scale is involved. However, particle confinement does not
always orientate rod and spiral-shaped particles as intended.

Orientation control can also be achieved through external forces. Liu (2016) separated ellipti-
cal and cylindrical particles using an electric field around the posts for orientation control. The
elliptical particles have two initial orientations: long axis parallel to electric field and long axis per-
pendicular to the electric field, but, in either case, elliptical particles orientate with their long axis
parallel to the electric field. In this condition, the electric field is more effective on circular particles
than elliptical particles, so the elliptical particles act like smaller circular particles, enabling the
separation.

Another approach is to use continuous rotation. Zeming et al. (2013) investigated separating
RBCs using continuous rotation via I-shaped posts. In this study, the I-shaped posts destabilize
flow and induce rotation in the particles on their smallest axes (Fig. 5). The authors believe that
continuous rotation helps non-spherical particles emulate spherical particles based on their largest
dimension and thus effects separation similar to size-based methods.

The second mechanism for shape separation in DLD is differences in transport properties. In
contrast to previous approaches, this mechanism does not directly correlate separation with the size
of the particles. Bogunovic et al. (2012) stated that particles with different chirality (L and Γ) have
different transport properties. The separation is possible due to lift forces with opposite signs in the
vorticity. However, this approach is still challenging in terms of adjusting parameters and final sep-
aration resolution. In some cases, the velocity profile of two enantiomers may be different but still
indistinguishable, so the separation does not occur. Therefore, process parameters like lattice char-
acteristics, migration angle, and laminar flow characteristics must be precisely selected so particles
follow different trajectories.

Jiang et al. (2015) investigated the separation of particles of different shapes in gravity-driven
deterministic lateral displacement (g-DLD). Separation in g-DLD is due to differences in
particle-obstacle interactions (Devendra and Drazer, 2012). In this experiment, the fluid is stagnant,
and particles are forced to move by changing the forcing angle θ: the angle between gravity and

FIG. 5. Posts induce continuous rotation for non-spherical particles. Non-spherical particles emulate spheres with diameters
equal to their largest dimension. Reproduced with permission from Nat. Commun. 4, 1625 (2013). Copyright 2013 Springer
Nature.
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the array of posts. The critical forcing angle is the lowest angle in which the particles move and the
migration angle α is greater than zero. A schematic of this experiment and a graph of the two
angles are shown in Fig. 6. In this approach, cubes, spheres, and cylinders are separated from pyra-
mids and tetrahedrons. However, the separation of cubes, spheres, and cylinders has a significantly
lower resolution.

Particle behaviors and shape separation mechanisms in DLD devices can be better understood
with the help of numerical modeling and simulations. Although they can also be used to predict
future effective experimental designs, simulation results are either not validated through experi-
ments or have significant deviation from experimental results. This disagreement can be due to
neglected hydrodynamic interactions between particles and posts, deviation of experimental posts
from the nominal shape, and imperfections of DLD device walls (Bogunovic et al., 2012).

B. Inertial focusing

Inertial focusing has been recently introduced as a method for microfluidic particle separation.
This method has received a great deal of attention due to its simplicity, as it does not require an
additional electric, magnetic, or thermal field. Microfluidic inertial focusing devices have already
been investigated for a wide range of particle separation applications, such as enrichening biologi-
cal cells (Nivedita and Papautsky, 2013 and Ozkumur et al., 2013), sorting and diagnosing DNA,
and the separation of bacteria (Kim and Kim, 2016), viruses (Reece et al., 2016), and barcoded
particles (Hur et al., 2011).

Interest in inertial focusing first began when randomly distributed particles were observed to
focus at certain equilibrium distances from channel walls after traveling long distances in the axial
direction (Segre, 1961 and Segré and Silberberg, 1962). Subsequent studies were conducted to
understand this phenomenon (McLaughlin, 1993; Cherukat and McLaughlin, 1994; and Asmolov,
1999); however, it was not until recently, when lithography of microfluidic devices became feasible
that inertial focusing found its place in particle sorting and separation.

Inertial focusing relies on net lift forces exerted on each individual particle. The equilibrium
position of a particle in the channel is determined when the lateral forces on the particle known as
lift forces are in balance. Generally, two major lift forces compete while particles are moving

FIG. 6. (Left) Schematic of g-DLD. At forcing angle (θ), red particles do not migrate, i.e., they are not in displacement
mode, while blue particles have a migration angle of α. Thus, blue and red particles are separated at the outlet. (Right)
Migration angle (α) vs forcing angle (θ) for different shapes. For small forcing angles, particles do not migrate (α = 0) and
only move parallel to the columns, while forcing angles greater than the critical forcing angle (α > 0) cause particles to move
across column obstacles. Reprinted with permission from Microfluid Nanofluidics 19(2), 427–434 (2015). Copyright 2015
Springer Berlin Heidelberg.
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through a channel: the shear gradient and the wall lift forces. Shear gradient lift forces are present
whenever the shear rate of the velocity field interacting with the particle surface varies with the
position of the particle and force it away from the center of the velocity field. Wall lift forces are
caused by fluid interactions between particles and adjacent walls. When particles are close to the
channel walls, wall lift forces drive particles away from the interacting wall and toward the center
of the channel (Feng et al., 1994a; 1994b). This phenomenon is illustrated in Fig. 7.

Microfluidic inertial focusing has been primarily studied and developed for size-based particle
separation. Separation of particles based on particle shape is very challenging due to the aniso-
tropic diffusional behavior of non-spherical particles, especially when particles have similar
volumes. Studies have been conducted on separating particles based on combined size and shape
effects, but only recently has inertial focusing been studied for solely shape-based separation
(Di Carlo et al., 2007 and Bhagat et al., 2011).

Hur et al. (2011) studied the inertial focusing of polydimethylsiloxane particles with different
sizes and shapes such as spheres, disks, and cylinders (Hur et al., 2011). The authors categorize
the particles based on their motion and behavior into four major types: “focused,” “bouncing,”
“translating,” and particles with no motion were categorized as “other.” “Translating” refers to par-
ticles flowing at the center of the channel with no rotational motion. This transitional behavior
occurred for only a few particles at low Reynolds number: Re < 14, and not long before the fluid
inertia increased downstream. Most of the cylindrical particles flowing at moderate Re: 14 < Re <
27 experienced “bouncing” motion. During this mode, particles tumbled back and forth across the
channel before transitioning to the “focused” mode. The authors claim that the mechanism behind
the “bouncing” mode is still unclear and needs further research. At higher flow rates with Re ∼200,
the particles began to focus at two equilibrium positions along the channel. Thus, all the experi-
ments were carried out at this flow rate. Results showed that, except for asymmetric disks, the rota-
tional diameter was the major factor in determining the equilibrium position of the particles, rather
than the particles shape.

Masaeli et al. (2012) considered sorting and separating non-spherical particles with different
Ars using microfluidic inertial focusing based on particle geometry (Masaeli et al., 2012). Figure 8
shows a schematic of the device and genuine images of non-spherical particle separation in an iner-
tial focusing microchannel. Polymeric beads were shaped into ellipsoidal rods with Ars of 3:1 and
5:1 to be tested in this experiment. The authors found that the Jeffry orbit and interaction of non-
spherical particles with the wall surface is an essential part of the mechanism determining particles
equilibrium focusing position. The short dimension of ellipsoidal particles is significantly lower
than spherical particles with the same volume. Therefore, the ellipsoidal particles can get much
closer to the channel walls. Additionally, the rotation of non-spherical particles near the walls
according to the Jeffery orbit rule (Jeffery, 1922), which states that a non-spherical particle under
shear flow rotates in an orbit which minimizes energy dissipation, creates an interaction in which

FIG. 7. Schematic view of inertial focusing in a rectangular microchannel. (a) Two translational forces act on the spherical
particle. Fs is caused by the shear gradient and forces the particle away from the channel center. Fw is the wall lift force and
pushes the particle away from the wall. (b) Equilibrium positions of the particles are determined down the channel when the
two lateral forces are in balance. (c) Fluorescent images of 20 μm diameter particles focusing at Re = 30 (100 μm wide × 27 μm
high cross section). Reprinted with permission from Lab Chip 13, 1121–1132 (2013). Copyright 2013 Royal Society of
Chemistry.
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particles are pushed away from the wall. Conditions with higher Re resulted in lower orbit time: an
increase in flow caused the particles to have faster in-plane rotation. Wall-induced lift forces are
greater when particles are closer to a wall and have higher Ars but decreases when particles are
aligned to the direction of flow. Therefore, particles with higher Ars are focused closer to the
center of the channel. In this study, high-throughput yeast cell separation was conducted with 94%
purity to demonstrate the validity of this method.

Yang et al. (2012) applied inertial focusing to the separation of blood cells based on deform-
ability (Yang et al., 2012). In the experiment, it was observed that the deformable particles were
focused at a single line along the rectangular channel containing a viscoelastic solution, whereas
rigid particles were distributed in different focusing positions at corners and the centerline. The
device schematic view, separation mechanism, and experimental images of the particle mixtures
are illustrated in Fig. 9. It is suggested that deformable particles create an additional lateral force
due to their elastic behavior and disturbances in the flow, and the quantity of the lateral force is
dependent on the deformability of the particle. This method of separation was demonstrated by

FIG. 8. Inertial focusing microfluidic device for shape-based separation of microparticles. (a) A schematic view of the
device: channel height W = 35 μm and width of 47 μm. (b) Particles are randomly distributed at the inlet. Two major lift
forces of FLw (wall-effect lift) and FLs (shear-gradient lift) effect translational motion in the particles. (c) The particle equilib-
rium positions (Xeq) 4 cm downstream after being focused at the outlet (FLw and FLs in balance). Equilibrium positions for
particles with the same volume but different Ars, which demonstrates the existence of additional lift forces for non-spherical
particles. [(d) and (e)] Actual captured frames of the inlet and outlet (scale bar = 10 μm). Reprinted with permission from
Phys. Rev. X 2, 031017 (2012). Copyright 2012 American Physical Society.

FIG. 9. Particle separation based on cell deformability using inertial focusing. (a) Schematic view of separation device
shows how the rigid cells are separated and collected at the sides. Channel dimensions are 75 mm × 75 mm× 4 cm for the
unexpanded region. The expanded region is 500 nm in width with an angle of 45°. Particle detection was carried out using
bright-field and fluorescence microscopy. (b) Fluorescence image of the actual flow of deformable particles in the channel at
a rate of 0.16 ml/h; fresh RBCs were marked by DiD cell-labeling dye. Reprinted with permission from Soft Matter 8,
5011–5019 (2012). Copyright 2012 Royal Society of Chemistry.
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separating less deformable, highly stiffened red blood cells (RBCs) from fresh RBCs, and polysty-
rene beads from fresh RBCs at a noticeable purity, showing that the separation is purely based on
deformability rather than the size of the particles. The separation performance first increased up to
0.16 ml/h and then decreased with increasing flow, with performance investigated up to 0.48 ml/h.

DuBose et al. (2014) conducted an experimental demonstration of shape-based separation of
peanut-shaped cells from spherical cells with similar volumes using dielectrophoresis aided asym-
metric double-spiral focusing channels (DuBose et al., 2014). The shape of a bioparticle can reveal
numerous properties such as cell type, state, or cycle (Piagnerelli et al., 2007; Martin, 2009;
Mitragotri and Lahann, 2009; and Ebert et al., 2010). Therefore, the separation of shape-dependent
bioparticles to achieve high purity samples is essential in many clinical and industrial applications.
The results of the experiment demonstrated the feasibility of the separation at noticeably high rates.
A numerical model consistent with the findings was also derived by the authors (DuBose et al., 2014).

Similarly, Lu et al. (2015) demonstrated the separation of spherical and peanut-shaped biopar-
ticles in viscoelastic fluids using a straight channel (Lu et al., 2015). In addition to the inertial
focusing effect, a shear thinning effect was also found to be a factor in the overall separation
process, as it was observed previously that shear-thinning affects the particle motion causing the
particle to move away from the channel’s center line (Huang and Joseph, 2000; Seo et al., 2014;
and Huang et al., 1997). The study also found that there is a transition from a single focusing posi-
tion to two or more positions when increasing Re. The range of Re during this transition was also
found to be dependent upon the particle shape. The separation mechanism is shown in Fig. 10.
The authors suggest that the separation might occur because of the rotational motion of the non-
spherical particles. The authors further investigated the effect of various parameters on the effi-
ciency of the separation process (Lu and Xuan, 2015). The separation was effective at Re near 1.0.
The ratio of sheath flow to particle flow had no effect on the separation, while the elasticity and the
channel aspect ratio had a significant effect on the residence time of non-spherical particles.

Li et al. (2016) studied the feasibility of shape-based sorting and separation of ellipsoidal
Euglena gracilis cells in a straight focusing channel with periodic secondary flow induced in rect-
angular step structures (Li et al., 2016). Euglena gracilis bio cells have been thoroughly studied as
suitable algae for biomass and biodiesel production (Takeyama et al., 1997; Yamane et al., 2001;
and Chae et al., 2006), and can have different shapes and sizes due to differences in the cycle
stage of the cells during culturing. The effects of Re and Ar on the focusing, rotation, and orienta-
tion of the particles was investigated. It was found that increases in Re increased the focusing of
the particles. Also, high Ar particles showed faster rotation with increasing Re. Moreover, high Ar
particles shifted from perpendicular to parallel alignment with the flow at higher Re. Figure 11
shows a 3D and top down schematic view of the device along with experimental images of
focused particles and microscopic images of Euglena gracilis with different Ars.

FIG. 10. Schematic view of the electro-inertial particle focusing device and the mechanism of separation. Stronger combined
elastic and inertial lift forces result in more cross-sectional displacement for spherical particles leading to high purity separa-
tion of non-spherical particles. Reprinted with permission from Anal. Chem. 87, 11523–11530 (2015). Copyright 2015 ACS
Publications.
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Paiè et al. (2017) experimentally and computationally investigated the effect of the reservoir
geometry on the separation of different sized spherical cancer cells in a trapping microfluidic
device that is periodically vortex aided. The separation mechanism was driven by entrapment of
the larger particles in the vortex system of reservoirs. Başağaoğlu et al. (2018) used the
Lattice-Boltzmann method to perform numerical simulations to investigate the particle shape effect
on the vortex-aided separation performance. Various geometries of particles, such as elliptical, star,
boomerang, triangle, rectangular, circle, and curved-shaped particles, were studied. The particle tra-
jectories and separation behavior showed strong dependence on particle shape. It was discovered
that the vortices are not always successful in the selective trapping of larger particles as opposed to
what was observed for spherical particles in the previous studies. The authors quantified the error
in trajectories and velocities of a mixture of different-shaped particles, if their actual geometrical
shapes are replaced by the circular particle geometry, as they settle in a quiescent fluid in a
bounded domain or as they flow in a fluid in a microchannel. It was also found that elliptical parti-
cles have the strongest shape effect on the particle motion. By replacing the larger circular particles
with larger elliptical particles, smaller particles displayed a 36% improvement in trapping, while
larger particles showed a 21% decrease.

FIG. 11. Secondary flow induced focusing of spheroidal Euglena gracilis cells. (a) 3D view of the periodically stepped
microchannel. (b) Dimension and top view of the microchannel. (c) Overlaid experimental images of focusing particles in
the channel. Scale bars are 100 μm in length. (d) Microscopic images of Euglena gracilis cells variant in aspect ratio.
Reprinted with permission from Lab Chip 16, 4458–4465 (2016). Copyright 2016 Royal Society of Chemistry.
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Despite the work that has been done so far, there are many questions about the application of
inertial focusing in shape based separation. However, many new technologies have been developed
for inertial focusing that have yet to be implemented for shape-based separation. Serpentine chan-
nels (Zhang et al., 2014a), secondary induced flow with a variety of constricted areas (Chung
et al., 2013 and Zhao et al., 2017), and the use of external forces fields (Zhang et al., 2014b) may
shed new light on shape-based separation via inertial focusing.

V. ELECTROPHORESIS AND MAGNETOPHORESIS

A. Electrophoresis

Electrophoresis refers to the mobility of charged particles through an electrolyte solution
driven by an electric field (Strubbe et al., 2013). The introduction of gel electrophoresis, which uti-
lizes nanopores in gels, such as agarose, as entropic barriers to increase the separation performance,
marked a revolution in electrophoresis separation. Gels can be easily modified to meet the basics
of separation for the desired particles, and the characteristics of the packing can vary depending on
the desired application (Viovy, 2000).

Since the introduction of gel electrophoresis (Grabar, 1953), many methods, such as nanopores
(Laohakunakorn et al., 2013), microfluidic arrays (Han and Craighead, 2000), and capillary electro-
phoresis (Harrison et al., 1993) have been developed to facilitate the separation of particles. When
a large molecule, or charged particle, is placed in an electrolyte, the particle’s surface will start to
attract oppositely charged free ions to form a permanent or immobile zone called the Stern layer
around the particle. A second layer of mobile ions surrounding the Stern layer is then shaped
forming the diffuse layer. The combination of the two layers creates the electric double-layer or
Debye length. The particle will then react to an existing electrical field throughout the solution.
The force exerted on the particle along with the immobile layer is opposite of the force applied to
the free ion layer. The mobility of the particle can be simplified into two cases where the particle
Debye layer thickness is either larger or smaller than the particle radius, r. In the case of a large
Debye layer, viscous and electric forces are independently in balance. Consequently, electropho-
retic mobility {μ [cm2=(V � s)]} can be expressed as total particle charge [Q (C)] over drag resis-
tance and can be simplified for a spherical particle (Huckel, 1924):

μ ¼ Q=6πηr: (2)

When the Debye layer is thin, shear is limited to a layer with the thickness of the Debye length.
The mobility is then independent of the size and shape of the particle (Smoluchowski, 1903):

μ ¼ εbε0ξ

η
: (3)

Here, εb is the dielectric constant for the medium (dimensionless), ε0 is permittivity of the vacuum
(dimensionless), and ξ , the zeta potential (mV), is the electrokinetic potential at the outer surface
of the electric double layer (Binns, 2014). As seen in the difference between Eqs. (2) and (3), the
shape effect of electrophoretic separation occurs when the Debye layer is large or when there is an
interaction between particles and microstructures of gel or other devices. However, most electro-
phoresis applications have been developed for size-based separations, while shape-based electro-
phoresis separation has remained relatively unexplored both experimentally and theoretically. In
this section, different methods of shape-based separation using electrophoresis are discussed.

Liu et al. (2005) investigated the performance of capillary electrophoresis separation of silver
nanoparticles based on their size and shape (Liu et al., 2005). Silver nanoparticles were prepared
to carry surface charges using ion sorption. As a result of the surface charges, an electric double
layer prevented the particles from agglomerating. The mechanism of separation is therefore based
on the surface charge of the particles rather than actually charged particles with similar features.
The separation performance was first studied for the size separation of silver nanoparticles 17.0
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and 49.7 nm in diameter at surfactant SDS concentrations of 0-40 mM. The results indicated that
separation was feasible only in the presence of surfactant with an optimal concentration of 20 mM.
When separating differently shaped particles, the Ar had an obvious effect. Nanorods with higher
Ars eluted last; however, the mechanism of separation is not clear. One could infer that the particle
interaction with the wall may contribute to separation and the late elution of nanorods with high Ars.

Hanauer et al. (2007) later demonstrated the separation of gold and silver nanoparticles based
on shape and size using gel electrophoresis (Hanauer et al., 2007). Nanoparticles were coated with
polyethylene glycol to impart surface charges. After analyzing the different locations of the gel, a
separation of particles was clearly shown. Figure 12(a) shows TEM images of the particle mixture
in four different locations of the gel. The original mixture was composed of 13% rods, 34%
spheres, 44% triangles, and 9% was categorized as other. Figure 12(b) shows the analysis of the
particle distribution for each location. It is clear that rods showed the slowest mobility and were
enriched to 60% in the first location. Triangles seemed to possess the highest mobility, while
spheres resided in moderate and fast locations. Figure 12(c) presented the analysis in more detail
including particle sizes, such as the sphere diameter, triangle height, and the short and long dimen-
sions of the rods. It can be concluded that longer rods have the least mobility. It is interesting to
note that spherical particles showed an increase in mobility with an increase in diameter, but a
trend was not found in the triangular particles. The authors mentioned that there could have been a
hidden effect as a result of differences in thickness that could not be captured by TEM. Separation
performance was also investigated for a mixture of spherical and rod-like particles at a ratio of
35:65. The results clearly confirm the separation of particles based on particle shape.

Xu et al. (2007) performed a similar shape/size separation of gold nanoparticles using prepara-
tive gel electrophoresis with an average pore size of 100 nm (Xu et al., 2007). A mixture of spheri-
cal gold nanoparticles with particle sizes of 5 nm, 15 nm, and 20 nm was first separated to
demonstrate the capability of electrophoresis separation. Subsequently, electrophoresis separation
was tested for shape separation of three different components: triangular plates, nanorods, and
spherical particles. In this experiment, particles were not of the same volume. The results showed
that nanospheres are the fastest, triangular nanoplates have mobility similar to spherical

FIG. 12. Gel electrophoresis separation of gold and silver nanoparticles. (a) TEM images of different locations of the gel
slab. (b) Particle composition as a percentage of total counted particles with various shapes of rods, triangles, and spheres at
each location. (c) The mobility of particles with different shapes and sizes (length of rods, diameter of spheres, and height
of triangles). Reprinted with permission from Nano Lett., 7, 2881–2885 (2007). Copyright 2007 ACS Publications.
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nanoclusters, and nanorods are the slowest, similar to the results of Hanauer et al. (2007). Unlike
what has been reported in this work for the mobility of nanorods in gels, generally, as we discuss
this later, the mobility of nanorods in free solutions increases as Ar increases. Although the mecha-
nism behind the retardation of nanorods has not been investigated, we believe that nanopores may
have had the greatest contribution, as longer nanorods likely experienced more encounters with
barriers due to their size, while shorter nanorods and spherical particles could slip through more
easily.

Hsu et al. (2012) analyzed the effect of various parameters on non-spherical polyelectrolyte
particles (PEP) with the same volume and at varying Ars (Hsu et al., 2012). PEPs are macromole-
cules with large ionizable functional groups attached to their surfaces (Oseguera et al., 2010). The
mobility of PEPs in electrolytes could be affected by additional effects such as electroosmotic
retardation flow or counterion condensation. Electroosmotic retardation flow is caused by the
movement of counterions inside the electric double-layer (Yeh and Hsu, 2011). The counterion
condensation effect is significant where the local surface charge density of a particle exceeds a crit-
ical limit (McHale and Newton, 2011). Double-layer polarization can affect the motion of PEPs
when particle double-layer thickness is large compared to the particle radius. Various factors were
found to describe the rescaled mobility: the mobility relative to the mobility of a freely drained par-
ticle, of particles with different Ars. The various factors included the reciprocal Debye screening
length, scaled particle charged density, electrophoretic softness of PEPs, and bulk ionic density.
The mobilities of particles with higher Ars were always higher than those with lower Ars. Thus,
the mobility of a spheroidal particle is higher than that of a spherical particle, and the mobility of a
spherical particle is higher than that of an oblate particle. Although results of this study have not
yet been applied to the analysis of the current shape dependent electrophoretic separation results,
this theoretical approach is expected to be developed further for shape separation theory via
electrophoresis.

B. Magnetophoresis

Magnetic fields have been broadly applied to the separation of microparticles and nanoparti-
cles in microfluidic devices due to their non-invasive and contactless characteristics (Ahmed et al.,
2018 and Hejazian et al., 2015). In magnetic separation, the fundamental principles are the mag-
netic force and torque acting on the particle, which are expressed as follows (Ahmed et al., 2018):

Fm ¼ r(m � B) ¼ Δχ � Vp

μ0
(rB) � B, (4)

Tm ¼ m� B, (5)

where μ0 = 4π × 10−7 N/A is the magnetic permeability of a vacuum, Vp is the particle volume
(m3), and rB is the gradient of the magnetic flux density B (T), m is the magnetic moment of the
particle (Am2), and Δχ is the difference in the magnetic susceptibility (dimensionless) between the
particle (χp) and the surrounding medium (χf ). Both static and unsteady magnetic fields can be
used to generate the forces and torques required for this kind of separation.

In traditional magnetic separation, non-uniform magnetic fields are used to exert magnetic
forces on particles. The particle motion due to magnetic forces in a viscous medium is known as
magnetophoresis. When Δχ . 0, the particle is pulled toward the magnetic source, and this phe-
nomenon is known as positive magnetophoresis. When Δχ , 0, the opposite is true, and the
motion is known as negative magnetophoresis. Generally, positive magnetophoresis manipulates
paramagnetic and ferromagnetic particles or magnetically tagged cells in a diamagnetic fluid such
as water (Adams et al., 2009; Hoshino et al., 2011; Inglis et al., 2004; 2006; Kang et al., 2012;
and Mirowski et al., 2005), while negative magnetophoresis separates diamagnetic particles or
cells in a magnetic fluid such as ferrofluids (Hejazian and Nguyen, 2016; Liang and Xuan, 2012;
Liang et al., 2013; Vojtíšek et al., 2012; Zeng et al., 2013; Zhao et al., 2016; Zhou and Wang,
2016; and Zhu et al., 2010; 2012).
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Most existing studies focus on size-based separation (Ahmed et al., 2018 and Hejazian et al.,
2015). As shown in Eq. (3), particles of different sizes will experience different forces, thus allow-
ing particle separation by size or volume. Only recently has shape-based separation been achieved
in microfluidic channels in combination with magnetic fields. There are two principal methods to
achieve such separation: (1) by using shape-dependent forces with non-uniform magnetic fields
and (2) by using shape-dependent magnetic torques with zero magnetic force and uniform mag-
netic fields.

Kose et al. (2009) used a periodic, unsteady, and non-uniform magnetic field to successfully
separate sickle cells from live red blood cells in a biocompatible ferrofluid. In their work, the exci-
tation electrodes are set underneath ferrofluid microchannels as shown in Fig. 13(a). The electrodes
produce time-varying magnetic forces and torques on the cells, so that cells are pushed to the top
of the channel via negative magnetophoresis. When the cells reach the top wall, their rotation
results in linear translation along the length of the channel. The excitation frequency, current ampli-
tude, and the positions of the electrodes are the key factors for the average velocity of the cells. It
is found that linear translation due to the magnetic torque can overcome the magnetic force result-
ing in continuous particle transport in the channel when the applied frequency is higher than the
critical frequency. The critical frequency depends on the size, shape, and elasticity of the particles
being separated. The applied frequency is used to trap particles with higher critical frequencies,
while also transporting particles with lower critical frequencies. In this case, at 300 Hz, sickle cells
were trapped between two electrodes, while the live red blood cells were transported through the
channel.

Zhou and Xuan (2016) successfully separated a mixture of equal-volume spherical and peanut-
shaped diamagnetic particles in a ferrofluid via T-shaped microfluidic channels as shown in
Fig. 13(b). In this method, a permanent magnet is positioned perpendicular to the flow direction to
generate non-uniform magnetic fields. To explain the observed shape-based separation, shape-
dependent magnetophoretic motion is proposed. The magnetic force and the viscous drag force are
modified by the particles shape-dependent and orientation-dependent correction factors. The modi-
fied equations for the homogeneous and linearly magnetizable particles are expressed as

Fm ¼ �μ0Vp(Mf � r)H0=(SmOm), (6)

Fd ¼ 3πηdp(uf � up)fDSdOd, (7)

where Mf is the magnetization of the ferrofluid (A/m), H0 is the magnetic field at the particle center
(A/m), dp is the equivalent spherical diameter of the particle (m), uf and up are the velocities of fer-
rofluid and particle (m/s), and fD is the drag coefficient (dimensionless) considering wall retarda-
tion effects (Happel and Brenner, 1983). Sm and Sd are particle shape-dependent correction factors
(dimensionless), which are 1 for spherical particles and increases with non-sphericity (Gao et al.,
2007). Om and Od are particle orientation-dependent correction factors (dimensionless), which are
1 for spherical particles and non-spherical particles moving in the direction of their major axes
(Jones, 1995). By exploiting the different values of shape-dependent factors, particles of different
shapes were separated. Furthermore, the effects of flow rate and the ratio of sheath ferrofluid to par-
ticle mixture flow rate were investigated. A 3D numerical simulation was implemented and gave a
reasonable agreement with the experimental observations. Later, the same method was applied to
separate different groups of drug-treated yeast cells that exhibited various sizes and shapes in ferro-
fluids (Chen et al., 2017).

The works mentioned above are all based on magnetic force. More recently, Zhou et al.
(2017a) proposed a new, simple, and effective method which only uses shape-dependent magnetic
torque to separate equal-volume prolate paramagnetic ellipsoidal and spherical particles under
static uniform magnetic fields in a microchannel under low Re condition as shown in Fig. 13(c).
Without a magnetic field, the prolate ellipsoidal particle exhibits symmetric rotational motion in
the shear flow without net lateral migration and therefore do not separate. However, when a
uniform magnetic field H0 is applied perpendicular to the flow (that is, where α = 0o in Fig. 13(c)),
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the magnetic field produces a nonzero magnetic torque:

Tm ¼ μ0

ð
Vp

[(Mp �Mf )�H0]dV , (8)

where Mp and Mf are the magnetization of the particle and the fluid. The magnetic torque breaks
the symmetric property of the particle rotation dynamics. The magnetic torque coupled with
particle-wall hydrodynamic interactions lead to a lateral migration of particles in the microchannel
as seen in Fig. 13(c). From Eq. (8), we can see that the shape-dependent lateral separation can only
occur if there is a contrast of magnetic susceptibilities between the particles and the surrounding
medium. Successful separation of nonmagnetic spherical and ellipsoidal particles in a ferrofluid is
also reported in this paper. By further experimental and numerical investigations (Cao et al., 2018;
Zhang and Wang, 2018; and Zhou et al., 2017b), it was found that the direction of the magnetic
field controls the asymmetric rotation of the particles and the direction of the migration, and that
the strength of the magnetic field controls the speed of migration.

Matsunaga et al. (2017a) reported the far-field hydrodynamic theory and simulations to show
that permanent magnetic particles (i.e., ferromagnetic particles) can be focused and separated by
size and shape in a simple shear flow and microchannel flow under a static uniform magnetic field
as shown in Fig. 13(d). When a uniform magnetic field is applied in the xy plane with an arbitrary
angle fB, the magnetic flux density B ¼ (B cosfp, B sinfp, 0). The magnetic moment of the par-
ticle m ¼ (m cosfp, m sinfp, 0), where fp is the orientation angles of particle. In this work, a
strong uniform magnetic field was applied to hold the particles at a stable angle f�

p. From theoreti-
cal analysis, the direction of particle migration depends on the values of sin 2f�

p. When
sin 2f�

p . 0, the ellipsoidal particles move away from the wall, and when sin 2f�
p , 0, the ellipsoi-

dal particles move toward the wall. The strong magnetic field determines the particle orientation
and the particle-wall hydrodynamic interaction controls the direction of the migration. Eventually,
particles of different Ars are focused to different equilibrium positions. In a later work, full numeri-
cal simulations were reported by the same research group (Matsunaga et al., 2017b) to demonstrate

FIG. 13. Shape-based separations using magnetic fields: (a) Separating a mixture of sickle cell anemia from live red blood
cells in ferrofluids using periodic magnetic fields. Reproduced with permission from Proc. Natl. Acad. Sci. U.S.A. 106,
21478–21483 (2009). Copyright 2009 PNAS; (b) Separating a mixture of equal-volume spherical and peanut-shaped dia-
magnetic particles in ferrofluids via T-shaped microfluidic channels. Reproduced with permission from Appl. Phys. Lett.
109, 102405 (2016). Copyright 2016 AIP Publishing LLC; (c) Separating a mixture of paramagnetic ellipsoidal and spheri-
cal particles under weak uniform magnetic fields. Reproduced from Lab Chip 17, 401–406 (2017a). Copyright 2016 Royal
Society of Chemistry; (d) Separating a mixture of ferromagnetic ellipsoidal and spherical particles under strong uniform
magnetic fields. Reproduced with permission from Phys. Rev. Lett. 119, 198002 (2017a). Copyright 2017 American
Physical Society.
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various equilibrium positions of ellipsoidal ferromagnetic particles in rectangular and circular
microchannels at low Re, providing a deeper understanding of the effect of channel geometry on
the lateral migration.

VI. PRECIPITATION/CENTRIFUGATION

A. Precipitation by self-assembly

Self-assembly can be applied to promote shape-based particle precipitation. Gold nanoparticles
produced through colloidal synthesis (Zhang et al., 2014c and Yang et al., 2017) are often impure
and require some shape purification. Particles smaller than the desired size are removed from the
product by centrifuging, but the remaining mixture may still contain structures of undesirable
shapes. Generally, these mixtures will be populated by spherical or near spherical particles and
sometimes cubes. To separate these structures, surfactant (Jana, 2003) or salt (Guo et al., 2011) is
added to encourage self-assembly of the more easily precipitated nanoparticles.

During surfactant assisted self-assembly, the surfactant, often CTAB, is added, causing the
shapes to precipitate via a nematic-isotropic separation with long rods precipitating before plates,
and plates before spheres and near spheres, due to their higher contact area (Jana, 2003). Colloid
interactions in a nematic fluid are generally much greater than interactions in an isotropic fluid
which, along with boundary conditions at the interface, lead to the so called self-assembly of aniso-
tropic nanoparticles (Sengupta, 2013). The resulting solution is then drained from the top to reveal
a solution with a much higher concentration of nanoparticles of the desired shape.

In 2011, Guo et al. experimented with a method using salt to trigger self-assembly instead of
a surfactant. Beginning with raw samples of gold nanorods and nanoplates, concentrations of NaCl
ranging from 0.12M to 2.5 M were added to the solutions. With results characterized by superna-
tant absorption spectra, NaCl concentrations as low as 0.12M and 0.86M resulted in noticeable
decreases of absorption peaks indicative of nanoplates and nanorods, respectively; however, separa-
tion did not improve at higher salt concentrations. Increases in the salt concentration were found to
decrease the separation between isotropic and anisotropic nanoparticles with only minimal separa-
tion occurring at 2.5 M NaCl. This is because much higher salt concentrations neutralize the attrac-
tive force of the surface charges imposed on the nanoparticles by introducing an electric double
layer, thus restoring the natural repulsion that prevents spontaneous aggregation, or self-assembly.
As with surfactant assisted self-assembly, the difference in the available contact area of different
shapes is the reason anisotropic nanoparticles can be precipitated from their isotropic counterparts.
Impurity levels of the resulting nanorod and nanoplate products were found to be less than 3%.
This method is especially interesting for further study and commercialization as it can be con-
ducted at both room temperature and high throughput with little cost (Guo et al., 2011).

Datskos et al. (2016) reported using a Pickering emulsion based approach to trigger self-
assembly in silica nanorods. Silica nanorod samples were added to a water-pentanol system and
settled after about 5 h due to the increased weight of the silica emulsion droplets. Though this
method proved useful in producing dry samples of silica nanorods, spherical particles also self-
assembled, and while shape separation was not the focus of the paper, it remains to be seen if this
method could be tuned to separate on shape rather than self-assemble whatever particles are
present (Datskos et al., 2016).

Hu et al. (2018) reported shape separation by self-assembly as dependent on the volume of
CTAB, the concentration of CTAB, the temperature of the separating mixture, and aging period.
For the 10 ml colloid samples, it was found that shape separation was most effective with 0.4 ml of
0.3 M CTAB and that a higher volume of CTAB was not beneficial to the separation. CTAB con-
centrations below 0.4 M were insufficient in separating the desired nanoparticles from the superna-
tant. Temperatures tested from 25 °C to 80 °C showed greater separation efficiency at higher levels.
Samples with longer aging periods generally showed a greater separating effect with the most sepa-
ration occurring with a 12-h aging period, but overall longer aging periods did not increase separa-
tion efficiency. A secondary separation following the same procedure was found to be necessary
for greater levels of shape purity, especially when separating rods and plates (Hu et al., 2018)
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Shape separation via self-assembly has been mostly dominated by surfactant-assisted methods
with variations showing promise. The quality achieved through this process is dependent upon
many factors that have yet to be fully characterized. The surfactant assisted method will most likely
remain a compelling option for creating high quality nanoparticle solutions in the future, with com-
petition from salt assisted methods. While many are eager to begin work with high quality nano-
rods, nanoplates, and even nanocubes, further research into the optimal purification of samples is
still necessary. No doubt the factors discussed by Hu et al. (2018) will be further investigated, and
some generalizations will be made about the process for the more frequently used metals, eventu-
ally leading to scalable models.

B. Centrifugation

Centrifugation is a process based on the differences in the sedimentation behaviors of particles.
The sedimentation velocity of each particle is determined by force balances. Due to the diversity in
particle shape, size, and density, the sedimentation velocities are different for every particle. If the
difference in sedimentation velocity is significant, the particles can be separated through centrifuga-
tion. The sedimentation coefficient, how fast particles settle, is defined as the ratio of sedimentation
terminal velocity to angular acceleration (Li et al., 2018) and has the dimension of time. The sedi-
mentation coefficient is only dependent on the properties of the particles and the medium of centri-
fugation. For nanoparticles flowing with small Re, the sedimentation coefficient, s, can be derived
using the force balances of centrifugal, buoyant, and drag forces:

s ¼ 2r2( ρp � ρm)

9ηf
: (9)

Here, ρp and ρm are the densities of the particle and the medium, respectively, and f is the shape
factor to account for non-spherical particle geometries. For spherical particles f = 1, and for non-
spherical particles f > 1. For example, f for rod-like particles is given as (Yao et al., 2016)

f ¼ 0:55Ar�1=3(1þ 0:869Ar0:76): (10)

Therefore, spheres have a higher sedimentation coefficient and velocity than non-spherical
particles.

Several models have been introduced to predict sedimentation coefficients (Hubbard and
Douglas, 1993; Sharma et al., 2009a; 2009b; and Xiong et al., 2011). The models estimate drag
force based on centrifugation parameters (e.g., Ar, diameter, and the orientation of particles). The
sedimentation coefficient and velocity are then determined based on the force balances. However,
the experimental setups in many of these studies fail to precisely measure sedimentation coeffi-
cients to validate their models. Wang et al. (2016) conducted one of the few studies to measure
sedimentation coefficient experimentally by studying the effects of the d and Ar of nanorods on the
sedimentation coefficient. It was found that for nanorods with the same volume, the sedimentation
coefficient decreased with increasing Ar. For nanorods with the same d, the sedimentation coeffi-
cient increased with increasing Ar.

Centrifugation techniques can be categorized based on the density of the medium. One
approach is differential centrifugation where density is constant throughout the homogenous
medium. Sharma et al. (2009a; 2009b) investigated the separation of a dilute solution of nano-
spheres and nanorods using differential centrifugation. Spheres and bulkier rods precipitated at the
bottom, while longer, thinner rods precipitated at the side wall (Fig. 14). The difference in the drag
coefficient of each particle is the driving force for the separation. Spheres and spherically isotropic
particles (e.g., cubes and nanorods with small Ar) have similar drag coefficients so they cannot be
separated, but nanorods with large Ars have different drag coefficients and can be located in a dif-
ferent band.
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Several stages of centrifugation may be required to separate rods from spheres with improved
purity. Boksebeld et al. (2017) used differential centrifugation to study the separation of nanorods
with a low Ars (less than 6) from nanospheres. Their method utilized centrifugation in three stages.
In each stage, the solution is centrifuged and the spheres are precipitated. Supernatant that is rich
in rods is recovered and centrifuged again. The results show that after each stage, the monodisper-
sity increases, but the separation does not produce high yields for lower Ars.

For enhanced separation, the density of the medium can be non-uniform: the density can be
changed continuously or stepwise from top to bottom. Tyler et al. (2012) considered the separation
of faceted (e.g., triangle and cube) and non-faceted particles (e.g., sphere) based on differences in
sedimentation coefficients utilizing continuous density gradient centrifugation. Although the sedi-
mentation coefficients are initially similar for all particles, the surfactants alter the coefficients for
better separation. Faceted particles can absorb more surfactant compared to non-faceted particles
resulting in differentially modified sedimentation coefficients (Fig. 15).

Another approach is step density gradient centrifugation where the density changes abruptly in
the medium: the medium is made of several layers of liquids with different densities. This method
is also called rate-zonal centrifugation. This approach is known to resolve the difficulty in

FIG. 14. Differential centrifugation of gold nanoparticles is depicted with thin nanorods located on the side wall and spheres
and bulkier nanorods located on the bottom wall. Reprinted with permission from Proc. Natl. Acad. Sci. U.S.A. 106,
4981–4985 (2009). Copyright 2009 National Academy of Sciences.

FIG. 15. The results from the shape-based separation are shown using a continuous density gradient centrifugation by
Tyler et al. (2012). The shape distributions in each fraction of separated bands are different. Reprinted with permission from
J. Phys. Chem. Lett. 3, 1484–1487 (2012). Copyright 2012 American Chemical Society.
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recovering purified particles in both differential centrifugation and continuous density gradient cen-
trifugation: purified particles may be remixed during recovery. In step density gradient centrifuga-
tion, each band of particles is trapped in one layer creating a sharp distribution of particles. Each
layer must be viscous enough to trap one band of particles while allowing others to move to sepa-
rate layers, and the interfacial forces between layers should be high enough to avoid the diffusion
of layers into each other without preventing the transfer of particles between layers (Yao et al.,
2016). After centrifugation, the particles are separated from each medium of its respective phase.
Organic media have advantages in this step because they are easily evaporated after centrifugation.

Akbulut et al. (2012) investigated the separation of nanorods, nanospheres, and larger particles
in three separate phases. The particles were trapped in each phase based on their sedimentation rate
and viscous forces applied by the phases. Nanorods had the lowest sedimentation coefficient and
were captured in the first phase, while nanospheres and the larger particles were trapped in the
second and third phase, respectively (Fig. 16).

Yao et al. (2016) investigated the shape separation of gold nanorods in a multilayer system
with different Ars and sizes. The layers were a solution of CTAB/EG with different densities and
viscosities. In their study, CTAB played a crucial role in preventing the diffusion of layers into
each other while avoiding the aggregation of gold nanoparticles.

VII. CONCLUSIONS

We reviewed many successful cases of separating particles by shape through many different
approaches. Despite their utility, these shape-based separation techniques and studies are limited in
the following ways. First, a general approach does not exist, and some current methods are only
applicable to particles with specific properties or operating conditions. As a result, there is limited
versatility in design and operation. Second, there is no complete theory to quantitatively and quali-
tatively identify the shape effect on the separation behaviors. Current studies are generally depen-
dent on phenomenological approaches in specific conditions and lack a systematic approach to
identify the shape effects. Third, most of the up-to-date methods are the separation of rod-like par-
ticles by Ar. Separations of particles with various shapes other than rod-like particles have not
been much explored. There have been attempts to develop models for the methods based on device
geometry or shape-specific transport properties, such as FFF, DLD, and inertial focusing.
However, the methods based on surface charge effects, such as SEC, electrophoresis, and self-
assembly precipitation have room for improvement in theoretical development as well as in the sep-
aration of particles of various shapes.

FIG. 16. The results from the shape-based separation using a discontinuous density gradient centrifugation by Akbulut et al.
(2012). The particles in each separated layer show different shapes. Reprinted with permission from Nano Lett. 12, 4060–4064
(2012). Copyright 2012 American Chemical Society.
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