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VECTOR BUNDLES ON REAL ALGEBRAIC CURVES

by  Lukasz Maciejewski

Abstract. We prove that any topological real line bundle on a compact
real algebraic curve X is isomorphic to an algebraic line bundle. The
result is then generalized to vector bundles of an arbitrary constant rank.
As a consequence we prove that any continuous map from X into a real
Grassmannian can be approximated by regular maps.

1. Introduction. Throughout this paper X denotes a compact real alge-
braic curve, that is, a compact 1-dimensional algebraic subset of Rd for some
d ∈ N. We refer to [1] for terminology and background material on real alge-
braic geometry. In this paper all vector bundles are real vector bundles. Recall
that algebraic vector bundles on X correspond to finitely generated projective
modules over the ring of real-valued regular functions on X, cf. [1, p. 302]. Our
main goal is the following:

Theorem 1.1. Any topological line bundle on X is isomorphic to an alge-
braic line bundle.

Theorem 1.1 is proved in section 2. It can be easily generalized.

Corollary 1.2. Any topological constant rank vector bundle on X is iso-
morphic to an algebraic vector bundle.

Proof. Any topological vector bundle on X of constant rank r ≥ 1 splits
off a trivial vector bundle of rank r− 1, since dim(X) = 1. Hence it suffices to
apply Theorem 1.1.
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As a consequence of Corollary 1.2, we obtain a counterpart of the classi-
cal Weierstrass approximation theorem for maps from X into the Grassmann
variety Gn,k of k-dimensional vector subspaces of Rn.

Corollary 1.3. Let f : X −→Gn,k be a continuous map. Each neighbor-
hood of f in the compact-open topology contains a regular map.

Proof. It suffices to show that the pullback vector bundle f∗γn,k on X,
where γn,k is the tautological vector bundle on Gn,k, is isomorphic to an al-
gebraic vector bundle, cf. [1, Theorem 13.3.1]. This however follows from
Corollary 1.2.

Since the real variety G2,1 is biregularly isomorphic to the unit circle

S1 = {(x, y) ∈ R2 : x2 + y2 = 1},

we immediately get:

Corollary 1.4. Let f : X −→ S1 be a continuous map. Each neighborhood
of f in the compact-open topology contains a regular map.

All the results above are proved in [1] under the assumption that the curve
X is nonsingular. The arguments presented in [1] do not directly generalize to
yield Theorem 1.1.

Corollary 1.5. For every cohomology class u in H1(X;Z/2), there exists
a regular map f : X −→ S1 such that f∗(s1) = u, where s1 is the unique
generator of the cohomology group H1(S1;Z/2) ∼= Z/2.

Proof. There is a one-to-one correspondence between the homotopy
classes of continuous maps from X into S1 and the cohomology classes in
H1(X;Z), cf., [2, p. 300]. Since the reduction modulo 2 homomorphism
H1(X;Z)−→H1(X;Z/2) is surjective, it follows that each cohomology class
in H1(X;Z/2) is of the form f∗(s1) for some continuous map f : X −→ S1.
According to Corollary 1.4, the map f can be assumed to be regular.

Let us note that Corollary 1.5 implies Theorem 1.1. Indeed, let ξ be a topo-
logical line bundle on X. The first Stiefel–Whitney class w1(γ2,1) of the tauto-
logical line bundle γ2,1 on G2,1 generates the cohomology group H1(G2,1;Z/2).
According to Corollary 1.5, there exists a regular map f : X −→G2,1 satisfying
w1(ξ) = f∗(w1(γ2,1)) = w1(f

∗γ2,1). Since topological line bundles are classified
by the first Stiefel-Whitney class (cf. [3, Proposition 3.10]), it follows that ξ is
isomorphic to the algebraic line bundle f∗γ2,1. However, we do not know how
to prove Corollary 1.5 without making use of Theorem 1.1.
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2. Line bundles on real algebraic curves. We first recall a useful con-
struction of algebraic line bundles on an arbitrary affine real algebraic variety
V . Lemma 2.1 below is a special case of [1, Theorem 12.1.11].

Lemma 2.1. Let {U1, . . . , Ur} be a Zariski open cover of V and let
hij : Uj −→R be a regular function satisfying hij(Ui ∩ Uj) ⊂ R \{0} for
1 ≤ i, j ≤ r. Assume that hij · hjk = hik on Uj ∩ Uk for all i, j, k, and
hii(x) = 1 for all i and x in Ui. Let

E = {(x, (v1, . . . , vr)) ∈ V × Rr : vi = hij(x)vj for x ∈ Uj , 1 ≤ i, j ≤ r}

and let p : E−→V be defined by p(x, (v1, . . . , vr)) = x. Then ξ = (E, p, V ) is
an algebraic line subbundle of the product vector bundle on V with total space
V × Rr, and the map

Ui × R−→ p−1(Ui), (x, v) 7→ (h1i(x)v, . . . , hri(x)v))

is an algebraic trivialization of ξ over Ui for 1 ≤ i ≤ r.

For any vector bundle η and any global section s of η, let Z(s) denote the
zero locus of s.

The set Reg(X) of nonsingular points of X in dimension 1 is a Zariski
open subset of X, cf. [1, p. 69]. Furthermore, Reg(X) is a 1-dimensional C∞

manifold.

Lemma 2.2. Let x0 be a point in Reg(X). There exists an algebraic line
bundle ξ = (E, p,X) on X which admits an algebraic section s : X −→E such
that Z(s) = {x0} and the restriction of s to Reg(X) is transverse to the zero
section of ξ.

Proof. Let RX be the sheaf of real-valued regular functions on X. For
any point x on X, we identify the stalk RX,x with the localization of the ring
RX(X) at the maximal ideal

mx = {f ∈ RX(X) : f(x) = 0},

cf. [1, Proposition 3.2.3]. Since the point x0 is in Reg(X), the stalk RX,x0

is a regular local ring of dimension 1 and thus a principal ideal domain. In
particular, the ideal mx0 RX,x0 of the ring RX,x0 is principal. Thus we can
find a regular function f1 in mx0 and a Zariski open neighborhood U1 of x0 in
Reg(X) such that

mx0 RX(U1) = (f1)RX(U1).

In particular, f1|U1 : U1−→R is a C∞ function for which 0 in R is a regular
value and (f1|U1)−1(0) = {x0}.

Let f2 be any regular function in mx0 with f−12 (0) = {x0}, e.g., a polyno-
mial given by the formula ‖x− x0‖2, where ‖ · ‖ denotes the euclidean metric
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in Rd. We have
f2|U1 = h21f1|U1

for some regular function h21 : U1−→R. If U2 = X \ {x0}, then

h12 =
f1
f2

: U2−→R

is a regular function on U2. By construction, the sets h21(U1∩U2) and h12(U1∩
U2) are contained in R \{0}. Define h11 : U1−→R and h22 : U2−→R to be
constant functions identically equal to 1. Let ξ = (E, p,X) be the algebraic
line bundle on X determined, as in Lemma 2.1, by the Zariski open cover
{U1, U2} of X and the regular functions hij . Note that

s : X −→E, s(x) = (x, (f1(x), f2(x)))

is an algebraic section of ξ with Z(s) = {x0}. On the set U1, the section s is
represented by the map

U1−→U1 × R , x 7→ (x, f1(x)),

and hence the restriction of s to Reg(X) is transverse to the zero section
of ξ.

We will now give a convenient description of the first cohomology group
H1(X;Z/2) of the curve X. The subset X \ Reg(X) of X is finite. If X has
nonsingular connected components, we choose one arbitrary point in each of
those and denote the set of such points by Z. The curve X can be regarded
as a graph (1-dimensional CW complex) with (X \ Reg(X)) ∪ Z as the set of
vertices. This assertion is a straightforward consequence of the triangulation
theorem for semi-algebraic sets, cf. [1, Theorem 9.2.1].

Lemma 2.3. There exist subgraphs X1, . . . , Xn of X such that each Xi is
homeomorphic to the unit circle S1, and the inclusion maps Xi ↪→ X induce
an isomorphism

ϕ : H1(X;Z/2)−→
n⊕

i=1

H1(Xi;Z/2)

Proof. Let K be a connected 1-dimensional component of X and let T
be a maximal tree of the graph K. The quotient map q : K −→K/T is a
homotopy equivalence and the quotient space K/T is homeomorphic to the
wedge sum of a finite number of pointed circles, [2, p. 153]. Each such pointed
circle corresponds to a subset of K/T of the form q(C), where C is a subgraph
of K homeomorphic to the unit circle. The inclusion maps q(C) ↪→ K/T
induce an isomorphism

ψ : H1(K/T ;Z/2)−→
⊕
C

H1(q(C);Z/2)
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If qC : C −→ q(C) is the restriction of the map q, then the homomorphism

α =
⊕
C

q∗C :
⊕
C

H1(q(C);Z/2)−→
⊕
C

H1(C;Z/2)

is an isomorphism. The homomorphism

q∗ : H1(K/T ;Z/2)−→H1(K;Z/2)

is an isomorphism, the quotient map being a homotopy equivalence. Finally,
the inclusion maps C ↪→ K induce a homomorphism

ϕK : H1(K;Z/2)−→
⊕
C

H1(C;Z/2)

satisfying ϕK ◦ q∗ = α ◦ ψ. Consequently, ϕK is an isomorphism.
The assertion of the lemma follows, because X has finitely many connected

components.

Proof of Theorem 1.1. The isomorphism classes of topological line
bundles on X form a group, denoted Vect1(X), with tensor product as the
group operation. The first Stiefel–Whitney class gives a group isomorphism
between Vect1(X) and the first cohomology group H1(X;Z/2), cf. [3, Proposi-
tion 3.10]. Also, note that the isomorphism classes of algebraic vector bundles
form a subgroup of Vect1(X). Hence, in view of Lemma 2.3, it remains to con-
struct for each i = 1, . . . , n an algebraic line bundle ξi on X with w1(ξi|Xi) 6= 0
and w1(ξi|Xj ) = 0 for all j 6= i (note that H1(Xi;Z/2) ∼= Z/2). Such a line
bundle ξi can be obtained as follows.

Let xi be a point in

(Xi ∩ Reg(X)) \
⋃
j 6=i

Xj

and let ξ = (E, p,X) be an algebraic line bundle on X as in Lemma 2.2 with
x0 = xi. There exists an algebraic section s : X −→E such that Z(s) = {xi}
and the restriction of s to Reg(X) is transverse to the zero section of ξ. It
follows that the line bundle ξ|Xj is trivial and w1(ξ|Xj ) = 0 for j 6= i.

Suppose for a moment that the line bundle ξ|Xi is trivial, and let

θ : p−1(Xi)−→Xi × R
be a topological trivialization of ξ|Xi . Then θ(s(x)) = (x, f(x)) for each x inXi,
where f : Xi−→R is a continuous function. By construction, f−1(0) = {xi}.
The function f does not change sign on Xi \ {xi}, the set Xi \ {xi} being
homeomorphic to R. This however is impossible since s is transverse to the
zero section of ξ in a neighborhood of xi. Consequently, the line bundle ξ|Xi

is nontrivial and w1(ξ|Xi) 6= 0.
We complete the proof by setting ξi = ξ.
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