

UNIVERSITATIS IAGELLONICAE ACTA MATHEMATICA

doi: 10.4467/20843828AM.12.002.1120

FASCICULUS L, 2012

PERMANENCE AND POSITIVE BOUNDED SOLUTIONS OF KOLMOGOROV PREDATOR-PREY SYSTEM

BY TRINH TUAN ANH AND PHAM MINH THONG

Abstract. Our main purpose is to present some criteria for the permanence and existence of a positive bounded solution of Kolmogorov predator-prey system. Under certain conditions, it is shown that the system is permanent and there exists a solution which is defined on the whole $\mathbb R$ and whose components are bounded from above and from below by positive constants.

 ${\bf 1.}$ ${\bf Introduction.}$ We consider the following Kolmogorov predator-prey system

(1.1)
$$\begin{cases} \dot{u}_i = u_i f_i(t, u_1, \dots, u_n, v_1, \dots, v_m), & i = 1, \dots, n, \\ \dot{v}_j = v_j h_j(t, u_1, \dots, u_n, v_1, \dots, v_m), & j = 1, \dots, m, \end{cases}$$

where $f_i, h_j : \mathbb{R} \times \mathbb{R}^{n+m}_+ \to \mathbb{R}$ are continuous, $u_i(t)$ denotes the quantity of the i^{th} prey at time t and $v_j(t)$ denotes the quantity of the j^{th} predator at time t. A special case of (1.1) is the system of Lotka–Volterra type:

(1.2)
$$\begin{cases} \dot{u}_i = u_i \left[b_i(t) - \sum_{k=1}^n a_{ik}(t) u_k - \sum_{k=1}^m c_{ik}(t) v_k \right], & i = 1, \dots, n, \\ \dot{v}_j = v_j \left[r_j(t) + \sum_{k=1}^n d_{jk}(t) u_k - \sum_{k=1}^m e_{jk}(t) v_k \right], & j = 1, \dots, m, \end{cases}$$

where $a_{ik}(t)$, $c_{ik}(t)$, $d_{jk}(t)$, $e_{jk}(t)$, $b_i(t)$, $r_j(t)$ are continuous and bounded on \mathbb{R} .

A fundamental ecological question associated with the study of multispecies population interactions is the long-term coexistence of the involved populations. Such questions also arise in many other situations (see [3]). Mathematically, this is equivalent to the so-called permanence of the populations. We

²⁰⁰⁰ Mathematics Subject Classification. 34A12, 39A10, 34C11, 34C27, 92B05.

Key words and phrases. Predator-prey system, permanence, bounded solution, almost periodic solution.

recall that system (1.1) is permanent if there exist positive constants δ and Δ ($\delta < \Delta$) such that any noncontinuable solution $(u_1(.), ..., u_n(.), v_1(.), ..., v_m(.))$ of (1.1) with $(u_1(t_0), ..., u_n(t_0), v_1(t_0), ..., v_m(t_0)) \in \operatorname{int} \mathbb{R}^{n+m}_+$ - the interior of \mathbb{R}^{n+m}_+ , is defined on $[t_0, +\infty)$ and for i=1, ..., n, j=1, ..., m the following inequalities are satisfied:

$$\delta\leqslant \liminf_{t\to +\infty}u_i(t)\leqslant \limsup_{t\to +\infty}u_i(t)\leqslant \Delta,\quad \delta\leqslant \liminf_{t\to +\infty}v_j(t)\leqslant \limsup_{t\to +\infty}v_j(t)\leqslant \Delta.$$

The permanence, the existence and global attractivity of a positive periodic solution of system (1.1) and (1.2) in the periodic case have been studied by Wen and Wang (see [6]), as well as many other authors. Some results on sufficient conditions for the existence and global attractivity of a unique positive almost periodic solution of system (1.2) in the almost periodic case were mentioned in [7]. For the Kolmogorov competing system, the authors in [5] have obtained a sufficient condition for the permanence and the existence of a positive bounded solution. As a continuation of [5–7] and some recent results, in this paper we study the permanence and the existence of a positive bounded solution of the Kolmogorov predator-prey system under certain conditions. The paper is organized as follows: Section 2 contains preliminaries, in which we present the relevant results on the permanence and asymptotic behaviour of solutions of a single-species model. In Section 3, we prove our main result on the permanence and existence of a positive bounded solution of system (1.1). In the last section, we study the permanence, existence and global attractivity of a unique positive almost periodic solution of Lotka-Volterra system (1.2).

2. Preliminaries. Consider the following equation

$$\dot{x} = xq(t,x),$$

where $g: \mathbb{R} \times [0, +\infty) \to \mathbb{R}$ is continuous. Let $\mathbb{R}_+ =: [0, +\infty)$. We assume that:

- (G_1) The function g(.,0) is bounded and $\lim_{x\to 0} \{\sup_{t\in\mathbb{R}} |g(t,x)-g(t,0)|\} = 0$,
- (G₂) There exists $\lambda > 0$ such that $\liminf_{t \to +\infty} \int_{t}^{t+\lambda} g(s,0)ds > 0$,
- (G_3) There exist a positive number ω and a function $a: \mathbb{R} \to \mathbb{R}_+$, which is bounded and locally integrable with $\liminf_{t\to +\infty} \int\limits_t^{t+\omega} a(s)ds > 0$ such that $D_x^+g(t,x) \leq -a(t)$ for all $(t,x)\in \mathbb{R}\times \mathbb{R}_+$, where D_x^+ is the upper right derivative with re-

Let
$$\mathcal{B}_+ = \{b : \mathbb{R} \to \mathbb{R} \text{ is continuous and } 0 < \inf_{t \in \mathbb{R}} b(t) \leqslant \sup_{t \in \mathbb{R}} b(t) < +\infty \}.$$

LEMMA 2.1. If g(t,x) is nonincreasing in x, then for each initial value $x(t_0) = x_0 \in \mathbb{R}_+$, equation (2.1) has a unique solution x(t) for $t \ge t_0$.

PROOF. By the way of contradiction we assume that there exists $(t_0, x_0) \in \mathbb{R} \times \mathbb{R}_+$ such that there are two distinct solutions $x_1(t)$ and $x_2(t)$ on $[t_0, t_1]$ $(t_1 > t_0)$ of (2.1) with $x_1(t_0) = x_2(t_0) = x_0$. Without loss of generality, we may assume that $x_1(t) > x_2(t)$ for $t \in (t_0, t_1]$. There are two possible cases:

+) If $x_0 > 0$ then $[\ln x_1(t) - \ln x_2(t)]' = g(t, x_1(t)) - g(t, x_2(t)) \le 0$ for all $t \in [t_0, t_1]$. Hence, $0 < \ln x_1(t_1) - \ln x_2(t_1) \le \ln x_1(t_0) - \ln x_2(t_0) = 0$. This is a contradiction.

+) If $x_0 = 0$ then $x_1(t) > 0$ for all $t \in (t_0, t_1]$. Hence, $\dot{x}_1(t) = x_1(t)g(t, x_1(t)) \le \gamma x_1(t)$ for $t \in [t_0, t_1]$ and for some $\gamma > 0$. By Gronwall's inequality, $x_1(t) = 0$ for all $t \in [t_0, t_1]$. This is a contradiction. The lemma is proved.

Remark. Assumption (G_3) directly implies that g(t,x) is nonincreasing in x.

LEMMA 2.2. If assumptions (G_1) , (G_2) and (G_3) hold, then

(i) Equation (2.1) is permanent,

(ii) $\lim_{t \to +\infty} |x_1(t) - x_2(t)| = 0$ for every couple of solutions $x_1(t)$ and $x_2(t)$ of (2.1) with $x_1(t_0) > 0$ and $x_2(t_0) > 0$.

PROOF. (i) By (G_3) , we have $\int_t^{t+\omega} g(s,x)ds = \int_t^{t+\omega} [g(s,0)+g(s,x)-g(s,0)]ds \le \int_t^{t+\omega} g(s,0)ds - x \int_t^{t+\omega} a(s)ds$, and then $\limsup_{t\to +\infty} \int_t^{t+\omega} g(s,x)ds \le \limsup_{t\to +\infty} \int_t^{t+\omega} g(s,0)ds - x \liminf_{t\to +\infty} \int_t^{t+\omega} a(s)ds$. Thus, by (G_1) and (G_3) , there exists positive number P such that $\limsup_{t\to +\infty} \int_t^{t+\omega} g(s,P)ds < 0$. By (G_1) and (G_2) , there exists positive number p (p < P) such that $\liminf_{t\to +\infty} \int_t^{t+\lambda} g(s,p)ds > 0$. Thus, there exist $\varepsilon > 0$ and $T \in \mathbb{R}$ such that

(2.2)
$$\int_{t}^{t+\omega} g(s,P)ds \leqslant -\varepsilon, \int_{t}^{t+\lambda} g(s,p)ds \geqslant \varepsilon \text{ for all } t \geqslant T.$$

Claim 1. If $t_1 \ge T$ such that $x(t_1) = P$ and $x(t) \ge P$ for all $t \in [t_1, t_2]$, then $t_2 - t_1 < \omega$. Indeed, by the way of contradiction we assume that $t_2 - t_1 \ge \omega$,

then

$$x(t_1 + \omega) = x(t_1) \exp\left\{ \int_{t_1}^{t_1 + \omega} g(t, x(t)) dt \right\}$$

$$\leqslant x(t_1) \exp\left\{ \int_{t_1}^{t_1 + \omega} g(t, P) dt \right\} \leqslant Pe^{-\varepsilon} < P,$$

which is a contradiction, since $x(t_1 + \omega) \ge P$. The claim is proved.

Claim 2. There exists $T_1 \ge T$ such that $x(T_1) \le P$. Indeed, suppose in the contrary that x(t) > P for all $t \ge T$. Then $x(t) \le x(T) \exp \int_T^t g(s, P) ds$ for all $t \ge T$. Thus, (2.2) implies that $\lim_{t \to +\infty} x(t) = 0$. This is a contradiction that proves the claim.

Let us put $\alpha_1 = \sup_{t \in \mathbb{R}} |g(t,0)|$ and $\Delta = P \exp(\alpha_1 \omega)$. By Claims 1 and 2, it follows that $x(t) \leq \Delta$ for all $t \geq T_1$.

Claim 3. If $t_1 \ge T$ such that $x(t_1) = p$ and $x(t) \le p$ for all $t \in [t_1, t_2]$ then $t_2 - t_1 < \lambda$. Indeed, by the way of contradiction we assume that $t_2 - t_1 \ge \lambda$, then $x(t_1 + \lambda) = x(t_1) \exp \int_{t_1}^{t_1 + \lambda} g(t, x(t)) dt \ge x(t_1) \exp \int_{t_1}^{t_1 + \lambda} g(t, p) dt \ge p e^{\varepsilon} > p$, which is a contradiction, since $x(t_1 + \lambda) \le p$. The claim is proved.

Claim 4. There exists $T_2 \ge T$ such that $x(T_2) \ge p$. Indeed, suppose in the contrary that x(t) < p for all $t \ge T$. Then $x(t) \ge x(T) \exp \int_T^t g(s,p) ds$ for all $t \ge T$. Thus, (2.2) implies that $\lim_{t \to +\infty} x(t) = +\infty$. This is a contradiction which proves the claim.

Let us put $\alpha_2 = \sup_{t \in \mathbb{R}} \{|g(t,p)| + g(t,0)\}$ and $\delta = p \exp(-\alpha_2 \lambda)$. By Claims 3 and 4, it follows that $x(t) \geqslant \delta$ for all $t \geqslant T_2$. The proof of part (i) is complete. (ii) Let $x_1(t)$ and $x_2(t)$ be two arbitrary solutions of equation (2.1) with $x_1(t_0) > 0$ and $x_2(t_0) > 0$. There exist $\delta, \Delta > 0$ and $T \geqslant t_0$ such that $x_i(t) \in [\delta, \Delta]$ for all $t \geqslant T$ and i = 1, 2. By Lemma 2.1, without loss of generality we may assume that $x_1(t) \geqslant x_2(t)$ for all $t \geqslant T$. Let $V(t) = \ln x_1(t) - \ln x_2(t)$. Then $\dot{V}(t) = g(t, x_1(t)) - g(t, x_2(t)) \leqslant -a(t)[x_1(t) - x_2(t)] \leqslant -\delta a(t)V(t)$. Thus, $V(t) \leqslant V(T) \exp \int_T^t -\delta a(s) ds \to 0$ as $t \to +\infty$. This implies $\lim_{t \to +\infty} |x_1(t) - x_2(t)| = 0$.

LEMMA 2.3. Let assumptions (G_1) , (G_2) and (G_3) hold. If

- (G₄) There exists a positive number $\bar{\lambda}$ such that $\liminf_{t\to-\infty}\int_t^{t+\bar{\lambda}}g(s,0)ds>0$ and (G₅) There exists a positive number $\bar{\omega}$ such that $\liminf_{t\to-\infty}\int_t^{t+\bar{\omega}}a(s)ds>0$, then equation (2.1) has a unique solution $X^0(.) \in \mathcal{B}_+$.

PROOF. (i) The existence. By the same argument as given in the proof of inequalities (2.2) in Lemma 2.2, we know that there exist $\bar{p}, P, \bar{\varepsilon} > 0$ and $\bar{T} \in \mathbb{R}$ such that

(2.3)
$$\int_{t}^{t+\bar{\omega}} g(s,\bar{P})ds \leqslant -\bar{\varepsilon}, \quad \int_{t}^{t+\bar{\lambda}} g(s,\bar{p})ds \geqslant \bar{\varepsilon} \quad \text{ for all } t \leqslant \bar{T}.$$

Put $\alpha_1 = \sup_{t \in \mathbb{R}} |g(t,0)|, \ \bar{\Delta} = \bar{P} \exp(\alpha_1 \bar{\omega}), \ \alpha_2 = \sup_{t \in \mathbb{R}} \{|g(t,p)| + g(t,0)\}$ and $\bar{\delta} = \bar{p} \exp(-\alpha_2 \bar{\lambda})$. By the same argument as given in the proof of part (i) of Lemma 2.2, we conclude that if $x(t_0) \in [\bar{p}, \bar{P}]$ then $x(t) \in [\delta, \Delta]$ for all $t \in [t_0, \bar{T}]$. For each positive integer n such that $-n \leqslant \bar{T}$, let $x_n(t)$ be a solution of (2.1) with $x_n(-n) = \bar{p}$. Then $x_n(t) \in [\bar{\delta}, \bar{\Delta}]$ for all $t \in [-n, \bar{T}]$. In particular, $x_n(\bar{T}) \in [\bar{\delta}, \bar{\Delta}]$. Therefore, there exists a subsequence $\{n_k\}$ of $\{n\}$ such that $x_{n_k}(\bar{T}) \to \xi$ as $k \to +\infty$ for some $\xi \in [\bar{\delta}, \bar{\Delta}]$. By Theorem 3.2 in [2, p. 14], there exist a solution $X^0(t)$ of (2.1) satisfying $X^0(\bar{T}) = \xi$ with the maximal interval of existence (ω_1, ω_1) and a subsequence $\{n_{k_i}\}$ of $\{n_k\}$ such that $x_{n_{k,i}}(t)$ converges to $X^0(t)$ uniformly on any compact subset of (ω_1, ω_2) . By Lemma 2.2 (i), $\omega_2 = +\infty$. We now prove that $\omega_1 = -\infty$. To this end, by the way of contradiction we assume that $\omega_1 > -\infty$. Then there exists $t_0 \in (-\infty, \bar{T}]$ such that $X^0(t_0) \notin [\bar{\delta}, \bar{\Delta}]$. Choose a positive integer j_0 such that $-n_{k_{j_0}} < t_0$. Clearly $x_{n_{k_i}}(t_0) \in [\bar{\delta}, \bar{\Delta}]$ for all $j \geqslant j_0$ and $x_{n_{k_i}}(t_0) \to X^0(t_0)$ as $j \to +\infty$. Thus, $X^0(t_0) \in [\bar{\delta}, \bar{\Delta}]$. This is a contradiction. It implies that $\omega_1 = -\infty$. For each $\bar{t} \in (-\infty, \bar{T}]$, we know that $x_{n_{k_j}}(\bar{t}) \to X^0(\bar{t})$ as $j \to +\infty$. Thus, $X^0(\bar{t}) \in [\bar{\delta}, \bar{\Delta}]$ for all $\bar{t} \in (-\infty, \bar{T}]$. By Lemma 2.2 (i), $X^0(.) \in \mathcal{B}_+$. (ii) The uniqueness. Suppose in the contrary that equation (2.1) has two distinct solutions $X^0(t)$ and $X^1(t)$ defined on \mathbb{R} and satisfying $\delta \leqslant X^i(t) \leqslant \Delta$ for all $t \in \mathbb{R}$ (i = 0, 1), where δ , Δ are positive constants. By Lemma 2.1, without loss of generality, we may assume that $X^0(t) \ge X^1(t)$ for all $t \in \mathbb{R}$. Put $V(t) = \ln X^{0}(t) - \ln X^{1}(t)$. We have $\dot{V}(t) = g(t, X^{0}(t)) - g(t, X^{1}(t)) \le -a(t)[X^{0}(t) - X^{1}(t)] \le -\delta a(t)V(t)$. Thus, since V(t) is bounded, $0 < V(t_{0}) \le -\delta a(t)V(t)$. $V(t) \exp \int_{-\infty}^{t_0} [-\delta a(s)] ds \to 0$ as $t \to -\infty$. This is a contradiction. The proof of Lemma 2.3 is complete.

Lemma 2.4. Assume that

 (H_1) For each $i=1,2, g_i: \mathbb{R} \times \mathbb{R}_+ \to \mathbb{R}$ is continuous and such that the following equation

$$\dot{x}_i = x_i g_i(t, x_i)$$

is permanent,

 (H_2) For each i=1,2, equation (2.4_i) has a unique solution $X_i^0(.) \in \mathcal{B}_+$, (H₃) The function $g_i(t, .)$ is nonincreasing for each $t \in \mathbb{R}$ and $g_1(t, x) \leq g_2(t, x)$ for all $(t, x) \in \mathbb{R} \times \mathbb{R}_+$. Then $X_1^0(t) \leqslant X_2^0(t)$ for all $t \in \mathbb{R}$.

PROOF. Suppose in the contrary that there exists $t_1 \in \mathbb{R}$ such that $X_1^0(t_1) > 0$ $X_2^0(t_1)$. By (H_1) , there exists a solution $\bar{x}_2(t)$ of (2.4_2) with $\bar{x}_2(t_1) = X_1^0(t_1)$ and defined on $[t_1, +\infty)$ and bounded from above and from below on $[t_1, +\infty)$ by positive constants. For $t \leq t_1$ let $\tilde{x}_2(t)$ be the minimal solution of (2.4_2) with $\tilde{x}_2(t_1) = X_1^0(t_1)$. By Theorem 4.1 in [2, p. 26], we have $X_1^0(t) \geqslant \tilde{x}_2(t) \geqslant X_2^0(t)$ for all $t < t_1$ in the domain of $\tilde{x}_2(t)$. Thus, $\tilde{x}_2(t)$ is defined for all $t \in (-\infty, t_1]$.

$$x^*(t) = \begin{cases} \bar{x}_2(t), & \text{if } t \ge t_1, \\ \tilde{x}_2(t), & \text{if } t < t_1. \end{cases}$$

Then $x^*(.) \in \mathcal{B}_+$. Moreover, $x^*(.)$ is a solution of (2.4_2) which is different from $X_2^0(.)$. This is a contradiction. The lemma is proved.

Lemma 2.5. Let hypothesis (H_1) hold. If

 (H_4) There exist $\omega > 0$ and a function $a: \mathbb{R} \to \mathbb{R}_+$ which is bounded and locally integrable with $\liminf_{t\to+\infty} \int_t^{t+\omega} a(s)ds > 0$ such that $D_x^+g_1(t,x) \leq -a(t)$ for $all (t, x) \in \mathbb{R} \times \mathbb{R}_+,$

(H₅) For each compact set $S \subset \mathbb{R}_+$, $\lim_{t \to +\infty} \{ \sup_{x \in S} |g_1(t,x) - g_2(t,x)| \} = 0$, then $\lim_{t \to +\infty} |x_1(t) - x_2(t)| = 0$ for any couple of solutions $x_1(t)$ and $x_2(t)$ of equations (2.4₁) and (2.4₂), respectively, with $x_1(t_0) > 0$ and $x_2(t_0) > 0$.

PROOF. For each i = 1, 2, let $x_i(t)$ be a solution of (2.4_i) with $x_i(t_0) > 0$. By (H_1) , there exist δ , $\Delta > 0$ and $T \ge t_0$ such that $\delta \le x_i(t) \le \Delta$ for all $t \geqslant T$, i = 1, 2. For $t \geqslant T$, let $V(t) = |\ln x_1(t) - \ln x_2(t)|$. By (H_5) , we obtain

$$D^{+}V(t) = \left[\operatorname{sign}(x_{1}(t) - x_{2}(t))\right]$$

$$\cdot \left\{ \left[g_{1}(t, x_{1}(t)) - g_{1}(t, x_{2}(t))\right] + \left[g_{1}(t, x_{2}(t)) - g_{2}(t, x_{2}(t))\right] \right\}$$

$$\leq -a(t)|x_{1}(t) - x_{2}(t)| + h(t) \leq -\delta a(t)V(t) + h(t),$$

where $h(t) = |g_1(t, x_2(t)) - g_2(t, x_2(t))|$. By (H_5) , we have $\lim_{t \to +\infty} h(t) = 0$. Thus, (H_4) and (2.5) imply that $\lim_{t \to +\infty} V(t) = 0$. Hence, $\lim_{t \to +\infty} |x_1(t) - x_2(t)| = 0$. \square

Consider the following equation

$$\dot{y} = f(t, y),$$

where $f: \mathbb{R} \times \Omega \to \mathbb{R}^d$ ($\Omega \subset \mathbb{R}^d$ is open) is almost periodic in t uniformly for $y \in \Omega$. We recall Bochner's criterion for the almost periodicity (see [8]): f(t,y) is almost periodic in t uniformly for $y \in \Omega$ if and only if for every sequence of numbers $\{\tau_k\}_{k=1}^{\infty}$, there exists a subsequence $\{\tau_{k_l}\}_{l=1}^{\infty}$ such that the sequence of translations $\{f(\tau_{k_l} + t, y)\}_{l=1}^{\infty}$ converges uniformly on $\mathbb{R} \times S$, where S is any compact subset of Ω .

Denote by f_{τ} the τ -translation of f, that is $f_{\tau}(t,y) = f(\tau + t,y)$; H(f) the hull of f, that is the closure of $\{f_{\tau} : \tau \in \mathbb{R}\}$ in the topology of uniform convergence on compact subsets of $\mathbb{R} \times \Omega$. We know that H(f) is compact and for $f^* \in H(f)$, $f^*(t,y)$ is almost periodic in t uniformly for $y \in \Omega$. Denote by \mathcal{C} the set of continuous functions from $\mathbb{R} \times \Omega$ into \mathbb{R}^d equipped with the topology of uniform convergence on compact subsets of $\mathbb{R} \times \Omega$.

Lemma 2.6. Let S be a compact subset of Ω . Assume that for each $f^* \in H(f)$, the following equation

$$\dot{y} = f^*(t, y)$$

has a unique solution $y^*(t)$ which is defined on whole \mathbb{R} and $y^*(t) \in S$ for all $t \in \mathbb{R}$. Then equation (2.6) has a unique almost periodic solution in S and its module is contained in the module of f(t,y).

PROOF. Let $y_0(t)$ be the unique solution of (2.6) with $y_0(t) \in S$ for all $t \in \mathbb{R}$. Let $\{\tau_k\}_{k=1}^{\infty}$ be a sequence such that $f_{\tau_k} \to f^*$ as $k \to \infty$ uniformly on $\mathbb{R} \times K$, where K is any compact subset of Ω . We claim that $y_0(\tau_k + t) \to y^*(t)$ as $k \to \infty$ uniformly on \mathbb{R} , where $y^*(t)$ is the unique solution of (2.7) with $y^*(t) \in S$ for all $t \in \mathbb{R}$. To this end, by the way of contradiction we assume that there exist a subsequence $\{\tau_{k_l}\}_{l=1}^{\infty}$ of $\{\tau_k\}_{k=1}^{\infty}$, a sequence of numbers $\{s_l\}_{l=1}^{\infty}$ and a positive number α such that $\|y_0(s_l + \tau_{k_l}) - y^*(s_l)\| \ge \alpha$ for all l. By Bochner's criterion, we may assume, without loss of generality, that $f_{\tau_{m_l}+s_l} \to \hat{f}$ as $l \to \infty$ uniformly on $\mathbb{R} \times K$, where K is any compact subset of Ω . Thus, $f_{s_l}^* \to \hat{f}$ as $l \to \infty$ uniformly on $\mathbb{R} \times K$, where K is any compact subset of Ω . Since S is compact, we may without loss of generality assume that $y_0(\tau_{k_l}+s_l) \to \xi_0$ and $y^*(s_l) \to \xi^*$ as $l \to \infty$. We know that ξ_0 , $\xi^* \in S$ and $\|\xi_0 - \xi^*\| \ge \alpha$. It is clear that $y_0(t + \tau_{k_l} + s_l)$ is a solution of the following equation

$$\dot{y} = f(t + \tau_{k_l} + s_l, y).$$

Consider the following equation

$$\dot{y} = \hat{f}(t, y).$$

Now $f_{\tau_{k_l}+s_l} \to \hat{f}$ uniformly on any compact subset of $\mathbb{R} \times \Omega$ as $l \to \infty$, Theorem 3.2 in [2, p. 14] shows that there exist a solution y(t) of (2.9) with $y(0) = \xi_0$ having a maximal interval of existence (ω_1, ω_2) and a subsequence of $\{\tau_{k_l} + s_l\}_{l=1}^{\infty}$ therefore, without loss of generality, we may assume that there is $\{\tau_{k_l} + s_l\}_{l=1}^{\infty}$ such that $y_0(t + \tau_{k_l} + s_l) \to y(t)$ uniformly on any compact subset of (ω_1, ω_2) as $l \to \infty$. Since S is compact, Theorem 3.1 in [2, p. 12] shows that $\omega_1 = -\infty$ and $\omega_2 = +\infty$. Thus, $y(t) \in S$ for all $t \in \mathbb{R}$.

We know that $y^*(t + s_l)$ is a solution of the following equation

$$\dot{y} = f^*(t + s_k, y).$$

By the same argument as given above, there exists a solution $\bar{y}(t)$ of (2.10) with $\bar{y}(0) = \xi^*$ and $\bar{y}(t) \in S$ for all $t \in \mathbb{R}$. By the uniqueness of solution of (2.10) defined on \mathbb{R} and contained in S, we have $y(t) = \bar{y}(t)$ for all $t \in \mathbb{R}$. Thus, $\xi_0 = y(0) = \bar{y}(0) = \xi^*$, but this contradicts $\|\xi_0 - \xi^*\| \ge \alpha$. The claim is proved. By Bochner's criterion, $y_0(t)$ is almost periodic.

By the module containment theorem [8, p. 18], the module of $y_0(t)$ is contained in the module of f(t, y).

LEMMA 2.7. Assume that g(t,x) is almost periodic in t uniformly for $x \in \mathbb{R} \times \mathbb{R}_+$ and

$$(G_1^*) \lim_{T \to +\infty} \frac{1}{T} \int_0^T g(s,0)ds > 0,$$

 (G_2^*) There exists an almost periodic function $a: \mathbb{R} \to \mathbb{R}_+$ such that

$$\lim_{T \to +\infty} \frac{1}{T} \int_{0}^{T} a(s)ds > 0 \text{ and } D_{x}^{+}g(t,x)) \leqslant -a(t) \text{ for all } (t,x) \in \mathbb{R} \times \mathbb{R}_{+}.$$

Then equation (2.1) has a unique solution $X^0(.) \in \mathcal{B}_+$. Moreover, $X^0(.)$ is almost periodic, its module is contained in the module of g(t,x) and $\lim_{t\to +\infty} |x(t)-t|$

 $X^{0}(t)|=0$ for any solution x(t) of (2.1) with $x(t_{0})>0$. In particular, if g(t,x) is Θ -periodic in t ($\Theta>0$), then also the solution $X^{0}(t)$ is Θ -periodic.

PROOF. By almost periodicity, (G_1^*) and (G_2^*) imply that there exist positive numbers λ and γ such that $\int\limits_t^{t+\lambda} g(s,0)ds > \gamma$ and $\int\limits_t^{t+\lambda} a(s)ds > \gamma$ for all $t \in \mathbb{R}$.

By the same argument as given in the proof of inequalities (2.2) of Lemma 2.2,

there exist positive numbers p, P and ε such that

(2.11)
$$\int_{t}^{\lambda+t} g(s,P)ds \leqslant -\varepsilon, \int_{t}^{\lambda+t} g(s,p)ds \geqslant \varepsilon \text{ for all } t \in \mathbb{R}.$$

By almost periodicity of g(t, x), it is easy to see that

(2.12)
$$\int_{t}^{\lambda+t} g^{*}(s, P)ds \leqslant -\varepsilon, \int_{t}^{\lambda+t} g^{*}(s, p)ds \geqslant \varepsilon, \text{ for all } t \in \mathbb{R} \text{ and } g^{*} \in H(g).$$

Put $\alpha_1 = \sup_{t \in \mathbb{R}} |g^*(t,0)|$, $\Delta = P \exp(\alpha_1 \lambda)$, $\alpha_2 = \sup_{t \in \mathbb{R}} \{|g^*(t,p)| + g^*(t,0)\}$ and $\delta = p \exp(-\alpha_2 \lambda)$. It is easy to see that δ and Δ do not depend on the choice of $g^* \in H(g)$.

Let $g^* \in H(g)$; consider the following equation

$$\dot{x} = xg^*(t, x).$$

By the same argument as given in the proof of Lemma 2.3, we can show that (2.13) has a unique solution $X^*(t)$ defined on \mathbb{R} with $X^*(t) \in [\delta, \Delta]$ for all $t \in \mathbb{R}$. It follows from Lemmas 2.2 and 2.6 that equation (2.1) has a unique almost periodic solution $X^0(.) \in \mathcal{B}_+$, which satisfies $\lim_{t \to +\infty} |x(t) - X^0(t)| = 0$ for any solution x(t) of equation (2.1) with $x(t_0) > 0$ and its module is contained in that of g(t,x). If g is Θ -periodic in t, then $X^0(.), X^0_{\Theta}(.) \in \mathcal{B}_+$ are two solutions of equation (2.1). By the uniqueness, $X^0(.) \equiv X^0_{\Theta}(.)$. The lemma is proved.

3. Permanence and bounded solutions of Kolmogorov predator--prey system. Consider the following Kolmogorov predator-prey system

(3.1)
$$\dot{u}_i = u_i f_i(t, u_1, \dots, u_n, v_1, \dots, v_m), \ i = 1, \dots, n, \\ \dot{v}_j = v_j h_j(t, u_1, \dots, u_n, v_1, \dots, v_m), \ j = 1, \dots, m,$$

where $f_i, h_j : \mathbb{R} \times \mathbb{R}^{n+m}_+ \to \mathbb{R}$ are continuous. For $w, z \in \mathbb{R}^d$, we set $w \leq z$ if $w_i \leq z_i$, i = 1, ..., d. Let $\mathcal{B}^d_+ = \{(\phi_1, ..., \phi_d) : \mathbb{R} \to \mathbb{R}^d \mid \phi_i \in \mathcal{B}_+, i = 1, ..., d\}$. We introduce the following hypotheses:

 (K_1) f_i , h_j are bounded on any set of the form $\mathbb{R} \times S$, where $S \subset \mathbb{R}_+^{n+m}$ is compact, and are such that for each compact set $S \subset \mathbb{R}_+^{n+m}$, for any $\varepsilon > 0$, there exists $\delta > 0$ such that $|f_i(t,u,v) - f_i(t,\bar{u},\bar{v})| < \varepsilon$, $|h_j(t,u,v) - h_j(t,\bar{u},\bar{v})| < \varepsilon$ for all $t \in \mathbb{R}$, $i = 1, \ldots, n$, $j = 1, \ldots, m$ and (u,v), $(\bar{u},\bar{v}) \in S$ with $||(u,v) - (\bar{u},\bar{v})|| < \delta$.

 (K_2) For each $i=1,\ldots,n$, there exist positive numbers λ_i^+ and λ_i^- such that

$$\lim_{t \to +\infty} \inf_{t} \int_{t}^{t+\lambda_{i}^{+}} f_{i}(s,0,\ldots,0) ds > 0, \lim_{t \to -\infty} \inf_{t} \int_{t}^{t+\lambda_{i}^{-}} f_{i}(s,0,\ldots,0) ds > 0,$$

 (K_3) For each $i=1,\ldots,n$, there exist positive numbers ω_i^+ , ω_i^- and a bounded locally integrable function $a_i:\mathbb{R}\to\mathbb{R}_+$ with

$$\lim_{t \to +\infty} \inf_{t} \int_{t}^{t+\omega_{i}^{+}} a_{i}(s)ds > 0 \text{ and } \lim_{t \to -\infty} \inf_{t} \int_{t}^{t+\omega_{i}^{-}} a_{i}(s)ds > 0$$

such that $D_{u_i}^+ f_i(t, u, v) \leq -a_i(t)$ for $(t, u, v) \in \mathbb{R} \times \mathbb{R}_+^{n+m}$,

 (K_4) For each $j=1,\ldots,m$, there exist positive numbers $\gamma_j^+, \ \gamma_j^-$ and a bounded locally integrable function $e_j: \mathbb{R} \to \mathbb{R}_+$ with

$$\lim_{t \to +\infty} \inf_{t} \int_{t}^{t+\gamma_{j}^{+}} e_{j}(s)ds > 0 \text{ and } \lim_{t \to -\infty} \inf_{t} \int_{t}^{t+\gamma_{j}^{-}} e_{j}(s)ds > 0$$

such that $D_{v_i}^+ h_j(t, u, v) \leq -e_j(t)$ for $(t, u, v) \in \mathbb{R} \times \mathbb{R}_+^{n+m}$,

- (K_5) For each $i=1,\ldots,n,$ $f_i(t,u_1,\ldots,u_n,v_1,\ldots,v_m)$ is nonincreasing in each variable u_l for $l=1,\ldots,n$ and in each variable v_k for $k=1,\ldots,m$,
- (K_6) For each $j=1,\ldots,m,\ h_j(t,u_1,\ldots,u_n,v_1,\ldots,v_m)$ is nondecreasing in each variable u_l for $l=1,\ldots,n$ and is nonincreasing in each variable v_k for $k=1,\ldots,m$.

Note that by (K_1) , (K_2) , (K_3) and Lemma 2.3, for each $i = 1, \ldots, n$, the following equation

$$\dot{u}_i = u_i f_i(t, 0, \dots, 0, u_i, 0, \dots, 0)$$

has a unique solution $U_i^0(.) \in \mathcal{B}_+$. Put $U^0(t) = (U_1^0(t), \dots, U_n^0(t))$.

 (K_7) For each $j=1,\ldots,m$, there exist positive numbers $\mu_j^+,\ \mu_j^-$ such that

$$\lim_{t \to +\infty} \inf_{t} \int_{t}^{t+\mu_{j}^{+}} h_{j}(s, U^{0}(s), 0, \dots, 0) ds > 0, \lim_{t \to -\infty} \inf_{t} \int_{t}^{t+\mu_{j}^{-}} h_{j}(s, U^{0}(s), 0, \dots, 0) ds > 0.$$

Note that by (K_1) , (K_4) , (K_7) and Lemma 2.3, for each $j = 1, \ldots, m$, the following equation

(3.3_j)
$$\dot{v}_j = v_j h_j(t, U^0(t), 0, \dots, 0, v_j, 0, \dots, 0)$$

has a unique solution $V_j^0(.) \in \mathcal{B}_+$. Put $V^0(t) = (V_1^0(t), \dots, V_m^0(t))$.

 (K_8) For each $i=1,\ldots,n$, there exist positive numbers $\nu_i^+,\ \nu_i^-$ such that

$$\lim_{t \to +\infty} \int_{t}^{t+\nu_i^+} f_i(s, U_1^0(s), \dots, U_{i-1}^0(s), 0, U_{i+1}^0(s), \dots, U_n^0(s), V^0(s)) ds > 0,$$

$$\lim_{t \to -\infty} \int_{t}^{t} f_i(s, U_1^0(s), \dots, U_{i-1}^0(s), 0, U_{i+1}^0(s), \dots, U_n^0(s), V^0(s)) ds > 0.$$

Note that by (K_1) , (K_3) , (K_8) and Lemma 2.3, for each $i = 1, \ldots, n$, the following equation

$$(3.4_i) \qquad \dot{u}_i = u_i f_i(t, U_1^0(t), \dots, U_{i-1}^0(t), u_i, U_{i+1}^0(t), \dots, U_n^0(t), V^0(t))$$

has a unique solution $u_i^0(.) \in \mathcal{B}_+$. Put $u^0(t) = (u_1^0(t), \dots, u_n^0(t))$.

 (K_9) For each $j=1,\ldots,m$, there exist positive numbers $\varepsilon_i^+,\ \varepsilon_i^-$ such that

$$\lim_{t \to +\infty} \int_{t}^{t+\varepsilon_{j}^{+}} h_{j}(s, u^{0}(s), V_{1}^{0}(s), \dots, V_{j-1}^{0}(s), 0, V_{j+1}^{0}(s), \dots, V_{m}^{0}(s)) ds > 0,$$

$$\lim_{t \to +\infty} \int_{t}^{t} h_{j}(s, u^{0}(s), V_{1}^{0}(s), \dots, V_{j-1}^{0}(s), 0, V_{j+1}^{0}(s), \dots, V_{m}^{0}(s)) ds > 0.$$

Note that by (K_1) , (K_4) , (K_9) and Lemma 2.3, for each $j = 1, \ldots, m$, the following equation

$$(3.5_j) \dot{v}_j = v_j h_j(t, u^0(t), V_1^0(t), \dots, V_{j-1}^0(t), v_j, V_{j+1}^0(t), \dots, V_m^0(t))$$

has a unique solution $v_i^0(.) \in \mathcal{B}_+$. Put $v^0(t) = (v_1^0(t), \dots, v_m^0(t))$.

THEOREM 3.1. Let (K_1) – (K_9) hold. Then system (3.1) is permanent and it has at least one solution $(u^*(.), v^*(.)) \in \mathcal{B}^{n+m}_+$.

PROOF. (i) The existence. By Lemma 2.4, $(u^0(t), v^0(t)) \leq (U^0(t), V^0(t))$ for all $t \in \mathbb{R}$. We denote by \mathcal{C} the set of continuous functions (u(.), v(.)): $\mathbb{R} \to \mathbb{R}^n \times \mathbb{R}^m$ equipped with the topology of uniform convergence on compact subsets of \mathbb{R} . It is well-known that \mathcal{C} is a Fréchet space. Let

$$\mathcal{M} = \{(u(.), v(.)) \in \mathcal{C} : (u^{0}(t), v^{0}(t)) \leq (u(t), v(t)) \leq (U^{0}(t), V^{0}(t))$$
 for all $t \in \mathbb{R}$.

By (K_1) , (K_3) , (K_4) , (K_8) and (K_9) , Lemma 2.3 implies that for each $(\tilde{u}(.), \tilde{v}(.)) \in \mathcal{M}$, the following system of n+m uncoupled differential equations

(3.6)
$$\dot{u}_{i} = u_{i} f_{i}(t, \tilde{u}_{1}(t), \dots, \tilde{u}_{i-1}(t), u_{i}, \tilde{u}_{i+1}(t), \dots, \tilde{u}_{n}(t), \tilde{v}(t)), \ i=1, \dots, n,$$

$$\dot{v}_{j} = v_{j} h_{j}(t, \tilde{u}(t), \tilde{v}_{1}(t), \dots, \tilde{v}_{j-1}(t), v_{j}, \tilde{v}_{j+1}(t), \dots, \tilde{v}_{m}(t)), \ j=1, \dots, m,$$

has a unique solution $(\bar{u}(.), \bar{v}(.)) \in \mathcal{B}^{n+m}_+$. By Lemma 2.4, $(u^0(t), v^0(t)) \leq (\bar{u}(t), \bar{v}(t)) \leq (U^0(t), V^0(t))$ for all $t \in \mathbb{R}$. Hence, we can introduce the following operator

$$\mathcal{T}: \mathcal{M} \to \mathcal{M}, \ (\tilde{u}(.), \tilde{v}(.)) \mapsto (\bar{u}(.), \bar{v}(.)).$$

Clearly, $(u^*(.), v^*(.))$ is a solution in \mathcal{M} of system (3.1) if and only if it is a fixed point of \mathcal{T} . Let

$$\delta = \inf\{u_i^0(t), v_j^0(t) : i = 1, \dots, n, \ j = 1, \dots, m, \ t \in \mathbb{R}\},$$

$$\Delta = \sup\{U_i^0(t), V_j^0(t) : i = 1, \dots, n, \ j = 1, \dots, m, \ t \in \mathbb{R}\},$$

$$L = \sup\{|u_i f_i(t, u, v)|, \ |v_j h_j(t, u, v)| : i = 1, \dots, n, \ j = 1, \dots, m,$$

$$(t, u, v) \in \mathbb{R} \times [\delta, \Delta]^{n+m}\}.$$

By (K_1) , $0 < L < +\infty$. Let us set

$$\mathcal{M}_1 = \{ \phi \in \mathcal{M} : |\phi_i(t) - \phi_i(\bar{t})| \leqslant L|t - \bar{t}|, \ i = 1, \dots, n + m, \ t, \bar{t} \in \mathbb{R} \}.$$

It is easily seen that \mathcal{M}_1 is a closed convex subset of \mathcal{M} . By Ascoli's theorem (see [4]), \mathcal{M}_1 is compact (in the topology of uniform convergence on compact subsets of \mathbb{R}). Moreover, $\mathcal{T}(\mathcal{M}_1) \subset \mathcal{M}_1$.

Claim. The operator \mathcal{T} is continuous on \mathcal{M}_1 in the topology of uniform convergence on compact subsets of \mathbb{R} . To prove this, let $\{(u^k(.), v^k(.))\}_{k=1}^{\infty} \subset \mathcal{M}_1$ such that $(u^k(.), v^k(.)) \to (\tilde{u}(.), \tilde{v}(.))$ as $k \to +\infty$. Since \mathcal{M}_1 is closed, $(\tilde{u}(.), \tilde{v}(.)) \in \mathcal{M}_1$. We shall show that $\mathcal{T}(u^k(.), v^k(.)) \to \mathcal{T}(\tilde{u}(.), \tilde{v}(.))$ as $t \to +\infty$. Since $\{\mathcal{T}(u^k(.), v^k(.))\}_{k=1}^{\infty}$ is precompact, it suffices to show that if a subsequence $\{\mathcal{T}(u^{k_s}(.), v^{k_s}(.))\}$ converges to $(\bar{u}(.), \bar{v}(.))$ then $(\bar{u}(.), \bar{v}(.)) = \mathcal{T}(\tilde{u}(.), \tilde{v}(.))$. To this end, let us consider two systems (3.7_{k_s})

$$\begin{cases} \dot{u}_i = u_i f_i(t, u_1^{k_s}(t), \dots, u_{i-1}^{k_s}(t), u_i, u_{i+1}^{k_s}(t), \dots, u_n^{k_s}(t), v^{k_s}(t)), & i = 1, \dots, n, \\ \dot{v}_j = v_j h_j(t, u^{k_s}(t), v_1^{k_s}(t), \dots, v_{j-1}^{k_s}(t), v_j, v_{j+1}^{k_s}(t), \dots, v_m^{k_s}(t)), & j = 1, \dots, m, \end{cases}$$
 and

(3.8)

$$\begin{cases} \dot{u}_i = u_i f_i(t, \tilde{u}_1(t), \dots, \tilde{u}_{i-1}(t), u_i, \tilde{u}_{i+1}(t), \dots, \tilde{u}_n(t), \tilde{v}(t)), & i = 1, \dots, n, \\ \dot{v}_j = v_j h_j(t, \tilde{u}(t), \tilde{v}_1(t), \dots, \tilde{v}_{j-1}(t), v_j, \tilde{v}_{j+1}(t), \dots, \tilde{v}_m(t)), & j = 1, \dots, m. \end{cases}$$

Clearly, the right hand side of (3.7_{k_s}) converges to the right hand side of (3.8) uniformly on any compact subset of $\mathbb{R} \times \mathbb{R}^{n+m}_+$. By Theorem 2.4 in [2, p. 4], it

follows that $(\bar{u}(.), \bar{v}(.))$ is a solution of (3.8). Since (3.8) has a unique solution in \mathcal{M} (by Lemma 2.3), $\mathcal{T}(\tilde{u}(.), \tilde{v}(.)) = (\bar{u}(.), \bar{v}(.))$. The claim is proved.

By Tychonov's fixed point theorem (see [1]), there exists $(u^*(.), v^*(.)) \in \mathcal{M}_1$ such that $\mathcal{T}(u^*(.), v^*(.)) = (u^*(.), v^*(.))$. Thus, $(u^*(.), v^*(.))$ is a solution of system (3.1).

(ii) The permanence. Let (u(t), v(t)) be a solution of (3.1) with $(u_i(t_0), v_j(t_0)) \in \operatorname{int} \mathbb{R}^{n+m}_+$. For each $i = 1, \ldots, n$, let $\bar{u}_i(t)$ be a solution of (3.2_i) with $\bar{u}_i(t_0) = u_i(t_0)$. By Lemma 2.1 and the comparison theorem,

$$\bar{u}_i(t) \geqslant u_i(t) \text{ for all } t \geqslant t_0, \ i = 1, \dots, n.$$

By Lemma 2.2,

(3.10)
$$\lim_{t \to +\infty} |\bar{u}_i(t) - U_i^0(t)| = 0 \text{ for } i = 1, \dots, n.$$

From (3.9) and (3.10), we have

(3.11)
$$\limsup_{t \to +\infty} u_i(t) \leqslant \limsup_{t \to +\infty} U_i^0(t) \leqslant \Delta \text{ for } i = 1, \dots, n.$$

For each $j=1,\ldots,m$, let $\bar{v}_j(t)$ be a solution with $\bar{v}_j(t_0)=v_j(t_0)$ of the following equation

$$\dot{v}_j = v_j h_j(t, \bar{u}(t), 0, \dots, 0, v_j, 0, \dots, 0).$$

By (3.10), (K_1) , (K_4) and (K_7) , we can apply Lemma 2.5 to equations (3.3_j) and (3.12_j) and obtain

(3.13)
$$\lim_{t \to +\infty} |\bar{v}_j(t) - V_j^0(t)| = 0 \text{ for } j = 1, \dots, m.$$

By Lemma 2.1 and the comparison theorem,

(3.14)
$$\bar{v}_i(t) \geqslant v_i(t)$$
 for all $t \geqslant t_0, j = 1, \dots, m$.

From (3.13) and (3.14), we have

(3.15)
$$\limsup_{t \to +\infty} v_j(t) \leqslant \limsup_{t \to +\infty} V_j^0(t) \leqslant \Delta \text{ for } j = 1, \dots, m.$$

For i = 1, ..., n, let $\tilde{u}_i(t)$ be a solution with $\tilde{u}_i(t_0) = u_i(t_0)$ of the following equation

$$(3.16_i) \dot{u}_i = u_i f_i(t, \bar{u}_1(t), \dots, \bar{u}_{i-1}(t), u_i, \bar{u}_{i+1}(t), \dots, \bar{u}_n(t), \bar{v}(t)).$$

By (3.10), (3.13), (K_1) , (K_3) and (K_8) , we can apply Lemma 2.5 to equations (3.4_i) and (3.16_i) and obtain

(3.17)
$$\lim_{t \to +\infty} |\tilde{u}_i(t) - u_i^0(t)| = 0 \text{ for } i = 1, \dots, n.$$

By Lemma 2.1 and the comparison theorem,

(3.18)
$$u_i(t) \geqslant \tilde{u}_i(t) \text{ for all } t \geqslant t_0, \ i = 1, \dots, n.$$

From (3.17) and (3.18) we have

(3.19)
$$\liminf_{t \to +\infty} u_i(t) \geqslant \liminf_{t \to +\infty} u_i^0(t) \geqslant \delta \text{ for } i = 1, \dots n.$$

For each j = 1, ..., m, let $\tilde{v}_j(t)$ be a solution with $\tilde{v}_j(t_0) = v_j(t_0)$ of the following equation

$$(3.20_j) \dot{v}_j = v_j h_j(t, \tilde{u}(t), \bar{v}_1(t), \dots, \bar{v}_{j-1}(t), v_j, \bar{v}_{j+1}(t), \dots, \bar{v}_m(t)).$$

By (3.13), (3.17), (K_1) , (K_4) and (K_9) , we can apply Lemma 2.5 to equations (3.5_j) and (3.20_j) and obtain

(3.21)
$$\lim_{t \to +\infty} |\tilde{v}_j(t) - v_j^0(t)| = 0 \text{ for } j = 1, \dots, m.$$

By Lemma 2.1 and the comparison theorem,

(3.22)
$$v_j(t) \geqslant \tilde{v}_j(t) \text{ for all } t \geqslant t_0, \ j = 1, \dots, m.$$

From (3.21) and (3.22) we have

By
$$(3.11)$$
, (3.15) , (3.19) and (3.23) , system (3.1) is permanent.

Remark. Theorem 3.1 is an extension of Theorem 1 in [5] to system (3.1). It is also an extension of Theorem 2.5 in [6] to the nonperiodic case.

Using Theorem 3.1, we have the following corollary:

COROLLARY 3.2. Assume that f_i , h_j (i = 1, ..., n, j = 1, ..., m) are almost periodic in t uniformly for $(u, v) \in \mathbb{R}^{n+m}_+$ and satisfy (K_5) , (K_6) and the following hypotheses:

$$(K_2^*)$$
 $\lim_{T\to+\infty} \frac{1}{T} \int_0^1 f_i(t,0,\ldots,0) dt > 0$ for $i=1,\ldots,n$,

 (K_3^*) For each $i=1,\ldots,n$, there exists a nonnegative almost periodic func-

tion
$$a_i(t)$$
 with $\lim_{T\to +\infty} \frac{1}{T} \int_0^T a_i(t)dt > 0$ such that $D_{u_i}^+ f_i(t,u,v) \leq -a_i(t)$ for

 $(t, u, v) \in \mathbb{R} \times \mathbb{R}^{n+m}_+,$

 (K_4^*) For each $j=1,\ldots,m$, there exists a nonnegative almost periodic func-

tion
$$e_j(t)$$
 with $\lim_{T\to +\infty} \frac{1}{T} \int_0^T e_j(t)dt > 0$ such that $D_{v_j}^+ h_j(t, u, v) \leqslant -e_j(t)$ for $(t, u, v) \in \mathbb{R} \times \mathbb{R}_+^{n+m}$,

$$(K_7^*)$$
 $\lim_{T\to+\infty} \frac{1}{T} \int_0^T h_j(t, U^0(t), 0, \dots, 0) dt > 0$ for $j = 1, \dots, m$,

$$(K_8^*) \lim_{T \to +\infty} \frac{1}{T} \int_0^T f_i(t, U_1^0(t), \dots, U_{i-1}^0(t), 0, U_{i+1}^0(t), \dots, U_n^0(t), V^0(t)) dt > 0 \text{ for } i = 1, \dots, n,$$

$$(K_9^*) \lim_{T \to +\infty} \frac{1}{T} \int_0^T h_j(t, u^0(t), V_1^0(t), \dots, V_{j-1}^0(t), 0, V_{j+1}^0(t), \dots, V_m^0(t)) dt > 0 \text{ for } j = 1, \dots, m.$$

Then system (3.1) is permanent and it has at least one solution $(u^*(.), v^*(.)) \in \mathcal{B}^{n+m}_+$. In particular, if f_i , h_j $(i=1,\ldots,n,\ j=1,\ldots,m)$ are Θ -periodic $(\Theta>0)$ in t, then system (3.1) has least one Θ -periodic solution $(u^*(.), v^*(.)) \in \mathcal{B}^{n+m}_+$.

4. Lotka–Volterra predator-prey system. Consider the following Lotka–Volterra predator-prey system

(4.1)
$$\dot{u}_{i} = u_{i} \left[b_{i}(t) - \sum_{k=1}^{n} a_{ik}(t) u_{k} - \sum_{k=1}^{m} c_{ik}(t) v_{k} \right], \quad i = 1, \dots, n,$$

$$\dot{v}_{j} = v_{j} \left[r_{j}(t) + \sum_{k=1}^{n} d_{jk}(t) u_{k} - \sum_{k=1}^{m} e_{jk}(t) v_{k} \right], \quad j = 1, \dots, m,$$

where $a_{ik}(t)$, $c_{ik}(t)$, $d_{jk}(t)$, $e_{jk}(t)$ are continuous, nonnegative and bounded on \mathbb{R} , $b_i(t)$, $r_j(t)$ are continuous and bounded on \mathbb{R} . We introduce the following hypotheses:

 (L_1) For each $i=1,\ldots,n$, there exist positive numbers λ_i^+ and λ_i^- such that

$$\liminf_{t \to +\infty} \int_{t}^{t+\lambda_{i}^{+}} b_{i}(s)ds > 0, \quad \liminf_{t \to -\infty} \int_{t}^{t+\lambda_{i}^{-}} b_{i}(s)ds > 0,$$

 (L_2) For each $i=1,\ldots,n$, there exist positive numbers ω_i^+ and ω_i^- such that

$$\lim_{t \to +\infty} \inf \int_{-\infty}^{t+\omega_i^+} a_{ii}(s)ds > 0, \quad \lim_{t \to -\infty} \inf \int_{-\infty}^{t+\omega_i^-} a_{ii}(s)ds > 0,$$

 (L_3) For each $j=1,\ldots,m$, there exist positive numbers γ_j^+ and γ_j^- such that

$$\lim_{t \to +\infty} \inf_{t} \int_{t}^{t+\gamma_{j}^{+}} e_{jj}(s)ds > 0, \quad \lim_{t \to -\infty} \inf_{t} \int_{t}^{t+\gamma_{j}^{-}} e_{jj}(s)ds > 0,$$

 (L_4) For each $i=1,\ldots,n$, there exist positive numbers $\mu_j^+,\ \mu_j^-$ such that

$$\lim_{t \to +\infty} \inf_{t \to +\infty} \int_{t}^{t+\mu_{j}^{+}} \left[r_{j}(s) + \sum_{k=1}^{m} d_{jk}(s) U_{k}^{0}(s) \right] ds > 0,$$

$$\lim_{t \to +\infty} \inf_{t \to -\infty} \int_{t}^{t} \left[r_{j}(s) + \sum_{k=1}^{m} d_{jk}(s) U_{k}^{0}(s) \right] ds > 0,$$

where $U_i^0(.)$ is a unique solution in \mathcal{B}_+ of the following equation

$$\dot{u}_i = u_i [b_i(t) - a_{ii}(t)u_i].$$

 (L_5) For each $i=1,\ldots,n$, there exist positive numbers ν_i^+ and ν_i^- such that

$$\lim_{t \to +\infty} \inf_{t} \int_{t}^{t+\nu_{i}^{-}} \left[b_{i}(s) - \sum_{k=1, k \neq i}^{n} a_{ik}(s) U_{k}^{0}(s) - \sum_{k=1}^{m} c_{ik}(s) V_{k}^{0}(s) \right] ds > 0,$$

$$\lim_{t \to -\infty} \inf_{t} \int_{t}^{t} \left[b_{i}(s) - \sum_{k=1, k \neq i}^{n} a_{ik}(s) U_{k}^{0}(s) - \sum_{k=1}^{m} c_{ik}(s) V_{k}^{0}(s) \right] ds > 0,$$

where $V_i^0(.)$ is a unique solution in \mathcal{B}_+ of the following equation

(4.3_j)
$$\dot{v}_j = v_j \left[r_j(t) + \sum_{k=1}^m d_{jk}(t) U_k^0(t) - e_{jj}(t) v_j \right],$$

 (L_6) For each $j=1,\ldots,m$, there exist positive numbers ε_j^+ and ε_j^- such that

$$\lim_{t \to +\infty} \inf_{t \to +\infty} \int_{t}^{t+\varepsilon_{j}^{+}} \left[r_{j}(s) + \sum_{k=1}^{m} d_{jk}(s) u_{k}^{0}(s) - \sum_{k=1, k \neq j}^{m} e_{jk}(s) V_{k}^{0}(s) \right] ds > 0,$$

$$\lim_{t \to -\infty} \inf_{t \to -\infty} \int_{t}^{\infty} \left[r_{j}(s) + \sum_{k=1}^{m} d_{jk}(s) u_{k}^{0}(s) - \sum_{k=1, k \neq j}^{m} e_{jk}(s) V_{k}^{0}(s) \right] ds > 0,$$

where $u_i^0(.)$ is the unique solution in \mathcal{B}_+ of the following equation

$$(4.4_i) \qquad \dot{u}_i = u_i \Big[b_i(t) - \sum_{k=1, k \neq i}^n a_{ik}(t) U_k^0(t) - \sum_{k=1}^m c_{ik}(t) V_k^0(t) - a_{ii}(t) u_i \Big].$$

Applying Theorem 3.1 to system (4.1) we obtain the following corollary:

COROLLARY 4.1. Let (L_1) – (L_6) hold. Then system (4.1) is permanent and it has at least one solution $(u^*(.), v^*(.)) \in \mathcal{B}^{n+m}_+$.

Definition. A solution $(\bar{u}(t), \bar{v}(t))$ of (3.1) with $(\bar{u}(t_0), \bar{v}(t_0)) \in \operatorname{int} \mathbb{R}^{n+m}_+$ is said to be globally attractive, if for any solution (u(t), v(t)) with $(u(t_0), v(t_0)) \in \operatorname{int} \mathbb{R}^{n+m}_+$ there is $\lim_{t \to +\infty} \|(u(t), v(t)) - (\bar{u}(t), \bar{v}(t))\| = 0$.

THEOREM 4.2. Let (L_1) – (L_6) hold. If (L_7) There exist positive numbers s_i , β_j $(i=1,\ldots,n,\ j=1,\ldots,m)$ and a continuous nonnegative function $\alpha: \mathbb{R} \to \mathbb{R}$ with $\int\limits_0^{+\infty} \alpha(t)dt = +\infty$, $\int\limits_{-\infty}^0 \alpha(t)dt = +\infty$ such that

$$s_i a_{ii}(t) - \sum_{k=1, k \neq i}^{n} s_k a_{ki}(t) - \sum_{k=1}^{m} \beta_k d_{ki}(t) \geqslant \alpha(t) \text{ for all } t \in \mathbb{R}, i = 1, \dots, n,$$

$$\beta_j e_{jj}(t) - \sum_{k=1}^n s_k c_{jk}(t) - \sum_{k=1, k\neq j}^m \beta_k e_{kj}(t) \geqslant \alpha(t)$$
 for all $t \in \mathbb{R}, j = 1, \ldots, m$,

then system (4.1) has a unique globally attractive solution $(u^*(.), v^*(.)) \in \mathcal{B}^{n+m}$.

PROOF. The existence of a solution $(u^*(t), v^*(t))$ follows from Corollary 4.1.

(i) The uniqueness. For the contrary, suppose that there are two distinct solutions $(u^1(t), v^1(t))$ and $(u^2(t), v^2(t))$ of system (4.1) defined on \mathbb{R} and satisfying $u_i^l(t) \in [\delta, \Delta], v_j^l(t) \in [\delta, \Delta]$ for all $t \in \mathbb{R}, i = 1, \ldots, n, j = 1, \ldots, m$ and l = 1, 2, where δ and Δ are positive constants. Let $(u^1(t_0), v^1(t_0)) \neq (u^2(t_0), v^2(t_0))$ for some $t_0 \in \mathbb{R}$. Let $V(t) = \sum_{i=1}^n s_i |\ln u_i^1(t) - \ln u_i^2(t)| + \sum_{j=1}^m \beta_j |\ln v_j^1(t) - \ln v_j^2(t)|$. Then

$$D^{+}V(t) \leqslant \sum_{i=1}^{n} \left[\sum_{k=1, k \neq i}^{n} s_{k} a_{ki}(t) + \sum_{k=1}^{m} \beta_{i} d_{ki}(t) - s_{i} a_{ii}(t) \right] |u_{i}^{1}(t) - u_{i}^{2}(t)|$$

$$+ \sum_{j=1}^{m} \left[\sum_{k=1}^{n} s_{k} c_{kj}(t) + \sum_{k=1, k \neq j}^{m} \beta_{k} e_{kj}(t) - \beta_{j} e_{jj}(t) \right] |v_{j}^{1}(t) - v_{j}^{2}(t)|$$

$$\leqslant -\alpha(t) \left\{ \sum_{i=1}^{n} |u_{i}^{1}(t) - u_{i}^{2}(t)| + \sum_{j=1}^{m} |v_{j}^{1}(t) - v_{j}^{2}(t)| \right\} \leqslant -\gamma \alpha(t) V(t),$$

where $\gamma = \min \left\{ \frac{\delta}{s_i}, \frac{\delta}{\beta_i} : i = 1, \dots, n, \ j = 1, \dots, m \right\}$. Thus,

$$0 < V(t_0) \leqslant V(t) \exp\left\{-\int_{t}^{t_0} \gamma \alpha(s) ds\right\}, \ t \leqslant t_0.$$

Since V(t) is bounded and $\lim_{t\to-\infty} \exp\left\{-\int_t^{t_0} \gamma \alpha(s) ds\right\} = 0$, we have $V(t_0) = 0$. This is a contradiction. The uniqueness is proved.

(ii) The global attractivity. Let (u(t), v(t)) be a solution of (4.1) with $(u(t_0), v(t_0)) \in \operatorname{int} \mathbb{R}^{n+m}$. By Corollary 4.1, there exist $\delta > 0, \Delta > 0$ and $T \geq t_0$ such that $(u(t), v(t)), (u^*(t), v^*(t)) \in [\delta, \Delta]^{n+m}$ for all $t \geq T$. Let $V(t) = \sum_{i=1}^n s_i |\ln u_i(t) - \ln u_i^*(t)| + \sum_{j=1}^m \beta_j |\ln v_j(t) - \ln v_j^*(t)|$. By calculating the upper right derivative of V(t) as given above, we obtain $D^+V(t) \leq -\gamma\alpha(t)V(t)$ for $t \geq T$, where $\gamma = \min_{i,j} \left\{ \frac{\delta}{s_i}, \frac{\delta}{\beta_j} \right\}$. Thus, $V(t) \leq V(T) \exp\left\{ -\int_{T}^{t} \gamma\alpha(s) ds \right\}$

for each $t \ge T$. This implies that $\lim_{t \to +\infty} V(t) = 0$, then $\lim_{t \to +\infty} \|(u(t), v(t)) - (u^*(t), v^*(t))\| = 0$.

THEOREM 4.3. Let $a_{ik}(t)$, $c_{ik}(t)$, $d_{jk}(t)$, $e_{jk}(t)$, $b_i(t)$ and $r_j(t)$ (i = 1, ..., n, j = 1, ..., m) be almost periodic. Assume that

(4.6)
$$\liminf_{T \to +\infty} \frac{1}{T} \int_{0}^{T} b_{i}(s)ds > 0$$
, $\liminf_{T \to +\infty} \frac{1}{T} \int_{0}^{T} a_{ii}(s)ds > 0$, $i = 1, \dots, n$,

(4.7)
$$\liminf_{T \to +\infty} \frac{1}{T} \int_{0}^{T} e_{jj}(s)ds > 0, \ \liminf_{T \to +\infty} \frac{1}{T} \int_{0}^{T} \left[r_{j}(s) + \sum_{k=1}^{m} d_{jk}(s)U_{k}^{0}(s) \right] ds > 0,$$

$$j = 1, \dots, m,$$

(4.8)
$$\liminf_{T \to +\infty} \frac{1}{T} \int_{0}^{T} \left[b_{i}(s) - \sum_{k=1, k \neq i}^{n} a_{ik}(s) U_{k}^{0}(s) - \sum_{k=1}^{m} c_{ik}(s) V_{k}^{0}(s) \right] ds > 0,$$

$$i = 1, \dots, n$$

(4.9)
$$\liminf_{T \to +\infty} \frac{1}{T} \int_{0}^{T} \left[r_{j}(s) + \sum_{k=1}^{m} d_{jk}(s) u_{k}^{0}(s) - \sum_{k=1, k \neq j}^{m} e_{jk}(s) V_{k}^{0}(s) \right] ds > 0,$$

$$j = 1, \dots, m$$

where $U_i^0(.)$ ($u_i^0(.)$ and $V_j^0(.)$) is the unique almost periodic solution in \mathcal{B}_+ of (4.2_i) , ((4.4_i) and (4.3_j) , respectively). Then (4.1) is permanent and it has least one solution ($u^*(.), v^*(.)$) $\in \mathcal{B}_+^{n+m}$. If, in addition, (L_7) holds, then there exists a unique globally attractive almost periodic solution ($u^*(.), v^*(.) \in \mathcal{B}_+^{n+m}$ and its module is contained in that of F(t, u, v), where F(t, u, v) is the right hand side of (4.1). In particular, if $a_{ik}(t)$, $c_{ik}(t)$, $d_{jk}(t)$, $e_{jk}(t)$, $b_i(t)$ and $r_j(t)$ ($i=1,\ldots,n,\ j=1,\ldots,m$) are Θ -periodic, then also the above solution ($u^*(.), v^*(.)$) is Θ -periodic.

PROOF. By Corollary 4.1, system (4.1) is permanent and it has least one solution $(u^*(.), v^*(.)) \in \mathcal{B}^{n+m}_+$. We know that for each $F^* \in H(F)$ (the hull of F), there exist $a^*_{ik} \in H(a_{ik})$, $c^*_{ik} \in H(c_{ik})$, $d^*_{jk} \in H(d_{jk})$, $e^*_{jk} \in H(e_{jk})$, $b^*_i \in H(b_i)$ and $r^*_j \in H(r_j)$ $(i = 1, \ldots, n, j = 1, \ldots, m)$ such that $F^*(t, u, v)$ is the right hand side of the following system

(4.10)
$$\dot{u}_{i} = u_{i} \left[b_{i}^{*}(t) - \sum_{k=1}^{n} a_{ik}^{*}(t) u_{k} - \sum_{k=1}^{m} c_{ik}^{*}(t) v_{k} \right], \quad i = 1, \dots, n,$$

$$\dot{v}_{j} = v_{j} \left[r_{j}^{*}(t) + \sum_{k=1}^{n} d_{jk}^{*}(t) u_{k} - \sum_{k=1}^{m} e_{jk}^{*}(t) v_{k} \right], \quad j = 1, \dots, m.$$

For i = 1, ..., n and j = 1, ..., m, let us consider

$$(4.11_i) \quad \dot{u}_i = u_i [b_i^*(t) - a_{ii}^*(t)u_i],$$

$$(4.12_j) \quad \dot{v}_j = v_j \Big[r_j^*(t) + \sum_{k=1}^m d_{jk}^*(t) U_k^{*0}(t) - e_{jj}^*(t) v_j \Big],$$

$$(4.13_i) \quad \dot{u}_i = u_i \Big[b_i^*(t) - \sum_{k=1}^n a_{ik}^*(t) U_k^{*0}(t) - \sum_{k=1}^m c_{ik}^*(t) V_k^{*0}(t) - a_{ii}^*(t) u_i \Big],$$

$$(4.14_j) \quad \dot{v}_j = v_j \Big[r_j^*(t) + \sum_{k=1}^m d_{jk}^*(t) u_k^{*0}(t) - \sum_{k=1, k \neq j}^m e_{jk}^*(t) V_k^{*0}(t) - e_{jj}^*(t) v_j \Big].$$

By Lemma 2.7, each of equations (4.11_i) , (4.12_j) , (4.13_i) , (4.14_j) has a unique almost periodic solution $U_i^{*0}(.)$, $V_j^{*0}(.)$, $u_i^{*0}(.)$ and $v_j^{*0}(.)$ in \mathcal{B}_+ , respectively. Let $\{\tau_k\}_{k=1}^{\infty}$ be a sequence of numbers such that $b_{i\tau_k} \to b_i^*$, $a_{ii\tau_k} \to a_{ii}^*$ as $k \to \infty$ uniformly on \mathbb{R} . Without loss of generality, we may assume that $U_{i\tau_k}^0 \to \bar{U}_i^0$ as $k \to \infty$ uniformly on \mathbb{R} . It is easy to see that \bar{U}_i^0 is a solution of equation (4.11_i) and thus $U_i^{*0}(.) \equiv \bar{U}_i^0(.)$. This implies that $\sup_{t \in \mathbb{R}} U_i^{*0}(t) = \sup_{t \in \mathbb{R}} U_i^0(t)$. Similarly, $\sup_{t \in \mathbb{R}} V_j^{*0}(t) = \sup_{t \in \mathbb{R}} V_j^0(t)$, $\inf_{t \in \mathbb{R}} u_i^{*0}(t) = \inf_{t \in \mathbb{R}} u_i^0(t)$, $\inf_{t \in \mathbb{R}} v_j^{*0}(t) = \inf_{t \in \mathbb{R}} v_j^0(t)$. Clearly that $\sup_{t \in \mathbb{R}} |F_k^*(t,u,v)| = \sup_{(t,u,v) \in \mathbb{R} \times S} |F_k(t,u,v)|$ for any compact $(t,u,v) \in \mathbb{R} \times S$ set $S \subset \mathbb{R}^{n+m}$. Let $\delta = \inf_{t \in \mathbb{R}} \{u_i^0(t), v_j^0(t) \colon i = 1, \dots, n, \ j = 1, \dots, m, \ t \in \mathbb{R}\},$ $\Delta = \sup_{t \in \mathbb{R}} \{u_i^0(t), v_j^0(t) \colon i = 1, \dots, n, \ j = 1, \dots, m, \ t \in \mathbb{R}\},$ $L = \max_{k=1,\dots,n+m} \{\sup_{(t,u,v) \in \mathbb{R} \times S} |F_k^*(t,u,v)| \}.$

By the same argument as given in the proof of Theorem 3.1, we know that system (4.10) has at least one solution $(\bar{u}(t), \bar{v}(t))$ in \mathcal{M}_1^* where

$$\mathcal{M}_{1}^{*} = \left\{ (u(.), v(.)) : (u^{*0}(t), v^{*0}(t)) \leqslant (u(t), v(t)) \leqslant (U^{*0}(t), V^{*0}(t)), |u_{i}(t) - u_{i}(\bar{t})| \leqslant L|t - \bar{t}|, i = 1, \dots, n, |v_{j}(t) - v_{j}(\bar{t})| \leqslant L|t - \bar{t}|, j = 1, \dots, m, t, \bar{t} \in \mathbb{R} \right\}.$$

It is easy to see that system (4.10) satisfies all conditions in Theorem 4.2. Thus, for each $F^* \in H(F)$, system (4.10) has a unique solution $(\bar{u}(t), \bar{v}(t))$ with $(\bar{u}(t), \bar{v}(t)) \in [\delta, \Delta]^{n+m}$ for all $t \in \mathbb{R}$. Since δ and Δ do not depend on the choice of $F^* \in H(F)$, from Lemma 2.6 and Theorem 4.2 it follows that there exists a unique globally attractive almost periodic solution $(u^*(.), v^*(.)) \in \mathcal{B}^{n+m}_+$ of system (4.1). Moreover, the module of $(u^*(t), v^*(t))$ is contained in that of F(t, u, v). If F is Θ -periodic in t, then $(u^*(.), v^*(.))$ and $(u^*_{\Theta}(.), v^*_{\Theta}(.))$ are two solutions in \mathcal{B}^{n+m}_+ of (4.1). By the uniqueness, $(u^*(.), v^*(.)) = (u^*_{\Theta}(.), v^*_{\Theta}(.))$. The theorem is proved.

REMARK. In [7], the authors considered system (4.1) with $b_i(t)$, $-r_j(t)$, $a_{ik}(t)$ ($i \neq k$), $e_{jl}(t)$ ($j \neq l$), $c_{il}(t)$ and $d_{jk}(t)$ nonnegative almost periodic; $a_{ii}(t)$ and $e_{jj}(t)$ are almost periodic and bounded from above and from below by positive constants. If $f: \mathbb{R} \to \mathbb{R}$ is almost periodic, we set $f^h = \inf_{t \in \mathbb{R}} f(t)$

and
$$f^H = \sup_{t \in \mathbb{R}} f(t)$$
. Moreover, we set

$$p_i = \frac{b_i^H}{a_{ii}^h}, \quad q_j = \frac{1}{e_{jj}^h} \Big(\sum_{k=1}^n d_{jk}^H p_k + r_j^H \Big), \quad \alpha_i = \frac{1}{a_{ii}^H} \Big(b_i^h - \sum_{k=1, k \neq i}^n a_{ik}^H p_k - \sum_{k=1}^m c_{ik}^H q_k \Big),$$

$$\beta_j = \frac{1}{e_{jj}^H} \left(r_j^h + \sum_{k=1}^n d_{jk}^h \alpha_k - \sum_{k=1, k \neq j}^m c_{jk}^H q_k \right), \ i = 1, \dots, n, \ j = 1, \dots, m.$$

In [7] it was shown that: If

(4.15)
$$\alpha_i > 0, \ \beta_i > 0, \ q_i > 0$$

and (L_7) hold, then system (4.1) has a unique globally attractive almost periodic solution $(u^*(.), v^*(.)) \in \mathcal{B}^{n+m}_+$ and its module is contained in that of F(t, u, v), where F(t, u, v) is the right hand side of (4.1).

It is easy to see that $\sup_{t\in\mathbb{R}} U_i^0(t) \leqslant p_i \ (i=1,\ldots,n)$ and $\sup_{t\in\mathbb{R}} V_j^0(t) \leqslant q_j \ (j=1,\ldots,m)$. Thus condition (4.15) implies conditions (4.6), (4.7), (4.8) and (4.9). The following example shows that Theorem 4.3 generalizes and improves the above result in [7].

EXAMPLE. Consider the following system

(4.16)
$$\dot{u} = u[(0.5 - 0.5(\cos t + \cos \sqrt{2}t)) - (1.1 - 0.5(\cos t + \cos \sqrt{2}t))u - 0.04v],$$

$$\dot{v} = v[\sin t + \sin \sqrt{3}t + u - v].$$

By Lemma 2.7, the equation $\dot{u}=u[0.5-0.5(\cos t+\cos\sqrt{2}t)-(1.1-0.5(\cos t+\cos\sqrt{2}t))u]$ has a unique almost periodic solution $U^0(.)\in\mathcal{B}_+$. It is easy to see that

$$\sup_{t \in \mathbb{R}} U^0(t) \leqslant \sup_{t \in \mathbb{R}} \frac{0.5 - 0.5(\cos t + \cos\sqrt{2}t)}{1.1 - 0.5(\cos t + \cos\sqrt{2}t)} \leqslant \frac{1.5}{2.1}.$$

By Lemma 2.7, the equation $\dot{v} = v[\sin t + \sin \sqrt{3}t + U^0(t) - v]$ has a unique almost

periodic solution
$$V^0(.) \in \mathcal{B}_+$$
. Since $\lim_{T \to +\infty} \frac{1}{T} \int_0^T V^0(t) dt = \lim_{T \to +\infty} \frac{1}{T} \int_0^T [\sin t + t] dt$

$$\sin \sqrt{3}t + U^0(t)dt \leqslant \frac{1.5}{2.1}$$
, we have $\lim_{T \to +\infty} \frac{1}{T} \int_0^1 [0.5 - 0.5(\cos t + \cos \sqrt{2}t) - 0.5(\cos t + \cos \sqrt{2}t)] dt$

 $0.04V^{0}(t)]dt > 0$. It follows that the equation

$$\dot{u} = u[(0.5 - 0.5(\cos t + \cos\sqrt{2}t)) - 0.04V^{0}(t) - (1.1 - 0.5(\cos t + \cos\sqrt{2}t))u]$$

has a unique almost periodic solution $u^0(.) \in \mathcal{B}_+$. Now, it is easy to verify that system (4.1) satisfies all conditions (4.6)–(4.9). Moreover, condition (L_7) holds for s = 0.5, $\beta = 0.04$. Therefore, by Theorem 4.3, system (4.16) has a unique globally attractive almost periodic solution $(u^*(.), v^*(.)) \in \mathcal{B}_+^2$, whereas system (4.16) does not satisfy (4.15).

References

- 1. Deimling K., Nonlinear Functional Analysis, Springer-Verlag, Berlin, 1985.
- 2. Hartman P., Ordinary Differential Equations, Birkhauser, Boston, 1982.
- 3. Hutson V., Schmitt K., Permanence and the dynamics of biological systems, Math. Biosci., 111 (1992), 1–71.
- 4. Munkres J., Topology: A First Course, Prentice-Hall, 1975.
- 5. Trinh T. Anh, Tran V. Nhung, Le H. Lan, Permanence and positive bounded solutions of Kolmogorov competing species system, Acta Math. Vietnam., 25 (2000), 251–261.
- Wen X., Wang Z., Global attractivity of the periodic Kolmogorov system, ANZIAM J., 44 (2003), 569–581.
- 7. Xia Y., Chen F., Chen A., Cao J., Existence and global attractivity of an almost periodic ecological model, Appl. Math. Comput., 157 (2004), 449–475.
- 8. Yoshizawa T., Stability Theory and the Existence of Periodic Solutions and Almost Periodic Solutions, Springer-Verlag, New York, 1975.

Received September 21, 2012

Faculty of Mathematics and Informatics Hanoi University of Education Vietnam e-mail: anhtt@hnue.edu.vn

Faculty of Mathematics Taybac University Vietnam

 $e ext{-}mail$: thongpm2000@taybacuniversity.edu.vn