Metadata, citation and similar papers at core.ac.uk

Provided by Portal Czasopism Naukowych (E-Journals)

UNIVERSITATIS IAGELLONICAE ACTA MATHEMATICA
doi: 10.4467/20843828AM.12.002.1120 FASCICULUS L, 2012

PERMANENCE AND POSITIVE BOUNDED SOLUTIONS OF
KOLMOGOROV PREDATOR-PREY SYSTEM

BY TRINH TUAN ANH AND PHAM MINH THONG

Abstract. Our main purpose is to present some criteria for the perma-
nence and existence of a positive bounded solution of Kolmogorov predator-
-prey system. Under certain conditions, it is shown that the system is per-
manent and there exists a solution which is defined on the whole R and
whose components are bounded from above and from below by positive
constants.

1. Introduction. We consider the following Kolmogorov predator-prey
system
(1.1)

U = uifi(t,ur, ..., Up, V1o, U), 1=1, ..., n,
UJ :’Ujhj(tvula"':un7vl7"'avm)7j:17 ceey M

where f;, hj : R x Rfﬁm — R are continuous, u;(t) denotes the quantity of the

ith prey at time ¢ and v;(t) denotes the quantity of the j*® predator at time ¢.
A special case of (|1.1)) is the system of Lotka—Volterra type:

Wi = wi [bi(t) =Y pq ai(t)ur — > ey cik(t)vg], i =1,...,n,

05 = [rj () + 2k djp(Dur = 241 ew(t)ve], G =1,...,m,
where a;;(t), cik(t), djr(t), eju(t), bi(t), rj(t) are continuous and bounded
on R.

A fundamental ecological question associated with the study of multispecies
population interactions is the long-term coexistence of the involved popula-
tions. Such questions also arise in many other situations (see [3]). Mathemat-
ically, this is equivalent to the so-called permanence of the populations. We

(1.2)
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recall that system is permanent if there exist positive constants § and A
(6 < A) such that any noncontinuable solution (ui(.), ..., un(.),v1(.), ..., vm(.))
of with (u1(to), - .., un(to),v1(to), - - -, vm(to)) € Int R™T™ — the interior of
RET™ is defined on [to, +00) and fori=1,...,n, j=1,...,m the following
inequalities are satisfied:
d < ltlinJrugof u;(t) < ltiaigop ui(t) <A, §< lginﬁgof vj(t) < ligljgop vj(t) < A.
The permanence, the existence and global attractivity of a positive periodic
solution of system and in the periodic case have been studied by Wen
and Wang (see [6]), as well as many other authors. Some results on sufficient
conditions for the existence and global attractivity of a unique positive almost
periodic solution of system in the almost periodic case were mentioned in
[7]. For the Kolmogorov competing system, the authors in [5] have obtained a
sufficient condition for the permanence and the existence of a positive bounded
solution. As a continuation of [5-7] and some recent results, in this paper we
study the permanence and the existence of a positive bounded solution of
the Kolmogorov predator-prey system under certain conditions. The paper is
organized as follows: Section 2 contains preliminaries, in which we present the
relevant results on the permanence and asymptotic behaviour of solutions of a
single-species model. In Section 3, we prove our main result on the permanence
and existence of a positive bounded solution of system . In the last section,
we study the permanence, existence and global attractivity of a unique positive
almost periodic solution of Lotka—Volterra system .

2. Preliminaries. Consider the following equation

(2.1) &= xg(t, z),
where g : R x [0,400) — R is continuous. Let R, =: [0, +00). We assume
that:
(G1) The function g(.,0) is bounded and lim {sup |g(t,z) — ¢(¢,0)|} = 0,
z—0 teR
)

(G2) There exists A > 0 such that liminf [ g¢(s,0)ds > 0,
t—-+o0 t

(G3) There exist a positive number w and a function a : R — Ry, which is
tHw
bounded and locally integrable with ltim+inf J a(s)ds >0such that D} g(t,z)) <
—+00 t

—af(t) for all (t,z) € R x Ry, where D is the upper right derivative with re-
spect to x.

Let By = {b: R — R is continuous and 0 < inﬂf{b(t) <supb(t) < +o0}.
te teR
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LEMMA 2.1. If g(t,x) is nonincreasing in x, then for each initial value
x(ty) = xog € Ry, equation has a unique solution x(t) for t >ty

PROOF. By the way of contradiction we assume that there exists (tg, zg) €
R xRy such that there are two distinct solutions 1 (t) and z2(t) on [to, t1] (t1 >
to) of (2.1) with x1(tg) = x2(to) = xo. Without loss of generality, we may
assume that z1(t) > x2(t) for ¢ € (¢o,t1]. There are two possible cases:
+) If g > 0 then [lnzq(t) — Inza(t)] = g(t,z1(t)) — g(t,x2(t)) < 0 for all
t € [to,t1]. Hence, 0 < Inzq(t1) — Inza(t1) < Inzi(to) — Inaa(ty) = 0. This is
a contradiction.
+) If o = 0 then x1(¢) > 0 for all t € (to,¢1]. Hence, @1(t) = z1(t)g(t, z1(t)) <
~yx1(t) for ¢ € [to,t1] and for some v > 0. By Gronwall’s inequality, z1(t) = 0
for all t € [to,t1]. This is a contradiction. The lemma is proved. O
REMARK. Assumption (G3) directly implies that g(¢,x) is nonincreasing
in x.

LEMMA 2.2. If assumptions (G1), (G2) and (G3) hold, then
(1) Equation is permanent,
(i7) tl}in |z1(t) — z2(t)] = 0O for every couple of solutions x1(t) and x2(t) of

with 1’1(150) >0 and l’g(to) > 0.

t+w t+w

PROOF. (i) By (G3), wehave [ g(s,z)ds= [ [g(s,0)+g(s,x)—g(s,0)]ds<
tH+w t+w ! t+w ! t+w
[ g(s,0)ds—z f s)ds, and then lim sup f g(s,z)ds < limsup [ g(s,0)ds—
3 t—+o0 t—+oo ¢t

t+w

xltierinf | a(s)ds. Thus, by (G1) and (G3), there exists positive number P
—+00 t

t+w
such that limsup [ g(s,P)ds < 0. By (G1) and (G2), there exists positive
t—+oo ¢
t+A
number p (p < P) such that ltim+inf | g(s,p)ds > 0. Thus, there exist ¢ > 0
—+00 t

and T € R such that
tHw t4+A

(2.2) / g(s, P)ds < —e, / g(s,p)ds > e forallt > T.

t

~+

Claim 1. If t; > T such that xz(¢t1) = P and z(t) > P for all ¢t € [t1,t9], then
to —t1 < w. Indeed, by the way of contradiction we assume that to —t; > w,
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then
t14w
x(t +w) = x(t1) exp{ / g(t,x(t))dt}

t14+w

< z(ty) exp{ / g(t, P)dt} < Pe™® < P,
t1

which is a contradiction, since z(t; + w) > P. The claim is proved.
Claim 2. There exists 177 > T such that z(7}) < P. Indeed, suppose in the
¢
contrary that z(¢) > P for all t > T. Then z(t) < z(T) exp [ g(s, P)ds for all
T
ST B3 il . 0. This is L
t > T. Thus, 1) implies that tB«IPoox(t) 0. This is a contradiction that

proves the claim.
Let us put a; = sup|g(t,0)| and A = Pexp(ajw). By Claims 1 and 2, it
teR
follows that x(t) < A for all ¢t > T7.

Claim 8. If t; > T such that z(t1) = p and z(t) < p for all t € [t1,t2] then

to — t1 < A. Indeed, by the way of contradiction we assume that to — ¢ > A,
t1+A t1+A

then z(t1 + A) = z(t1)exp [ g(t,z(t))dt > z(t1)exp [ g(t,p)dt > pe* > p,
t1 t1

which is a contradiction, since z(¢t; + A) < p. The claim is proved.

Claim 4. There exists To > T such that z(T3) > p. Indeed, suppose in the
t
contrary that z(¢t) < p for all t > T. Then z(t) > x(T)exp [ g(s,p)ds for
T
all t > T. Thus, 1) implies that lim x(¢t) = +oo. This is a contradiction
t—+o00
which proves the claim.
Let us put as = sup{|g(¢,p)| + ¢g(¢,0)} and § = pexp(—agA). By Claims 3
teR

and 4, it follows that x(t) > § for all t > T. The proof of part (i) is complete.
(ii) Let x1(t) and z2(t) be two arbitrary solutions of equation with
x1(to) > 0 and z2(tg) > 0. There exist §,A > 0 and T > ¢y such that
xi(t) € [0,A] for all t > T and ¢ = 1,2. By Lemma without loss of
generality we may assume that x1(t) > wzo(t) for all ¢t > T. Let V() =
Inzi(t) —Inxe(t). Then V(t) = g(t,mtl(t))—g(t,wg(t)) < —a(t)[z1(t) —z2(t)] <

—6a(t)V(t). Thus, V(t) < V(T)exp [ —da(s)ds — 0 as t — +oo. This implies
T

tl}gloo |z1(t) — x2(t)] = 0. O
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LEMMA 2.3. Let assumptions (G1), (Ga) and (Gs) hold. If
T+
(G4) There exists a positive number A such that liminf [ g(s,0)ds > 0 and

t——o0 t
t+w
(G5) There exists a positive number & such that ltim inf [ a(s)ds >0,

——0c0 Y
then equation has a unique solution X°(.) € By.

PROOF. (i) The ezristence. By the same argument as given in the proof
of inequalities (2.2)) in Lemma [2.2) n, we know that there exist p, P,& > 0 and
T € R such that

t+@ 42
(2.3) / g(s, P)ds < —¢, / g(s,p)ds > & forallt <T.

t t
Put ay = iup lg(t,0)|, A = Pexp(ai&), ag = sup{|g(t,p)| + g(t,0)} and
§ = ﬁexp(—zﬂiﬂ). By the same argument as giveerlRin the proof of part (i)
of Lemma we conclude that if z(to) € [p, P] then z(t) € [5,A] for all

t € [to, T]. For each positive integer n such that —n < T, let x,(t) be a
solution of (2.1 with zn(—n) = p. Then z,(t) € [§,A] for all t € [-n,T].
In particular, z,(T) € [§,A]. Therefore, there exists a subsequence {ny} of
{n} such that x,, (T) — & as k — +oo for some ¢ € [§, A]. By Theorem 3.2
in |2, p. 14], there exist a solution X%(t) of (2.1)) satisfying X°(T) = ¢ with the
maximal interval of existence (wi,w:) and a subsequence {ny,} of {n;} such
that Tny, (t) converges to X(t) uniformly on any compact subset of (wi,ws).

By Lemma - ), we = +00. We now prove that w3 = —oo. To this end,
by the way of contradiction we assume that w; > —oo. Then there exists
tp € (—o0,T] such that X(ty) ¢ [0, A]. Choose a positive integer jo such that
—ng;, < to. Clearly Ty, (to) € [0,A] for all j > jo and Ty, (to) — X (to)
as j — +oo. Thus, X%(tg) € [0,A]. This is a contradiction. It implies that
w1 = —o0. For each t € (—oo, T], we know that Tny, (t) — Xo(f) as j — +oo.
Thus, X°(%) € [6, A] for all £ € (—o00,T]. By Lemma. X0() € B;.
(ii) The uniqueness. Suppose in the contrary that equatlon has two
distinct solutions X°(¢) and X'(¢) defined on R and satisfying § < X*(t) < A
for all t € R (i = 0,1), where 4, A are positive constants. By Lemma
without loss of generality, we may assume that X°(t) > X1(¢) for all t € R.
Put V(t) = In X°(t) — In X'(t). We have V(t) = g(t, X°(t)) — g(t, X'(t)) <
—a(t )[XO( ) — Xl( )] < —da(t)V (t). Thus, since V (¢) is bounded, 0 < V(o) <

V(t) exp f (s)]ds — 0 as t — —oo. This is a contradiction. The proof of
Lemma [2.3] is complete. O
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LEMMA 2.4. Assume that
(Hy) For each i = 1,2, g; : R x Ry — R is continuous and such that the
following equation

(2.4;) & = w9i(t, i)

18 permanent,

(H3) For each i = 1,2, equation has a unique solution X?(.) € B,
(H3) The function g;(t,.) is nonincreasing for eacht € R and g1 (t,x) < g2(t, x)

for all (t,x) € R x R4.
Then X9(t) < X3(t) for allt € R.

PROOF. Suppose in the contrary that there exists t; € R such that X (t1) >
X3(t1). By (Hy), there exists a solution Zo(t) of (2.4) with Za(t1) = XV (t1)
and defined on [t1, +00) and bounded from above and from below on [t1, 4+00)
by positive constants. For t < ¢; let Z3(¢) be the minimal solution of (2.42) with
Ta(t1) = XV(t1). By Theorem 4.1 in [2, p. 26], we have X{(t) > Z2(t) > XJ(¢)
for all t < ¢; in the domain of Z9(t). Thus, Z2(t) is defined for all ¢ € (—oo, t1].
Let

_ 1> 1)
oty = {20 =0
xg(t), if t < ty.
Then z*(.) € B4. Moreover, z*(.) is a solution of (2.42) which is different from

X39(.). This is a contradiction. The lemma is proved. O

LEMMA 2.5. Let hypothesis (Hy) hold. If

(Hy) There exist w > 0 and a function a : R — Ry which is bounded and
t+w
locally integrable with ltim+inf [ a(s)ds > 0 such that Df g1(t,z)) < —a(t) for
—+00 t

all (t,z) € R x Ry,
(Hs) For each compact set S C Ry, lim {sup|gi(t,z) — g2(t,x)|} =0,
t——+o0 z€S

then 1tlizrrn |x1(t) — x2(t)| = 0 for any couple of solutions x1(t) and x2(t) of
—+0o0
equations (2.41) and (2.42), respectively, with x1(tp) > 0 and xa(to) > 0.

PRrROOF. For each i = 1,2, let x;(t) be a solution of (2.4;) with x;(t9) > 0.
By (H1), there exist 9, A > 0 and T > t¢ such that § < z;(t) < A for all
t>T,i=1,2.Fort > T, let V(t) = |Inz1(t) — Inza(t)|. By (Hs), we obtain

DYV (t) = [sign(z1(t) — x2(t))]

(25) {191t 21(6) = 91t 22(0)] + g1 (8 22(6)) — gt 22(6)] }
< —a(t)fa(t) — w2(t)] + h(t) < —6a(t)V (1) + h(t),
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where h(t) = |g1(t, x2(t))—g2(t, z2(t))|. By (Hs), we have , lim A(t) = 0. Thus,

—+00

(Hy) and 1) imply that t£+mooV(t) = 0. Hence, t_lgrnoo |z1(t) —z2(t)| =0. O

Consider the following equation

(2.6) y=f(ty),

where f: R x Q — R? (Q c R? is open) is almost periodic in ¢ uniformly for
y € Q. We recall Bochner’s criterion for the almost periodicity (see [8]): f(¢,y)
is almost periodic in t uniformly for y € Q if and only if for every sequence of
numbers {7, }72 ,, there exists a subsequence {7y, }7°, such that the sequence of
translations { f(ty, + t,y)}72, converges uniformly on R x S, where S is any
compact subset of ).

Denote by f, the 7-translation of f, that is f;(t,y) = f(r +t,y); H(f)
the hull of f, that is the closure of {f. : 7 € R} in the topology of uniform
convergence on compact subsets of R x 2. We know that H(f) is compact and
for f* € H(f), f*(t,y) is almost periodic in ¢ uniformly for y € Q. Denote
by C the set of continuous functions from R x € into R% equipped with the
topology of uniform convergence on compact subsets of R x €.

LEMMA 2.6. Let S be a compact subset of €. Assume that for each f* €
H(f), the following equation

(2.7) y=rfty)
has a unique solution y*(t) which is defined on whole R and y*(t) € S for all

t € R. Then equation (@ has a unique almost periodic solution in S and its
module is contained in the module of f(t,y).

PROOF. Let yo(t) be the unique solution of with yo(t) € S for all
t € R. Let {7}, be a sequence such that f; — f* as k — oo uniformly on
R x K, where K is any compact subset of Q. We claim that yo(7x +t) — y*(¢)
as k — oo uniformly on R, where y*(¢) is the unique solution of with
y*(t) € S for all t € R. To this end, by the way of contradiction we assume
that there exist a subsequence {73, }7°, of {71}, a sequence of numbers
{s1}72, and a positive number a such that ||yo(s; + 7x,) — y*(s1)|| = «a for all
I. By Bochner’s criterion, we may assume, without loss of generality, that
melJ’_Sl — f as [ — oo uniformly on R x K, where K is any compact subset
of Q. Thus, f5 — f as [ — oo uniformly on R x K, where K is any compact
subset of €. Since S is compact, we may without loss of generality assume
that yo(7, + s1) = &o and y*(s;) — & as | — oo. We know that &, £* € S
and ||§o — &£*|| > o It is clear that yo(t + 7%, + s;) is a solution of the following
equation

(2.81) Y= f(t + Tk, + Si, y).
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Consider the following equation

(2.9) y= f(t,y).

Now fr +s — f uniformly on any compact subset of R x Q as [ — oo,
Theorem 3.2 in [2} p.14] shows that there exist a solution y(t) of with
y(0) = & having a maximal interval of existence (w;,w2) and a subsequence of
{7k, + s1};2, therefore, without loss of generality, we may assume that there is
{7k, + 51372, such that yo(t+ 7%, + ;) — y(t) uniformly on any compact subset
of (w1, ws) as I — oo. Since S is compact, Theorem 3.1 in |2, p. 12] shows that
w; = —o0 and wy = +o00. Thus, y(t) € S for all t € R.
We know that y*(t + s;) is a solution of the following equation

(2.10) y=f"(t+ sk y).

By the same argument as given above, there exists a solution g(t) of
with §(0) = &* and y(t) € S for all t € R. By the uniqueness of solution of
defined on R and contained in S, we have y(t) = g(t) for all t € R.
Thus, & = y(0) = g(0) = &£*, but this contradicts ||y — £*|| = «. The claim is
proved. By Bochner’s criterion, yo(t) is almost periodic.

By the module containment theorem [8| p. 18], the module of yo(t) is con-
tained in the module of f(¢,y). O

LEMMA 2.7. Assume that g(t,z) is almost periodic in t uniformly for x €

R x R, and
T

(G7) lim ;/g(s,O)dS > 0,

T—+o0

0
G%) There exists an almost periodic function a : R — Ry such that
2
T

1
lim — /a(s)ds >0 and Dfg(t,z)) < —a(t) for all (t,7) € R x R,.
T—4oco T
0

Then equation has a unique solution X°(.) € By. Moreover, X°(.) is al-
most periodic, its module is contained in the module of g(t,z) and , lifrn |z (t) —
—+00

XO(t)| = 0 for any solution x(t) of with x(to) > 0. In particular, if g(t, )

is O-periodic in t (© > 0), then also the solution X°(t) is ©-periodic.
PRrOOF. By almost periodicity, (G7) and (G%) imply that there exist positve

A t+A
numbers A and v such that / 9(s,0)ds > v and / a(s)ds >~ for all t € R.

t t
By the same argument as given in the proof of inequalities (2.2]) of Lemma
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there exist positive numbers p, P and € such that

At At
(2.11) / g(s, P)ds < —e, / g(s,p)ds > e forall t€R.
t t

By almost periodicity of g(¢,x), it is easy to see that

At Att
(2.12) / g*(s,P)ds < —¢, / g*(s,p)ds > ¢, for all t € R and ¢* € H(g).
t t

Put ay = sup|g*(¢,0)|, A = Pexp(a1), aa = sup{|g*(¢,p)| + ¢*(¢,0)} and
teR teR

d = pexp(—ag). It is easy to see that § and A do not depend on the choice
of g* € H(g).
Let g* € H(g); consider the following equation

(2.13) T =xg*(t, ).

By the same argument as given in the proof of Lemma [2.3] we can show that
has a unique solution X*(¢) defined on R with X*(¢) € [d,A] for all
t € R. It follows from Lemmas and that equation has a unique
almost periodic solution X%(.) € B, which satisfies lt_lgrnOQ |z (t)— X°(t)| = 0 for

any solution z(t) of equation (2.1)) with z(¢g) > 0 and its module is contained
in that of g(t,z). If g is ©-periodic in ¢, then X°(.), XJ(.) € B are two
solutions of equation (2.1). By the uniqueness, X9(.) = XJ(.). The lemma is
proved. O

3. Permanence and bounded solutions of Kolmogorov predator-
-prey system. Consider the following Kolmogorov predator-prey system
’di - Uifi(t,U]_,. oy Up, U1y .. 7vm)7 1= ]-a e, N

(3.1)

0 = vjhi(t,ut, ..., Up,V1,. .., 0,), =1, ..., m,

where f;, hj : R x Rfrm — R are continuous. For w,z € RY, we set w < z
if w; <z, i=1,....,d. Let B = {(¢1,...,04) : R = R | ¢; € By, i
1,...,d}. We introduce the following hypotheses:

(K1) fi, h; are bounded on any set of the form R x S, where S C R} is
compact, and are such that for each compact set S C R1+m, for any ¢ > 0,
there exists § > 0 such that |f;(¢,u,v)—fi(t,4,0)| < e, |h;(t,u,v)—h;(t,@,?)| <
gforallteR,i=1,...,n,j=1,...,m and (u,v), (a,v) € S with [|(u,v) —
(u,v)| < 6.
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(K3) For each i = 1,...,n, there exist positive numbers A\]” and A, such that
t+AF L+
lgin_ﬁgf / fi(s,0,...,0)ds > 0, ltan_lgf / fi(s,0,...,0)ds > 0,
t t
(K3) For each i = 1,...,n, there exist positive numbers w;r, w; and a bounded
locally integrable function a; : R — R4 with
t+t.u;L tHw,
lim inf / ai(s)ds >0 and liminf / ai(s)ds >0
t——+o0 t——o00
t t

such that D fi(t,u,v)) < —a;(t) for (t,u,v) € R x R,

(K4) Foreach j = 1,...,m, there exist positive numbers 7?, v and a bounded
locally integrable function e; : R — R4 with

4+ 4+
lim inf / ej(s)ds >0 and liminf / ej(s)ds >0
t—+00 t——00
t t
such that D;;hj(t,u,v)) < —e;(t) for (t,u,v) € R x RF™,
(Ks) Foreachi=1,...,n, fi(t,u1,...,Un,v1,...,Vy) is nonincreasing in each
variable u; for [ = 1,...,n and in each variable vy for kK =1,...,m,
(Kg) For each j = 1,...,m, hj(t,ui,...,up,v1,...,vn) is nondecreasing in
each variable u; for [ = 1,...,n and is nonincreasing in each variable v, for
k=1,...,m.
Note that by (K1), (K2), (K3) and Lemma[2.3] for each i = 1, ..., n, the
following equation
(3.2;) ;= wifi(t,0,...,0,u;,0,...,0)
has a unique solution U?(.) € B4. Put U%(t) = (UY(¢),...,UL(¢)).
(K7) For each j = 1,...,m, there exist positive numbers ,uj, p; such that
tpf tpy

lim jnf / hi(s,U°(5),0,...,0)ds > 0, liminf / hi(s,U°(5),0,...,0)ds > 0.
t t
Note that by (K1), (K4), (K7) and Lemma [2.3] for each j = 1,...,m, the
following equation
(3.35) v; = vih; (6, U°(t),0,...,0,v;,0,...,0)

has a unique solution Vjo(.) € By. Put VO(t) = (V2(t),...,VO(t)).
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(Ks) For each i = 1,...,n, there exist positive numbers v, v;~ such that
t+u

lin inf / fils,UL(8), ..., UL 1 (8),0,U2 1 (5), ..., UR(s), VO(s))ds > 0,
i

ltlLIl_lnf fi(87 U{)(S)’ ceey UZ-(Ll(S), 07 UiOJrl(s)v R Ug(S), VO(S))dS > 0.
t

Note that by (K1), (K3), (Ks) and Lemma [2.3] for each i = 1,...,n, the
following equation

(3.4;) i = i fi(t, UL (), - ULy (8), wi, U (8), - UR (), VO(2))
has a unique solution u)(.) € By. Put u%(¢) = (u{(2),...,ud(t)).
(Ky) For each j = 1,...,m, there exist positive numbers 6;_, g; such that
t+ef
limn inf / hj(s,u%(s), VL(s), ..., V2 1(5),0, V21 (s), ..., Vin(s))ds > 0,
i
ltlI_I}_l&f hj(s,u(s), V(s), ... ,Vjo,l(s),O, Vﬂrl(s), ., V2(s))ds > 0.

t

Note that by (K1), (K4), (K9) and Lemma [2.3] for each j = 1,...,m, the
following equation

(3.5) b5 = vihy(t,u® (), VL (1), .., Vi (8), v, V2 (1), .., Vi (1))

has a unique solution v?(.) € By. Put v9(t) = (v9(¢),...,v0,(1)).

THEOREM 3.1. Let (K1)—~(Ky) hold. Then system is permanent and
it has at least one solution (u*(.),v*(.)) € BT,

PROOF. (i) The existence. By Lemma (u®(t),v°(t)) < (U°(#),VO(¢))
for all ¢ € R. We denote by C the set of continuous functions (u(.),v(.)) :
R — R™ x R™ equipped with the topology of uniform convergence on compact
subsets of R. It is well-known that C is a Fréchet space. Let

M ={(u(.),v(.) € C: (u¥(t),0°(t)) <(u(t),v(t)) < (U°(1),V°(1))
for all t € R}.
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By (K1), (K3), (K1), (Kg) and (Ky), Lemma implies that for each
(a(.),v(.)) € M, the following system of n+m uncoupled differential equations

(3 6) U = uifi(t7 al(t)? s ,’l],;_l(t), Us, ai-l—l(t)a cee 7an(t)7 ’D(t))a i=1,...,n,
. ’[)j - vjhj(t7ﬁ(t)7’l~)1(t)7 cee 6j—1(t)7vja 5j+1(t)7 R 6m(t))a J=1...,m,
has a unique solution (u(.),(.)) € BYt". By Lemma (u®(t),2°(t)) <
(a(t),v(t)) < (U°(t),VO(t)) for all t € R. Hence, we can introduce the follow-
ing operator

T:M—=M, (uf.),0(.) = (a(.), v(.)).
Clearly, (u*(.),v*(.)) is a solution in M of system (3.1)) if and only if it is a
fixed point of T. Let

5:inf{u?(t),v?(t): i=1,...,n, j=1,...,m, t € R},

A:sup{UiO(t),VjO(t): i=1,...,n, j=1,...,m, t € R},

L = sup{|u; fi(t,u,v)|, |vjhj(t,u,v)|:i=1,...,n, j=1,...,m,
(t,u,v) € R x [§, A]"T}.

By (K1), 0 < L < +o00. Let us set
Mi={peM:|pi(t) —i(t)| < LIt—t|, i=1,...,n+m, t,t € R}.

It is easily seen that M is a closed convex subset of M. By Ascoli’s theorem

(see [4]), My is compact (in the topology of uniform convergence on compact
subsets of R). Moreover, T (M) C M.

Claim. The operator T is continuous on M in the topology of uniform conver-
gence on compact subsets of R. To prove this, let {(u*(.),v*(.))}2, C M; such
that (u*(.),v%(.)) — (a(.),9(.)) as k — +oo. Since M is closed, (a(.),(.)) €
M. We shall show that T (u(.),v*(.)) — T(a(.),9(.)) as t — +oo. Since
{T(uF(.),v%(.)}32, is precompact, it suffices to show that if a subsequence
{T (uPs(.),v%(.))} converges to (@(.),s(.)) then (a(.),o(.)) = T (a(.),5(.)). To

this end, let us consider two systems

(3.7k,)
i = wi fi(tufe (8), .ol (8), s ulsy (8), .. uke(8), 0% (1)), i=1,...,n,
b = wihy (4 ubs (8), 0} (£), ... ofey (0), 05,055, (1), . ok (1), =1,...,m,
and
(3.8)

U; = ulfl(taal(t)7 teey ﬁi_l(t), uiaai-‘rl(t)a s 7an<t)7 ’D(t))7 Z:L R
i)j = ’Ujhj(t, ﬂ(t), ’L~)1(t), e ,ﬁj,l(t),vj,{zjﬂ(t), .. ,f)m(t)), 7j=1,...,m.

Clearly, the right hand side of (3.7x.|) converges to the right hand side of (3.8)
uniformly on any compact subset of R x R1+m. By Theorem 2.4 in |2, p.4], it
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follows that (a(.),v(.)) is a solution of (3.8). Since has a unique solution
in M (by Lemma [2.3)), T (a(.),9(.)) = (u(.),(.)). The claim is proved.

By Tychonov’s fixed pomt theorem (see [1]), there exists (u*(.),v*(.)) €
M such that T (u*(.),v*(.)) = (u*(.),v*(.)). Thus, (u*(.),v*(.)) is a solution
of system .

(74) The permanence. Let (u(t),v(t)) be a solution of with (u;(to), v;(to)) €
int R’ For each i = 1,...,n, let @;(t) be a solution of (3.2 with u;(ty) =
u;(tg). By Lemma [2.1] and the comparison theorem,

(3.9) wi(t) = ui(t) forall t > tg, i=1,....,n

By Lemma [2.2]

(3.10) Jim |u;(t) —U2(t)| =0fori=1,...,n

From and (| -, we have

(3.11) limsup u;(t) < limsup U2 (t) < A fori=1,...,n
t—+00 t—+00

For each j = 1,...,m, let v;(t) be a solution with v;(ty) = v;(to) of the
following equation

(3.12-) b; = vihy(t,a(t),0,...,0,v;,0,...,0).
By (3 , (K4) and (K7), we can apply Lemma- 2.5/ to equations (3.3
B12;

and 2 D and obtain

(3.13) Jim [0;(t) = VP(t)| =0for j=1,....m

By Lemma and the comparison theorem,

(3.14) vj(t) =2 vj(t) forallt > tg, j=1,...,m

From and (| -, we have

(3.15) limsupv;(t) < limsup V(t) <A for j=1,...,m
t—+o0 t—+o0

For i = 1,...,n, let 4;(t) be a solution with @;(tg) = u;(ty) of the following
equation

(3.16;) ulfl(t Wi (t), ..o i1 (t), ui W1 (t), ..., un(t),v(t)).

By (3.10), (K3) and (Kg) we can apply Lemma 2.5 to equations
(13.4;) and 3 16 D and obtam

(3.17) tl>1+moo\ul( )—u;(t))=0fori=1,...,n

By Lemma and the comparison theorem,
(3.18) wi(t) = u;(t) for all t > tg, i =1,...,n.
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From and we have
(3.19) lim 1nfui(t) > liminfud(t) >6 fori=1,...n
t—+o00 t—+o00
For each j =1,...m, let 9;(t) be a solution with v;(t9) = v;(to) of the following
equation
(3.20]') 2')]' = Ujhj(t, fL(t), U1 (t), R ,T)j_l(t), Vj, @j+1(t), - ,@m(t)).

By (3.13)), :3.17 , (K1), (K4) and (Ky), we can apply Lemmato equations
(3.55)) and (3.20,) and obtain

(3.21) lim |9;(t) — v?(t)| =0forj=1,...,m

t—+o0

By Lemma [2.T] and the comparison theorem,

(3.22) vj(t) > o(t) forallt > tg, j=1,...,m
From and we have
i(t) > liminf 09(¢) > =
(3.23) ltlgjgof vi(t) > ltl§ﬁ&f vj(t) 249 forj=1,...m
By (3.11)), (3.15)), (3.19) and (3.23)), system (3.1)) is permanent. O

REMARK. Theorem [3.1]is an extension of Theorem 1 in [5] to system (3.1).
It is also an extension of Theorem 2.5 in @ to the nonperiodic case.

Using Theorem we have the following corollary:

COROLLARY 3.2. Assume that f;, hy (i = 1,...,n, j = 1,...,m) are
almost periodic in t uniformly for (u,v) € R and satisfy (Ks), (Kg) and
the following hypotheses:

li 0)dt =1,.
0t 10 g
(K3) For each i = 1,...,n, there exists a nonnegative almost periodic func-
T
1
tion a;(t) with lim = [ a;(t)dt >0 such that D} fi(t,u,v)) < —ai(t) for
T—4oo T K
0
+
(t,u,v) € R x RY™,
(K3}) For each j = 1,...,m, there exists a nonnegative almost periodic func-
T
1
tion e;(t) with TETMT/ej(t)dt > 0 such that D;rjhj(t,u,v)) < —ej(t) for
0

+
(t,u,v) € R x RY™™,
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T
o1 0 .
5 — i cenn =1,...
(5) w1 [ 150000000t > 0 forg = 1..m,
0
(K¥) Thm /fl UL @), ..., U1 (£),0,U 1 (8),...,UN®), VO(t))dt > O for
—+oo I’
i=1,..
T
. 1
(Kg)k) Tl_l)rj:looT/hj(t’uO(t)7V10(t), e -"/}(Ll(t) V;—l—l( ) e ,Vng(t))dt >0 fO?“
0
7=1,....,m.
Then system is permanent and it has at least one solution (u*(.),v¥(.)) €
Bi+m. In particular, if f;, hy (i = 1,...,n, j = 1,...,m) are ©-periodic

(© > 0) int, then system has least one ©-periodic solution (u*(.),v*(.)) €
B

4. Lotka—Volterra predator-prey system. Consider the following
Lotka—Volterra predator-prey system

ul—uz[z Zalk
[ +ngk up —

where a;i(t), cik(t), djx(t), ejr(t) are continuous, nonnegative and bounded on
R, b;(t), rj(t) are continuous and bounded on R. We introduce the following
hypotheses:

clk(t)vk}, i=1,...,n,
(4.1)

|M3 EM3

k(t)vk} j: 1,. oM,

(L1) For each i = 1,...,n, there exist positive numbers A} and A; such that
1S A
lim inf / bi(s)ds >0, liminf / bi(s)ds > 0,
t—+o00 t——00
t t
(Ls) For each i = 1,...,n, there exist positive numbers w;” and w; such that
ttw; tw;
lim inf ai;(s)ds >0, liminf / a;i(s)ds > 0,
t——+o00 t——o0

t t
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(L3) For each j = 1,...,m, there exist positive numbers 'y;f and ;" such that
4+, 4+
ltlin—&}g / eji(s)ds >0, ltlin_mf / ejj(s)ds >0,
t t
(L4) For each i = 1,...,n, there exist positive numbers ,uj, p; such that
t-l-uj+ m
limi ' ' 0 }
tan_&&f / [rj(s) + Zdjk(s)Uk(s) ds >0,
7 k=1
t+uj
lim inf / ) + Zd]k $)U(s)]ds > 0,

t

where UJ(.) is a unique solution in B, of the following equation

(4-2i) Z'LZ' = Uj; [bz(t) — a”(t)uz]
(L) For each i = 1,...,n, there exist positive numbers v;" and v; such that
t+yi+ n m
lim inf / [bi<s> - > ar(s)Us) = cz-k<s>V;?<s>]ds >0,
f k=1, k#i k=1
by, n m
im i ) _ ) O0rg) . 0
lggjgf / [bl(s) a;r(s)UL () Zcm(s)Vk (s)}ds > 0,
f k=1, k#i k=1

where Vjo(.) is a unique solution in By of the following equation

(4.35) Uj = vj [TJ + Zdjk Uk —ej;()v }
(Lg) For each j = 1,...,m, there exist positive numbers 5;r and £ such that
t+6
m
lim inf / [ +Zd]k shup(s) — Y ekl $)V2(s )}d5>0
t+s

lggligof/[ +Zdjk s)ud(s Z ejk(s Vk()]d8>0

; k=1, k#j
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where u(.) is the unique solution in By of the following equation
n

(44 d=wfb)— Y ault Zcm W) — ait)us).

k=1, ki
Applying Theorem to system (4.1) we obtain the following corollary:

COROLLARY 4.1. Let (L1)—(Lg) hold. Then system is permanent and
it has at least one solution (u*(.),v*(.)) € BYt™.

Definition. A solution (a(t),(t)) of (3.1) with (@(ty),(to)) € int R} ™™ is
)

said to be globally attractive, if for any solution (u(t), v(t)) with (u(to), v(to)) €
it B there is lim_[|(u(t) o(8)) — ((0). 9(0)) | = 0.
—+o0

THEOREM 4.2. Let (L1)—(Lg) hold. If

(L7) There exist positive numbers s;, 5; (i=1,...,n, j=1,...,m) and a con-
+00

tinuous nonnegative function o : R — R with [ a(t)dt = 400, [ a(t)dt =
0 —0o0

+o00 such that

n

siaii(t) — Y spap(t Z/Bkdkz > a(t) forallteR, i=1,...,n,
k=1, kti

Bje;i(t) — skcik(t) — Z Brerj(t) = a(t) forallteR, j=1,...,m,
k=1 k=1, ktj

then system has a unique globally attractive solution (u*(.),v*(.)) €
Byt

PRrROOF. The existence of a solution (u*(t),v*(t)) follows from Corollary
41
(i) The uniqueness. For the contrary, suppose that there are two distinct solu-
tions (u'(t),v!(t)) and (u?(t),v%(t)) of system defined on R and satisfying
ul(t) € [0,A], vi(t) € [6, Al forallt € R, i=1,...,n,j = 1,...,mandl: 1,2,
where § and A are positive constants. Let (u'(to),v!(to)) # (u?(to), v%(to)) for
some tg € R. Let V() = Y0 si|lnul(t) — Inui(t)| + SOy Bl nwi(t) —
lnvjz(t)|. Then
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n

DV <[ 3 s +Z@dm — siais(t) | [u} (£) = u?(0)

3 [Snas+ Y s - ey (] ko) — o3
j=1 k=1 k=1, k#j
<= a{ Y lul(t) = w2+ D [o}() = v} )} < —va OV (),
i=1 j=1
Wherefy:min{;, g i=1,...,n, j = 1,...,m}. Thus,
i J

to

0<Vi(ty) < V(1) exp{ - /’ya(s)ds}, t < to.

t
to

Since V/(t) is bounded and tl}m exp{ - fyoz(s)ds} = 0, we have V(ty) = 0.
oo y

This is a contradiction. The uniqueness is proved.

(1i) The global attractivity. Let (u(t),v(t)) be a solution of (4.1) with
(u(to),v(tp)) € intR"*™. By Corollary there exist 6 > 0,A > 0 and
T > to such that (u(t),v(t)), (u*(t),v*(t)) € [6,A]""™ for all t > T. Let

V(t) =" si|Inw(t) — Inwf(t)| + Z Bjlnwv;(t) — Inv;(t)|. By calculating the
i=1
upper right derivative of V (t) as glven above, we obtain DTV (t) < —ya(t)V (¢)

} Thus, V(t) < V(T) exp{ —/’ya(s)ds}

for t > T, where v = mm{ 0

"B
T
> 1 S 1 = i —
for each ¢t > T. This implies that til?oo V(t) = 0, then tilinoo |(u(t),v(t))
(u*(t), v* ()]l = 0. O
THEOREM 4.3. Let a;i(t), cin(t), djx(t), ejr(t), bi(t) andri(t) (i=1,...,n
j=1,...,m) be almost periodic. Assume that
1 i 1 i
(4.6) %rilirgf /b'(s)ds > 0, %gligf /aii(s)ds >0,i=1,...,n,
0
T T
(4.7) hmlnfl/ s)ds > 0, hmlnf/[ —I—Zd s)UR( }d >0
' T—+oo T' 6]] s T—+oo T' kLS k y ’
0 0

j=1...,m,
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1 n m
(4.8) ljirilinf T/ {bi(s) - Z air(s Z cik(s ]ds > 0,
5y k=1, keti k=1
1 =1, , M,
7 “
(4.9) l%mmf/[ )+ Zdﬂk’ s)ud(s Z ejk(s }ds > 0,
oo T k=1, ket
J=1....m

where UL(.) (u9(.) and V;O()) is the unique almost periodic solution in By of
, ( and , respectively). Then is permanent and it has
least one solution (u*(.),v*(.)) € BYT™. If, in addition, (L7) holds, then there
exists a unique globally attractive almost periodic solution (u*(.),v*(.) € B™
and its module is contained in that of F(t,u,v), where F(t,u,v) is the right
hand side of {4.1). In particular, if aw(t), ci(t), d(t), eu(t), bi(t) and
ri(t) (i=1,...,n, j =1,...,m) are O-periodic, then also the above solution
(u*(.),v*(.)) is ©-periodic.

ProOOF. By Corollary 4.1, system (|4.1]) is permanent and it has least one
solution (u*(.),v*(.)) € B}"™. We know that for each F* € H(F) (the hull
of F), there exist aj, € H(aw), ¢jy € H(cik), dj, € H(djk), €}, € H(ejk),
b; € H(b;) and rj € H(rj) (i=1,...,n, j=1,...,m) such that F*(t,u,v) is
the right hand 51de of the following system

iLZ‘ = U; |:b>I< Zazk ’U,k
v =0 [ +Zd3k U — Z (t)’l)k],j:L...,m

[ M 3
eT'
—
~
S~—
S
Bl

| I
=3

|
“I—‘
3

(4.10)

Fori=1,...,nand j=1,...,m, let us consider

(412)) b5 =y |ri(t) + Y — e}ty
(413) i =w b~ Y aiOURL(E) = Y V) — ekt
) k=1, k#i k=1
(4145) 8= v [0 + 3 dul) D V() — ()]
k=1 = j
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By Lemma each of equations (4.11;)), (4.12,)), (4.13,)), (4.14,) has a unique
almost periodic solution U(.), Vj*o(.), u%(.) and fu;fo(.) in By, respectively.
Let {7, }32, be a sequence of numbers such that b;;, — b, ajir, = a; as k — 0o

uniformly on R. Without loss of generality, we may assume that Uiom — (_]io

as k — oo uniformly on R. It is easy to see that UZ»O is a solution of equation
4.11;) and thus U;°(.) = U?(.). This implies that sup U (t) = sup UP(t).
teR teR

Similarly, ilelﬂg Vj*o(t) = St.lel]g V}O(t), ggﬂg uwO(t) = ggﬂg ud (t), gﬂf{ v;fo(t) = tlgufg v;-)(t).
Clearly that  sup [Fy(t,u,v)] = sup |Fk(t,u,v)| for any compact
(t,u,v)ERXS (t,u,v)ERXS
set S C R™"™. Let
5:inf{u?(t),v]0-(t): i=1,...,n, j=1,...,m, t € R},

A:sup{UlQ(t),VjO(t): i=1,...,n, j=1,...,m, t € R},
= max { sup |F7 (¢, u,v)|}.
(t,u,v)ERX[§,A]n+m

By the same argument as given in the proof of Theorem [3.1] we know that
system (4.10]) has at least one solution (u(t),v(t)) in M7 where
M7 = {(u(),v()) : (W), v™(1) < (u(t),v(t)) < (U(1), V(1))
juilt) —w® < Ll =7, i =1,...,m,
lvj(t) —v;(®)| < LIt —1t|, j=1,...,m, t,t € R}.
It is easy to see that system (4.10f) satisfies all conditions in Theorem
Thus, for each F* € H(F'), system (4.10]) has a unique solution (u(t),v(t)) with
(u(t),v(t)) € [6, A]"*t™ for all t € R. Since § and A do not depend on the choice
of F* € H(F), from Lemma and Theorem it follows that there exists
a unique globally attractive almost periodic solution (u*(.),v*(.)) € B}™™ of
system (4.1). Moreover, the module of (u*(t),v*(t)) is contained in that of
F(t,u,v). If Fis ©-periodic in ¢, then (u*(.),v*(.)) and (u§(.),v§(.)) are two
solutions in B} of (4.1). By the uniqueness, (u*(.),v*(.)) = (ug(.),v5()).
The theorem is proved. O
REMARK. In [7], the authors considered system (4.1)) with b;(t), —r;(t),
air(t) (i # k), ej(t) (j # 1), cu(t) and dji(t) nonnegative almost periodic;
a;i(t) and e;;(t) are almost periodic and bounded from above and from below
by positive constants. If f : R — R is almost periodic, we set f* = 2%nﬂf@f(t)
€

and fH = iu}g f(t). Moreover, we set
€

b'H 1 . H H 1 h - H S H
pi= s 4G = ( > dliprtr] ) i = (bi - > alfp—) ciqu),
J iJ k=1 (L k=1

Yii €ji k=1 ki
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m

B = (7’ —i—Zd]kak— Z cﬁqu>,izl,...,n,jzl,...,m.
k=1,kj
In [7] it was shown that: If
(4.15) a; > 0, ﬁj >0, q; > 0

and (L7) hold, then system has a unique globally attractive almost periodic
solution (u*(.),v*(.)) € BY™ and its module is contained in that of F(t,u,v),
where F(t,u,v) is the right hand side of ({.1]).

It is easy to see that sup UO( )<pi (i=1,...,n) and sup VO( )<q; (=

1,...,m). Thus condltlon 5|) implies conditions (4 . . . and (4 .

The following example shows that Theorem [4.3] generalizes and improves the
above result in [7].

ExaMPLE. Consider the following system

i = u[(0.5—0.5(cos t4 cos V/2t))—(1.1—0.5(cos t+ cos V/2t))u—0.04v],

4.16
(4.16) © = v[sin t+ sin V3t+u—v).

By Lemma the equation @ = u[0.5 — 0.5(cos t +cos v/2t) — (1.1 —0.5(cos t +
cos v/2t))u] has a unique almost periodic solution U%(.) € B,. It is easy to see
that

0.5 — 0.5(cost + cos \/2t) o 1.5

sup U%(t) < sup

teR teR 1.1 — 0.5(cost + cos \/ﬁt) S 21
By Lemma the equation © = v[sin t4sin v/3t+U°(t)—v] has a unique almost
T T
1 1
periodic solution V9(.) € B. Since Tl_i)rfoo = / VOt)dt = Tl—igloo T /[sint +
0 0
, . 1.5 1
sinV3t + U%t)]dt < ==, we have lim — [[0.5 — 0.5(cost + cosV/2t) —
2.1 T—+4o0 T’
0

0.04V(t)]dt > 0. Tt follows that the equation
i = u[(0.5 — 0.5(cos t 4 cos v/2t)) — 0.04V°(t) — (1.1 — 0.5(cos t + cos V2t))u]

has a unique almost periodic solution u ( ) € By. Now, it is easy to verify
that system (4.1f) satisfies all conditions . Moreover, condition (Lr)

holds for s = 0.5, B = 0.04. Therefore, by Theorem system (4.16) has a
unique globally attractive almost periodic solution (u*(), v*()) € B7, whereas

system (4.16]) does not satisfy (4.15)).
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