PERMANENCE AND POSITIVE BOUNDED SOLUTIONS OF KOLMOGOROV PREDATOR-PREY SYSTEM

by Trinh Tuan Anh and Pham Minh Thong

Abstract

Our main purpose is to present some criteria for the permanence and existence of a positive bounded solution of Kolmogorov predator--prey system. Under certain conditions, it is shown that the system is permanent and there exists a solution which is defined on the whole \mathbb{R} and whose components are bounded from above and from below by positive constants.

1. Introduction. We consider the following Kolmogorov predator-prey system

$$
\left\{\begin{array}{l}
\dot{u}_{i}=u_{i} f_{i}\left(t, u_{1}, \ldots, u_{n}, v_{1}, \ldots, v_{m}\right), i=1, \ldots, n \tag{1.1}\\
\dot{v}_{j}=v_{j} h_{j}\left(t, u_{1}, \ldots, u_{n}, v_{1}, \ldots, v_{m}\right), j=1, \ldots, m
\end{array}\right.
$$

where $f_{i}, h_{j}: \mathbb{R} \times \mathbb{R}_{+}^{n+m} \rightarrow \mathbb{R}$ are continuous, $u_{i}(t)$ denotes the quantity of the $i^{\text {th }}$ prey at time t and $v_{j}(t)$ denotes the quantity of the $j^{\text {th }}$ predator at time t.

A special case of (1.1) is the system of Lotka-Volterra type:

$$
\left\{\begin{align*}
\dot{u}_{i} & =u_{i}\left[b_{i}(t)-\sum_{k=1}^{n} a_{i k}(t) u_{k}-\sum_{k=1}^{m} c_{i k}(t) v_{k}\right], i=1, \ldots, n, \tag{1.2}\\
\dot{v}_{j} & =v_{j}\left[r_{j}(t)+\sum_{k=1}^{n} d_{j k}(t) u_{k}-\sum_{k=1}^{m} e_{j k}(t) v_{k}\right], j=1, \ldots, m,
\end{align*}\right.
$$

where $a_{i k}(t), c_{i k}(t), d_{j k}(t), e_{j k}(t), b_{i}(t), r_{j}(t)$ are continuous and bounded on \mathbb{R}.

A fundamental ecological question associated with the study of multispecies population interactions is the long-term coexistence of the involved populations. Such questions also arise in many other situations (see [3]). Mathematically, this is equivalent to the so-called permanence of the populations. We

2000 Mathematics Subject Classification. 34A12, 39A10, 34C11, 34C27, 92B05.
Key words and phrases. Predator-prey system, permanence, bounded solution, almost periodic solution.
recall that system (1.1) is permanent if there exist positive constants δ and Δ $(\delta<\Delta)$ such that any noncontinuable solution $\left(u_{1}(),. \ldots, u_{n}(),. v_{1}(),. \ldots, v_{m}().\right)$ of (1.1) with $\left(u_{1}\left(t_{0}\right), \ldots, u_{n}\left(t_{0}\right), v_{1}\left(t_{0}\right), \ldots, v_{m}\left(t_{0}\right)\right) \in \operatorname{int} \mathbb{R}_{+}^{n+m}$ - the interior of \mathbb{R}_{+}^{n+m}, is defined on $\left[t_{0},+\infty\right)$ and for $i=1, \ldots, n, j=1, \ldots, m$ the following inequalities are satisfied:

$$
\delta \leqslant \liminf _{t \rightarrow+\infty} u_{i}(t) \leqslant \limsup _{t \rightarrow+\infty} u_{i}(t) \leqslant \Delta, \quad \delta \leqslant \liminf _{t \rightarrow+\infty} v_{j}(t) \leqslant \limsup _{t \rightarrow+\infty} v_{j}(t) \leqslant \Delta
$$

The permanence, the existence and global attractivity of a positive periodic solution of system (1.1) and (1.2) in the periodic case have been studied by Wen and Wang (see $[\mathbf{6}]$), as well as many other authors. Some results on sufficient conditions for the existence and global attractivity of a unique positive almost periodic solution of system (1.2) in the almost periodic case were mentioned in [7]. For the Kolmogorov competing system, the authors in 5 have obtained a sufficient condition for the permanence and the existence of a positive bounded solution. As a continuation of $[5-7$ and some recent results, in this paper we study the permanence and the existence of a positive bounded solution of the Kolmogorov predator-prey system under certain conditions. The paper is organized as follows: Section 2 contains preliminaries, in which we present the relevant results on the permanence and asymptotic behaviour of solutions of a single-species model. In Section 3, we prove our main result on the permanence and existence of a positive bounded solution of system (1.1). In the last section, we study the permanence, existence and global attractivity of a unique positive almost periodic solution of Lotka-Volterra system 1.2 .
2. Preliminaries. Consider the following equation

$$
\begin{equation*}
\dot{x}=x g(t, x) \tag{2.1}
\end{equation*}
$$

where $g: \mathbb{R} \times[0,+\infty) \rightarrow \mathbb{R}$ is continuous. Let $\mathbb{R}_{+}=:[0,+\infty)$. We assume that:
$\left(G_{1}\right)$ The function $g(., 0)$ is bounded and $\lim _{x \rightarrow 0}\left\{\sup _{t \in \mathbb{R}}|g(t, x)-g(t, 0)|\right\}=0$,
$\left(G_{2}\right)$ There exists $\lambda>0$ such that $\liminf _{t \rightarrow+\infty} \int_{t}^{t+\lambda} g(s, 0) d s>0$,
$\left(G_{3}\right)$ There exist a positive number ω and a function $a: \mathbb{R} \rightarrow \mathbb{R}_{+}$, which is bounded and locally integrable with $\liminf _{t \rightarrow+\infty} \int_{t}^{t+\omega} a(s) d s>0$ such that $\left.D_{x}^{+} g(t, x)\right) \leqslant$ $-a(t)$ for all $(t, x) \in \mathbb{R} \times \mathbb{R}_{+}$, where D_{x}^{+}is the upper right derivative with respect to x.

Let $\mathcal{B}_{+}=\left\{b: \mathbb{R} \rightarrow \mathbb{R}\right.$ is continuous and $\left.0<\inf _{t \in \mathbb{R}} b(t) \leqslant \sup _{t \in \mathbb{R}} b(t)<+\infty\right\}$.

LEMMA 2.1. If $g(t, x)$ is nonincreasing in x, then for each initial value $x\left(t_{0}\right)=x_{0} \in \mathbb{R}_{+}$, equation (2.1) has a unique solution $x(t)$ for $t \geqslant t_{0}$.

Proof. By the way of contradiction we assume that there exists $\left(t_{0}, x_{0}\right) \in$ $\mathbb{R} \times \mathbb{R}_{+}$such that there are two distinct solutions $x_{1}(t)$ and $x_{2}(t)$ on $\left[t_{0}, t_{1}\right]\left(t_{1}>\right.$ t_{0}) of (2.1) with $x_{1}\left(t_{0}\right)=x_{2}\left(t_{0}\right)=x_{0}$. Without loss of generality, we may assume that $x_{1}(t)>x_{2}(t)$ for $t \in\left(t_{0}, t_{1}\right]$. There are two possible cases:
$+)$ If $x_{0}>0$ then $\left[\ln x_{1}(t)-\ln x_{2}(t)\right]^{\prime}=g\left(t, x_{1}(t)\right)-g\left(t, x_{2}(t)\right) \leqslant 0$ for all $t \in\left[t_{0}, t_{1}\right]$. Hence, $0<\ln x_{1}\left(t_{1}\right)-\ln x_{2}\left(t_{1}\right) \leqslant \ln x_{1}\left(t_{0}\right)-\ln x_{2}\left(t_{0}\right)=0$. This is a contradiction.
$+)$ If $x_{0}=0$ then $x_{1}(t)>0$ for all $t \in\left(t_{0}, t_{1}\right]$. Hence, $\dot{x}_{1}(t)=x_{1}(t) g\left(t, x_{1}(t)\right) \leqslant$ $\gamma x_{1}(t)$ for $t \in\left[t_{0}, t_{1}\right]$ and for some $\gamma>0$. By Gronwall's inequality, $x_{1}(t)=0$ for all $t \in\left[t_{0}, t_{1}\right]$. This is a contradiction. The lemma is proved.

Remark. Assumption $\left(G_{3}\right)$ directly implies that $g(t, x)$ is nonincreasing in x.

Lemma 2.2. If assumptions $\left(G_{1}\right),\left(G_{2}\right)$ and $\left(G_{3}\right)$ hold, then
(i) Equation (2.1) is permanent,
(ii) $\lim _{t \rightarrow+\infty}\left|x_{1}(t)-x_{2}(t)\right|=0$ for every couple of solutions $x_{1}(t)$ and $x_{2}(t)$ of (2.1) with $x_{1}\left(t_{0}\right)>0$ and $x_{2}\left(t_{0}\right)>0$.

Proof. (i) By $\left(G_{3}\right)$, we have $\int_{t}^{t+\omega} g(s, x) d s=\int_{t}^{t+\omega}[g(s, 0)+g(s, x)-g(s, 0)] d s \leqslant$ $\int_{t}^{t+\omega} g(s, 0) d s-x \int_{t}^{t+\omega} a(s) d s$, and then $\limsup _{t \rightarrow+\infty} \int_{t}^{t+\omega} g(s, x) d s \leqslant \limsup _{t \rightarrow+\infty} \int_{t}^{t+\omega} g(s, 0) d s-$ $x \liminf _{t \rightarrow+\infty} \int_{t}^{t+\omega} a(s) d s$. Thus, by $\left(G_{1}\right)$ and $\left(G_{3}\right)$, there exists positive number P such that $\limsup _{t \rightarrow+\infty} \int_{t}^{t+\omega} g(s, P) d s<0$. By $\left(G_{1}\right)$ and $\left(G_{2}\right)$, there exists positive number $p(p<P)$ such that $\liminf _{t \rightarrow+\infty} \int_{t}^{t+\lambda} g(s, p) d s>0$. Thus, there exist $\varepsilon>0$ and $T \in \mathbb{R}$ such that

$$
\begin{equation*}
\int_{t}^{t+\omega} g(s, P) d s \leqslant-\varepsilon, \int_{t}^{t+\lambda} g(s, p) d s \geqslant \varepsilon \text { for all } t \geqslant T \tag{2.2}
\end{equation*}
$$

Claim 1. If $t_{1} \geqslant T$ such that $x\left(t_{1}\right)=P$ and $x(t) \geqslant P$ for all $t \in\left[t_{1}, t_{2}\right]$, then $t_{2}-t_{1}<\omega$. Indeed, by the way of contradiction we assume that $t_{2}-t_{1} \geqslant \omega$,
then

$$
\begin{aligned}
& x\left(t_{1}+\omega\right)=x\left(t_{1}\right) \exp \left\{\int_{t_{1}}^{t_{1}+\omega} g(t, x(t)) d t\right\} \\
& \leqslant x\left(t_{1}\right) \exp \left\{\int_{t_{1}}^{t_{1}+\omega} g(t, P) d t\right\} \leqslant P e^{-\varepsilon}<P
\end{aligned}
$$

which is a contradiction, since $x\left(t_{1}+\omega\right) \geqslant P$. The claim is proved.
Claim 2. There exists $T_{1} \geqslant T$ such that $x\left(T_{1}\right) \leqslant P$. Indeed, suppose in the contrary that $x(t)>P$ for all $t \geqslant T$. Then $x(t) \leqslant x(T) \exp \int_{T}^{t} g(s, P) d s$ for all $t \geqslant T$. Thus, 2.2 implies that $\lim _{t \rightarrow+\infty} x(t)=0$. This is a contradiction that proves the claim.

Let us put $\alpha_{1}=\sup _{t \in \mathbb{R}}|g(t, 0)|$ and $\Delta=P \exp \left(\alpha_{1} \omega\right)$. By Claims 1 and 2, it follows that $x(t) \leqslant \Delta$ for all $t \geqslant T_{1}$.

Claim 3. If $t_{1} \geqslant T$ such that $x\left(t_{1}\right)=p$ and $x(t) \leqslant p$ for all $t \in\left[t_{1}, t_{2}\right]$ then $t_{2}-t_{1}<\lambda$. Indeed, by the way of contradiction we assume that $t_{2}-t_{1} \geqslant \lambda$, then $x\left(t_{1}+\lambda\right)=x\left(t_{1}\right) \exp \int_{t_{1}}^{t_{1}+\lambda} g(t, x(t)) d t \geqslant x\left(t_{1}\right) \exp \int_{t_{1}}^{t_{1}+\lambda} g(t, p) d t \geqslant p e^{\varepsilon}>p$, which is a contradiction, since $x\left(t_{1}+\lambda\right) \leqslant p$. The claim is proved.
Claim 4. There exists $T_{2} \geqslant T$ such that $x\left(T_{2}\right) \geqslant p$. Indeed, suppose in the contrary that $x(t)<p$ for all $t \geqslant T$. Then $x(t) \geqslant x(T) \exp \int_{T}^{t} g(s, p) d s$ for all $t \geqslant T$. Thus, 2.2 implies that $\lim _{t \rightarrow+\infty} x(t)=+\infty$. This is a contradiction which proves the claim.

Let us put $\alpha_{2}=\sup _{t \in \mathbb{R}}\{|g(t, p)|+g(t, 0)\}$ and $\delta=p \exp \left(-\alpha_{2} \lambda\right)$. By Claims 3 and 4 , it follows that $x(t) \geqslant \delta$ for all $t \geqslant T_{2}$. The proof of part (i) is complete. (ii) Let $x_{1}(t)$ and $x_{2}(t)$ be two arbitrary solutions of equation (2.1) with $x_{1}\left(t_{0}\right)>0$ and $x_{2}\left(t_{0}\right)>0$. There exist $\delta, \Delta>0$ and $T \geqslant t_{0}$ such that $x_{i}(t) \in[\delta, \Delta]$ for all $t \geqslant T$ and $i=1,2$. By Lemma 2.1, without loss of generality we may assume that $x_{1}(t) \geqslant x_{2}(t)$ for all $t \geqslant T$. Let $V(t)=$ $\ln x_{1}(t)-\ln x_{2}(t)$. Then $\dot{V}(t)=g\left(t, x_{1}(t)\right)-g\left(t, x_{2}(t)\right) \leqslant-a(t)\left[x_{1}(t)-x_{2}(t)\right] \leqslant$ $-\delta a(t) V(t)$. Thus, $V(t) \leqslant V(T) \exp \int_{T}^{t}-\delta a(s) d s \rightarrow 0$ as $t \rightarrow+\infty$. This implies $\lim _{t \rightarrow+\infty}\left|x_{1}(t)-x_{2}(t)\right|=0$.

Lemma 2.3. Let assumptions $\left(G_{1}\right),\left(G_{2}\right)$ and $\left(G_{3}\right)$ hold. If $\left(G_{4}\right)$ There exists a positive number $\bar{\lambda}$ such that $\liminf _{t \rightarrow-\infty} \int_{t}^{t+\bar{\lambda}} g(s, 0) d s>0$ and $\left(G_{5}\right)$ There exists a positive number $\bar{\omega}$ such that $\liminf _{t \rightarrow-\infty} \int_{t}^{t+\bar{\omega}} a(s) d s>0$, then equation (2.1) has a unique solution $X^{0}(.) \in \mathcal{B}_{+}$.

Proof. (i) The existence. By the same argument as given in the proof of inequalities (2.2) in Lemma 2.2, we know that there exist $\bar{p}, \bar{P}, \bar{\varepsilon}>0$ and $\bar{T} \in \mathbb{R}$ such that

$$
\begin{equation*}
\int_{t}^{t+\bar{\omega}} g(s, \bar{P}) d s \leqslant-\bar{\varepsilon}, \quad \int_{t}^{t+\bar{\lambda}} g(s, \bar{p}) d s \geqslant \bar{\varepsilon} \quad \text { for all } t \leqslant \bar{T} \tag{2.3}
\end{equation*}
$$

Put $\alpha_{1}=\sup _{t \in \mathbb{R}}|g(t, 0)|, \bar{\Delta}=\bar{P} \exp \left(\alpha_{1} \bar{\omega}\right), \alpha_{2}=\sup _{t \in \mathbb{R}}\{|g(t, p)|+g(t, 0)\}$ and $\bar{\delta}=\bar{p} \exp \left(-\alpha_{2} \bar{\lambda}\right)$. By the same argument as given in the proof of part (i) of Lemma 2.2, we conclude that if $x\left(t_{0}\right) \in[\bar{p}, \bar{P}]$ then $x(t) \in[\bar{\delta}, \bar{\Delta}]$ for all $t \in\left[t_{0}, \bar{T}\right]$. For each positive integer n such that $-n \leqslant \bar{T}$, let $x_{n}(t)$ be a solution of 2.1 with $x_{n}(-n)=\bar{p}$. Then $x_{n}(t) \in[\bar{\delta}, \bar{\Delta}]$ for all $t \in[-n, \bar{T}]$. In particular, $x_{n}(\bar{T}) \in[\bar{\delta}, \bar{\Delta}]$. Therefore, there exists a subsequence $\left\{n_{k}\right\}$ of $\{n\}$ such that $x_{n_{k}}(\bar{T}) \rightarrow \xi$ as $k \rightarrow+\infty$ for some $\xi \in[\bar{\delta}, \bar{\Delta}]$. By Theorem 3.2 in [2, p. 14], there exist a solution $X^{0}(t)$ of (2.1) satisfying $X^{0}(\bar{T})=\xi$ with the maximal interval of existence $\left(\omega_{1}, \omega_{1}\right)$ and a subsequence $\left\{n_{k_{j}}\right\}$ of $\left\{n_{k}\right\}$ such that $x_{n_{k_{j}}}(t)$ converges to $X^{0}(t)$ uniformly on any compact subset of $\left(\omega_{1}, \omega_{2}\right)$. By Lemma $2.2(i), \omega_{2}=+\infty$. We now prove that $\omega_{1}=-\infty$. To this end, by the way of contradiction we assume that $\omega_{1}>-\infty$. Then there exists $t_{0} \in(-\infty, \bar{T}]$ such that $X^{0}\left(t_{0}\right) \notin[\bar{\delta}, \bar{\Delta}]$. Choose a positive integer j_{0} such that $-n_{k_{j_{0}}}<t_{0}$. Clearly $x_{n_{k_{j}}}\left(t_{0}\right) \in[\bar{\delta}, \bar{\Delta}]$ for all $j \geqslant j_{0}$ and $x_{n_{k_{j}}}\left(t_{0}\right) \rightarrow X^{0}\left(t_{0}\right)$ as $j \rightarrow+\infty$. Thus, $X^{0}\left(t_{0}\right) \in[\bar{\delta}, \bar{\Delta}]$. This is a contradiction. It implies that $\omega_{1}=-\infty$. For each $\bar{t} \in(-\infty, \bar{T}]$, we know that $x_{n_{k_{j}}}(\bar{t}) \rightarrow X^{0}(\bar{t})$ as $j \rightarrow+\infty$. Thus, $X^{0}(\bar{t}) \in[\bar{\delta}, \bar{\Delta}]$ for all $\bar{t} \in(-\infty, \bar{T}]$. By Lemma $2.2(i), X^{0}(.) \in \mathcal{B}_{+}$.
(ii) The uniqueness. Suppose in the contrary that equation (2.1) has two distinct solutions $X^{0}(t)$ and $X^{1}(t)$ defined on \mathbb{R} and satisfying $\delta \leqslant X^{i}(t) \leqslant \Delta$ for all $t \in \mathbb{R}(i=0,1)$, where δ, Δ are positive constants. By Lemma 2.1, without loss of generality, we may assume that $X^{0}(t) \geqslant X^{1}(t)$ for all $t \in \mathbb{R}$. Put $V(t)=\ln X^{0}(t)-\ln X^{1}(t)$. We have $\dot{V}(t)=g\left(t, X^{0}(t)\right)-g\left(t, X^{1}(t)\right) \leqslant$ $-a(t)\left[X^{0}(t)-X^{1}(t)\right] \leqslant-\delta a(t) V(t)$. Thus, since $V(t)$ is bounded, $0<V\left(t_{0}\right) \leqslant$ $V(t) \exp \int_{t}^{t_{0}}[-\delta a(s)] d s \rightarrow 0$ as $t \rightarrow-\infty$. This is a contradiction. The proof of Lemma 2.3 is complete.

Lemma 2.4. Assume that
$\left(H_{1}\right)$ For each $i=1,2, g_{i}: \mathbb{R} \times \mathbb{R}_{+} \rightarrow \mathbb{R}$ is continuous and such that the following equation

$$
\begin{equation*}
\dot{x}_{i}=x_{i} g_{i}\left(t, x_{i}\right) \tag{i}
\end{equation*}
$$

is permanent,
$\left(H_{2}\right)$ For each $i=1,2$, equation $\left(2.4_{i}\right)$ has a unique solution $X_{i}^{0}(.) \in \mathcal{B}_{+}$,
$\left(H_{3}\right)$ The function $g_{i}(t,$.$) is nonincreasing for each t \in \mathbb{R}$ and $g_{1}(t, x) \leqslant g_{2}(t, x)$ for all $(t, x) \in \mathbb{R} \times \mathbb{R}_{+}$.

Then $X_{1}^{0}(t) \leqslant X_{2}^{0}(t)$ for all $t \in \mathbb{R}$.
Proof. Suppose in the contrary that there exists $t_{1} \in \mathbb{R}$ such that $X_{1}^{0}\left(t_{1}\right)>$ $X_{2}^{0}\left(t_{1}\right)$. By $\left(H_{1}\right)$, there exists a solution $\bar{x}_{2}(t)$ of $\left(2.4_{2}\right)$ with $\bar{x}_{2}\left(t_{1}\right)=X_{1}^{0}\left(t_{1}\right)$ and defined on $\left[t_{1},+\infty\right)$ and bounded from above and from below on $\left[t_{1},+\infty\right)$ by positive constants. For $t \leqslant t_{1}$ let $\tilde{x}_{2}(t)$ be the minimal solution of $\left(2.4_{2}\right)$ with $\tilde{x}_{2}\left(t_{1}\right)=X_{1}^{0}\left(t_{1}\right)$. By Theorem 4.1 in [2, p. 26], we have $X_{1}^{0}(t) \geqslant \tilde{x}_{2}(t) \geqslant X_{2}^{0}(t)$ for all $t<t_{1}$ in the domain of $\tilde{x}_{2}(t)$. Thus, $\tilde{x}_{2}(t)$ is defined for all $t \in\left(-\infty, t_{1}\right]$. Let

$$
x^{*}(t)= \begin{cases}\bar{x}_{2}(t), & \text { if } t \geqslant t_{1} \\ \tilde{x}_{2}(t), & \text { if } t<t_{1}\end{cases}
$$

Then $x^{*}(.) \in \mathcal{B}_{+}$. Moreover, $x^{*}($.$) is a solution of \left(2.4_{2}\right)$ which is different from $X_{2}^{0}($.$) . This is a contradiction. The lemma is proved.$

Lemma 2.5. Let hypothesis $\left(H_{1}\right)$ hold. If
$\left(H_{4}\right)$ There exist $\omega>0$ and a function $a: \mathbb{R} \rightarrow \mathbb{R}_{+}$which is bounded and locally integrable with $\liminf _{t \rightarrow+\infty} \int_{t}^{t+\omega} a(s) d s>0$ such that $\left.D_{x}^{+} g_{1}(t, x)\right) \leqslant-a(t)$ for all $(t, x) \in \mathbb{R} \times \mathbb{R}_{+}$,
$\left(H_{5}\right)$ For each compact set $S \subset \mathbb{R}_{+}, \lim _{t \rightarrow+\infty}\left\{\sup _{x \in S}\left|g_{1}(t, x)-g_{2}(t, x)\right|\right\}=0$,
then $\lim _{t \rightarrow+\infty}\left|x_{1}(t)-x_{2}(t)\right|=0$ for any couple of solutions $x_{1}(t)$ and $x_{2}(t)$ of equations $\left(2.4_{1}\right)$ and $\left(2.4_{2}\right)$, respectively, with $x_{1}\left(t_{0}\right)>0$ and $x_{2}\left(t_{0}\right)>0$.

Proof. For each $i=1,2$, let $x_{i}(t)$ be a solution of 2.4_{i} with $x_{i}\left(t_{0}\right)>0$. By $\left(H_{1}\right)$, there exist $\delta, \Delta>0$ and $T \geqslant t_{0}$ such that $\delta \leqslant x_{i}(t) \leqslant \Delta$ for all $t \geqslant T, i=1,2$. For $t \geqslant T$, let $V(t)=\left|\ln x_{1}(t)-\ln x_{2}(t)\right|$. By $\left(H_{5}\right)$, we obtain

$$
\begin{align*}
D^{+} V(t)= & {\left[\operatorname{sign}\left(x_{1}(t)-x_{2}(t)\right)\right] } \\
& \cdot\left\{\left[g_{1}\left(t, x_{1}(t)\right)-g_{1}\left(t, x_{2}(t)\right)\right]+\left[g_{1}\left(t, x_{2}(t)\right)-g_{2}\left(t, x_{2}(t)\right)\right]\right\} \tag{2.5}\\
\leqslant- & a(t)\left|x_{1}(t)-x_{2}(t)\right|+h(t) \leqslant-\delta a(t) V(t)+h(t),
\end{align*}
$$

where $h(t)=\left|g_{1}\left(t, x_{2}(t)\right)-g_{2}\left(t, x_{2}(t)\right)\right|$. By $\left(H_{5}\right)$, we have $\lim _{t \rightarrow+\infty} h(t)=0$. Thus, $\left(H_{4}\right)$ and 2.5 imply that $\lim _{t \rightarrow+\infty} V(t)=0$. Hence, $\lim _{t \rightarrow+\infty}\left|x_{1}(t)-x_{2}(t)\right|=0$.

Consider the following equation

$$
\begin{equation*}
\dot{y}=f(t, y) \tag{2.6}
\end{equation*}
$$

where $f: \mathbb{R} \times \Omega \rightarrow \mathbb{R}^{d}\left(\Omega \subset \mathbb{R}^{d}\right.$ is open $)$ is almost periodic in t uniformly for $y \in \Omega$. We recall Bochner's criterion for the almost periodicity (see $[\mathbf{8}]$): $f(t, y)$ is almost periodic in t uniformly for $y \in \Omega$ if and only if for every sequence of numbers $\left\{\tau_{k}\right\}_{k=1}^{\infty}$, there exists a subsequence $\left\{\tau_{k_{l}}\right\}_{l=1}^{\infty}$ such that the sequence of translations $\left\{f\left(\tau_{k_{l}}+t, y\right)\right\}_{l=1}^{\infty}$ converges uniformly on $\mathbb{R} \times S$, where S is any compact subset of Ω.

Denote by f_{τ} the τ-translation of f, that is $f_{\tau}(t, y)=f(\tau+t, y) ; H(f)$ the hull of f, that is the closure of $\left\{f_{\tau}: \tau \in \mathbb{R}\right\}$ in the topology of uniform convergence on compact subsets of $\mathbb{R} \times \Omega$. We know that $H(f)$ is compact and for $f^{*} \in H(f), f^{*}(t, y)$ is almost periodic in t uniformly for $y \in \Omega$. Denote by \mathcal{C} the set of continuous functions from $\mathbb{R} \times \Omega$ into \mathbb{R}^{d} equipped with the topology of uniform convergence on compact subsets of $\mathbb{R} \times \Omega$.

Lemma 2.6. Let S be a compact subset of Ω. Assume that for each $f^{*} \in$ $H(f)$, the following equation

$$
\begin{equation*}
\dot{y}=f^{*}(t, y) \tag{2.7}
\end{equation*}
$$

has a unique solution $y^{*}(t)$ which is defined on whole \mathbb{R} and $y^{*}(t) \in S$ for all $t \in \mathbb{R}$. Then equation (2.6) has a unique almost periodic solution in S and its module is contained in the module of $f(t, y)$.

Proof. Let $y_{0}(t)$ be the unique solution of 2.6 with $y_{0}(t) \in S$ for all $t \in \mathbb{R}$. Let $\left\{\tau_{k}\right\}_{k=1}^{\infty}$ be a sequence such that $f_{\tau_{k}} \rightarrow f^{*}$ as $k \rightarrow \infty$ uniformly on $\mathbb{R} \times K$, where K is any compact subset of Ω. We claim that $y_{0}\left(\tau_{k}+t\right) \rightarrow y^{*}(t)$ as $k \rightarrow \infty$ uniformly on \mathbb{R}, where $y^{*}(t)$ is the unique solution of (2.7) with $y^{*}(t) \in S$ for all $t \in \mathbb{R}$. To this end, by the way of contradiction we assume that there exist a subsequence $\left\{\tau_{k_{l}}\right\}_{l=1}^{\infty}$ of $\left\{\tau_{k}\right\}_{k=1}^{\infty}$, a sequence of numbers $\left\{s_{l}\right\}_{l=1}^{\infty}$ and a positive number α such that $\left\|y_{0}\left(s_{l}+\tau_{k_{l}}\right)-y^{*}\left(s_{l}\right)\right\| \geqslant \alpha$ for all l. By Bochner's criterion, we may assume, without loss of generality, that $f_{\tau_{m_{l}}+s_{l}} \rightarrow \hat{f}$ as $l \rightarrow \infty$ uniformly on $\mathbb{R} \times K$, where K is any compact subset of Ω. Thus, $f_{s_{l}}^{*} \rightarrow \hat{f}$ as $l \rightarrow \infty$ uniformly on $\mathbb{R} \times K$, where K is any compact subset of Ω. Since S is compact, we may without loss of generality assume that $y_{0}\left(\tau_{k_{l}}+s_{l}\right) \rightarrow \xi_{0}$ and $y^{*}\left(s_{l}\right) \rightarrow \xi^{*}$ as $l \rightarrow \infty$. We know that $\xi_{0}, \xi^{*} \in S$ and $\left\|\xi_{0}-\xi^{*}\right\| \geqslant \alpha$. It is clear that $y_{0}\left(t+\tau_{k_{l}}+s_{l}\right)$ is a solution of the following equation

$$
\begin{equation*}
\dot{y}=f\left(t+\tau_{k_{l}}+s_{l}, y\right) \tag{l}
\end{equation*}
$$

Consider the following equation

$$
\begin{equation*}
\dot{y}=\hat{f}(t, y) . \tag{2.9}
\end{equation*}
$$

Now $f_{\tau_{k_{l}}+s_{l}} \rightarrow \hat{f}$ uniformly on any compact subset of $\mathbb{R} \times \Omega$ as $l \rightarrow \infty$, Theorem 3.2 in $[\mathbf{2}$, p.14] shows that there exist a solution $y(t)$ of (2.9) with $y(0)=\xi_{0}$ having a maximal interval of existence $\left(\omega_{1}, \omega_{2}\right)$ and a subsequence of $\left\{\tau_{k_{l}}+s_{l}\right\}_{l=1}^{\infty}$ therefore, without loss of generality, we may assume that there is $\left\{\tau_{k_{l}}+s_{l}\right\}_{l=1}^{\infty}$ such that $y_{0}\left(t+\tau_{k_{l}}+s_{l}\right) \rightarrow y(t)$ uniformly on any compact subset of $\left(\omega_{1}, \omega_{2}\right)$ as $l \rightarrow \infty$. Since S is compact, Theorem 3.1 in [2, p. 12] shows that $\omega_{1}=-\infty$ and $\omega_{2}=+\infty$. Thus, $y(t) \in S$ for all $t \in \mathbb{R}$.

We know that $y^{*}\left(t+s_{l}\right)$ is a solution of the following equation

$$
\begin{equation*}
\dot{y}=f^{*}\left(t+s_{k}, y\right) . \tag{2.10}
\end{equation*}
$$

By the same argument as given above, there exists a solution $\bar{y}(t)$ of 2.10 with $\bar{y}(0)=\xi^{*}$ and $\bar{y}(t) \in S$ for all $t \in \mathbb{R}$. By the uniqueness of solution of (2.10) defined on \mathbb{R} and contained in S, we have $y(t)=\bar{y}(t)$ for all $t \in \mathbb{R}$. Thus, $\xi_{0}=y(0)=\bar{y}(0)=\xi^{*}$, but this contradicts $\left\|\xi_{0}-\xi^{*}\right\| \geqslant \alpha$. The claim is proved. By Bochner's criterion, $y_{0}(t)$ is almost periodic.

By the module containment theorem [8, p. 18], the module of $y_{0}(t)$ is contained in the module of $f(t, y)$.

Lemma 2.7. Assume that $g(t, x)$ is almost periodic in t uniformly for $x \in$ $\mathbb{R} \times \mathbb{R}_{+}$and
$\left(G_{1}^{*}\right) \lim _{T \rightarrow+\infty} \frac{1}{T} \int_{0}^{T} g(s, 0) d s>0$,
$\left(G_{2}^{*}\right)$ There exists an almost periodic function $a: \mathbb{R} \rightarrow \mathbb{R}_{+}$such that
$\lim _{T \rightarrow+\infty} \frac{1}{T} \int_{0}^{T} a(s) d s>0$ and $\left.D_{x}^{+} g(t, x)\right) \leqslant-a(t)$ for all $(t, x) \in \mathbb{R} \times \mathbb{R}_{+}$.
Then equation (2.1) has a unique solution $X^{0}(.) \in \mathcal{B}_{+}$. Moreover, $X^{0}($.$) is al-$ most periodic, its module is contained in the module of $g(t, x)$ and $\lim _{t \rightarrow+\infty} \mid x(t)-$ $X^{0}(t) \mid=0$ for any solution $x(t)$ of (2.1) with $x\left(t_{0}\right)>0$. In particular, if $g(t, x)$ is Θ-periodic in $t(\Theta>0)$, then also the solution $X^{0}(t)$ is Θ-periodic.

Proof. By almost periodicity, $\left(G_{1}^{*}\right)$ and $\left(G_{2}^{*}\right)$ imply that there exist positve numbers λ and γ such that $\int_{t}^{t+\lambda} g(s, 0) d s>\gamma$ and $\int_{t}^{t+\lambda} a(s) d s>\gamma$ for all $t \in \mathbb{R}$. By the same argument as given in the proof of inequalities (2.2) of Lemma 2.2 .
there exist positive numbers p, P and ε such that

$$
\begin{equation*}
\int_{t}^{\lambda+t} g(s, P) d s \leqslant-\varepsilon, \int_{t}^{\lambda+t} g(s, p) d s \geqslant \varepsilon \text { for all } t \in \mathbb{R} \tag{2.11}
\end{equation*}
$$

By almost periodicity of $g(t, x)$, it is easy to see that

$$
\begin{equation*}
\int_{t}^{\lambda+t} g^{*}(s, P) d s \leqslant-\varepsilon, \int_{t}^{\lambda+t} g^{*}(s, p) d s \geqslant \varepsilon, \text { for all } t \in \mathbb{R} \text { and } g^{*} \in H(g) \tag{2.12}
\end{equation*}
$$

Put $\alpha_{1}=\sup _{t \in \mathbb{R}}\left|g^{*}(t, 0)\right|, \Delta=P \exp \left(\alpha_{1} \lambda\right), \alpha_{2}=\sup _{t \in \mathbb{R}}\left\{\left|g^{*}(t, p)\right|+g^{*}(t, 0)\right\}$ and $\delta=p \exp \left(-\alpha_{2} \lambda\right)$. It is easy to see that δ and Δ do not depend on the choice of $g^{*} \in H(g)$.

Let $g^{*} \in H(g)$; consider the following equation

$$
\begin{equation*}
\dot{x}=x g^{*}(t, x) \tag{2.13}
\end{equation*}
$$

By the same argument as given in the proof of Lemma 2.3, we can show that (2.13) has a unique solution $X^{*}(t)$ defined on \mathbb{R} with $X^{*}(t) \in[\delta, \Delta]$ for all $t \in \mathbb{R}$. It follows from Lemmas 2.2 and 2.6 that equation 2.1 has a unique almost periodic solution $X^{0}(.) \in \mathcal{B}_{+}$, which satisfies $\lim _{t \rightarrow+\infty}\left|x(t)-X^{0}(t)\right|=0$ for any solution $x(t)$ of equation (2.1) with $x\left(t_{0}\right)>0$ and its module is contained in that of $g(t, x)$. If g is Θ-periodic in t, then $X^{0}(),. X_{\Theta}^{0}(.) \in \mathcal{B}_{+}$are two solutions of equation 2.1. By the uniqueness, $X^{0}(.) \equiv X_{\Theta}^{0}($.$) . The lemma is$ proved.

3. Permanence and bounded solutions of Kolmogorov predator-

 -prey system. Consider the following Kolmogorov predator-prey system$$
\begin{align*}
\dot{u}_{i} & =u_{i} f_{i}\left(t, u_{1}, \ldots, u_{n}, v_{1}, \ldots, v_{m}\right), i=1, \ldots, n \\
\dot{v}_{j} & =v_{j} h_{j}\left(t, u_{1}, \ldots, u_{n}, v_{1}, \ldots, v_{m}\right), j=1, \ldots, m \tag{3.1}
\end{align*}
$$

where $f_{i}, h_{j}: \mathbb{R} \times \mathbb{R}_{+}^{n+m} \rightarrow \mathbb{R}$ are continuous. For $w, z \in \mathbb{R}^{d}$, we set $w \leqslant z$ if $w_{i} \leqslant z_{i}, i=1, \ldots, d$. Let $\mathcal{B}_{+}^{d}=\left\{\left(\phi_{1}, \ldots, \phi_{d}\right): \mathbb{R} \rightarrow \mathbb{R}^{d} \mid \phi_{i} \in \mathcal{B}_{+}, i=\right.$ $1, \ldots, d\}$. We introduce the following hypotheses:
$\left(K_{1}\right) f_{i}, h_{j}$ are bounded on any set of the form $\mathbb{R} \times S$, where $S \subset \mathbb{R}_{+}^{n+m}$ is compact, and are such that for each compact set $S \subset \mathbb{R}_{+}^{n+m}$, for any $\varepsilon>0$, there exists $\delta>0$ such that $\left|f_{i}(t, u, v)-f_{i}(t, \bar{u}, \bar{v})\right|<\varepsilon,\left|h_{j}(t, u, v)-h_{j}(t, \bar{u}, \bar{v})\right|<$ ε for all $t \in \mathbb{R}, i=1, \ldots, n, j=1, \ldots, m$ and $(u, v),(\bar{u}, \bar{v}) \in S$ with $\|(u, v)-$ $(\bar{u}, \bar{v}) \|<\delta$.
$\left(K_{2}\right)$ For each $i=1, \ldots, n$, there exist positive numbers λ_{i}^{+}and λ_{i}^{-}such that

$$
\liminf _{t \rightarrow+\infty} \int_{t}^{t+\lambda_{i}^{+}} f_{i}(s, 0, \ldots, 0) d s>0, \liminf _{t \rightarrow-\infty} \int_{t}^{t+\lambda_{i}^{-}} f_{i}(s, 0, \ldots, 0) d s>0
$$

$\left(K_{3}\right)$ For each $i=1, \ldots, n$, there exist positive numbers $\omega_{i}^{+}, \omega_{i}^{-}$and a bounded locally integrable function $a_{i}: \mathbb{R} \rightarrow \mathbb{R}_{+}$with

$$
\liminf _{t \rightarrow+\infty} \int_{t}^{t+\omega_{i}^{+}} a_{i}(s) d s>0 \text { and } \liminf _{t \rightarrow-\infty} \int_{t}^{t+\omega_{i}^{-}} a_{i}(s) d s>0
$$

such that $\left.D_{u_{i}}^{+} f_{i}(t, u, v)\right) \leqslant-a_{i}(t)$ for $(t, u, v) \in \mathbb{R} \times \mathbb{R}_{+}^{n+m}$,
$\left(K_{4}\right)$ For each $j=1, \ldots, m$, there exist positive numbers $\gamma_{j}^{+}, \gamma_{j}^{-}$and a bounded locally integrable function $e_{j}: \mathbb{R} \rightarrow \mathbb{R}_{+}$with

$$
\liminf _{t \rightarrow+\infty} \int_{t}^{t+\gamma_{j}^{+}} e_{j}(s) d s>0 \text { and } \liminf _{t \rightarrow-\infty} \int_{t}^{t+\gamma_{j}^{-}} e_{j}(s) d s>0
$$

such that $\left.D_{v_{j}}^{+} h_{j}(t, u, v)\right) \leqslant-e_{j}(t)$ for $(t, u, v) \in \mathbb{R} \times \mathbb{R}_{+}^{n+m}$,
$\left(K_{5}\right)$ For each $i=1, \ldots, n, f_{i}\left(t, u_{1}, \ldots, u_{n}, v_{1}, \ldots, v_{m}\right)$ is nonincreasing in each variable u_{l} for $l=1, \ldots, n$ and in each variable v_{k} for $k=1, \ldots, m$,
$\left(K_{6}\right)$ For each $j=1, \ldots, m, h_{j}\left(t, u_{1}, \ldots, u_{n}, v_{1}, \ldots, v_{m}\right)$ is nondecreasing in each variable u_{l} for $l=1, \ldots, n$ and is nonincreasing in each variable v_{k} for $k=1, \ldots, m$.

Note that by $\left(K_{1}\right),\left(K_{2}\right),\left(K_{3}\right)$ and Lemma 2.3 , for each $i=1, \ldots, n$, the following equation

$$
\begin{equation*}
\dot{u}_{i}=u_{i} f_{i}\left(t, 0, \ldots, 0, u_{i}, 0, \ldots, 0\right) \tag{i}
\end{equation*}
$$

has a unique solution $U_{i}^{0}(.) \in \mathcal{B}_{+}$. Put $U^{0}(t)=\left(U_{1}^{0}(t), \ldots, U_{n}^{0}(t)\right)$.
$\left(K_{7}\right)$ For each $j=1, \ldots, m$, there exist positive numbers μ_{j}^{+}, μ_{j}^{-}such that
$\liminf _{t \rightarrow+\infty} \int_{t}^{t+\mu_{j}^{+}} h_{j}\left(s, U^{0}(s), 0, \ldots, 0\right) d s>0, \liminf _{t \rightarrow-\infty} \int_{t}^{t+\mu_{j}^{-}} h_{j}\left(s, U^{0}(s), 0, \ldots, 0\right) d s>0$.
Note that by $\left(K_{1}\right),\left(K_{4}\right),\left(K_{7}\right)$ and Lemma 2.3, for each $j=1, \ldots, m$, the following equation

$$
\begin{equation*}
\dot{v}_{j}=v_{j} h_{j}\left(t, U^{0}(t), 0, \ldots, 0, v_{j}, 0, \ldots, 0\right) \tag{j}
\end{equation*}
$$

has a unique solution $V_{j}^{0}(.) \in \mathcal{B}_{+}$. Put $V^{0}(t)=\left(V_{1}^{0}(t), \ldots, V_{m}^{0}(t)\right)$.
$\left(K_{8}\right)$ For each $i=1, \ldots, n$, there exist positive numbers ν_{i}^{+}, ν_{i}^{-}such that

$$
\begin{aligned}
& \liminf _{t \rightarrow+\infty} \int_{t}^{t+\nu_{i}^{+}} f_{i}\left(s, U_{1}^{0}(s), \ldots, U_{i-1}^{0}(s), 0, U_{i+1}^{0}(s), \ldots, U_{n}^{0}(s), V^{0}(s)\right) d s>0 \\
& \liminf _{t \rightarrow-\infty} \int_{t}^{t+\nu_{i}^{-}} f_{i}\left(s, U_{1}^{0}(s), \ldots, U_{i-1}^{0}(s), 0, U_{i+1}^{0}(s), \ldots, U_{n}^{0}(s), V^{0}(s)\right) d s>0
\end{aligned}
$$

Note that by $\left(K_{1}\right),\left(K_{3}\right),\left(K_{8}\right)$ and Lemma 2.3 , for each $i=1, \ldots, n$, the following equation

$$
\begin{equation*}
\dot{u}_{i}=u_{i} f_{i}\left(t, U_{1}^{0}(t), \ldots, U_{i-1}^{0}(t), u_{i}, U_{i+1}^{0}(t), \ldots, U_{n}^{0}(t), V^{0}(t)\right) \tag{i}
\end{equation*}
$$

has a unique solution $u_{i}^{0}(.) \in \mathcal{B}_{+}$. Put $u^{0}(t)=\left(u_{1}^{0}(t), \ldots, u_{n}^{0}(t)\right)$.
$\left(K_{9}\right)$ For each $j=1, \ldots, m$, there exist positive numbers $\varepsilon_{j}^{+}, \varepsilon_{j}^{-}$such that

$$
\begin{aligned}
& \liminf _{t \rightarrow+\infty} \int_{t}^{t+\varepsilon_{j}^{+}} h_{j}\left(s, u^{0}(s), V_{1}^{0}(s), \ldots, V_{j-1}^{0}(s), 0, V_{j+1}^{0}(s), \ldots, V_{m}^{0}(s)\right) d s>0 \\
& \liminf _{t \rightarrow-\infty} \int_{t}^{t+\varepsilon_{j}^{-}} h_{j}\left(s, u^{0}(s), V_{1}^{0}(s), \ldots, V_{j-1}^{0}(s), 0, V_{j+1}^{0}(s), \ldots, V_{m}^{0}(s)\right) d s>0
\end{aligned}
$$

Note that by $\left(K_{1}\right),\left(K_{4}\right),\left(K_{9}\right)$ and Lemma 2.3, for each $j=1, \ldots, m$, the following equation

$$
\begin{equation*}
\dot{v}_{j}=v_{j} h_{j}\left(t, u^{0}(t), V_{1}^{0}(t), \ldots, V_{j-1}^{0}(t), v_{j}, V_{j+1}^{0}(t), \ldots, V_{m}^{0}(t)\right) \tag{j}
\end{equation*}
$$

has a unique solution $v_{j}^{0}(.) \in \mathcal{B}_{+}$. Put $v^{0}(t)=\left(v_{1}^{0}(t), \ldots, v_{m}^{0}(t)\right)$.
Theorem 3.1. Let $\left(K_{1}\right)-\left(K_{9}\right)$ hold. Then system (3.1) is permanent and it has at least one solution $\left(u^{*}(),. v^{*}().\right) \in \mathcal{B}_{+}^{n+m}$.

Proof. (i) The existence. By Lemma 2.4, $\left(u^{0}(t), v^{0}(t)\right) \leqslant\left(U^{0}(t), V^{0}(t)\right)$ for all $t \in \mathbb{R}$. We denote by \mathcal{C} the set of continuous functions $(u(),. v()$.$) :$ $\mathbb{R} \rightarrow \mathbb{R}^{n} \times \mathbb{R}^{m}$ equipped with the topology of uniform convergence on compact subsets of \mathbb{R}. It is well-known that \mathcal{C} is a Fréchet space. Let

$$
\begin{gathered}
\mathcal{M}=\left\{(u(.), v(.)) \in \mathcal{C}:\left(u^{0}(t), v^{0}(t)\right) \leqslant(u(t), v(t)) \leqslant\left(U^{0}(t), V^{0}(t)\right)\right. \\
\text { for all } t \in \mathbb{R}\}
\end{gathered}
$$

By $\left(K_{1}\right),\left(K_{3}\right),\left(K_{4}\right),\left(K_{8}\right)$ and $\left(K_{9}\right)$, Lemma 2.3 implies that for each $(\tilde{u}(),. \tilde{v}().) \in \mathcal{M}$, the following system of $n+m$ uncoupled differential equations

$$
\begin{align*}
& \dot{u}_{i}=u_{i} f_{i}\left(t, \tilde{u}_{1}(t), \ldots, \tilde{u}_{i-1}(t), u_{i}, \tilde{u}_{i+1}(t), \ldots, \tilde{u}_{n}(t), \tilde{v}(t)\right), i=1, \ldots, n \\
& \dot{v}_{j}=v_{j} h_{j}\left(t, \tilde{u}(t), \tilde{v}_{1}(t), \ldots, \tilde{v}_{j-1}(t), v_{j}, \tilde{v}_{j+1}(t), \ldots, \tilde{v}_{m}(t)\right), j=1, \ldots, m \tag{3.6}
\end{align*}
$$

has a unique solution $(\bar{u}(),. \bar{v}().) \in \mathcal{B}_{+}^{n+m}$. By Lemma 2.4, $\left(u^{0}(t), v^{0}(t)\right) \leqslant$ $(\bar{u}(t), \bar{v}(t)) \leqslant\left(U^{0}(t), V^{0}(t)\right)$ for all $t \in \mathbb{R}$. Hence, we can introduce the following operator

$$
\mathcal{T}: \mathcal{M} \rightarrow \mathcal{M},(\tilde{u}(.), \tilde{v}(.)) \mapsto(\bar{u}(.), \bar{v}(.))
$$

Clearly, $\left(u^{*}(),. v^{*}().\right)$ is a solution in \mathcal{M} of system (3.1) if and only if it is a fixed point of \mathcal{T}. Let

$$
\begin{aligned}
& \delta= \inf \left\{u_{i}^{0}(t), v_{j}^{0}(t): i=1, \ldots, n, j=1, \ldots, m, t \in \mathbb{R}\right\} \\
& \Delta= \sup \left\{U_{i}^{0}(t), V_{j}^{0}(t): i=1, \ldots, n, j=1, \ldots, m, t \in \mathbb{R}\right\} \\
& L= \sup \left\{\left|u_{i} f_{i}(t, u, v)\right|,\left|v_{j} h_{j}(t, u, v)\right|:\right. \\
& \quad i=1, \ldots, n, j=1, \ldots, m \\
&\left.(t, u, v) \in \mathbb{R} \times[\delta, \Delta]^{n+m}\right\}
\end{aligned}
$$

By $\left(K_{1}\right), 0<L<+\infty$. Let us set

$$
\mathcal{M}_{1}=\left\{\phi \in \mathcal{M}:\left|\phi_{i}(t)-\phi_{i}(\bar{t})\right| \leqslant L|t-\bar{t}|, i=1, \ldots, n+m, t, \bar{t} \in \mathbb{R}\right\}
$$

It is easily seen that \mathcal{M}_{1} is a closed convex subset of \mathcal{M}. By Ascoli's theorem (see $[4]), \mathcal{M}_{1}$ is compact (in the topology of uniform convergence on compact subsets of $\mathbb{R})$. Moreover, $\mathcal{T}\left(\mathcal{M}_{1}\right) \subset \mathcal{M}_{1}$.
Claim. The operator \mathcal{T} is continuous on \mathcal{M}_{1} in the topology of uniform convergence on compact subsets of \mathbb{R}. To prove this, let $\left\{\left(u^{k}(.), v^{k}(.)\right)\right\}_{k=1}^{\infty} \subset \mathcal{M}_{1}$ such that $\left(u^{k}(),. v^{k}().\right) \rightarrow(\tilde{u}(),. \tilde{v}()$.$) as k \rightarrow+\infty$. Since \mathcal{M}_{1} is closed, $(\tilde{u}(),. \tilde{v}().) \in$ \mathcal{M}_{1}. We shall show that $\mathcal{T}\left(u^{k}(),. v^{k}().\right) \rightarrow \mathcal{T}(\tilde{u}(),. \tilde{v}()$.$) as t \rightarrow+\infty$. Since $\left\{\mathcal{T}\left(u^{k}(.), v^{k}(.)\right)\right\}_{k=1}^{\infty}$ is precompact, it suffices to show that if a subsequence $\left\{\mathcal{T}\left(u^{k_{s}}(),. v^{k_{s}}().\right)\right\}$ converges to $(\bar{u}(),. \bar{v}()$.$) then (\bar{u}(),. \bar{v}())=.\mathcal{T}(\tilde{u}(),. \tilde{v}()$.$) . To$ this end, let us consider two systems

$$
\left\{\begin{array}{l}
\dot{u}_{i}=u_{i} f_{i}\left(t, u_{1}^{k_{s}}(t), \ldots, u_{i-1}^{k_{s}}(t), u_{i}, u_{i+1}^{k_{s}}(t), \ldots, u_{n}^{k_{s}}(t), v^{k_{s}}(t)\right), i=1, \ldots, n \tag{s}\\
\dot{v}_{j}=v_{j} h_{j}\left(t, u^{k_{s}}(t), v_{1}^{k_{s}}(t), \ldots, v_{j-1}^{k_{s}}(t), v_{j}, v_{j+1}^{k_{s}}(t), \ldots, v_{m}^{k_{s}}(t)\right), j=1, \ldots, m
\end{array}\right.
$$

and
(3.8)

$$
\left\{\begin{array}{l}
\dot{u}_{i}=u_{i} f_{i}\left(t, \tilde{u}_{1}(t), \ldots, \tilde{u}_{i-1}(t), u_{i}, \tilde{u}_{i+1}(t), \ldots, \tilde{u}_{n}(t), \tilde{v}(t)\right), i=1, \ldots, n \\
\dot{v}_{j}=v_{j} h_{j}\left(t, \tilde{u}(t), \tilde{v}_{1}(t), \ldots, \tilde{v}_{j-1}(t), v_{j}, \tilde{v}_{j+1}(t), \ldots, \tilde{v}_{m}(t)\right), j=1, \ldots, m
\end{array}\right.
$$

Clearly, the right hand side of $\left(3.7_{k_{s}}\right)$ converges to the right hand side of (3.8) uniformly on any compact subset of $\mathbb{R} \times \mathbb{R}_{+}^{n+m}$. By Theorem 2.4 in $[\mathbf{2}$, p. 4], it
follows that $(\bar{u}(),. \bar{v}()$.$) is a solution of (3.8). Since 3.8$ has a unique solution in \mathcal{M} (by Lemma 2.3), $\mathcal{T}(\tilde{u}(),. \tilde{v}())=.(\bar{u}(),. \bar{v}()$.$) . The claim is proved.$

By Tychonov's fixed point theorem (see (1), there exists $\left(u^{*}(),. v^{*}().\right) \in$ \mathcal{M}_{1} such that $\mathcal{T}\left(u^{*}(),. v^{*}().\right)=\left(u^{*}(),. v^{*}().\right)$. Thus, $\left(u^{*}(),. v^{*}().\right)$ is a solution of system (3.1).
(ii) The permanence. Let $(u(t), v(t))$ be a solution of (3.1) with $\left(u_{i}\left(t_{0}\right), v_{j}\left(t_{0}\right)\right) \in$ int \mathbb{R}_{+}^{n+m}. For each $i=1, \ldots, n$, let $\bar{u}_{i}(t)$ be a solution of $\left(3.2_{i}\right)$ with $\bar{u}_{i}\left(t_{0}\right)=$ $u_{i}\left(t_{0}\right)$. By Lemma 2.1 and the comparison theorem,

$$
\begin{equation*}
\bar{u}_{i}(t) \geqslant u_{i}(t) \text { for all } t \geqslant t_{0}, i=1, \ldots, n \tag{3.9}
\end{equation*}
$$

By Lemma 2.2 ,

$$
\begin{equation*}
\lim _{t \rightarrow+\infty}\left|\bar{u}_{i}(t)-U_{i}^{0}(t)\right|=0 \text { for } i=1, \ldots, n \tag{3.10}
\end{equation*}
$$

From (3.9) and (3.10), we have

$$
\begin{equation*}
\limsup _{t \rightarrow+\infty} u_{i}(t) \leqslant \limsup _{t \rightarrow+\infty} U_{i}^{0}(t) \leqslant \Delta \text { for } i=1, \ldots, n \tag{3.11}
\end{equation*}
$$

For each $j=1, \ldots, m$, let $\bar{v}_{j}(t)$ be a solution with $\bar{v}_{j}\left(t_{0}\right)=v_{j}\left(t_{0}\right)$ of the following equation

$$
\begin{equation*}
\dot{v}_{j}=v_{j} h_{j}\left(t, \bar{u}(t), 0, \ldots, 0, v_{j}, 0, \ldots, 0\right) \tag{j}
\end{equation*}
$$

By (3.10), $\left(K_{1}\right),\left(K_{4}\right)$ and $\left(K_{7}\right)$, we can apply Lemma 2.5 to equations (3.3j) and $\left(3.12_{j}\right)$ and obtain

$$
\begin{equation*}
\lim _{t \rightarrow+\infty}\left|\bar{v}_{j}(t)-V_{j}^{0}(t)\right|=0 \text { for } j=1, \ldots, m . \tag{3.13}
\end{equation*}
$$

By Lemma 2.1 and the comparison theorem,

$$
\begin{equation*}
\bar{v}_{j}(t) \geqslant v_{j}(t) \text { for all } t \geqslant t_{0}, j=1, \ldots, m \tag{3.14}
\end{equation*}
$$

From (3.13) and (3.14), we have

$$
\begin{equation*}
\limsup _{t \rightarrow+\infty} v_{j}(t) \leqslant \limsup _{t \rightarrow+\infty} V_{j}^{0}(t) \leqslant \Delta \text { for } j=1, \ldots, m \tag{3.15}
\end{equation*}
$$

For $i=1, \ldots, n$, let $\tilde{u}_{i}(t)$ be a solution with $\tilde{u}_{i}\left(t_{0}\right)=u_{i}\left(t_{0}\right)$ of the following equation

$$
\begin{equation*}
\dot{u}_{i}=u_{i} f_{i}\left(t, \bar{u}_{1}(t), \ldots, \bar{u}_{i-1}(t), u_{i}, \bar{u}_{i+1}(t), \ldots, \bar{u}_{n}(t), \bar{v}(t)\right) . \tag{i}
\end{equation*}
$$

By (3.10), 3.13), (K_{1}), (K_{3}) and $\left(K_{8}\right)$, we can apply Lemma 2.5 to equations (3.4i) and (3.16ii) and obtain

$$
\begin{equation*}
\lim _{t \rightarrow+\infty}\left|\tilde{u}_{i}(t)-u_{i}^{0}(t)\right|=0 \text { for } i=1, \ldots, n \tag{3.17}
\end{equation*}
$$

By Lemma 2.1 and the comparison theorem,

$$
\begin{equation*}
u_{i}(t) \geqslant \tilde{u}_{i}(t) \text { for all } t \geqslant t_{0}, i=1, \ldots, n \tag{3.18}
\end{equation*}
$$

From (3.17) and 3.18) we have

$$
\begin{equation*}
\liminf _{t \rightarrow+\infty} u_{i}(t) \geqslant \liminf _{t \rightarrow+\infty} u_{i}^{0}(t) \geqslant \delta \text { for } i=1, \ldots n \tag{3.19}
\end{equation*}
$$

For each $j=1, \ldots m$, let $\tilde{v}_{j}(t)$ be a solution with $\tilde{v}_{j}\left(t_{0}\right)=v_{j}\left(t_{0}\right)$ of the following equation
$\left(3.20_{j}\right) \quad \dot{v}_{j}=v_{j} h_{j}\left(t, \tilde{u}(t), \bar{v}_{1}(t), \ldots, \bar{v}_{j-1}(t), v_{j}, \bar{v}_{j+1}(t), \ldots, \bar{v}_{m}(t)\right)$.
By (3.13), 3.17), (K_{1}), (K_{4}) and $\left(K_{9}\right)$, we can apply Lemma 2.5 to equations (3.5j) and (3.20j) and obtain

$$
\begin{equation*}
\lim _{t \rightarrow+\infty}\left|\tilde{v}_{j}(t)-v_{j}^{0}(t)\right|=0 \text { for } j=1, \ldots, m \tag{3.21}
\end{equation*}
$$

By Lemma 2.1 and the comparison theorem,

$$
\begin{equation*}
v_{j}(t) \geqslant \tilde{v}_{j}(t) \text { for all } t \geqslant t_{0}, j=1, \ldots, m \text {. } \tag{3.22}
\end{equation*}
$$

From (3.21) and (3.22) we have

$$
\begin{equation*}
\liminf _{t \rightarrow+\infty} v_{j}(t) \geqslant \liminf _{t \rightarrow+\infty} v_{j}^{0}(t) \geqslant \delta \text { for } j=1, \ldots m \tag{3.23}
\end{equation*}
$$

By (3.11), (3.15), (3.19) and (3.23), system (3.1) is permanent.
Remark. Theorem 3.1 is an extension of Theorem 1 in 5 to system (3.1). It is also an extension of Theorem 2.5 in [6] to the nonperiodic case.

Using Theorem 3.1, we have the following corollary:
Corollary 3.2. Assume that $f_{i}, h_{j}(i=1, \ldots, n, j=1, \ldots, m)$ are almost periodic in t uniformly for $(u, v) \in \mathbb{R}_{+}^{n+m}$ and satisfy $\left(K_{5}\right),\left(K_{6}\right)$ and the following hypotheses:
$\left(K_{2}^{*}\right) \lim _{T \rightarrow+\infty} \frac{1}{T} \int_{0}^{T} f_{i}(t, 0, \ldots, 0) d t>0$ for $i=1, \ldots, n$,
$\left(K_{3}^{*}\right)$ For each $i=1, \ldots, n$, there exists a nonnegative almost periodic function $a_{i}(t)$ with $\lim _{T \rightarrow+\infty} \frac{1}{T} \int_{0}^{T} a_{i}(t) d t>0$ such that $\left.D_{u_{i}}^{+} f_{i}(t, u, v)\right) \leqslant-a_{i}(t)$ for $(t, u, v) \in \mathbb{R} \times \mathbb{R}_{+}^{n+m}$,
(K_{4}^{*}) For each $j=1, \ldots, m$, there exists a nonnegative almost periodic function $e_{j}(t)$ with $\lim _{T \rightarrow+\infty} \frac{1}{T} \int_{0}^{T} e_{j}(t) d t>0$ such that $\left.D_{v_{j}}^{+} h_{j}(t, u, v)\right) \leqslant-e_{j}(t)$ for $(t, u, v) \in \mathbb{R} \times \mathbb{R}_{+}^{n+m}$,
$\left(K_{7}^{*}\right) \lim _{T \rightarrow+\infty} \frac{1}{T} \int_{0}^{T} h_{j}\left(t, U^{0}(t), 0, \ldots, 0\right) d t>0 \quad$ for $j=1, \ldots, m$,
$\left(K_{8}^{*}\right) \lim _{T \rightarrow+\infty} \frac{1}{T} \int_{0}^{T} f_{i}\left(t, U_{1}^{0}(t), \ldots, U_{i-1}^{0}(t), 0, U_{i+1}^{0}(t), \ldots, U_{n}^{0}(t), V^{0}(t)\right) d t>0$ for $i=1, \ldots, n$,
$\left(K_{9}^{*}\right) \lim _{T \rightarrow+\infty} \frac{1}{T} \int_{0}^{T} h_{j}\left(t, u^{0}(t), V_{1}^{0}(t), \ldots, V_{j-1}^{0}(t), 0, V_{j+1}^{0}(t), \ldots, V_{m}^{0}(t)\right) d t>0$ for $j=1, \ldots, m$.

Then system (3.1) is permanent and it has at least one solution $\left(u^{*}(),. v^{*}().\right) \in$ \mathcal{B}_{+}^{n+m}. In particular, if $f_{i}, h_{j}(i=1, \ldots, n, j=1, \ldots, m)$ are Θ-periodic $(\Theta>0)$ in t, then system (3.1) has least one Θ-periodic solution $\left(u^{*}(),. v^{*}().\right) \in$ \mathcal{B}_{+}^{n+m}.
4. Lotka-Volterra predator-prey system. Consider the following Lotka-Volterra predator-prey system

$$
\begin{align*}
& \dot{u}_{i}=u_{i}\left[b_{i}(t)-\sum_{k=1}^{n} a_{i k}(t) u_{k}-\sum_{k=1}^{m} c_{i k}(t) v_{k}\right], i=1, \ldots, n \\
& \dot{v}_{j}=v_{j}\left[r_{j}(t)+\sum_{k=1}^{n} d_{j k}(t) u_{k}-\sum_{k=1}^{m} e_{j k}(t) v_{k}\right], j=1, \ldots, m \tag{4.1}
\end{align*}
$$

where $a_{i k}(t), c_{i k}(t), d_{j k}(t), e_{j k}(t)$ are continuous, nonnegative and bounded on $\mathbb{R}, b_{i}(t), r_{j}(t)$ are continuous and bounded on \mathbb{R}. We introduce the following hypotheses:
$\left(L_{1}\right)$ For each $i=1, \ldots, n$, there exist positive numbers λ_{i}^{+}and λ_{i}^{-}such that

$$
\liminf _{t \rightarrow+\infty} \int_{t}^{t+\lambda_{i}^{+}} b_{i}(s) d s>0, \quad \liminf _{t \rightarrow-\infty} \int_{t}^{t+\lambda_{i}^{-}} b_{i}(s) d s>0
$$

$\left(L_{2}\right)$ For each $i=1, \ldots, n$, there exist positive numbers ω_{i}^{+}and ω_{i}^{-}such that

$$
\liminf _{t \rightarrow+\infty} \int_{t}^{t+\omega_{i}^{+}} a_{i i}(s) d s>0, \quad \liminf _{t \rightarrow-\infty} \int_{t}^{t+\omega_{i}^{-}} a_{i i}(s) d s>0
$$

$\left(L_{3}\right)$ For each $j=1, \ldots, m$, there exist positive numbers γ_{j}^{+}and γ_{j}^{-}such that

$$
\liminf _{t \rightarrow+\infty} \int_{t}^{t+\gamma_{j}^{+}} e_{j j}(s) d s>0, \quad \liminf _{t \rightarrow-\infty} \int_{t}^{t+\gamma_{j}^{-}} e_{j j}(s) d s>0
$$

$\left(L_{4}\right)$ For each $i=1, \ldots, n$, there exist positive numbers μ_{j}^{+}, μ_{j}^{-}such that

$$
\begin{aligned}
& \liminf _{t \rightarrow+\infty} \int_{t}^{t+\mu_{j}^{+}}\left[r_{j}(s)+\sum_{k=1}^{m} d_{j k}(s) U_{k}^{0}(s)\right] d s>0 \\
& \liminf _{t \rightarrow-\infty}^{t+\mu_{j}^{-}} \int_{t}^{m}\left[r_{j}(s)+\sum_{k=1}^{m} d_{j k}(s) U_{k}^{0}(s)\right] d s>0
\end{aligned}
$$

where $U_{i}^{0}($.$) is a unique solution in \mathcal{B}_{+}$of the following equation

$$
\begin{equation*}
\dot{u}_{i}=u_{i}\left[b_{i}(t)-a_{i i}(t) u_{i}\right] . \tag{i}
\end{equation*}
$$

$\left(L_{5}\right)$ For each $i=1, \ldots, n$, there exist positive numbers ν_{i}^{+}and ν_{i}^{-}such that

$$
\begin{aligned}
& \liminf _{t \rightarrow+\infty} \int_{t}^{t+\nu_{i}^{+}}\left[b_{i}(s)-\sum_{k=1, k \neq i}^{n} a_{i k}(s) U_{k}^{0}(s)-\sum_{k=1}^{m} c_{i k}(s) V_{k}^{0}(s)\right] d s>0 \\
& \liminf _{t \rightarrow-\infty} \int_{t}^{t+\nu_{i}^{-}}\left[b_{i}(s)-\sum_{k=1, k \neq i}^{n} a_{i k}(s) U_{k}^{0}(s)-\sum_{k=1}^{m} c_{i k}(s) V_{k}^{0}(s)\right] d s>0
\end{aligned}
$$

where $V_{j}^{0}($.$) is a unique solution in \mathcal{B}_{+}$of the following equation

$$
\begin{equation*}
\dot{v}_{j}=v_{j}\left[r_{j}(t)+\sum_{k=1}^{m} d_{j k}(t) U_{k}^{0}(t)-e_{j j}(t) v_{j}\right] \tag{j}
\end{equation*}
$$

$\left(L_{6}\right)$ For each $j=1, \ldots, m$, there exist positive numbers ε_{j}^{+}and ε_{j}^{-}such that

$$
\begin{aligned}
& \liminf _{t \rightarrow+\infty} \int_{t}^{t+\varepsilon_{j}^{+}}\left[r_{j}(s)+\sum_{k=1}^{m} d_{j k}(s) u_{k}^{0}(s)-\sum_{k=1, k \neq j}^{m} e_{j k}(s) V_{k}^{0}(s)\right] d s>0 \\
& \liminf _{t \rightarrow-\infty} \int_{t}^{m}\left[r_{j}^{-}(s)+\sum_{k=1}^{m} d_{j k}(s) u_{k}^{0}(s)-\sum_{k=1, k \neq j}^{m} e_{j k}(s) V_{k}^{0}(s)\right] d s>0
\end{aligned}
$$

where $u_{i}^{0}($.$) is the unique solution in \mathcal{B}_{+}$of the following equation

$$
\begin{equation*}
\dot{u}_{i}=u_{i}\left[b_{i}(t)-\sum_{k=1, k \neq i}^{n} a_{i k}(t) U_{k}^{0}(t)-\sum_{k=1}^{m} c_{i k}(t) V_{k}^{0}(t)-a_{i i}(t) u_{i}\right] . \tag{i}
\end{equation*}
$$

Applying Theorem 3.1 to system (4.1 we obtain the following corollary:
Corollary 4.1. Let $\left(L_{1}\right)-\left(L_{6}\right)$ hold. Then system 4.1) is permanent and it has at least one solution $\left(u^{*}(),. v^{*}().\right) \in \mathcal{B}_{+}^{n+m}$.

Definition. A solution $(\bar{u}(t), \bar{v}(t))$ of (3.1) with $\left(\bar{u}\left(t_{0}\right), \bar{v}\left(t_{0}\right)\right) \in \operatorname{int} \mathbb{R}_{+}^{n+m}$ is said to be globally attractive, if for any solution $(u(t), v(t))$ with $\left(u\left(t_{0}\right), v\left(t_{0}\right)\right) \in$ $\operatorname{int} \mathbb{R}_{+}^{n+m}$ there is $\lim _{t \rightarrow+\infty}\|(u(t), v(t))-(\bar{u}(t), \bar{v}(t))\|=0$.

Theorem 4.2. Let $\left(L_{1}\right)-\left(L_{6}\right)$ hold. If
$\left(L_{7}\right)$ There exist positive numbers $s_{i}, \beta_{j}(i=1, \ldots, n, j=1, \ldots, m)$ and a continuous nonnegative function $\alpha: \mathbb{R} \rightarrow \mathbb{R}$ with $\int_{0}^{+\infty} \alpha(t) d t=+\infty, \int_{-\infty}^{0} \alpha(t) d t=$ $+\infty$ such that

$$
\begin{gathered}
s_{i} a_{i i}(t)-\sum_{k=1, k \neq i}^{n} s_{k} a_{k i}(t)-\sum_{k=1}^{m} \beta_{k} d_{k i}(t) \geqslant \alpha(t) \text { for all } t \in \mathbb{R}, i=1, \ldots, n, \\
\beta_{j} e_{j j}(t)-\sum_{k=1}^{n} s_{k} c_{j k}(t)-\sum_{k=1, k \neq j}^{m} \beta_{k} e_{k j}(t) \geqslant \alpha(t) \text { for all } t \in \mathbb{R}, j=1, \ldots, m,
\end{gathered}
$$

then system (4.1) has a unique globally attractive solution $\left(u^{*}(),. v^{*}().\right) \in$ \mathcal{B}_{+}^{n+m}.

Proof. The existence of a solution $\left(u^{*}(t), v^{*}(t)\right)$ follows from Corollary 4.1 .
(i) The uniqueness. For the contrary, suppose that there are two distinct solutions $\left(u^{1}(t), v^{1}(t)\right)$ and $\left(u^{2}(t), v^{2}(t)\right)$ of system 4.1) defined on \mathbb{R} and satisfying $u_{i}^{l}(t) \in[\delta, \Delta], v_{j}^{l}(t) \in[\delta, \Delta]$ for all $t \in \mathbb{R}, i=1, \ldots, n, j=1, \ldots, m$ and $l=1,2$, where δ and Δ are positive constants. Let $\left(u^{1}\left(t_{0}\right), v^{1}\left(t_{0}\right)\right) \neq\left(u^{2}\left(t_{0}\right), v^{2}\left(t_{0}\right)\right)$ for some $t_{0} \in \mathbb{R}$. Let $V(t)=\sum_{i=1}^{n} s_{i}\left|\ln u_{i}^{1}(t)-\ln u_{i}^{2}(t)\right|+\sum_{j=1}^{m} \beta_{j} \mid \ln v_{j}^{1}(t)-$ $\ln v_{j}^{2}(t) \mid$. Then

$$
\begin{aligned}
D^{+} V(t) \leqslant & \sum_{i=1}^{n}\left[\sum_{k=1, k \neq i}^{n} s_{k} a_{k i}(t)+\sum_{k=1}^{m} \beta_{i} d_{k i}(t)-s_{i} a_{i i}(t)\right]\left|u_{i}^{1}(t)-u_{i}^{2}(t)\right| \\
& +\sum_{j=1}^{m}\left[\sum_{k=1}^{n} s_{k} c_{k j}(t)+\sum_{k=1, k \neq j}^{m} \beta_{k} e_{k j}(t)-\beta_{j} e_{j j}(t)\right]\left|v_{j}^{1}(t)-v_{j}^{2}(t)\right| \\
\leqslant & -\alpha(t)\left\{\sum_{i=1}^{n}\left|u_{i}^{1}(t)-u_{i}^{2}(t)\right|+\sum_{j=1}^{m}\left|v_{j}^{1}(t)-v_{j}^{2}(t)\right|\right\} \leqslant-\gamma \alpha(t) V(t),
\end{aligned}
$$

where $\gamma=\min \left\{\frac{\delta}{s_{i}}, \frac{\delta}{\beta_{j}}: i=1, \ldots, n, j=1, \ldots, m\right\}$. Thus,

$$
0<V\left(t_{0}\right) \leqslant V(t) \exp \left\{-\int_{t}^{t_{0}} \gamma \alpha(s) d s\right\}, t \leqslant t_{0} .
$$

Since $V(t)$ is bounded and $\lim _{t \rightarrow-\infty} \exp \left\{-\int_{t}^{t_{0}} \gamma \alpha(s) d s\right\}=0$, we have $V\left(t_{0}\right)=0$. This is a contradiction. The uniqueness is proved.
(ii) The global attractivity. Let $(u(t), v(t))$ be a solution of (4.1) with $\left(u\left(t_{0}\right), v\left(t_{0}\right)\right) \in \operatorname{int} \mathbb{R}^{n+m}$. By Corollary 4.1, there exist $\delta>0, \Delta>0$ and $T \geqslant t_{0}$ such that $(u(t), v(t)),\left(u^{*}(t), v^{*}(t)\right) \in[\delta, \Delta]^{n+m}$ for all $t \geqslant T$. Let $V(t)=\sum_{i=1}^{n} s_{i}\left|\ln u_{i}(t)-\ln u_{i}^{*}(t)\right|+\sum_{j=1}^{m} \beta_{j}\left|\ln v_{j}(t)-\ln v_{j}^{*}(t)\right|$. By calculating the upper right derivative of $V(t)$ as given above, we obtain $D^{+} V(t) \leqslant-\gamma \alpha(t) V(t)$ for $t \geqslant T$, where $\gamma=\min _{i, j}\left\{\frac{\delta}{s_{i}}, \frac{\delta}{\beta_{j}}\right\}$. Thus, $V(t) \leqslant V(T) \exp \left\{-\int_{T}^{t} \gamma \alpha(s) d s\right\}$ for each $t \geqslant T$. This implies that $\lim _{t \rightarrow+\infty} V(t)=0$, then $\lim _{t \rightarrow+\infty} \|(u(t), v(t))-$ $\left(u^{*}(t), v^{*}(t)\right) \|=0$.

Theorem 4.3. Let $a_{i k}(t), c_{i k}(t), d_{j k}(t), e_{j k}(t), b_{i}(t)$ and $r_{j}(t)(i=1, \ldots, n$, $j=1, \ldots, m$) be almost periodic. Assume that
(4.6) $\liminf _{T \rightarrow+\infty} \frac{1}{T} \int_{0}^{T} b_{i}(s) d s>0, \liminf _{T \rightarrow+\infty} \frac{1}{T} \int_{0}^{T} a_{i i}(s) d s>0, i=1, \ldots, n$,
(4.7) $\liminf _{T \rightarrow+\infty} \frac{1}{T} \int_{0}^{T} e_{j j}(s) d s>0, \liminf _{T \rightarrow+\infty} \frac{1}{T} \int_{0}^{T}\left[r_{j}(s)+\sum_{k=1}^{m} d_{j k}(s) U_{k}^{0}(s)\right] d s>0$,

$$
j=1, \ldots, m,
$$

$$
\begin{array}{r}
\liminf _{T \rightarrow+\infty} \frac{1}{T} \int_{0}^{T}\left[b_{i}(s)-\sum_{k=1, k \neq i}^{n} a_{i k}(s) U_{k}^{0}(s)-\sum_{k=1}^{m} c_{i k}(s) V_{k}^{0}(s)\right] d s>0, \tag{4.8}\\
i=1, \ldots, n
\end{array}
$$

$$
\begin{equation*}
\liminf _{T \rightarrow+\infty} \frac{1}{T} \int_{0}^{T}\left[r_{j}(s)+\sum_{k=1}^{m} d_{j k}(s) u_{k}^{0}(s)-\sum_{k=1, k \neq j}^{m} e_{j k}(s) V_{k}^{0}(s)\right] d s>0 \tag{4.9}
\end{equation*}
$$

$$
j=1, \ldots, m
$$

where $U_{i}^{0}().\left(u_{i}^{0}(\right.$.$\left.) and V_{j}^{0}().\right)$ is the unique almost periodic solution in \mathcal{B}_{+}of (4.2i), (4.4i) and $\left(4.3_{j}\right)$, respectively). Then (4.1) is permanent and it has least one solution $\left(u^{*}(),. v^{*}().\right) \in \mathcal{B}_{+}^{n+m}$. If, in addition, $\left(L_{7}\right)$ holds, then there exists a unique globally attractive almost periodic solution $\left(u^{*}(),. v^{*}(.) \in \mathcal{B}_{+}^{n+m}\right.$ and its module is contained in that of $F(t, u, v)$, where $F(t, u, v)$ is the right hand side of 4.1). In particular, if $a_{i k}(t), c_{i k}(t), d_{j k}(t), e_{j k}(t), b_{i}(t)$ and $r_{j}(t)(i=1, \ldots, n, j=1, \ldots, m)$ are Θ-periodic, then also the above solution $\left(u^{*}(),. v^{*}().\right)$ is Θ-periodic.

Proof. By Corollary 4.1, system (4.1) is permanent and it has least one solution $\left(u^{*}(),. v^{*}().\right) \in \mathcal{B}_{+}^{n+m}$. We know that for each $F^{*} \in H(F)$ (the hull of F), there exist $a_{i k}^{*} \in H\left(a_{i k}\right), c_{i k}^{*} \in H\left(c_{i k}\right), d_{j k}^{*} \in H\left(d_{j k}\right), e_{j k}^{*} \in H\left(e_{j k}\right)$, $b_{i}^{*} \in H\left(b_{i}\right)$ and $r_{j}^{*} \in H\left(r_{j}\right)(i=1, \ldots, n, j=1, \ldots, m)$ such that $F^{*}(t, u, v)$ is the right hand side of the following system

$$
\begin{align*}
& \dot{u}_{i}=u_{i}\left[b_{i}^{*}(t)-\sum_{k=1}^{n} a_{i k}^{*}(t) u_{k}-\sum_{k=1}^{m} c_{i k}^{*}(t) v_{k}\right], i=1, \ldots, n, \tag{4.10}\\
& \dot{v}_{j}=v_{j}\left[r_{j}^{*}(t)+\sum_{k=1}^{n} d_{j k}^{*}(t) u_{k}-\sum_{k=1}^{m} e_{j k}^{*}(t) v_{k}\right], j=1, \ldots, m .
\end{align*}
$$

For $i=1, \ldots, n$ and $j=1, \ldots, m$, let us consider
$\left(4.11_{i}\right) \quad \dot{u}_{i}=u_{i}\left[b_{i}^{*}(t)-a_{i i}^{*}(t) u_{i}\right]$,

$$
\begin{align*}
& \dot{v}_{j}=v_{j}\left[r_{j}^{*}(t)+\sum_{k=1}^{m} d_{j k}^{*}(t) U_{k}^{* 0}(t)-e_{j j}^{*}(t) v_{j}\right], \tag{j}\\
& \dot{u}_{i}=u_{i}\left[b_{i}^{*}(t)-\sum_{k=1, k \neq i}^{n} a_{i k}^{*}(t) U_{k}^{* 0}(t)-\sum_{k=1}^{m} c_{i k}^{*}(t) V_{k}^{* 0}(t)-a_{i i}^{*}(t) u_{i}\right], \tag{i}\\
& \dot{v}_{j}=v_{j}\left[r_{j}^{*}(t)+\sum_{k=1}^{m} d_{j k}^{*}(t) u_{k}^{* 0}(t)-\sum_{k=1, k \neq j}^{m} e_{j k}^{*}(t) V_{k}^{* 0}(t)-e_{j j}^{*}(t) v_{j}\right] . \tag{j}
\end{align*}
$$

By Lemma 2.7, each of equations (4.11i), $\left.\left.4.12_{j}\right), 4.13_{i}\right), 4.14_{j}$ has a unique almost periodic solution $U_{i}^{* 0}(),. V_{j}^{* 0}(),. u_{i}^{* 0}($.$) and v_{j}^{* 0}($.$) in \mathcal{B}_{+}$, respectively. Let $\left\{\tau_{k}\right\}_{k=1}^{\infty}$ be a sequence of numbers such that $b_{i \tau_{k}} \rightarrow b_{i}^{*}, a_{i i \tau_{k}} \rightarrow a_{i i}^{*}$ as $k \rightarrow \infty$ uniformly on \mathbb{R}. Without loss of generality, we may assume that $U_{i \tau_{k}}^{0} \rightarrow \bar{U}_{i}^{0}$ as $k \rightarrow \infty$ uniformly on \mathbb{R}. It is easy to see that \bar{U}_{i}^{0} is a solution of equation 4.11 and thus $U_{i}^{* 0}(.) \equiv \bar{U}_{i}^{0}($.$) . This implies that \sup _{t \in \mathbb{R}} U_{i}^{* 0}(t)=\sup _{t \in \mathbb{R}} U_{i}^{0}(t)$. Similarly, $\sup _{t \in \mathbb{R}} V_{j}^{* 0}(t)=\sup _{t \in \mathbb{R}} V_{j}^{0}(t), \inf _{t \in \mathbb{R}} u_{i}^{* 0}(t)=\inf _{t \in \mathbb{R}} u_{i}^{0}(t), \inf _{t \in \mathbb{R}} v_{j}^{* 0}(t)=\inf _{t \in \mathbb{R}} v_{j}^{0}(t)$. Clearly that $\sup _{(t, u, v) \in \mathbb{R} \times S}\left|F_{k}^{*}(t, u, v)\right|=\sup _{(t, u, v) \in \mathbb{R} \times S}\left|F_{k}(t, u, v)\right|$ for any compact set $S \subset \mathbb{R}^{n+m}$. Let

$$
\begin{gathered}
\delta=\inf \left\{u_{i}^{0}(t), v_{j}^{0}(t): i=1, \ldots, n, j=1, \ldots, m, t \in \mathbb{R}\right\}, \\
\Delta=\sup \left\{U_{i}^{0}(t), V_{j}^{0}(t): i=1, \ldots, n, j=1, \ldots, m, t \in \mathbb{R}\right\}, \\
L=\max _{k=1, \ldots, n+m}\left\{\sup _{(t, u, v) \in \mathbb{R} \times[\delta, \Delta]^{n+m}}\left|F_{k}^{*}(t, u, v)\right|\right\} .
\end{gathered}
$$

By the same argument as given in the proof of Theorem 3.1, we know that system 4.10 has at least one solution $(\bar{u}(t), \bar{v}(t))$ in \mathcal{M}_{1}^{*} where

$$
\begin{aligned}
\mathcal{M}_{1}^{*}=\{ & (u(.), v(.)):\left(u^{* 0}(t), v^{* 0}(t)\right) \leqslant(u(t), v(t)) \leqslant\left(U^{* 0}(t), V^{* 0}(t)\right), \\
& \left|u_{i}(t)-u_{i}(\bar{t})\right| \leqslant L|t-\bar{t}|, i=1, \ldots, n \\
& \left.\left|v_{j}(t)-v_{j}(\bar{t})\right| \leqslant L|t-\bar{t}|, j=1, \ldots, m, t, \bar{t} \in \mathbb{R}\right\}
\end{aligned}
$$

It is easy to see that system 4.10) satisfies all conditions in Theorem 4.2, Thus, for each $F^{*} \in H(F)$, system (4.10) has a unique solution $(\bar{u}(t), \bar{v}(t))$ with $(\bar{u}(t), \bar{v}(t)) \in[\delta, \Delta]^{n+m}$ for all $t \in \mathbb{R}$. Since δ and Δ do not depend on the choice of $F^{*} \in H(F)$, from Lemma 2.6 and Theorem 4.2 it follows that there exists a unique globally attractive almost periodic solution $\left(u^{*}(),. v^{*}().\right) \in \mathcal{B}_{+}^{n+m}$ of system 4.1). Moreover, the module of $\left(u^{*}(t), v^{*}(t)\right)$ is contained in that of $F(t, u, v)$. If F is Θ-periodic in t, then $\left(u^{*}(),. v^{*}().\right)$ and $\left(u_{\Theta}^{*}(),. v_{\Theta}^{*}().\right)$ are two solutions in \mathcal{B}_{+}^{n+m} of (4.1). By the uniqueness, $\left(u^{*}(),. v^{*}().\right)=\left(u_{\Theta}^{*}(),. v_{\Theta}^{*}().\right)$. The theorem is proved.

REmaRk. In $\left[7\right.$, the authors considered system (4.1) with $b_{i}(t),-r_{j}(t)$, $a_{i k}(t)(i \neq k), e_{j l}(t)(j \neq l), c_{i l}(t)$ and $d_{j k}(t)$ nonnegative almost periodic; $a_{i i}(t)$ and $e_{j j}(t)$ are almost periodic and bounded from above and from below by positive constants. If $f: \mathbb{R} \rightarrow \mathbb{R}$ is almost periodic, we set $f^{h}=\inf _{t \in \mathbb{R}} f(t)$ and $f^{H}=\sup _{t \in \mathbb{R}} f(t)$. Moreover, we set
$p_{i}=\frac{b_{i}^{H}}{a_{i i}^{h}}, \quad q_{j}=\frac{1}{e_{j j}^{h}}\left(\sum_{k=1}^{n} d_{j k}^{H} p_{k}+r_{j}^{H}\right), \quad \alpha_{i}=\frac{1}{a_{i i}^{H}}\left(b_{i}^{h}-\sum_{k=1, k \neq i}^{n} a_{i k}^{H} p_{k}-\sum_{k=1}^{m} c_{i k}^{H} q_{k}\right)$,

$$
\beta_{j}=\frac{1}{e_{j j}^{H}}\left(r_{j}^{h}+\sum_{k=1}^{n} d_{j k}^{h} \alpha_{k}-\sum_{k=1, k \neq j}^{m} c_{j k}^{H} q_{k}\right), i=1, \ldots, n, j=1, \ldots, m
$$

In 7 it was shown that: If

$$
\begin{equation*}
\alpha_{i}>0, \beta_{j}>0, q_{j}>0 \tag{4.15}
\end{equation*}
$$

and $\left(L_{7}\right)$ hold, then system (4.1) has a unique globally attractive almost periodic solution $\left(u^{*}(),. v^{*}().\right) \in \mathcal{B}_{+}^{n+m}$ and its module is contained in that of $F(t, u, v)$, where $F(t, u, v)$ is the right hand side of (4.1).

It is easy to see that $\sup _{t \in \mathbb{R}} U_{i}^{0}(t) \leqslant p_{i}(i=1, \ldots, n)$ and $\sup _{t \in \mathbb{R}} V_{j}^{0}(t) \leqslant q_{j}(j=$ $1, \ldots, m)$. Thus condition $(4.15$) implies conditions (4.6), (4.7), 4.8) and (4.9). The following example shows that Theorem 4.3 generalizes and improves the above result in $\mathbf{7}$.

Example. Consider the following system

$$
\begin{align*}
& \dot{u}=u[(0.5-0.5(\cos t+\cos \sqrt{2} t))-(1.1-0.5(\cos t+\cos \sqrt{2} t)) u-0.04 v] \\
& \dot{v}=v[\sin t+\sin \sqrt{3} t+u-v] \tag{4.16}
\end{align*}
$$

By Lemma 2.7, the equation $\dot{u}=u[0.5-0.5(\cos t+\cos \sqrt{2} t)-(1.1-0.5(\cos t+$ $\cos \sqrt{2} t)) u$] has a unique almost periodic solution $U^{0}(.) \in \mathcal{B}_{+}$. It is easy to see that

$$
\sup _{t \in \mathbb{R}} U^{0}(t) \leqslant \sup _{t \in \mathbb{R}} \frac{0.5-0.5(\cos t+\cos \sqrt{2} t)}{1.1-0.5(\cos t+\cos \sqrt{2} t)} \leqslant \frac{1.5}{2.1}
$$

By Lemma 2.7, the equation $\dot{v}=v\left[\sin t+\sin \sqrt{3} t+U^{0}(t)-v\right]$ has a unique almost periodic solution $V^{0}(.) \in \mathcal{B}_{+}$. Since $\lim _{T \rightarrow+\infty} \frac{1}{T} \int_{0}^{T} V^{0}(t) d t=\lim _{T \rightarrow+\infty} \frac{1}{T} \int_{0}^{T}[\sin t+$ $\left.\sin \sqrt{3} t+U^{0}(t)\right] d t \leqslant \frac{1.5}{2.1}$, we have $\lim _{T \rightarrow+\infty} \frac{1}{T} \int_{0}[0.5-0.5(\cos t+\cos \sqrt{2} t)-$ $\left.0.04 V^{0}(t)\right] d t>0$. It follows that the equation

$$
\dot{u}=u\left[(0.5-0.5(\cos t+\cos \sqrt{2} t))-0.04 V^{0}(t)-(1.1-0.5(\cos t+\cos \sqrt{2} t)) u\right]
$$

has a unique almost periodic solution $u^{0}(.) \in \mathcal{B}_{+}$. Now, it is easy to verify that system 4.1) satisfies all conditions 4.6-4.9). Moreover, condition (L_{7}) holds for $s=0.5, \beta=0.04$. Therefore, by Theorem 4.3, system $\sqrt{4.16}$ has a unique globally attractive almost periodic solution $\left(u^{*}(),. v^{*}().\right) \in \widehat{\mathcal{B}_{+}^{2}}$, whereas system 4.16) does not satisfy (4.15).

References

1. Deimling K., Nonlinear Functional Analysis, Springer-Verlag, Berlin, 1985.
2. Hartman P., Ordinary Differential Equations, Birkhauser, Boston, 1982.
3. Hutson V., Schmitt K., Permanence and the dynamics of biological systems, Math. Biosci., 111 (1992), 1-71.
4. Munkres J., Topology: A First Course, Prentice-Hall, 1975.
5. Trinh T. Anh, Tran V. Nhung, Le H. Lan, Permanence and positive bounded solutions of Kolmogorov competing species system, Acta Math. Vietnam., 25 (2000), 251-261.
6. Wen X., Wang Z., Global attractivity of the periodic Kolmogorov system, ANZIAM J., 44 (2003), 569-581.
7. Xia Y., Chen F., Chen A., Cao J., Existence and global attractivity of an almost periodic ecological model, Appl. Math. Comput., 157 (2004), 449-475.
8. Yoshizawa T., Stability Theory and the Existence of Periodic Solutions and Almost Periodic Solutions, Springer-Verlag, New York, 1975.

Received September 21, 2012
Faculty of Mathematics and Informatics
Hanoi University of Education
Vietnam
e-mail: anhtt@hnue.edu.vn

Faculty of Mathematics
Taybac University
Vietnam
e-mail: thongpm2000@taybacuniversity.edu.vn

