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Abstract: This paper presents the behavior of hollow-core fiber-reinforced polymer–concrete–steel
(HC-FCS) columns under cyclic torsional loading combined with constant axial load. The HC-FCS
consists of an outer fiber-reinforced polymer (FRP) tube and an inner steel tube, with a concrete
shell sandwiched between the two tubes. The FRP tube was stopped at the surface of the footing,
and provided confinement to the concrete shell from the outer direction. The steel tube was embedded
into the footing to a length of 1.8 times the diameter of the steel tube. The longitudinal and transversal
reinforcements of the column were provided by the steel tube only. A large-scale HC-FCS column
with a diameter of 24 in. (610 mm) and applied load height of 96 in. (2438 mm) with an aspect
ratio of four was investigated during this study. The study revealed that the torsional behavior of
the HC-FCS column mainly depended on the stiffness of the steel tube and the interactions among
the column components (concrete shell, steel tube, and FRP tube). A brief comparison of torsional
behavior was made between the conventional reinforced concrete columns and the HC-FCS column.
The comparison illustrated that both column types showed high initial stiffness under torsional
loading. However, the HC-FCS column maintained the torsion strength until a high twist angle,
while the conventional reinforced concrete column did not.

Keywords: hollow-core column; composite column; fiber-reinforced polymer (FRP); torsional loading

1. Introduction

Bridge columns sustain axial, flexural, shear, and torsional loads during earthquakes.
Researchers attempt to develop new structural systems that can increase the resilience and accelerate
the construction of bridge columns [1,2]. Concrete-filled steel tubes (CFST) are one of those developed
systems. The external steel tube acts as a stay-in-place formwork that provides longitudinal and
transverse reinforcement, and a confinement reinforcement to the concrete core. The concrete
core acts as a bracing that provides lateral stability and delays the local buckling of the steel tube.
The combination of steel tube and concrete enhances the overall strength and ductility of the column.
The material cost of the CFST column is slightly higher than that of the conventional reinforced
concrete columns, while it is lower than the steel columns. CFSTs are used as bridge columns in
Europe, China, and Japan, and extend to the United States as piles. Recently, fiber-reinforced polymer
(FRP) tubes have been used instead of steel tubes due to their high strength-to-weight ratios and
corrosion resistance [3–11].
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Montague [12] introduced a new system, hollow-core steel-concrete-steel columns, by hollowing
a concrete-filled steel tube column and supported the remaining concrete shell by an inner steel
tube. The self-weight of the column is significantly decreased, which leads to reduced inertial forces
linked to the column’s weight. Teng et al. [13] replaced the outer steel tube of the hollow-core
steel–concrete–steel column with an outer FRP tube, producing hollow-core FRP–concrete–steel
(HC-FCS) columns. The HC-FCS column exploits the benefits of the three materials, i.e., FRP, concrete,
and steel. The FRP tube and concrete core reduce the potentials of the corrosion of the inner steel tube.
The concrete shell also reduces the outward local buckling of the steel tube, leading to higher models
buckling at higher loads. Several researchers have investigated the performance of HC-FCS columns
under different loading conditions [14–20]. These studies showed that HC-FCS columns could exhibit
high levels of lateral drift and energy dissipation before the rupture of the FRP tube.

Bridge columns in skewed, curved, and asymmetric structures may sustain significant torsional
loads during earthquakes. Earthquakes typically induce cyclic torsional loads combined with axial
and/or flexural loadings, which increase the demand on a bridge column. Ostuska et al. [21] and
Prakash [22] reported that the locking and unlocking of the spiral reinforcement had significantly
affected the column’s cyclic torsional behavior. Moreover, the spalling of concrete was higher during
the unlocking of the spiral compared with the locking of the spiral.

Beck and Kiyomiya [23] reported that buckling of the steel tube of the CFST column subjected to
pure torsional monotonic loads was delayed due to the existence of the concrete core, and the column
maintained its high stiffness and displayed high ductility compared with equivalent reinforced concrete
columns. Han et al. [24] reported that the concrete core had a significant effect on the torsional resistance of
CFST columns subjected to pure monotonic torsional loads. They also developed an analytical model to
calculate the column’s torque. Nie et al. [25] investigated the behavior of CFSTs under pure torsional and
combined axial-torsional cyclic loading. They revealed that the CFSTs had high-energy dissipation and
insignificant strength degradation.

Recently, Huang et al. [26] and Anumolu et al. [27] investigated the behavior of hollow-core
steel–concrete–steel columns under pure torsion, and reported a good energy dissipation of such
columns along with high strength and ductility. Anumolu et al. [27] proposed design formulas for
calculating the ultimate torque of hollow-core steel–concrete–steel columns.

2. Research Significance

There have not been any studies that investigate the behavior of the HC-FCS columns under
torsional loading. This manuscript presents a unique study that investigates the behavior of a HC-FCS
column subjected to combine cyclic torsional and axial compressive loading. A large-scale HC-FCS
column was constructed and experimentally examined under the designed loads. The general torsional
behavior of the HC-FCS column was compared with that of a reinforced concrete column.

3. Experimental Program

3.1. Test Specimen

A large-scale HC-FCS column was constructed (Figure 1) and tested under cyclic torsional loading
and constant axial compressive load. The column’s actual height between the surfaces of the footing
and the loading head was 80 in. (2032 mm). The column’s shear span from the top surface of the
footing to the center-line of the applied torsional load was 96 in. (2438 mm), representing a moment
span-to-shear diameter ratio of four. The diameter of the outer glass fiber-reinforced polymer (GFRP)
tube (Do) and the inner steel tube (Di) were 24 in. (610 mm) and 14 in. (355 mm), respectively.
The concrete shell thickness was 5 in. (127 mm). The thickness of the GFRP tube (to) was 0.45 in.
(11 mm). The thickness of the steel tube (ti) was 0.25 in. (6.35 mm), representing a diameter-to-thickness
(Di/ti) ratio of 56. The percentage area of the steel tube over the gross cross-sectional area of the column
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was 2.15%, which was approximately equal to the same amount of the longitudinal and transversal
reinforcements in a conventional reinforced concrete column in the Midwestern United States.

The steel tube of the column was embedded into the footing and loading stub, while the GFRP
tube was not embedded in either one. Therefore, the GFRP tube acted as a stay-in-place formwork and
confinement reinforcement for the column, while it did not transfer any flexural loads to the footing or
the loading stub. While embedding the GFRP tube may increase the strength of a HC-FCS column,
it may also lead to a very brittle failure due to the rupture of the GFRP. Furthermore, truncating the
GFRP at the surface of the footing allowed the use of a precast HC-FCS column with a simple socket
connection (Abdelkarim et al. 2016). The embedded length of the steel tube into the footing and
loading stub was 25 in. (635 mm), representing 1.8 times the diameter of the steel tube.

The dimensions of the footing were 60 in. (1524 mm) in length, 48 in. (1219 mm) in width, and 34 in.
(863 mm) in depth. The footing was constructed using 6#7 (6 D22) as top reinforcement, 7#7 (7 D22)
as bottom reinforcement, and 20#4 (20 D13) as shear reinforcement (Figure 1). The dimensions of
the loading stub were 30 in. (762 mm) in length, 30 in. (762 mm) in width, and 34 in. (863 mm) in
depth. A clear cover of 1 in. (25.4 mm) was used in all of the sides of the footing and the loading stub.
The construction joint at the top of footing level was well prepared before pouring the concrete column
by roughing the surface using a needle gun. The top surface of the concrete column was prepared in
the same way before pouring the loading stub.
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Figure 1. Hollow-core fiber-reinforced polymer–concrete–steel (HC-FCS) column (a) Elevation,
(b) Cross-section, and (c) Plan of loading head.
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3.2. Material Properties

The GFRP tube was manufactured by filament winding of glass fibers and epoxy resin. The fiber
orientation was ±55◦ to the axial direction of the tube. The GFRP longitudinal tensile strength was
determined per the ASTM D3039 [28] as 9500 psi (65.5 MPa), which was very close to the manufacturer’s
data (Table 1). The hoop strength per the manufacturer’s data is summarized in Table 1.

Tension tests per the ASTM A1067 [29] were conducted on steel coupons obtained from the
longitudinal direction of the steel tube (Table 2). The tests were carried out on a universal testing
machine with a 0.05 in./min (1.27 mm/min) constant loading rate.

The mix proportions of the concrete shell are summarized in Table 3. The coarse aggregate used for
the concrete shell was pea gravel, with a maximum aggregate size of 3/8 in. (9 mm). The water–cement
(w/c) ratio was maintained at 0.5. The workability of the concrete shell was increased using high
range water reducers. The concrete cylinders of the concrete shell and the footing were tested at
28 days and the day of testing. The concrete mixture had a 28-day compressive strength of 5158 psi
(35.5 MPa). The column was tested at four months after the construction, and the concrete strength
reached 6910 psi (51 MPa). The increase in the strength was due to the slow hydration of the fly ash.
The compressive strength of the concrete of the footing was 9700 psi (66.9 MPa) at the day of testing
(Table 4).

Table 1. Mechanical properties of the glass fiber-reinforced polymer (GFRP) tube.

Axial Compression
Elastic Modulus,

ksi (GPa)

Axial Ultimate
Compressive Stress,

psi (MPa)

Axial Tensile
Elastic Modulus,

ksi (GPa)

Axial Ultimate
Tensile Stress,

psi (MPa)

Hoop Elastic
Modulus,
ksi (GPa)

Hoop Rupture
Stress, psi (MPa)

677 (4.7) 12,510 (83.8) 1680 (11.6) 9530 (65.7) 3020 (20.8) 40,150 (276.9)

Table 2. Mechanical properties of the steel tube.

Yield Stress, psi (MPa) Yield Strain Ultimate Stress, psi (MPa) Rupture Strain

47,000 (324) 0.16% 70,000 (483) 19.0%

Table 3. Concrete shell mixture properties.

Cement, lb/yd3

(kg/m3)
Fly Ash, lb/yd3

(kg/m3)
Fine Aggregate,
lb/yd3 (kg/m3)

Coarse Aggregate,
lb/yd3 (kg/m3)

Water, lb/yd3

(kg/m3)
HRWR, lb/yd3

(kg/m3)
w/c Ratio

590 170 1430 1430 380 1.9
0.5(350) (101) (848) (848) (225) (1.13)

Table 4. Measured concrete strength.

Property Footing Column

f’c, psi (MPa)—28 days 9500 (65.5) 5158 (35.5)
f’c, psi (MPa)—date of test 9700 (66.9) 6910 (51.0)
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3.3. Experimental Setup and Instrumentation

The schematic test setup is shown in Figure 2. The footing was fixed to the strong floor using
four Dywidag bars. Two servo-controlled hydraulic horizontal actuators were used at the northern
side to apply cyclic torsional load. The actuators were connected at one end to the loading stub using
post-tensioned Dywidag bars and steel beams (Figure 2). The other end of each actuator was connected
to the laboratory strong wall. The axial load was applied to the column loading stub using six external
unbonded prestressed tendons. The tendons had dead ends at the footing and active ends at the
loading stub. The axial load remained constant during testing using a controlled servo-valve.

Strain gauges, strain rosettes, linear variable differential transformer (LVDTs) and string
potentiometers were used to measure the deflection, deformations, and strains of the investigated
column. A total of 48 strain gauges were attached to the FRP tube at six levels with pitches of 5 in.
(127 mm) starting from the surface level of the footing to 25 in. (635 mm) along the height of the
column. At each level, a total of eight strain gauges, with four on the hoop direction and four on the
vertical direction, were attached on the east, west, north, and south directions. A total of 56 strain
gauges were attached on the steel tube at seven levels, with spacing of 5 in. (127 mm) from 15 in.
(381 mm) to 45 in. (635 mm) from the bottom of the steel tube along the height of the column. At each
level, a total of eight strain gauges, with four on the hoop direction and four on the vertical direction,
were attached on the east, west, north, and south directions. Two strain rosettes were attached on
the steel tube at the surface level of the footing, and 5 in. (127 mm) above it on the north direction.
Each strain rosette measured shear strain along with longitudinal strain and hoop strain. The buckling
behavior and slip of the steel tube and of the steel tube over concrete were monitored using cameras
fixed inside the steel tube. A total of three cameras were fixed inside the steel tube, along with light
bulbs to provide illumination. The cameras were positioned to focus on the steel tube at three levels:
top, bottom, and at the surface level of the footing. String potentiometers were used to measure the
twist angle of the column. A total of six string potentiometers were attached at different locations
over the column height. LVDTs were used to measure the rocking and sliding of the footing, if any,
and the slip of the FRP tube over the loading head. The detailed instrumentation of the column was
shown in Figure 3.
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3.4. Measuring of the Column Twist Angle

The column’s twist angle is the angle of rotation of the column’s head around its center.
From Figure 3c, the distance between the two actuators on the loading head “a” was 914 mm.
The column rotated to a twist angle of θ, and the respective displacements ∆1 and ∆2 were determined
from the actuators readings. Hence, the column’s twist angle was determined using Equation (1).
Also, the rotation of the FRP tube was monitored in order to measure any slip occurring between
the FRP tube and the column’s head during the application of the torsional loading. A string of
length L from the string potentiometer was attached to the top of the FRP tube of the column
(Figure 3a,d). The twist angle of the FRP “θ1” was determined using Equations (2) and (3). The relative
twist angle between the column’s head and the FRP tube was determined by subtracting “θ1” from
“θ”. Another method was used to measure the relative displacement between the FRP tube and the
column’s head, where a wooden plate was attached to the top of the FRP tube parallel to the loading
frame, and two LVDTs were attached horizontally to the loading frame and connected to the wooden
plate to measure the respective displacements. Hence, the relative displacement was determined as
similar to Equation (1). Finally, the two methods determining the relative displacements between the
column’s head and the FRP tube had very close results.

The twist angle of the column, θ = Tan−1(
∆1 + ∆2

a
) (1)

Cos θ1 =
(L + R)2 + R2 − L′2

2 ∗ L ∗ R
(2)
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θ1 = Cos−1(
(L + R)2 + R2 − L′2

2 ∗ L ∗ R
) (3)

3.5. Loading Protocol

The axial load of 55 kips (245 kN) was applied on each hydraulic jack, with a total axial force
of 110 kips (490 kN), which represents 5% axial capacity of a reinforced concrete column with the
same outer diameter, and 1% longitudinal reinforcement [30]. The axial load was maintained constant
throughout the test and was monitored using load cells. The torsional load was applied through
two servo-controlled hydraulic horizontal actuators from the north direction. A displacement control
technique was adopted to apply the torsional load to the column. The displacements of the two
actuators were maintained at equal in value and opposite in direction. The loading regime of the
actuators was based on the FEMA 461 [31] recommendations, in which the displacement amplitude
of each actuator was 1.4 times the previous displacement amplitude. Each of the displacement
amplitudes comprised two cycles. The displacement rate of each actuator was varied between
0.01 in./s (0.25 mm/s) and 0.04 in./s (1.00 mm/s). The loading regime used for cyclic torsional
loading was shown in Figure 4.
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Figure 4. Loading regime for cyclic torsional loading.

4. Results and Discussion

4.1. General Behavior

The torque—twist angle hysteretic curve of the HC-FCS column is shown in Figure 5. The torque
of the column was calculated by the summation of forces obtained from each actuator through the
load cells multiplied by half the distance between the actuators, which was 18 in. (457 mm). The actual
twist angle of the column was obtained by subtracting the sliding effect of the footing during the test,
which was minimal, from the twist angle of the column. From Figure 5, the column behaved linearly
until a twist angle of 0.5◦. By this twist angle, the column gained early stiffness, and reached 70%
of the column’s ultimate torque. After this twist angle, the relation between the twist angle and the
torque was almost horizontal, with a low torsional stiffness. The relation started to have an abnormal
deviation at a twist angle of 7◦ due to the additional force provided from the actuator, because of the
rotational constraint of the actuator arm. The experiment was stopped at a twist angle of 13.3◦ because
of the actuator limitation. However, the torque capacity of the column was considered at a twist angle
of 7◦. The torque after this twist angle was considered as a test setup malfunction because of the effect
of the actuator, as shown in Figure 5. The column reached a torque capacity of 128 kip-ft (173.5 kN.m)
in the positive cycle and 135 kip-ft (185 kN-m) in the negative cycle at a twist angle of 7◦.
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The cohesion loss (Figure 5b) occurred between the loading head and the concrete shell at a 0.5◦

twist angle, and resulted in slight degradation in the torque-twist angle curve; however, the drop was
very low. After the loss of cohesion, the torque of the column was mainly dependent on the stiffness
of the steel tube and frictional force exerted between the concrete elements (footing, concrete shell,
and loading head) and steel tube. That was the reason that the torque of the column continued to
increase at low torsional stiffness. Unlike under the flexural loading [15], the contribution of the GFRP
tube towards torsional resistance was negligible, since there was no firm fixation of the FRP tube in the
axial direction. The rigidity of the GFRP tube allowed the rotation of the GFRP tube along with the
concrete shell.

The drop in the curve (Figure 5b) at a twist angle of 3.5◦ in the negative cycles was due to the
sudden sliding of the steel tube over the concrete. The sudden sliding was noticed by the strain gauge
readings and the cameras fixed inside the steel tube at this twist angle. However, at higher rotations,
the concrete dilation increased with its cracks and damage, which applied a higher lateral pressure on
the steel tube providing higher friction. This behavior prevented the sliding of the steel tube at the
higher displacement cycles. However, the torque continued to increase due to gains in the frictional
force between the steel tube and the concrete. At higher load levels, the column’s torque mainly
depended on the friction exerted between the concrete and the steel tube.

After the test, the GFRP tube had no visual damage, and was removed to observe the state of
the concrete shell. Several cracks were discovered throughout the height of the column at an angle
of approximately 45◦ (Figure 6). The maximum crack width on the concrete shell was 0.8 in. (2 mm),
which occurred at the top region of the column. A significant number of cracks were observed at the
bottom of the column compared with the top of the column. The reason was that the frictional force
exerted between the footing and concrete shell was higher than that between the concrete shell and
loading head because of the column self-weight. The high friction between the footing and the concrete
shell constrained the rotation of the concrete shell over the footing, whereas the low friction between
the concrete shell and loading head allowed the rotation of the loading head over the concrete shell.
The contact surfaces of the loading head and the concrete shell became smooth at the end of the test.
The loading action in both directions ground the concrete surfaces and made them smooth (Figure 7).
The contact surfaces of the footing and the concrete column were still rough, which confirmed the
higher friction exerted in the contact. The steel tube was intact with the footing and head concrete
surfaces. No visual deformations were observed in the steel tube.
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Figure 7. Grinding of concrete surfaces at: (a) loading head, (b) concrete shell.

4.2. Relative Sliding of GFRP Tube and Steel Tube

The column’s profile at a twist angle of 9◦ is shown in Figure 8a. The relative sliding between the
steel tube and the concrete shell, and between the concrete shell and the loading head caused a relative
twist angle between the GFRP tube with the concrete shell and the loading head (Figures 8b and 9).
The relative twist angle was calculated at the point of loading, and the top of the GFRP tube.
The relative twist angle, per Equation (4), was a ratio of the difference in the twist angle of the
column and the rotation of GFRP tube to the twist angle of the column. The relative twist angle
between the GFRP tube with the concrete shell and loading head had been noticed from the small twist
angles of the column. Due to the lack of rigid fixation of the FRP tube at the both ends, the rotation
along the GFRP tube’s height remained constant (Figure 9). The twist angle of the GFRP tube was
almost half the twist angle of the column at high degrees of rotation.

Relative twist angle =
Column twist angle− FRP tube twist angle

Column twist angle
(4)
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For the column’s smaller twist angles (i.e., 0.1◦ to 0.3◦), the relative twist angle was below 20%,
as shown in Figure 10. The drop in the curve at the twist angle of 0.5◦ in Figure 10 confirmed the
cohesion loss between the concrete shell and loading head, since the GFRP tube and concrete shell
were intact with each other during the test (Figure 5b). The relative twist angle reached 40% at a twist
angle of 1◦, and continued increasing to 55% at a 12.5◦ twist angle.
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4.3. Strain Profile

The vertical and hoop strain profiles along the height of the GFRP and steel tubes are shown
in Figure 11. In general, the GFRP tube experienced vertical compressive strains along the height
where considerable strains were within the bottommost 10 in. (254 mm), with a maximum vertical
compressive strain of 950µ (Figure 11a). Although the GFRP hoop strains were all in tension along
the height, the values were very small, which indicated that the GFRP confinement was negligible
(Figure 11b). The GFRP hoop and vertical strains decreased with movement away from the surface
of the footing along the height. It was worth noting that the GFRP vertical and hoop strain profiles
at twist angles of 10◦ and 13.3◦ had very similar values. This indicated that the GFRP tube with the
concrete shell almost separated from the rotation of the steel tube, as the GFRP tube did not gain any
more strains with the twisting of the column. This result agreed with the relative twist angle results.
The steel tube yielded vertically only at the twist angle of 13.3◦, while it did not yield in the hoop
direction (Figure 11c,d). The vertical steel strain at 20 in. (508 mm) from the surface of the footing was
almost zero. The steel tube hoop strains at the surface level of the footing were not consistent with
the overall strains’ profiles. The reason was due to the abrupt change in the stability condition at the
footing top level, where the concrete shell cracked and had friction forces with the footing top surface
unlike the other levels. At a 13.3◦ twist angle, the steel hoop strain reached approximately 50% of the
yield strain at the surface level of the footing (Figure 11d). The higher steel hoop strains at the surface
of the footing indicated the friction forces exerted at this level. The shear strain from the strain rosettes
on the steel tube at heights of 5 in. (127 mm) and 10 in. (254 mm) from the surface of the footing are
shown in Figure 12. The shear strain on the steel tube at the surface level of the footing was 800µ,
which was far below the shear yield strain of the steel tube, which was 2800µ. It is worth noting that
the strain redistribution was not noticed in the steel tube, unlike in the case of axial loading when the
GFRP was used [32–35]. The reason was that the column relied mainly on the steel tube resistance
under torsion loading, and the effect of the GFRP tube was negligible.
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4.4. Comparison of Torsional Behavior with RC Column from Previous Studies

A comparison of the torsional behavior was conducted between the investigation of the HC-FCS
column and two reinforced concrete (RC) columns that have been presented in detail in Prakash’s Ph.D.
thesis [22]. Prakash [22] tested two RC columns with a diameter of 24 in. (610 mm) that represented
a height-to-diameter ratio of six. The transverse reinforcement was hoop for one column, and spiral
for the other, with a reinforcement volumetric ratio of 0.73%, with 2.75 in. (70 mm) spacing for both of
the columns. Figure 13 illustrates the twist angle percentage vs. the torque percentage for the HC-FCS
column and two RC columns. The torque values were normalized by the ultimate torque value.
As shown in Figure 13, the three columns displayed similar early torsional stiffness. The reinforced
concrete columns with spiral or hoop reinforcement started to lose their torsional strengths at a twist
angle of 3◦, whereas the HC-FCS column maintained its strength until a twist angle of 7◦. The RC
columns lost approximately 15% of their ultimate torque at a twist angle of 7◦, whereas the HC-FCS
column kept its ultimate torque (Figure 13).
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5. Summary and Conclusions

The torsional behavior of a large-scale hollow-core FRP–concrete–steel (HC-FCS) column was
investigated. The HC-FCS column had a 24 in. (610 mm) outer diameter with a shear span-to-diameter
ratio of 4.0. The HC-FCS column consisted of a concrete shell sandwiched between an outer GFRP
tube and an inner steel tube. No steel bars were provided in the HC-FCS column. The GFRP tube
was placed on the surface of the footing, and the steel tube was embedded into the footing using
a length of 1.8 times the steel tube’s diameter. This study is based on one large-scale column to show
the qualifications of the HC-FCS column under torsional loading. However, further investigations on
the different parameters should be conducted in future research to show the effect of each parameter.
The following conclusions were revealed:

1. The torsional behavior of the HC-FCS column depended on the steel tube’s stiffness and the
friction existing between the column’s components.

2. The stiffness of the HC-FCS column was maintained even at large twists, and exhibited
good ductility.

3. The direct contribution of the GFRP tube towards the torque was negligible.
4. The HC-FCS column was able to sustain its torque strength along twist angles significantly higher

than those of the comparable reinforced concrete columns. The reinforced concrete columns
displayed a significant reduction in its torque capacities starting at twist angle of 3◦, whereas the
HC-FCS column maintained its strength until a twist angle of 7◦.
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