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Theory for dynamic longitudinal dispersion in fractures
and rivers with Poiseuille flow

Lichun Wang,1 M. Bayani Cardenas,1 Wen Deng,1 and Philip C. Bennett1
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[1] We present a theory for dynamic longitudinal dispersion
coefficient (D) for transport by Poiseuille flow, the
foundation for models of many natural systems, such as in
fractures or rivers. Our theory describes the mixing and
spreading process from molecular diffusion, through
anomalous transport, and until Taylor dispersion. D is a
sixth order function of fracture aperture (b) or river width
(W). The time (T) and length (L) scales that separate
preasymptotic and asymptotic dispersive transport behavior
are T = b2/(4Dm), where Dm is the molecular diffusion
coefficient, and L = b4

48mDm

∂p
∂x , where p is pressure and m is

viscosity. In the case of some major rivers, we found that L
is �150W. Therefore, transport has to occur over a relatively
long domain or long time for the classical advection-
dispersion equation to be valid. Citation: Wang, L., M. B.
Cardenas, W. Deng, and P. C. Bennett (2012), Theory for dynamic
longitudinal dispersion in fractures and rivers with Poiseuille flow,
Geophys. Res. Lett., 39, L05401, doi:10.1029/2011GL050831.

1. Introduction

[2] Scalar mixing and spreading processes, which are
typically represented by some diffusion or dispersion coef-
ficient in transport equations, are fundamental to many
geophysical systems and engineering applications. Mass
transport driven by a concentration gradient is convention-
ally assumed to obey a diffusive process or is at least
described by a diffusion-type equation. In a stratified flow
field, the velocity profile due to shear stress enhances the
mixing/spreading process resulting in so-called Fickian dis-
persion which is encapsulated in an effective dispersion
coefficient. Taylor [1953] first showed that at some long
enough time scale the mixing/spreading process through a
tube follows Fickian behavior with a longitudinal disper-
sion coefficient. Later, Fischer et al. [1979] derived a
corresponding longitudinal dispersion coefficient for a
river also at a large time scale. Güven et al. [1984] ana-
lyzed horizontal transport through aquifers and showed
that differences in stratified groundwater flow velocity
caused by vertically-varying hydraulic conductivity would
also lead to a Fickian dispersive process at some large
enough scale. In such circumstances, the classical advec-
tion-dispersion (or diffusion) equation (ADE) is valid.
However, at preasymptotic time scales, the classical ADE

is invalid due to anomalous early arrival and persistent
tails in breakthrough curves both in fractured and porous
media [Berkowitz, 2002]. This phenomenon is referred to
as non-Fickian behavior.
[3] Non-Fickian transport can be mathematically repre-

sented in many ways but one simple approach is to define a
dynamic longitudinal dispersion coefficient (D) for the
ADE. Several researchers have studied and quantified
dynamic D using various approaches including spatial
moment analysis [Dentz and Carrera, 2007], series expan-
sion methods [Gill and Sankarasubramanian, 1970], center
manifold description [Mercer and Roberts, 1990], and
Lagrangian approach [Haber and Mauri, 1988]. These
studies showed that D increases monotonically from its
value at preasymptotic time scale to the value according to
Taylor’s theory. Yet, the theoretical analysis by Taylor
[1953] for a tube and Fischer et al. [1979] for a river at
asymptotic time scales is not sufficiently complete.
[4] There are three key assumptions adopted by both

Taylor [1953] and Fischer et al. [1979]: (1) the Peclet
number is sufficiently large (i.e., advection dominated
transport) so as to ignore longitudinal diffusion; (2) the
longitudinal advective mass flux is balanced by transverse
diffusive mass flux, and the gradient of the cross-sectional
averaged concentration in the longitudinal direction is at
steady-state; and (3) the gradient of the cross-sectional
averaged concentration in the longitudinal direction is much
greater than the gradient of concentration fluctuations. The
validity of the above assumptions has since been ignored
and subsequent studies have either retained these assump-
tions or circumvented them by following approaches that are
not directly based on the complete transport equations. Here,
we develop a more general theory that does not require the
first two assumptions, and using this theory we derive a
closed-form expression for the dynamic longitudinal dis-
persion coefficient. Afterwards, we analyze the time and
length scales for distinguishing Fickian (asymptotic) and
non-Fickian (preasymptotic) transport regimes.

2. Theoretical Development

2.1. Two-Dimensional Transport Model

[5] Fischer et al. [1979] investigated the longitudinal
dispersion coefficient for two-dimensional, steady-state,
fully-developed, laminar flow between parallel plates. In this
case, the advection-diffusion equation with appropriate
boundary conditions is:

∂C
∂t

þ u
∂C
∂x

¼ Dm
∂2C
∂x2

þ Dm
∂2C
∂y2

ð1Þ

C ¼ 0; 0 ≤ x < ∞; t ¼ 0 ð2Þ
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∂C
∂y

¼ 0; y ¼ b=2 or � b=2 ð3Þ

C ¼ C0; x ¼ 0; t > 0 ð4Þ

C ¼ 0; x ¼ ∞; t > 0 ð5Þ

where C is the concentration, x is the longitudinal direction,
y is the transverse direction, u is the x-direction velocity that
is only a function of y (uniform in x), Dm is molecular dif-
fusion coefficient, t is time, b is the aperture of parallel plates
(or the river width W), and C0 is the constant inlet
concentration.

2.2. One-Dimensional Macroscopic Transport Model
With Dynamic Dispersion Coefficient

[6] Concentration and velocity in (1) can be decomposed
into cross-sectional mean and fluctuation components:

C ¼ �C þ C′ and u ¼ �uþ u′ ð6Þ

where �C and �u are cross-sectional mean components, and C′
and u′ are fluctuations about the mean. According to Taylor
[1953], �C can be described by a one-dimensional macro-
scopic transport model written as:

∂�C
∂t

þ �u
∂�C
∂x

¼ D
∂2 �C
∂x2

ð7Þ

To obtain an explicit expression for D, we start from the
basic ADE (1). Substituting (6) into (1) yields:

∂�C
∂t

þ ∂C′
∂t

þ �u
∂�C
∂x

þ �u
∂C′
∂x

þ u′
∂�C
∂x

þ u′
∂C′
∂x

¼ Dm
∂2 �C
∂x2

þ ∂2C′
∂x2

þ ∂2C′
∂y2

� �
ð8Þ

Taking a coordinate transformation (9) and applying the
chain rule (10) (see equations (S1)–(S3) in the auxiliary
material)1

x ¼ x� �u t and t ¼ t ð9Þ

∂
∂x

¼ ∂
∂x

;
∂
∂t

¼ ��u
∂
∂x

þ ∂
∂t

ð10Þ

lead to:

∂�C
∂t

þ ∂C′
∂t

þ u′
∂�C
∂x

þ u′
∂C′
∂x

¼ Dm
∂2 �C
∂x2

þ ∂2C′
∂x2

þ ∂2C′
∂y2

� �
ð11Þ

Instead of neglecting longitudinal molecular diffusion, we
retain it and apply the averaging 1

b

R
�b/2
b/2 (equation (11)) dy,

and note that:

1

b

Z b=2

�b=2
u′dy ¼ 0;

1

b

Z b=2

�b=2
C′dy ¼ 0 ð12Þ

The cross-sectional averaging translates (11) into:

∂�C
∂t

þ u′
∂C′
∂x

¼ Dm
∂2 �C
∂x2

ð13Þ

where u′ ∂C
′

∂x is the cross-sectional averaged value of u′
∂C′
∂x . The

second term in (13) needs to be further analyzed as it is
unknown and ideally it should be expressed in terms of ∂2 �C

∂x2 .

To this end, we subtract (13) from (11), which gives the
transport equation for C′:

∂C′
∂t

þ u′
∂�C
∂x

þ u′
∂C′
∂x

� u′
∂C′
∂x

¼ Dm
∂2C′
∂x2

þ ∂2C′
∂y2

� �
ð14Þ

Since the longitudinal diffusion of C′ is much less than

transverse diffusion, i.e., ∂
2C′
∂x2 � ∂2C′

∂y2 , and since u′∂C′∂x and u′ ∂C′∂x
are the products of two typically relatively small fluctuation-
related terms therefore making them much smaller than the
other terms in (14), and that we take the difference of these
small terms, we can effectively ignore them. Then (14)
simplifies to:

∂C′
∂t

þ u′
∂�C
∂x

¼ Dm
∂2C′
∂y2

ð15Þ

At the asymptotic time scale, when longitudinal advection is
balanced by transverse diffusion, equilibrium can be
assumed resulting in:

u′
∂�C
∂x

¼ Dm
∂2C′
∂y2

ð16Þ

The solution to (16) with boundary conditions (similar
to (3)):

∂C′
∂y

¼ 0; y ¼ b=2 and� b=2 ð17Þ

is:

C′ ¼
Z y

�b=2

Z y

�b=2

u′

Dm

∂�C
∂x

dydyþ C′ �b=2ð Þ ð18Þ

By definition, and allowing for the extra term
R
�b/2
b/2 u′C′

(�b/2)dy = 0, the unknown second term in (13) is
therefore (see equations (S4)–(S6) in the auxiliary
material):

u′
∂C′
∂x

¼ 1

bDm

∂2 �C
∂x2

Z b=2

�b=2
u′

Z y

�b=2

Z y

�b=2
u′dydydy ð19Þ

Substituting (19) into (13) and expressing the result
back in the ordinary coordinate system results in:

∂�C
∂t

þ �u
∂�C
∂x

¼ Dm � 1

bDm

Z b=2

�b=2
u′

Z y

�b=2

Z y

�b=2
u′dydydy

 !
∂2 �C
∂x2

ð20Þ
1Auxiliary materials are available in the HTML. doi:10.1029/

2011GL050831.
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Therefore, the D in (7) at asymptotic time scale
(DTaylor) is:

D ¼ Dm � 1

bDm

Z b=2

�b=2
u′

Z y

�b=2

Z y

�b=2
u′dydydy ð21Þ

However, (21) is only valid assuming longitudinal advection
is balanced by transverse diffusion. Simplification of (15)
into (16) is not valid if the goal is to describe the transient
dispersive processes. Therefore, in accordance with initial
condition (2) and the no-flux boundary condition (17), we
solved (15) directly through a unique Green function
[Polyanin, 2002]:

G y; h; tð Þ ¼ 1

b
þ 2

b

X∞
n¼1

cos
np yþ b=2ð Þ

b

� �
cos

np hþ b=2ð Þ
b

� �

� exp �Dmn2p2 t � tð Þ
b2

� �
ð22Þ

The unknown second term in (13) is now expressed as:

u′
∂C′
∂x

¼ � 1

b

Z b=2

�b=2
u′

∂
∂x

Z t

0

Z b=2

�b=2
u′
∂�C
∂x

G y; h; tð Þdhdt
( )

dy ð23Þ

Assuming that the term ∂�C
∂x is constant with time, we are able

to extract it from the integral operation and then do the
manipulation as we did to obtain (21). Finally, we get the
expression for the dynamic D in the ordinary coordinate
system:

D ¼ Dm þ 1

b

Z b=2

�b=2
u′

Z t

0

Z b=2

�b=2
u′G y; h; tð Þdhdtdy ð24Þ

2.3. Parabolic Flow Model

[7] The closed form expressions of (21) and (24)
require the solution for the flow field which is well-
known for Poiseuille flow. The velocity field for fully-
developed pressure-gradient driven flow in between two
parallel no-slip walls, e.g., fracture surfaces or river
banks, is described by:

u ¼ b2

8m
∂p
∂x

1� 4y2

b2

� �
ð25Þ

where ∂p
∂x is the pressure gradient. (25) is widely-known as

Cubic Law for flow through fractures [Ge, 1997]. From
(25), the cross-sectional mean and fluctuation velocity
components are calculated as:

�u ¼ b2

12m
∂p
∂x

and u′ ¼ b2

m
∂p
∂x

1

24
� y2

2b2

� �
ð26Þ

Therefore, in a parabolic (Poiseuille) velocity field (25),
(26), the asymptotic (21) and dynamic (24) D can be
respectively expressed as:

D ¼ Dm þ �ubð Þ2
210Dm

ð27Þ

D ¼ Dm þ 72 �ubð Þ2
p6Dm

X∞
n¼1

1

n6
cos npð Þ þ 1½ �2 1� exp �Dmn2p2t

b2

� �� �

ð28Þ

3. Results and Discussion of Threshold Scales

[8] Our exact expression for dynamic D is valid across all
transport regimes (Figure 1) – diffusive, anomalous, and
Taylor dispersion – and our theory agrees conceptually and
qualitatively with results of scaling relationships for
dynamic D derived via spatial moment analysis of numerical
simulation results [Latini and Bernoff, 2001]. Dentz and
Carrera [2007] presented a theory, also derived through
spatial moment analysis, for apparent dynamic D. Our
results are equivalent to Dentz and Carrera [2007] despite
the very different approaches (Figure 1). Beyond the diffu-
sion regime, the dynamic D would increase asymptotically
towards the value predicted by (27), which has been shown
through less direct methods [Gill and Sankarasubramanian,
1970; Güven et al., 1984; Haber and Mauri, 1988; Mercer
and Roberts, 1990; Dentz and Carrera, 2007]. In contrast
to previous studies, we developed an exact and complete
expression for dynamic D by direct solution of the general
transport equations.
[9] Within the anomalous preasymptotic regime, the

dynamic D is found to increase rapidly at small time scale
t < 0.1 (t = 4tDm/b

2), and it then varies slowly at a rel-
atively large time scale t > 0.5 and gets close to its
maximum when t = 1 which corresponds to the time it
takes a particle to travel from the center to the side bound-
ary. By t = 1, the initial concentration would be completely
smeared out, and the dynamics of the cross-sectional aver-
aged concentration follows a macroscopic transport model
with constant D (27).
[10] The time scale for Taylor dispersion is therefore

t = 1 or:

T ¼ b2= 4Dmð Þ ð29Þ

whereas the counterpart length scale is:

L ¼ �u b2= 4Dmð Þ ð30Þ

Below T and L, the classical ADE with constant D is
invalid and transport is anomalous. While this behavior
is well studied theoretically and experimentally for other
systems such as in heterogeneous porous media [Güven

Figure 1. D/DTaylor as a function of dimensionless time t =
4tDm/b

2 following (28) and Dentz and Carrera [2007].
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et al., 1984; Koch and Brady, 1987; Gelhar, 1993], to
our knowledge, our work is the first direct solution of
the problem for classic Poiseuille flow with few
assumptions in the general transport theory and without
resorting to spatial moment analysis.
[11] Non-Fickian transport through fractures has been

extensively studied at preasymptotic time scales, but few
have highlighted the significance of length scales. To this
end, we investigate the effect of aperture (b) and pressure
gradient on L in straight fractures. Substitution of �u in (26)
into (30) gives:

L ¼ b4

48mDm

∂p
∂x

ð31Þ

which shows strong sensitivity (fourth order) to b. To further
emphasize the importance of b, we calculated L for different
b using typical values of subsurface pressure gradients and
Dm = 2.03 � 10�9 m2/s (typical for salt) (Figure 2). Addi-
tionally and perhaps more importantly, since �u is a second
order function of b, the dynamic D depends on b via a sixth
order function. Moreover, L is only linearly related to the
pressure gradient. Both observations highlight b as a critical
parameter.
[12] Our theory for predicting dynamic D is also applica-

ble to rivers. Since transverse velocity variation is typically
100 or more times more effective compared to vertical
velocity variation in causing longitudinal dispersion
[Fischer et al., 1979], it is reasonable to simplify the stream
into a planform 2D transport problem, not different from a
fracture. For a stream with uniform water depth, Fischer

et al. [1979] showed that (21) is still valid but with the
transverse mixing coefficient ɛt in the place of Dm. The
transverse mixing coefficient for natural rivers is given by
[Deng et al., 2001]:

ɛt ¼ 0:145þ �u

3520u�

W

H

� �1:38
" #

u�H ð32Þ

where u* is the shear velocity describing shear stress-related
motion,W is the width, and H is the depth. In the same sense,
(24) can be modified by using ɛt in the place of Dm for rivers.
[13] Our theory works well for predicting D of natural

straight rivers (Table 1) by using reported u*, W, and H to
calculate ɛt. ɛt is further applied by replacing Dm in (31) to
estimate L. But unlike the significant effect of b on L (which
is analogous to W for rivers), L for the rivers we analyzed
only varies over 1–2 orders of magnitude (Figure 3 and
Table 1) since the pressure gradient in wide streams is gen-
erally less than that in narrow streams, and the pressure gra-
dient also corresponds to a relatively small range (�1–2 orders
of magnitude) in mean velocity (Table 1). Nonetheless, our
calculations show that L varies around 150–200 times the
stream width. This is much larger than the rule of thumb of 25
stream widths suggested as a mixing length when conducting
stream tracer studies [Day, 1977]. Alternatively, Rutherford
[1994] proposed a semi-empirical method for L:

L ¼ b
�ub2

0:23Hu�
ð33Þ

where b is a coefficient which varies from 1–10 for rough
channels and where the denominator is an approximation for

Figure 2. D/DTaylor as a function of dimensionless length x/
b (following equation (28)) showing the different length
scales L for fractures with different apertures b (following
equation (31)).

Table 1. Comparison of Measured and Theoretical Dispersion Coefficients (D) Calculated Using Equation (28) at Asymptotic Time
Scale and From Deng et al. [2001], and Comparison of Theoretical Length Scales (L) Calculated With Equation (31)a

River W (m) H (m) �u (m/s) u* (m/s)

D (m2/s)

T (hr) L/W (�)
L (Equation (31))

(km)
L (Equation (33))

(km)
Measured
Value Equation (28)

Deng
et al.

Antietam Creek, MD 12.8 0.30 0.42 0.057 17.5 15.6 17.6 1.3 152 1.9 17.5–175
Tangipahoa River, LA 31.4 0.81 0.48 0.072 45.1 42.2 49.1 2.7 147 4.6 35.2–352
Bighorn River, WY 44.2 1.37 0.99 0.142 184.6 121.1 150.9 1.8 146 6.5 43.2–432
Minnesota River 80.0 2.74 0.03 0.002 22.3 9.5 12.1 118.7 182 14.6 143.4–1434
Comite River 13.0 0.26 0.31 0.044 7.0 11.5 12.3 1.7 146 1.9 19.9–199
Missouri River 197.0 3.11 1.53 0.078 892.0 964.2 950.8 6.0 167 33.1 1064–10640

aThe normalized L/W is calculated using L from equation (31).

Figure 3. D/DTaylor as a function of dimensionless length x/
W (following equation (28)) showing the different length
scales L for rivers with different widths W (following
equation (31)).
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the transverse mixing coefficient. Calculations with (33)
resulted in scales that are larger, and may in fact be several
orders of magnitude larger, than those calculated using (31)
(Table 1). Therefore, anomalous transport with a dynamic D
in rivers can be relevant at scales much larger than what (31)
predicts.
[14] We present a closed-form expression for dynamic

dispersion coefficient by direct solution of the general
transport equations. Using this, we analyzed the time and
length scales for typical fractures and some large rivers when
transport has completely transitioned from non-Fickian to
Fickian. Our theoretical approach can also be applied to
transport of other scalars such as heat, or other related pro-
blems such as cases with mass transfer across fracture walls.
Future work should focus on non-trivial boundary condi-
tions to provide further insight on dynamic dispersive
transport.

[15] Acknowledgments. This material is based upon work supported
as part of the Center for Frontiers of Subsurface Energy Security (CFSES)
at the University of Texas at Austin, an Energy Frontier Research Center
funded by the U.S. Department of Energy, Office of Science, Office of
Basic Energy Sciences under Award DE-SC0001114. Additional support
was provided by the Geology Foundation of the University of Texas.
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