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The role of eddies inside pores in the transition from Darcy
to Forchheimer flows

Kuldeep Chaudhary,1 M. Bayani Cardenas,1 Wen Deng,1 and Philip C. Bennett1
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[1] We studied the role of intra-pore eddies, from viscous
to inertial flows, in modifying continuum-scale flow inside
pores. Flow regimes spanning Reynolds Number Re � 0 to
1350 are divided into three zones – one zone follows
Darcy flow, and the other two zones describe non-Darcy or
Forchheimer flow. During viscous flows, i.e., Re < 1, station-
ary eddies occupy about 1/5 of the pore volume. Eddies grow
when Re > 1, and their growth leads to the deviation from
Darcy’s law and the emergence of Forchheimer flow mani-
fested as a characteristic reduction in the apparent hydraulic
conductivity Ka. The reduction in Ka is due to the narrowing
of the flow channel which is a consequence of the growth
in eddies. The two zones of Forchheimer flow correspond
to the changes in rate of reduction in Ka, which in turn are
due to the changes in eddy growth rate. Since the charac-
teristics of Forchheimer flow are specific to pore geometry,
our results partly explain why a variety of Forchheimer
models are expected and needed for different porous media.
Citation: Chaudhary, K., M. B. Cardenas, W. Deng, and P. C.
Bennett (2011), The role of eddies inside pores in the transition
from Darcy to Forchheimer flows, Geophys. Res. Lett., 38,
L24405, doi:10.1029/2011GL050214.

1. Introduction

[2] Flow through porous media is fundamental to many
geophysical processes and problems. In 1856, Henry Darcy
conducted filtration experiments with sediment columns and
established a linear relationship between the specific flux,
q [m/s] and the hydraulic head gradient, i [�]. This relation-
ship was later derived from first principles and was termed as
Darcy’s law:

q ¼ �Ki ð1Þ
where K [m/s] is the hydraulic conductivity, which is the
slope of the q(i) relationship. Hydraulic head gradient, i =
dh/dz; where head, h = P/rg [m], P [Pa] is pressure, and z [m]
is a one dimensional coordinate. Darcy’s law presumes Stokes
flow, i.e., Reynolds Number (Re) of �0. However, it has
been extensively used in geophysical and engineering appli-
cations for Re of up to 1. As early as 1863, another French
engineer, Jules Dupuit [Dupuit, 1863] noted that the linear
relationship proposed by Darcy does not hold for higher
flow rates. Subsequently, Forchheimer [1901] presented data
which showed the breakdown of Darcy’s law at high flow
rates, and thereafter presented an empirical relationship for

one dimensional flow which included a squared velocity
term:

�i ¼ aqþ b q2 ð2Þ
where a and b are coefficients of the polynomial fit, and
from (2) and (1), 1/Ka = a + b q, where Ka is apparent
hydraulic conductivity. By the 1960s, several authors pre-
sented equations similar in concept to (2) and provided
theoretical derivations employing averaging or homogeniza-
tion of the Navier–Stokes equations. A detailed summary of
references from this era can be found in work by Scheidegger
[1960] and Bear [1972]. It was during this period that the
breakdown of Darcy’s law, which occurs in the laminar flow
regime and at high Re, was attributed to inertial forces which
dominate over viscous forces as flow rate increases [Bear,
1972]. In addition, the cause of deviation at high Re was
considered to be due to the separation of flow in pores where
flow diverged [Bear, 1972; Irmay, 1958].
[3] Since not one equation can accurately describe the

non-linear flow at high Re, the pursuit of a single constitutive
relationship for non-Darcy flow has continued to date. The-
oretical studies [Chen et al., 2001; Hassanizadeh and Gray,
1987; Skjetne and Auriault, 1999a, 1999b] have been
complimented by pore-scale numerical simulations [Fourar
et al., 2004; Hlushkou and Tallarek, 2006; Panfilov and
Fourar, 2006] and experimental studies [Chauveteau and
Thirriot, 1967; Johns et al., 2000]. Additional studies can
be found in work by Chen et al. [2001], Hlushkou and
Tallarek [2006], Balhoff and Wheeler [2009], and McClure
et al. [2010].
[4] Despite extensive previous work, our understanding

about the physical reasons for non-Darcy flow is incomplete
[Hlushkou and Tallarek, 2006]. Briefly summarizing from
the recent literature, the commonly cited cause for the devia-
tion from Darcy’s law is ‘effects of inertia’ which is mani-
fested by the following: formation of a viscous boundary layer
[Whitaker, 1996], the interstitial drag force [Hassanizadeh and
Gray, 1987; Ma and Ruth, 1993], singularity of streamline
patterns [Panfilov et al., 2003], separation of flow [Skjetne and
Auriault, 1999b], and deformation of streamline patterns and
formation of eddies [Fourar et al., 2004;McClure et al., 2010;
Panfilov and Fourar, 2006]. While these reasons either have a
theoretical origin or are qualitative descriptions of the modi-
fied flow field, they do not explain how the formation of
eddies or singularities in the flow field contribute to the non-
linear flow characteristics. The non-linear or non-Darcy flow
is a manifestation of a characteristic decrease in hydraulic
conductivity (K) at increasing Re flows, and the cause for this
characteristic decrease in K remains to be explored in depth.
[5] In this paper, we specifically address questions such

as: How and why do eddies lead to deviation from Darcy’s
law at increasing Re flows? How does this deviation result
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in a decrease in hydraulic conductivity? How does the
dynamic growth behavior of eddies influence Forchheimer
flow characteristics? We address these related questions by
examining the micro-scale flow fields obtained via pore-
scale computational fluid dynamics (CFD) simulations on an
axis-symmetric converging–diverging pore, which repre-
sents a part of pores formed due to the staggered pattern of
spherical grains (Figure 1a). A series of steady-state flow
fields are obtained by imposing stepwise increase in head
gradient. The resultant flow behavior is distinguished into
three zones based on functional forms of q(i). The first zone
shows where Darcy’s law is valid and where the inertial
forces are presumed negligible. The next two zones show
non-Darcy or Forchheimer flow and represent the dominance
of inertial effects. Our results show how an increase in inertia
at increasing Re flows leads to the deviation from Darcy’s
law and a decrease in hydraulic conductivity as the flow
becomes non-linear. Later, we analyze Forchheimer flow
characteristics and explain the origin of its two zones.

2. Methods: Numerical Simulation Scheme
and Experimental Pore Design

[6] We conducted the CFD simulations in an axis-
symmetric framework to represent the process in three
dimensions while modeling it in two dimensions (Figure 1a).
The axis of symmetry is at the center of spherical grains,
which are arranged in a staggered pattern. We chose a stag-
gered pattern to represent the tortuous flow paths inherent in
geologic porous media. Therefore, the flow domain we
investigate is the network of flow channels wrapped around
spherical grains (Figure 1a). The spherical grains have a
radius of 10�3 m, and pore-throats are 5 � 10�4 m in the
direction of flow (inlet and outlet) and 2.5 � 10�4 m per-
pendicular to the flow direction.

[7] Steady incompressible flow is governed by the Navier-
Stokes and the continuity equations:

rrrrrrrrrrrrrrrP ¼ mrrrrrrrrrrrrrrr2u� r u ⋅rrrrrrrrrrrrrrrð Þu ð3Þ
rrrrrrrrrrrrrrr ⋅ u ¼ 0 ð4Þ

where r is fluid density, u = [u, v, w] is the velocity
vector, m is dynamic viscosity, and P is total pressure. Stan-
dard fluid properties for water are used: r = 1000 kg/m3,
and m = 0.001 Pa-s.
[8] Numerical solutions are obtained via the finite-element

method implemented with COMSOLMultiphysics. Lagrange-
triangular elements are used to discretize the domain. The
governing equations are cast and solved in cylindrical coor-
dinates (r, z).
[9] The center of spheres is an axis of symmetry

(Figure 1a). The grain surfaces and the pore throat perpen-
dicular to the z-axis follow no-slip or wall boundary condi-
tions. Inlet and outlet boundaries, which are pore throats
perpendicular to the r-axis, are periodic boundaries with a
pressure drop. Therefore, the solutions represent a single pore
from an infinite sequence of pores draped around spheres in a
staggered pattern (Figure 1a). The pressure drop is system-
atically increased from 10�3 Pa to 250 Pa across the pore to
obtain flow regimes of Re from �0 to 1350.

3. Results and Discussion

[10] In ensuing discussion, the Reynolds Number Re [�]
is given by:

Re ¼ r �Ud0
m

ð5Þ

where �U is the average velocity at the inlet and d0 is the
diameter of the spherical grain.

Figure 1. (a) 3-D rendition of 1/4th of the axis symmetric pores formed due staggered pattern of spheres. (b) Flow field
shows a pair of corner eddies and a larger stationary eddy in the Darcy flow regime. (c) to (g) growth in eddies as flow rates
increases from Re 0.01 to Re 500 to occupy a large part of the advective pore volume (ne). Bold black lines point at the sep-
aration between zones occupied by eddies and ne. Thin black lines are streamlines.
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3.1. Persistent Eddies at Re ≪ 1

[11] At Re 0.014, which is equivalent to a dimensionless
head gradient i of 9� 10�5, a pair of corner eddies and a larger
stationary eddy are observed in the pore body (Figure 1b).
Cardenas [2008] has similarly shown three dimensional
eddies inside a pore at i of 1.02 � 10�6 and also in simula-
tions solving the Stokes equations [Cardenas et al., 2009].
Eddies existing at Re 0.84 has also been observed in experi-
ments usingMRI [Johns et al., 2000]. At these flow conditions
on the order of 10�5 m/s, Darcy’s law holds (Stokes flow
regime), yet eddies exist mainly due to the geometry of the
diverging–converging pore. This is similar to early descrip-
tions byMoffatt [1964] that eddies form around sharp corners
even in the Stokes flow regime. These eddies are often called
Moffatt eddies, Stokes eddies, or viscous eddies. It is thus
important to note that in extremely slow flow conditions
when viscous forces dominate over inertial forces, eddies are
present, which is counter to the widely-held notion that
eddies form when inertial forces begin to dominate, i.e., at
Re≫ 1 [Bear, 1972; Chauveteau and Thirriot, 1967; Fourar
et al., 2004; McClure et al., 2010; Panfilov et al., 2003].
[12] At Re 0.01, stationary eddies occupy about 18% of the

total pore volume, and at these extremely slow flows, their
size is entirely dependent on the pore geometry. If we con-
sider the geometry of real pores in geologic porous media,
they have sharp corners especially due to secondary dia-
genetic alterations, which indicate that geologic porous media
likely have eddies at all flow conditions.

3.2. Deviation From Darcy’s Law

[13] The cause for the deviation from Darcy’s law has
been attributed to the generation of eddies within the micro-
scale flow field [Fourar et al., 2004; McClure et al., 2010;
Panfilov and Fourar, 2006; Panfilov et al., 2003]. If eddies
were to form at some threshold Re where inertial forces
begin to dominate over viscous forces, we can expect an
abrupt change in the flow or stress field that might lead to a

potentially abrupt variation in the q(i) relationship. On the
contrary, we observed that the deviation from Darcy’s law
with increasing q is very gradual (Figure 2).
[14] The gradual deviation from Darcy’s law is due to

the gradual growth of pre-existing eddies (discussed in
section 3.1) with an increase in i (Figures 1b and 1c). By
continuously increasing the flow rate, the angular velocity of
an eddy increases, i.e., its inertial/centrifugal force increases.
And, as the inertial force of an eddy surpasses the surrounding
pressure force, the eddy begins to grow. We quantify eddy
growth by quantifying the viscous force or friction drag Ft on
the pore boundaries (Figure 1a). In the laminar flow regime,
Ft is expected to increase linearly with an increase in i.
However, the net rate of increase in Ft will likely decrease as
an eddy begins to grow, because as an eddy grows, a larger
area of the pore boundary is subjected to counter flow which
contributes negative friction drag. The z-component of the
friction drag in the cylindrical coordinates is:

Ft;z ¼ h
∂u
∂z

þ ∂v
∂r

� �
⋅nr þ 2

∂v
∂z

� �
⋅nz

� �
ð6Þ

where, h is the dynamic viscosity, u and v are velocities in r-
direction and z-direction, respectively, and nr and nz are unit
vectors in r- and z-directions, respectively. In an axis sym-
metric tube, the net friction drag per unit surface area Ft is
calculated by integrating the z-component of the friction drag
over the surface of pore body as:

Ft ¼
R
Ft;z ⋅t dAR

dA
ð7Þ

where t is the unit vector tangent to pore boundaries. Since
the integration of the friction drag’s r-component over the
surface of an axis symmetric tube yields zero, it is not
included here. The rate of change in Ft with increasing i is:

F ′t ¼ ∂Ft

∂i
ð8Þ

Corresponding to the functional form q(i), we define an
apparent hydraulic conductivity (Ka) following (1).
[15] At Re < 1, both Ka and Ft′ are insensitive to

increasing i (Figure 2) clearly delineating a zone where
Darcy’s law is valid (Zone I in Figure 2). Even though,
eddies are present in Zone I flow regime, Ft′ does not change
with i, indicating that neither do eddies grow in Zone I flow
regime, nor do they affect the q(i) relationship (Figures 1b
and 2). In Zone I flow regime, Ka is the true hydraulic
conductivity K in (1).
[16] At flows of Re > 1, both Ka and Ft′ begin to decrease

congruently marking the deviation from Darcy’s law (Zone
II in Figure 2). Since Ka decreases simultaneously with a
decrease in Ft′, and since the decrease in Ft′ is a consequence
of an increase in size of eddies, the deviation from Darcy’s
law is a result of growth in eddies.
[17] The usage and definition of Re for porous media

vary depending on the choice of length scale, i.e., do in (5).
If we use pore throat as do, the deviation from Darcy’s law
occurs at Re 0.3. But if we use grain diameter as do, the Re at
which the deviation occurs becomes 1.5, i.e., Re used here

Figure 2. The deviation from Darcy’s law shown by the
non-linearity in apparent hydraulic conductivity Ka [m/s] and
rate of change in friction drag [N] at increasing hydraulic gra-
dient i [�]. Zone I shows where Darcy’s law is valid and Zone
II marks the emergence of the Forchheimer flow regime.
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(Figures 1–4) are �5� of Re calculated using pore throats.
The former description points that the deviation occurs when
inertial forces are not dominant (Re < 1), but the latter
description indicate the breakdown between 1 < Re > 10,
which is consistent with Bear [1972].

3.3. The Cause for Decrease in the Apparent Hydraulic
Conductivity Ka

[18] Growth in eddies at increasing Re flows is well
documented in experiments [Chauveteau and Thirriot,
1967] and numerical studies [Fourar et al., 2004; Skjetne
and Auriault, 1999b], but how their growth contributes to
and affects non-Darcy flow is not clear. We show that the
decrease or reduction in Ka, which is the main indicator for
non-Darcy flow, is due to the shrinking of advective pore
volume (ne), i.e., the narrowing of the flow channel associ-
ated with the growing eddies. The ne is the contiguous zone
covered by the bulk flow. We map and separate the eddy
region from the bulk flow (ne) using streamlines (Figure 1).
The ratio of ne to total pore volume is denoted by a, and 1-a,
which is the ratio of eddies to total pore volume, is denoted
by ‘�’.
[19] The ratio of eddies to total volume � is inversely

related to Ka, or, conversely, the ratio of flow channel to total
volume a is directly related to Ka (Figure 3). Both a and Ka

sharply decrease with increasing i until Re � 450 and begin
to behave asymptotically at Re > 450 (Figure 3). The sharp
decrease in a at Re < 450 is due to a fast initial growth in
eddies, whereas the asymptote in a at Re > 450 is due to the
slowing of growth in eddies. The growth in eddies slows
down because, once they have grown to occupy a large part
of the pore, their growth becomes limited by pore boundaries
and increased pressure at the eddy-bulk flow interface, which
is due to the narrowing of flow channel (Figures 1f and 1g).
The decrease in Ka with a decrease in ne or a could be
qualitatively explained by using Hagen-Poiseuille’s law, in
which the ‘hydraulic conductivity’ of an idealized cylindrical
pore (a tube) is nonlinearly related to pore radius �K � R2.

However, given the geometry of the pore we considered is far
from a uniform tube, a variation from Ka � R2 sensitivity is
expected.

3.4. Forchheimer Flow Characteristics

[20] Whether Forchheimer flow corresponds to when flow
rate is dependent on the pressure gradient via a quadratic
equation (i.e., (2)), a cubic equation, or a power function, has
been a subject of extended and intense debate [Balhoff and
Wheeler, 2009; Chen et al., 2001; Cheng et al., 2008;
Panfilov and Fourar, 2006; Skjetne and Auriault, 1999a].
While various theoretical explanations justify each of these
relationships, several also point out their failure under dif-
ferent flow scenarios. For example, the quadratic law fails at
low Re flows [Balhoff and Wheeler, 2009]. The physical
explanation of why it fails at low Re or why it needs to be
described by a cubic equation [Mei and Auriault, 1991],
described by a 5th order equation [Balhoff and Wheeler,
2009], or if it needs an exponential correction [Panfilov and
Fourar, 2006], continues to be unclear.
[21] We show that the characteristics of Forchheimer flow,

which can be separated into two zones, are due to the dynamic
growth behavior of eddies in pores. A close examination of
the i(q) relationship for non-Darcy flow indicates that in
Zone II this relationship follows a power law (Figure 4a)
which transitions to another power law in Zone III such that
the exponent in the power function for i(q) relationship
increases from 1.05 to 1.24 at increasing Re flows (Figure 4a).
We further study this distinct flow behavior in Zone II and
Zone III by analyzing how Ka and � change in relation to i,
i.e., by analyzing the derivatives Ka′ and �′ following (8). As
i increases in Zone II, the absolute value of Ka′ increases
congruently with an increase in absolute value of eddy
growth rate, i.e., |�′| until they reach a maximum at Re � 20
with a phase lag of Re � 10 between |�′| and Ka′ (Figures 4c
and 4d). This maximum marks the transition to Zone III,
beyond which both |Ka′| and |�′| decrease congruently at
higher i (Figures 4c and 4d). This direct relationship
between |Ka′ | and |�′| shows that the characteristics of For-
chheimer flow are due to the growth behavior of eddies. In
Zone II, the growth rate of eddies increases, while in Zone III,
it decreases mostly because, at first, eddies grow almost
unaffected by pore boundaries and increase in pressure in the
bulk flow area. But later, as they grow to occupy a larger part
of the pore volume, their growth becomes limited both by
pore boundaries and a higher increase in pressure at the eddy-
bulk flow interface, which is related to the narrowing of the
flow channel at high Re flows (Figure 1d).
[22] The dynamics of eddy growth largely depend on pore

geometry and systematically influence Ka. Moreover, the
span of Zone II across the range of i and the nature of the
power law obtained in Zone III are also entirely dependent on
the dynamics of eddy growth specific to pore geometry, as a
function of i. Therefore, at the macro-scale, a combination of
effects related to eddy growth behavior inside many pores
should be reflected in porous media’s K and its small-scale
spatial variation. Given that in real porous media there is a
large variance in pore geometry, it is unlikely that non- Darcy
or Forchheimer flow can be explicitly described by a single
function for all porous media and for all high Re flow con-
ditions. Therefore, it is expected that different functions may
be needed for site and medium specific scenarios, even up to,

Figure 3. Ratio of growth in eddies � [�] is directly related
to a decrease in the apparent hydraulic conductivity Ka [m/s]
as the flow rate Re [�] or i [�] increases.
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for example, a 5th order polynomial [Balhoff and Wheeler,
2009; Balhoff et al., 2010].

4. Summary

[23] a) We have shown that stationary eddies exist in
Darcy flow regime, i.e., at Re � 1, and perhaps exist at all
flow conditions in a geologic porous media. The size and

frequency of these eddies, however, remains an open
question.
[24] b) The deviation from Darcy’s law is directly asso-

ciated with the growth of pre-existing eddies, if any, due to
flow rate increase when Re > 1.
[25] c) A reduction in the apparent hydraulic conductivity

Ka, which is a key indicator for the deviation from Darcy’s
law, is due to a decrease in advective pore volume (i.e., the
narrowing of flow channel) as a consequence of eddy
growth at increasing Re flows.
[26] d) The characteristics of non-Darcy or Forchheimer

flow are directly related to the dynamic growth behavior of
eddies in pores. The two Forchheimer flow zones correspond
to a concomitant increase and decrease in the eddy growth
rate and the rate of reduction in Ka. At first, the eddy growth
rate increases because the growth initially is not much
affected by pore boundaries and increase in pressure in the
bulk flow area. But later, as eddies grow to occupy a larger
part of the pore volume, their growth becomes limited both
by pore boundaries and a higher increase in pressure at the
eddy-bulk flow interface, which is related to the narrowing of
the flow channel.
[27] e) An appropriate functional form for describing

macro-scale Forchheimer flow is inherently dependent on
combination of effects related to dynamic growth behavior
of eddies (dead zones), integrated over all pores in a geological
porous medium. Given that there exists a large variation in
pore geometries at the macro-scale, different functional forms
may be needed to explicitly describe non-Darcy flow for
different porous media.

[28] Acknowledgments. This material is based upon work supported
as part of the Center for Frontiers of Subsurface Energy Security (CFSES)
at the University of Texas at Austin, an Energy Frontier Research Center
funded by the U.S. Department of Energy, Office of Science, Office of
Basic Energy Sciences under award DE-SC0001114. Additional support
was provided by the Geology Foundation of the University of Texas.
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