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Pore geometry effects on intrapore viscous to inertial flows
and on effective hydraulic parameters

Kuldeep Chaudhary,1 M. Bayani Cardenas,1 Wen Deng,1 and Philip C. Bennett1

Received 8 February 2012; revised 27 December 2012; accepted 9 January 2013; published 12 February 2013.

[1] In this article, the effects of different diverging-converging pore geometries were
investigated, and the microscale fluid flow and effective hydraulic properties from these
pores were compared with that of a pipe from viscous to inertial laminar flow regimes. The
flow fields are obtained using computational fluid dynamics, and the comparative analysis is
based on a new dimensionless hydraulic shape factor �, which is the ‘‘specific surface’’
scaled by the length of pores. Results from all diverging-converging pores show an inverse
pattern in velocity and vorticity distributions relative to the pipe flow. The hydraulic
conductivity K of all pores is dependent on and can be predicted from � with a power
function with an exponent of 3/2. The differences in K are due to the differences in
distribution of local friction drag on the pore walls. At Reynolds number (Re)� 0 flows,
viscous eddies are found to exist almost in all pores in different sizes, but not in the pipe.
Eddies grow when Re! 1 and leads to the failure of Darcy’s law. During non-Darcy or
Forchheimer flows, the apparent hydraulic conductivity Ka decreases due to the growth of
eddies, which constricts the bulk flow region. At Re> 1, the rate of decrease in Ka increases,
and at Re>> 1, it decreases to where the change in Ka� 0, and flows once again exhibits a
Darcy-type relationship. The degree of nonlinearity during non-Darcy flow decreases for
pores with increasing �. The nonlinear flow behavior becomes weaker as � increases to its
maximum value in the pipe, which shows no nonlinearity in the flow; in essence, Darcy’s law
stays valid in the pipe at all laminar flow conditions. The diverging-converging geometry in
pores plays a critical role in modifying the intrapore fluid flow, implying that this property
should be incorporated in effective larger-scale models, e.g., pore-network models.

Citation: Chaudhary, K., M. B. Cardenas, W. Deng, and P. C. Bennett (2013), Pore geometry effects on intrapore viscous to inertial
flows and on effective hydraulic parameters, Water Resour. Res., 49, doi:10.1002/wrcr.20099.

1. Introduction

[2] The geometry of pores controls intrapore fluid flow
behavior that manifests as continuum-scale flow character-
istics and hydraulic parameters. Therefore, a fundamental
understanding of continuum-scale phenomenon is under-
pinned by a thorough understanding of pore-level fluid dy-
namics. Fluid dynamics at the pore scale has largely been
studied using the classical capillary tube model, more
recently by lattice Boltzmann methods [Chukwudozie et
al., 2012; Maier et al., 1998, 1999; Pan et al., 2004; Roth-
man, 1988; Yoon et al., 2012], and pore-network models
[Balhoff and Wheeler, 2009; Blunt et al., 2002; Bryant and
Blunt, 1992; Joekar-Niasar et al., 2010].

[3] Capillary tube models assume a packing of spherical
grains such that the flow pathways or fluid conduits can be

represented by cylindrical tubes or capillaries. To consider
or correct for the differences in grain shapes, Kozeny
[1927], Blake [1922], and Carman [1938] introduced shape
factors that represent capillary tubes with cross sections
such as a circle, a square, or a triangle. Similarly, in pore-
network models, the effect of grain shapes are represented
by cross-sectional shapes such as a star, a square, and a tri-
angle [Blunt et al., 2002; Joekar-Niasar et al., 2010; Man
and Jing, 1999; Valvatne et al., 2005]. However, both cap-
illary tube models and pore-network models still assume no
variation, such as a realistic diverging-converging pore ge-
ometry in the direction of flow. Therefore, the complete
effects of pore geometries in modifying the flow field are
not well understood.

[4] Grains comprising geologic porous media can be
very angular to round in shape, which results in flow chan-
nels having a diverse range of diverging-converging pore
to pore-throat geometries. Few studies have investigated
the fluid flow fields in idealized diverging-converging
pores, but with simplistic pore geometries ; for example,
pore walls with sinusoidal curves [Bolster et al., 2009;
Bouquain et al., 2012; Dykaar and Kitanidis, 1996; Kitani-
dis and Dykaar, 1997; Malevich et al., 2006; Pozrikidis,
1987; Sisavath et al., 2001], ellipses [McClure et al.,
2010], a box shape [Cao and Kitanidis, 1998; Ma and

1Department of Geological Sciences, The University of Texas at Austin,
Austin, Texas, USA.

Corresponding author: K. Chaudhary, Department of Geological Scien-
ces, The University of Texas at Austin, 1 University Stn. C9000, Austin,
TX 78712, USA. (kuldeep@austin.utexas.edu)

©2013. American Geophysical Union. All Rights Reserved.
0043-1397/13/10.1002/wrcr.20099

1149

WATER RESOURCES RESEARCH, VOL. 49, 1149–1162, doi:10.1002/wrcr.20099, 2013



Ruth, 1993, 1994; Meleshko, 1996; Panfilov and Fourar,
2006], tortuous pores [Cardenas, 2008; Cardenas et al.,
2007; Chaudhary et al., 2011; Fourar et al., 2004], or peri-
odic porous media [Brenner and Adler, 1982]. Moreover,
most of the above-mentioned studies use Stokes flow or
viscous flow, and only few inspect the flow fields in detail
at increasing inertial flow regimes [Chaudhary et al., 2011;
Fourar et al., 2004; Leneweit and Auerbach, 1999; Ma
and Ruth, 1993; Meleshko, 1996; Panfilov and Fourar,
2006]. All the studies mentioned here notice eddies either
during viscous flows or during inertial flow regimes, but
none quantify the effect of growth in eddies and their feed-
back with different diverging-converging pore geometries
in modification of the fluid flow field spanning from vis-
cous to inertial flow regimes.

[5] Studying the effects of different diverging-converg-
ing pore geometries and eddies therein modifying fluid
flow behavior bears important implications for addressing
many critical issues including, for example, in natural set-
tings, the flow and fate of nutrients and contaminants as
mediated by microbes and biofilms [Bennett et al., 2000;
Guglielmini et al., 2011], and in engineering applications,
the pump and treat of aquifer contaminants, enhanced oil
recovery operations, and geological storage of CO2 [Balh-
off and Wheeler, 2009]. In this paper, we specifically
addressed the following questions: How does the geometry
of diverging-converging pores control eddy behavior
including its interaction with the bulk flow and effective
hydraulic conductivity during viscous flows? How does the
feedback between pore geometries and growth behavior of
eddies determine Forchheimer flow characteristics?

[6] To address these related questions, we designed 10
diverging-converging pores and compared fluid flow char-
acteristics and hydraulic properties from these pores with
that of a pipe, which represents a capillary tube model and
is the building-block for a pore-network model. We used a
dimensionless hydraulic shape factor � to characterize and
compare the different pore geometries. Microscale-steady
laminar flow fields are obtained through computational
fluid dynamics simulations, which represent flows from vis-
cous to inertial regimes. Sensitivity analyses explore the
role of different pore geometries (�) and related eddies on
hydraulic conductivity, failure of Darcy’s law, and charac-
teristics of Forchheimer flows. Our analysis is focused on
using fluid physics to examine the velocity and vorticity
distributions inside pores and the force balance along pore
boundaries.

2. Methods

2.1. Pore Geometry Design

[7] We designed 10 different diverging-converging pore
geometries likely formed due to arbitrarily round to angular
grain shapes and a contrasting longitudinally uniform pore,
which represents a capillary tube or a pipe domain (Figure
1a). The diverging-converging pore design is aimed to rep-
resent a grain packing of a cubic-type pattern with pore
throats both in z and r directions (Figure 1b). These pore
throats have an aspect ratio of 1:2 in r to z directions. The
ratio of the radius at maximum divergence in pores to the
radius of pore throats in z direction (R/r), and the length (L)

in the z direction are the same for all pore domains. R is 1.2
� 10�3 m, r is 2 � 10�4 m, and L is 2.2 � 10�3 m.

[8] The pores are designed in two dimensions and have
axial symmetry in the z direction along the bottom bound-
ary of pore domains (Figure 1a). Therefore, we effectively
studied the three-dimensional effects of pore geometries,
which are diverging-converging in the z direction and have
circular cross sections in the r direction, and compared
them with a pipe domain.

2.2. Numerical Simulation Scheme

[9] Steady incompressible flow is governed by the Nav-
ier-Stokes and the continuity equations:

Figure 1. Diverging-converging pore geometry design:
(a) half sections of 2-D pore design showing pore geome-
tries formed due to arbitrary grain shapes (solid color lines)
resulting in different hydraulic shape factors � ; (b) a full 2-
D section of a pore domain with �¼ 12.5; and (c) a full 3-
D pore geometry of two periodic pores formed using the 2-
D section from (b).
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rP ¼ �r2u� � u � rð Þu; (1)

r � u ¼ 0; (2)

where � is fluid density, u¼ [u, v, w] is the velocity vector,
m is dynamic viscosity, and P is total pressure. Standard
fluid properties for water are used: �¼ 1000 kg/m3 and
m¼ 0.001 Pa s. Numerical solutions are obtained via the fi-
nite-element method implemented with COMSOL Multi-
physics [2008]. Lagrange-triangular elements were used to
discretize the domain. About 105 elements were used based
on a mesh-convergence analysis. The variations in the nu-
merical solution at this level of mesh refinement are on the
order of <0.01%. The governing equations were cast and
solved in cylindrical coordinates (r, z).

[10] The bottom boundaries along the length of pores in
the z direction are an axial symmetry (Figure 1). The grain
surfaces and the pore throats in the r direction follow a no-
slip or a wall boundary condition. Pore throats in the z
direction are inlet and outlet boundaries, which are pre-
scribed with a pressure gradient. The inlet and outlet boun-
daries are also the periodic boundaries that aid in obtaining
a fully developed flow and a flow field representative from
a single pore of an infinite sequence of pores (Figure 1c).
The pressure gradients are systematically increased from
10�3 (Pa) to 200 (Pa) across the pores to obtain steady-state
laminar flow fields of Re from approximately 0 to 250.

2.3. Dimensionless Parameters

2.3.1. Hydraulic Shape Factor �
[11] We quantified the pore geometry by introducing a

dimensionless hydraulic shape factor � :

� ¼ SA � L

V
; (3)

where SA is the surface area of axis symmetric pores, V is
the pore volume, and L is the length of domain in z direc-
tion. We used � as a metric to quantify the sensitivity of
hydraulic properties to pore geometry. � is similar to the
specific surface and hydraulic radius concepts [Bear, 1972;
Saeger et al., 1991, 1995], which was originally used by
Kozeny [1927] for predicting permeability of nondiverging-
converging capillary tubes.

[12] The design of pore geometries as described in sec-
tion 2.1 contribute to a spectrum of � factor values span-
ning from 5.6 to 24. For example, � 12.5 corresponds to a
pore domain formed by a cubic-type pattern of circular
grain shapes, and � 24 represents a pipe domain (Figure 1).

[13] In section 3, at times we chose to show results from
fewer pore domains, which nonetheless are representative
of low, intermediate, and high � values. When deemed
more appropriate, we used results from all the pore
domains for a detailed analysis. We followed this approach
to improve clarity in presentation of our results, yet capture
the controls of �. However, all the 11 pore domains we
modeled were extensively analyzed.
2.3.2. Darcy’s Law and the Hydraulic Gradient i

[14] Darcy’s [1856] empirical relationship was later the-
oretically derived and came to be known as Darcy’s law,
which in one-dimensional form is:

Q

A
¼ q ¼ K

@ h

@ z

� �n

; n ¼ 1; (4)

where Q is volumetric discharge (m3/s), q (m/s) is Darcy
flux, A is the cross-sectional area, h is hydraulic head
equivalent to P/�g, where g is acceleration due to gravity,
and K is hydraulic conductivity, which is related to intrinsic
permeability (k) as:

K ¼ k � g

�
: (5)

[15] The hydraulic gradient i is :

i ¼ @ h

@ z
: (6)

[16] We used q / in relationship (4) to obtain K of differ-
ent pore domains. In equation (4), n¼ 1 corresponds to a
flow regime where Darcy’s law is valid, and when n< 1,
the flow is known to be non-Darcy or Forchheimer flow.
The slope of q(in) when n¼ 1 is K, and when n< 1 is the
apparent hydraulic conductivity Ka.
2.3.3. Reynolds Number

[17] To quantify the relative importance of inertial forces
to viscous forces and to compare flow fields between differ-
ent pore geometries, we used the Reynolds number Re,
which is calculated as:

Re ¼ � U d0

�
; (7)

where U is the average velocity at the inlet and d0 is the
inlet diameter. Note that U and q in (4) are the same for
pore domains in this study.

3. Results and Discussion

3.1. Viscous Eddies

[18] At steady laminar flow conditions of Re � 0 and i
on the order of 10�5, we observed eddies in all diverging-
converging pores, except the pore with �¼ 5.9 (corner
angle> 170�). At Re � 0 flow conditions, Figure 2a shows
eddies in three pores with � of 6.9, 8.5, and 12.5, where
these eddies occupy about 33%, 11%, and 2.5% of total
pore volumes, respectively. These eddies, even though they
are present at Re � 0 flow conditions, do not influence the
Darcy relationship. Such eddies that occur in flows domi-
nated by the viscous forces are often called viscous eddies,
Stokes eddies, and Moffatt eddies [Moffatt, 1964]. Viscous
eddies inside pores, cavities, and boundary wedges/corners
are well studied in numerical and laboratory experiments
[Cardenas, 2008; Chaudhary et al., 2011; Cheng and
Hung, 2006; Collins and Dennis, 1976; Hasimoto and
Sano, 1980; Meleshko, 1996; Obrien, 1972; Shen and
Floryan, 1985; Taneda, 1979].

[19] The volume of viscous eddies or their sizes are sig-
nificantly different between different pore domains. We
found no relationship between the hydraulic shape factor �
and the size or the occurrence of these eddies. The size of
these eddies are dependent on how close grain boundaries
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are to each other, i.e., the wedging of grain boundaries
around dead-end pores, which results in stagnation zones.
The bulk flow bypasses stagnation zones as a measure to
minimize the dissipation of momentum and contribute to
fluid rotation in stagnation zones.

3.2. Velocity Distribution

[20] To study the variations in fluid flow behavior
induced as a result of different pore geometries, we exam-
ined the distribution patterns of the magnitude of velocity
(jUj) and the modulus of vorticity (j!j) from four different
pore domains, which represent the hydraulic shape factor �
values of 6.9, 8.5,12.5, and 24 (Figure 3). The differences
in the flow behavior between different pores are later com-
pared with flows spanning from viscous to inertial flow
regimes. As the flow regimes become inertia dominated,
the viscous eddies begin to grow, and therefore, we were
able to analyze the modification in the flow associated with

eddy growth. jUj and j!j are normalized by the maximum
value among all four pore domains in context here. This
allows us to compare differences both in the distribution
patterns and the magnitude differences in jUj and j!j across
different pores.

[21] The steady-state laminar flows from i¼ 5 � 10�5 to
4.37 or Re �0 to �200 show that the diverging-converging
pore geometry leads to an inverse distribution pattern in jUj
relative to the pipe. Pipe flow is dominated by high veloc-
ities, whereas the diverging-converging pores (with � of 6.9,
8.5, and 12.5) are dominated by low velocities (Figure 3).

[22] The value of the highest velocity in a pore increases
with a decrease in �. The value of the lowest velocity in a
pore decreases with an increase in �. These differences in
the highest and the lowest velocities between pores con-
verge toward similar values as viscous flows progressively
become inertial (Figures 3a–3e). For example, during flows
of i¼ 5 � 10�5 or Re �0 (Figure 3a), the pore with �¼ 6.9

Figure 2. Flow fields from three different pore geometries showing eddies in (a) Darcy flow regime
and their growth (a–f) as fluid flow increases from Re 0.008 to Re 200 to occupy a large part of the ad-
vective pore volume (ne). Flow is from left to right. Black lines are the streamlines, and bold black
dashed lines separate the eddies and the ne.
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has the maximum velocity, which is six times greater than
the pipe (�¼ 24), and the pipe has the minimum velocity,
which is 10 times smaller than the pore with �¼ 6.9. At
flows of i¼ 4.37 or Re �200, differences both in the maxi-

mum and the minimum velocities between these two
domains are reduced to only twice as much (Figure 3e).

[23] The diverging-converging pore geometry leads to a
significant increase in the spread of jUj distribution relative

Figure 3. Probability distribution functions (pdf) showing the distribution patterns of the magnitude of
velocity (jUj ; a–e) and the absolute value of vorticity (j!j ; f–j) from pores and the pipe during viscous
(first row; a and f) to inertial flow regimes (succeeding rows; b–e and g–j).
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to the pipe. The breadth in the distribution of jUj shows an
increasing trend with a decrease in �. The spread in jUj dis-
tributions is the largest during viscous flows and becomes
progressively narrower as the flows become inertial.

[24] Figures 3a–3e show the peaks in the velocity distri-
bution that are associated with the nature of boundary
between the eddies and the advective flow channel, i.e., the
area of ne in Figure 2. The velocity distribution to the right
of these peaks (higher jUj) is from the advective flow chan-
nel, whereas to the left of the peaks is the velocity distribu-
tion from the eddies. As the flow becomes increasingly
inertial, these peaks shift toward a higher jUj and a lower
predominance, which is due to the shifting of boundary
between eddies and the advective flow channel toward the
bulk flow as a result of growth in eddies. The jUj increases
with increasing Re flows in the bulk flow (ne), and due to
the growth in eddies, the area occupied by advective flow
channel decreases, which results in a lower predominance.
The part of jUj distribution to the left of the peaks shows
the evolution of jUj distribution inside eddies as flows con-
tinue to gain inertia (Figures 3a–3e).

[25] The large differences in the distribution pattern and
the spread of jUj values between pores during viscous flow
are due to the flow field modifications associated with pore
geometry, which results in different radius of advective
flow channel (i.e., different viscous dissipation) and differ-
ent size of eddies (i.e., low velocities). However, during in-
ertial flows, these differences between pores are
minimized, and pore geometry seems to play a less signifi-
cant role because eddies in pores all grow to their maxi-
mum size and shrink advective flow channel to a similar
size (Figures 2a–2f), which results in a focused flow char-
acteristic similar to each other (Figure 3e). We continue
this discussion about the role of pore geometry in flow
modification in sections 3.5 and 3.6.

3.3. Vorticity Distribution

[26] Vorticity (!), which is r� u, measures the rate of
rotation of a fluid element in the flow field. Vorticity is
associated with the no-slip boundary at the pore walls, and
it diffuses and advects to the interior of the flow field [Lugt,
1996]. The presence of eddies produces locally high vortic-
ity. In viscid flow with no-slip boundaries, ! 6¼ 0; however,
this does not imply the existence of eddies. On the other
hand, there are no eddies without vorticity. The presence
and the size of eddies at Re � 0 flows depend mainly on
the wedging of grain boundaries around dead-end pores. In
many ways, these are similar to ‘‘Moffatt eddies’’ around
corners [Moffatt, 1964].

[27] Figure 2 illustrates the sizes and the location of
eddies in different pores from viscous to inertial flow
regimes, and here we examined the distribution patterns in
the modulus of vorticity (j!j) from the pores with � of 6.9,
8.5, 12.5, and 24. The j!j values are normalized by the
maximum value among all the pores.

[28] During the steady viscous flows, i.e., i¼ 5 � 10�5,
or the inertial flows (Figures 3b–3e), the diverging-con-
verging pores show a large variation in the distribution of
j!j in comparison with the pipe flow (Figure 3a). The pipe
flow, as already theoretically established, shows a uniform
and constant vorticity distribution at all flow conditions.
Between the three diverging-converging pores, the differ-

ences in the range of j!j are pronounced during the viscous
flows; however, these become narrower during increasing
inertial flows.

[29] The magnitude of vorticity exhibits an increasing
trend with a decreasing �. The pore with �¼ 6.9 shows the
widest range in vorticity distribution. It has both the highest
vorticities, yet also shows a higher predominance of low
vorticities when compared with pores with � of 8.5 and
12.5 (Figure 3). Similarly, the distribution of vorticity (Fig-
ure 3) also increases with decreasing �. However, the j!j
distribution for a given pore does not show any significant
change as the flows transition from viscous to increasingly
inertial flow regimes (Figures 3b–3e).

[30] The uniform vorticity distribution within the pipe is
due to the linear dissipation of friction drag, whereas the
large variations in vorticity and its broad distribution in dif-
ferent diverging-converging pores indicate that the stress
field gets significantly modified by the diverging-converg-
ing pore geometry. These differences in the pattern of stress
distribution between pores begin to diminish as the flows
progressively become inertial, yet the stress fields remain
significantly different, for example, at i¼ 4.37 (Figure 3e).

3.4. Hydraulic Conductivity K and the Hydraulic
Shape Factor �

[31] To quantify the effects of pore geometry on K, we
used a q / in relationship following Darcy’s law (4). A se-
quential increase in pressure (P) from 10�3 Pa to 200 Pa is
imposed at the inlet boundaries (pore throats), and Q is
obtained for a total of 11 pores. Following equation (4), the
K or Ka is calculated (Figure 4). In q / in relationships,
n¼ 1 corresponds to Darcy flow, and when n< 1, flow is
known to be non-Darcy or Forchheimer flow (Figure 4).
The slope of q(in), when n¼ 1 is the K, and when n< 1 is
the Ka. In this section, we only discuss flow modification in
pores when n¼ 1, whereas variations in the flow field when
n< 1 are discussed in sections 3.8 and 3.9.

[32] From the calculated K of a range of pores with their
hydraulic shape factor spanning from �¼ 5.6 (a pore with a

Figure 4. Fluid flux, q (m/s), and hydraulic gradient, i,
relationship showing differences in hydraulic conductivity,
K (m/s), between the pores and a pipe. Note, the q of pores
begin to converge at i> 1.
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box-shaped pore geometry) to �¼ 24 (the pipe; Figure 1a),
we found that there is an inverse power-law relationship
between K and � (Figure 5), which has an exponent of 3/2.
This relationship follows the form:

K / 1

�
3
2

; (8)

[33] Equation (8) is similar in form to Kozeny’s [1927]
equation, which is given as:

K / �3

M2
; (9)

where � is porosity and M is the specific surface or the hy-
draulic radius equivalent to SA/V. �¼ 1 in all our pores,
and their lengths (L) are also the same; therefore, � and M
in equations (8) and (9) are analogous. Equation (9)
describes variations in the K as a function of variations in
the radius of pipes, whereas equation (8) describes varia-
tions in the K as a result of different diverging-converging
pore geometries having some characteristic radius propor-
tional to �. Equation (8) represents the exact effect of
diverging-converging pore geometries on K ; however, the
usage of an average effective radius for the diverging-con-
verging pores and using Kozeny’s equation will lead to an
over prediction in variations in K. Nowadays, � can be
readily quantified from observations by using techniques
such as X-ray tomography. Thus, equation (8) can be used
to determine the theoretical and exact K of pores, which in
turn can be used in the pore-network models.

3.5. Drag Forces and Hydraulic Conductivity K

[34] In the previous section, we observed that the K
decreases with an increase �. Here we present a more
detailed examination of how the pore geometry (as repre-
sented by �) controls the continuum flow behavior, which
is manifested in K.

[35] Hydraulic conductivity is a manifestation of the
total resistive forces inside a pore. The total resistive force
due to the pore boundary is the total drag (FD), whose com-

ponents are the friction drag (F�) and the form drag (FN),
i.e., FD¼FNþF�. We examined all three drag forces indi-
vidually to evaluate which of these forces actually deter-
mines the effective hydraulic parameter (K).

[36] The z component of local form drag and local fric-
tion drag in cylindrical coordinates is :

fN ;z ¼ � P Ið Þ � nz½ �; (10)

f�;z ¼ �
@u

@z
þ @v

@r

� �
� nr þ 2

@v

@z

� �
� nz

� �
: (11)

[37] where I is the identity matrix, � is the dynamic vis-
cosity, u and v are velocities in r direction and z direction,
respectively, and nr and nz are unit vectors in r and z direc-
tions, respectively. Note that in our convention, friction
drag on the pore boundary is negative in the flow direction
(þz) and vice versa.

[38] For axis symmetric tubes, the average form drag FN

is calculated by integrating the z component of the local
form drag over the surface of the pore domain:

FN ¼ j

Z
fN ;z � n dAZ

dA

j; (12)

where n is a unit vector normal to pore boundaries. Simi-
larly, the average friction drag F� is calculated by integrat-
ing the z component of the local friction drag over the
surface of the pore body as:

F� ¼ j

Z
f s;z � t dAZ

dA
j; (13)

where t is the unit vector tangent to pore boundaries. (Since
the integration of the r components of form drag and fric-
tion drag over the surface of an axis symmetric tube yields
zero, they are not included here.) Note that we calculated
the magnitude of F�, i.e., its absolute value; however, the
average F� is <0 in all pores, but presented as positive
values.

[39] We examined the role of FN, F�, or their sum FD in
controlling the K from three different diverging-converging
pore geometries with � values of 6.9, 8.5, and 12.5. In this
section, we discuss the role of these force on K, i.e., the
Darcy flow regime, and in the subsequent section 3.9, we
focus on the non-Darcy or Forchheimer flow regime.

[40] We found that the total drag FD does not explain the
variations in the K of different pores; FD is the same for
different pores and shows a similar rate of linear increase
as flows increase from Re 0 to Re	 1 (Figure 6a). In fact,
FD is expected to be the same due to the force balance and
the design of pores. As the same hydraulic gradient i is
imposed on all pores and they have the same cross-sec-
tional area (at the pore throat), their FD is the same follow-
ing the force balance equation: FD¼ i�A. However, as K is
different for different pores, whereas FD is the same, FD

Figure 5. The hydraulic conductivity, K (m/s), is inver-
sely related to hydraulic shape factor � by a power law
with an exponent of 3/2 (R2¼ 0.99).
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has no role in determining the difference in K or Ka. FD

and its relation to Ka are further discussed in section 3.9.
[41] We found that the friction drag F� is the resistive

force that can explain for the differences in K of pores. F�
shows an increase with �, whereas the K decreases with an
increase in �. The pore with a higher F� has a lower K and
vice versa. For example, the pore with �¼ 12.5 has F� 1.5
times greater than the pore with �¼ 6.9 and 1.06 times
greater than the pore with �¼ 8.5 (Figure 6). In comparison
with F�, FN is about a magnitude smaller in the pore with
�¼ 6.9 and �0 in pores with �¼ 8.5 and 12.5 (Figure 6b).
During the Darcy flow regime, the FN is either insignificant
or nil, and F� emerges as the dominant resistive force that
contributes to the differences in K.

3.6. The Distribution of Friction Drag

[42] In the previous section, we found that F� controls
the differences in K. However, why does friction drag dif-
fer for different pores? How does pore geometry influence
F� ? To examine these questions, we present further exam-
ination of the distribution of local friction drag f� ,z along
the pore walls. Three different diverging-converging pore
geometries with � values of 6.9, 8.5, and 12.5 and the
pipe domain (�¼ 24) are analyzed (Figure 7). Here we
examined f� ,z distribution during the Darcy flow regime,
and the evolution in f� ,z distribution as the flows become
non-Darcy and when the eddies grow are discussed in the
section 3.9.

[43] The f� ,z is large near pore throats and decreases with
increasing pore radii and distance away from the bulk flow
direction (Figure 7). The negative friction drag (�f� ,z) is
due to the flow from left to right (Figure 7) or the clockwise
rotation of eddies, and the positive friction drag (þf� ,z) is
associated with counterclockwise rotation of eddies. The
part of boundaries with warm colors indicate counterclock-
wise eddies, and the part with cool colors indicate clock-
wise eddies. In Figure 7, the individual color-filled circles
(dots) in dead-end corner of pores are due to corner eddies
similar in form to Moffat’s eddies. These corner eddies
were not visible in Figure 2a, and thus, Figure 7 provides
another way to perceive the existence of such eddies.

[44] f� ,z is proportional to the velocity gradient in r direc-
tion, which is higher around the pore throats. During Darcy
flows, the amount of f� ,z near pore throats accounts for the
most of net friction drag (F�) in a pore (Figure 7a). The
amount of f� ,z from the pore body is relatively small and
insignificantly influence F�. The pore with �¼ 12.5 has a
larger section of pore boundary near the pore throats rela-
tive to the pores with � of 8.5 and 6.9 (Figure 7a). The
larger pore boundary near the pore throats accounts for a
larger f� ,z and consequently a larger F�. The portion of pore
boundary near the pore throats decreases with a decreasing
�, and therefore, the pores with increasing � in order of
8.5, 6.9, 12.5, and 24 offer an increasing larger F� in the
same order (Figure 6b) and consequently result in a
decreasing trend in K of pores with increasing � (Figure 5).

[45] We found that the local friction drag controls K
within the Darcy flow regime and is largely influenced by
the pore geometry near pore throats. Therefore, the
observed differences in the K of pores are due to the varia-
tions in distribution of f� ,z on the pore boundary, specifi-
cally near pore throats.

3.7. Pore Geometry and the Failure of Darcy’s Law

[46] We have shown that Darcy’s law begins to fail
because of the growth in pre-existing viscous eddies inside
pores with increasing inertia [Chaudhary et al., 2011].
Here we examined the effect of pore geometry � factor on
the onset of the eddy growth and effectively the failure of
Darcy’s law, i.e., when n 6¼ 1 in equation (4). We used
seven different diverging-converging pores and calculated
the friction drag (F� ; equation (13)) from pore boundaries
(Figure 1, ‘‘Wall’’) during flows spanning viscous to iner-
tial flow conditions. During Re< 1 flow conditions, F� line-
arly increases with an increase in i or the corresponding
increase in velocity flux. With an increase in i around
Re< 1 flow conditions, viscous eddies are stationary and
show no sign of growth. As the flow conditions increase to
Re> 1, viscous eddies begin to grow, and an increasingly
larger area of the pore boundary is subjected to counter
flow, which contributes to oppositely directed friction drag.
Therefore, the rate of increase in F� with i (i.e., F�

0 ; equa-
tion (14)) is constant during Re< 1 flow conditions, and at
increasing flow conditions (Re> 1), i.e., when inertia
begins to become dominant or eddies begin to grow, the
rate of increase in F� with i becomes nonlinear or shows a
decrease due to the oppositely directed friction drag contri-
butions from the growth in eddies. Henceforth, we use the
nonlinearity in F�

0 as a proxy for the growth in eddies. The
rate of change in F� with increasing i is :

Figure 6. Average net drag forces: (a) total drag FD [N]
and (b) friction drag F� [N] and form drag FN [N], from
pore boundaries during Darcy to Forchheimer flow
regimes.
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: (14)

[47] Corresponding to the functional form q(i), we define
an apparent hydraulic conductivity (Ka) following (4).
Chaudhary et al. [2011] have shown that the nonlinearity
in Darcy’s K is due to the growth of eddies in pores. Fur-
thermore, the onset of eddy growth corresponds to the onset
of nonlinearity in F�

0 [Chaudhary et al., 2011]. Likewise,
we used the nonlinearity in F�

0 as an indicator for eddy
growth and the failure of Darcy’s law.

[48] Figure 8a shows K or Ka variations with increasing i
for seven different diverging-converging pores. Similar to
Chaudhary et al. [2011], the critical flow condition (i or
Re) at which K departs from the linearity in all pores is con-

gruent to the critical i or Re, which marks the nonlinearity
in F�

0 (Figure 8). The critical i or Re that marks the failure
of Darcy’s law shows an increasing trend for pores with an
increasing �. The nonlinearity in K or Ka occurs at the low-
est hydraulic gradient (i¼ 0.005 or Re¼ 0.5) in the pore
with the smallest � of 5.9. The nonlinearity in K or Ka

occurs at increasing i conditions for pores having increas-
ingly higher �. For example, in pores with �¼ 12.5 and 16,
the nonlinearity in K occurs at i¼ 0.016 or Re¼ 1 and
i¼ 0.025 or Re¼ 1.6, respectively. However, no unique
relationship between the pore � and the critical i, at which
K becomes nonlinear, can be established.

[49] Nonetheless, the trend we noticed between critical i
or Re that marks the failure of Darcy’s law and � (Figure 8)
indicate some control of � in the advent of growth in

Figure 7. Local friction drag f� ,z [N] distribution on the boundaries of the pores and a pipe from Darcy
to non-Darcy flow regimes. Negative f� ,z is due to flow from left to right or the clockwise flow of eddies,
and positive f� ,z is due to the counterclockwise flow of eddies.
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eddies. Eddies grow first or at a lower i or Re in the pore
with a smaller � because vorticities are higher in pores
with smaller �. For example, the pore with �¼ 12.5 has
relatively lower vorticities than the pore with �¼ 6.9,
which has relatively higher vorticities (Figure 3f). Thus, it
takes higher Re flows (more inertia) in the �¼ 12.5 pore to
increase vorticity to a similar magnitude as the �¼ 6.9
pore at which eddies begins to grow. In contrast to the
above results, the pipe exhibits no nonlinearity in K or fail-
ure of Darcy’s law (Table 1) as eddies are absent in the
pipe flow.

3.8. Pore Geometry and Characteristics of
Forchheimer Flow

[50] At Re >> 1 flow conditions, the nonlinearity in q(i)
relationship is described by a modified Darcy’s law or the
Forchheimer relationship, which in quadratic form is given
as:

� i ¼ a qþ b q2; (15)

where a and b are coefficients of the polynomial fit. From
equations (4) and (15), 1/Ka¼ a þb q. Although much the-
oretical development and their validation by numerical
models have been done to derive the Forchheimer relation-
ship [Chen et al., 2001; Fourar et al., 2004; Hassanizadeh
and Gray, 1987; Ma and Ruth, 1993; Meleshko, 1996;
Panfilov and Fourar, 2006; Skjetne and Auriault, 1999],
many forms of Forchheimer flow laws such as a power

function, a quadratic equation, and a cubic equation have
been proposed [Balhoff and Wheeler, 2009; Chen et al.,
2001; Cheng et al., 2008; Panfilov and Fourar, 2006;
Skjetne and Auriault, 1999]. Although the nonlinearity or
the power relationship in the functional form of q(i) have
been derived from first principles, the existence of different
forms of Forchheimer relationships remains enigmatic.

[51] Here we studied the role of � and eddy behavior in
different pores on the Forchheimer relationships during Re
>> 1 flow conditions. We present results from five differ-
ent diverging-converging pore geometries with � values of
5.6, 6.9, 8.5, 12.5, and 16.

[52] We have previously shown that the physical mecha-
nism that governs the Forchheimer flow characteristics is
associated with the growth behavior of eddies, which in
turn is of course expected to be sensitive to pore geometry.
During Forchheimer flows, Ka decreases systematically due
to the decrease in ‘‘advective flow channel,’’ which is a
result of the growth in eddies at increasing Re flows
[Chaudhary et al., 2011]. During increasing Re flows, this
characteristic decrease in Ka is at first an increase in the
rate of decrease in Ka (i.e., �K

0
a) and later a decrease in

the rate of decrease in Ka (�K
0
a ; Figure 9). At Re >> 1,

this rate of decrease in Ka, i.e., �K
0
a � 0, and flows once

again exhibit a Darcy-type relationship. We define K
0
a as

the second derivative of q with respect to i following equa-
tion (14).

[53] At the onset of Forchheimer flow, different pores
have different Ka, which tend to converge at flows of Re
>> 1 (Figure 4). To describe flows spanning Re � 0 to Re
>> 1, we found equations that fit the data with i / qm rela-
tionship, where m¼ 1/n (Table 1). For all pores, except the
pipe flow, m¼ 2 with R2¼ 0.999 and m¼ 3 with R2¼ 1. In
contrast, m¼ 1 in the pipe flow, i.e., Darcy’s law stays
valid at Re >> 1.

[54] We further examined the effects of pore geometry
on the Forchheimer flow characteristics by examining var-
iations in the growth rate of eddies and variations in the
rate of decrease in Ka (i.e., �K

0
a) during increasing Re

flows. The eddy growth rate is represented by the rate of
change in the rate of decrease in friction drag, i.e., �F

00
� ,

and compared with the rate of decrease in apparent hydrau-
lic conductivity, i.e., �K

0
a (Figure 9). �F

00
� is the second

order derivative with respect to i following equation (14).
[55] In all pores, �F

00
� shows a direct relationship to

�K
0
a, but with some lag (Figure 9). In the beginning of

Forchheimer flow conditions, both �F
00
� and �K

0
a are

Figure 8. The failure of Darcy’s law at increasing hy-
draulic gradient i is indicated by the onset of nonlinearity
(marked by dashed lines) in (a) hydraulic conductivity K
(m/s) and (b) rate of change in friction drag F

0
� [N] with

increasing i, which are both due to the growth in eddies.

Table 1. Hydraulic Conductivity, K (m/s), and q(i) Relationship
From Darcy to Forchheimer

� K (m/s) Darcy to Forchheimer Flows

5.6 0.4626 i¼ 12.147q2þ 4.734q� 0.0328
5.9 0.4518 i¼ 6.9212q2þ 5.273q� 0.038
6.9 0.4209 i¼ 4.4918q2þ 5.7209q� 0.0502
7.15 0.3678 i¼ 6.374q2þ 5.3833q� 0.0339
7.5 0.2881 i¼ 5.4921q2þ 6.04q� 0.0303
8.5 0.2615 i¼ 3.8825q2þ 6.6084q� 0.036
11 0.1794 i¼ 4.92q2þ 7.49q� 0.0211
12.5 0.1627 i¼ 3.516q2þ 8.34q� 0.0254
16 0.1037 i¼ 2.27q2þ 9.66q� 0.014
21.5 0.0674 i¼ 5.07q2þ 15.5q� 0.0047
24 0.049 i¼ 20.408q1
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small, which then increase to a maximum (peak) at further
increase in Re, and later both of them decrease to approxi-
mately 0 at even higher Re flows (Figure 9). The increase
in �F

00
� and �K

0
a indicates how fast eddies grow or how

fast Ka decreases with a flow increase from Re � 1 to
Re> 1. Similarly, the decrease in �F

00
� and �K

0
a from

their peak values to approximately 0 indicates how fast the
growth in eddies ceases or how fast the decreases in Ka as-
ymptote to a near constant value with a continued flow
increase from Re> 1 to Re >> 1. The magnitude of peaks
indicates how much decrease in Ka occurs in a given pore

or how large eddies can grow in that pore. The height of
these peaks or the net decrease in Ka shows an inverse rela-
tionship with �. The peaks in �F

00
� and �K

0
a are the maxi-

mum in the �¼ 5.9 pore and decreases with increase in �.
For example, in the �¼ 16 pore, the peaks in �F

00
� and

�K
0
a are approximately 10 times smaller than the pore

with �¼ 5.9 pore, and negligible in the �¼ 21.5 pore (not
shown in Figure 9 as they were unnoticeable). The magni-
tude of the peaks in �F

00
� or �K

0
a is an indicator for the

degree of nonlinearity in the q(i) relationship. The nonli-
nearity in q(i) relationship becomes smaller and smaller as
the pore � approaches that of the pipe. In addition, there is
no nonlinearity in q(i) relationship in the pipe flow (see Ta-
ble 1, �¼ 24).

[56] The maximum of �F
00
� or �K

0
a decreases to

approximately 0 at increasingly higher flows (Re >> 1).
The critical hydraulic gradient i at which �F

00
� or �K

0
a

decreases to approximately 0 is approximately 1 for all
diverging converging pores, although they have different �.
The decrease in �F

00
� or �K

0
a to approximately 0 indicate

that growth in eddies ceases and there are no more varia-
tions in K or Ka. The growth in eddies is limited by the
pore dimensions and the pressure (normal force) in the bulk
flow region. From Re >> 1 flow conditions onward, the
bulk flow gets limited to a pipelike flow channel (Figure
2f), and the q(i) functional form once again follows Darcy’s
law.

[57] We found that the pore geometry as characterized
by � plays a vital role in controlling the nonlinear charac-
teristics of Forchheimer flows. By using the concept of �,
we can rank the significance of using Forchheimer relation-
ships for various cases. The controls on Forchheimer flow
characteristics discussed here will also assist in further the-
oretical development of Forchheimer laws.

3.9. Forces Controlling Apparent Hydraulic
Conductivity Ka

[58] In the previous section, we noticed a systematic
decreasing behavior in Ka that varied for different pore
geometries. Here we examined the role of different resis-
tive forces in controlling the variations in Ka. Similar to
sections 3.5 and 3.6, we examined the total drag (FD), its
components, the friction drag (F�), and the form drag (FN)
from the pore walls of three different diverging-converg-
ing pores with � values of 6.9, 8.5, and 12.5. We also
examined the evolution in f� ,z distribution on the pore
walls as the flows become non-Darcy and when eddies
grow to occupy an increasingly larger pore volume at
increasing Re flows.

[59] In examining the total drag FD during Re> 1 flows,
we once again found that it does not control even Ka of
pores. In comparison with variations in Ka, FD is the same
and shows a similar rate of linear increase as flows increase
from Re � 0 to Re >> 1 (Figure 6a). During non-Darcy
flows, the rate of increase in F� with increasing i decreases,
and the rate of increase in FN with increasing i increases
(Figure 6b), such that at all flow conditions, FN þF� ¼FD.
The increase in the rate of increase in FN eventually leads
to flows where FN>F� (Figure 6b); however, the decrease
in Ka is not accompanied by any variation related to transi-
tion of FN becoming the dominant resistive force. At Re
>> 1 flows, if FN controlled Ka, a larger FN should

Figure 9. Forchheimer flow characteristics showing the
rate of decrease in apparent hydraulic conductivity �K

0
a

(m/s) and the rate of decrease in F
0
� , i.e., �F

00
� [N] with

increasing hydraulic gradient i.
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correspond to smaller Ka (just like the relationship between
F� and K for the Darcy flow regime); however, we
observed the opposite. We found that the examination of
the friction drag and the form drag offered no clear insight
about their control on Ka.

[60] We further examined the evolution in f� ,z distribu-
tion on the walls of diverging-converging pores with �
values of 6.9, 8.5, 12.5, and 24 (Figure 7) to see if it
offers any additional insight on the controls on Ka. As the
flow conditions increase from Re � 0 to Re >> 1, the
distribution of f� ,z shows reversal in the direction of fric-
tion drag in major part of pore domains (Figures 7b–7e),
which is due to growth in eddies, and the counter flow
contributes to the reversal in the direction of friction drag.
However, as the flow conditions increase from Re � 0 to
Re >> 1, the distribution of f� ,z near pore throats show
no distinct differences in any pore (Figures 7b–7e). The
part of pore boundaries facing the bulk flow receives up
to twice the f� ,z relative to the opposite side of pores (Fig-
ure 7e). With increasing flows, the boundary area with
þf� ,z increases, whereas the area with �f� ,z decreases.
Thus, the net rate of increase in friction drag (F

0
� )

decreases with increasing i (Figures 6b and 8b). Between
the diverging-converging pores, the degree of boundary
stress modification (boundary area subjected to flow re-
versal) and the magnitude of localized stress around flow
separations are the highest for the pore with �¼ 6.9 and
the lowest for pore with �¼ 12.5. In comparison, the pipe
domain has a uniform stress distribution across all flow
conditions. The diverging-converging pore geometry and
eddies therein contribute to a large variability in the dis-
tribution of boundary stresses and the intensity of local-
ized stresses, which results due to flow separations.
However, there is no distinct pattern regarding how the
drag forces control Ka.

[61] As an explanation for the decrease in Ka during
Forchheimer flows, we consider our previous finding that
the decrease in Ka is due to an increase in the size of
eddies inside pores that reduces the average diameter of
the advective flow channel. Chaudhary et al. [2011] have
quantified the ratio of the pore volume occupied by eddies
to the total pore volume (") from viscous to inertial flow
regimes in a tortuous pore. This dimensionless ratio " is
found to be inversely related to Ka [Chaudhary et al.,
2011]. The increase in " signifies a decrease in the radius
of advective flow channel, and the decrease in Ka can be
explained by using Hagen-Poiseuille’s law, in which the
‘‘hydraulic conductivity’’ of an idealized cylindrical pipe
is nonlinearly related to the pore radius via K � R2. How-
ever, in the geometry of advective flow channel, its bound-
ary is modified due to the presence of an eddy and the pipe
flow follows no-slip conditions; therefore, a variation from
the Ka � R2 sensitivity is expected. At flow conditions (Re
>> 1) around the maximum decrease in the radius of the ad-
vective flow channel, the size or the radius of advective flow
channel approaches similar values in all pores, which results
in convergence of Ka to similar values. Therefore, the effect
of shrinking of advective flow channel due to physical
growth in eddy Ka seems to overwhelm any effects due to
dominance of form drag, which would also decrease Ka.
This is what we observed between our model diverging-
converging pores (Figure 8a).

4. Summary and Conclusions

a. We analyzed and compared fluid flow characteristics
and hydraulic properties of several pores with systematic
variation in their diverging-converging geometry and
used the uniform pipe as an end member. The geome-
tries of all pores that also include the pipe are con-
strained by a nondimensional hydraulic shape factor �.
We found that the hydraulic conductivity K of pores,
including the pipe, is inversely proportional to � with a
power of 3/2. This power-law relationship is similar in
form to Kozeny’s [1927] equation for capillaries, where
he inversely related K to ‘‘specific surface’’ M with a
power of 2.

b. At Re � 0 laminar flow conditions, viscous eddies exist
in all diverging-converging pores, except the pore with
�¼ 5.9. In comparison, the pipe domain (�¼ 24) does
not have viscous eddies. Viscous eddies, although pres-
ent at Re � 0 flow conditions, do not influence the
Darcy relationship. � shows no control in the size or
location of viscous eddies. Eddy size is dependent on
how close grain boundaries are to each other, i.e., the
wedging of grain boundaries around the no-flow pore
throats.

c. The diverging-converging pores contribute to a broader
distribution of velocities relative to the pipe. Velocity
distributions have an inverse pattern between the diverg-
ing-converging pores and the pipe. The pipe flow is
dominated by high velocities, whereas the diverging-
converging pores are dominated by low velocities. The
magnitude of velocity and the spread in its distribution
are inversely related with �. These differences between
pores are the largest during viscous flows and progres-
sively become smaller as the flows gradually become
inertial.

d. The growth in viscous eddies at Re � 1 leads to the fail-
ure of Darcy’s law in all diverging-converging pores. In
comparison, Darcy’s law does not fail in the pipe do-
main (�¼ 24). There exists an increasing trend between
the critical flow conditions (i or Re) at which Darcy’s
law fails and �. For example, Darcy’s law fails in pores
with �¼ 12.5 and �¼ 16 at hydraulic gradient i¼ 0.016
or Re¼ 1 and i¼ 0.025 or Re¼ 1.6, respectively. How-
ever, no distinct relationship between the pore � and the
critical i, at which K becomes nonlinear, is established.
As � decreases, the magnitude of vorticity increases.
The higher vorticities in pores with smaller � increase
the propensity of viscous eddies to grow and conse-
quently promote Darcy’s law to fail at increasing flow
velocities.

e. Of all resistive forces that may control K during Darcy
flows, we found that the friction drag F� is the dominant
force that contributes to the differences in K. For exam-
ple, a pore with a high F� corresponds to having a low K
and vice versa. The total drag force FD is the same for
all pores and does not explain for the differences in K.
The form drag FN is either nil or negligible in compari-
son with F�. Between different pores, the differences in
K or F� of a pore are associated with the distribution of
local friction drag f� ,z on the pore boundary. The pore
geometry controls the relative proportion of the wall that
is located at and near pore throats. Most of the resistance
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(viscous dissipation) offered by the pore occurs at the
pore throats. Thus, a pore with a larger boundary near
pore throats (e.g., �¼ 16) offers a larger resistance to
flow and results in a lower K relative to a pore with a
smaller boundary area near pore throats (e.g., �¼ 12.5).
In other words, the differences in pore K are largely due
to the differences in pore geometry near pore throats.

f. Forchheimer relationship describes the nonlinearity in
Darcy’s law, i.e., i / qm. In all diverging-converging
pores, the i / qm relationship follows a quadratic func-
tion with R2¼ 0.99 and a cubic function with R2¼ 1. In
comparison, the pipe flow follows the i / q1 relation-
ship. Forchheimer flow characteristics define a system-
atic decrease in Ka, which is a result of eddy growth
behavior at increasing flow conditions. The systematic
decrease in Ka at Re> 1 flow conditions initially has a
large rate of decrease in Ka, and later at Re >> 1, the
rate of decrease in Ka approaches approximately 0, and
the q(i) functional form once again follows Darcy-type
relationship.

g. At Re> 1 flows, the degree of nonlinearity in the q(i)
functional form is inversely related to �. The degree of
nonlinearity in q(i) or how much decrease in Ka occurs
at increasing flow conditions is the highest in a pore
with the smallest �¼ 5.6 and becomes smaller and
smaller as � approaches that of the pipe (�¼ 24). Fur-
ther and expectedly, there is no nonlinearity in q(i) rela-
tionship in the pipe flow. Darcy’s law stays valid in the
pipe domain, as long as flow is laminar.

h. During Forchheimer flows (Re> 1), the total drag FD or
its components, the friction drag F�, and the form drag
FN offer no insight about variations in the apparent hy-
draulic conductivity Ka. Instead, we argued that the
decrease in Ka at increasing flow conditions is primarily
due to an increase in the size of eddies that decreases the
advective pore volume.

i. Modifications in the fluid flow field due to diverging-
converging pore geometries are significant. The pipe do-
main, which mimics a capillary tube model or a simple
pore-network model, does not capture any of the effects
described here from the diverging-converging pores. �
plays a critical role in determining the modifications in
fluid flow fields both during Darcy flows and For-
chheimer flows. Therefore, it is very important to con-
sider actual diverging-converging pore geometries in
studying pore-level fluid dynamics. Our findings provide
a foundation for further theoretical work on pore-scale
to continuum-scale porous media flows from viscous to
inertial regimes.
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