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Formation of chromium-iron carbide by carbon diffusion in AlXCoCrFeNiCu
high-entropy alloys

Mohsen Beyramali Kivy, Caitlin S. Kriewall and Mohsen Asle Zaeem

Department of Materials Science and Engineering, Missouri University of Science and Technology, Rolla, USA

ABSTRACT
Effect of the addition of carbon on phase formations in AlxCoCrFeNiCu (x = 0.3, 1.5, 2.8) high-
entropy alloys (HEAs) was studied. Free diffusion of carbon from graphite crucible resulted in the
partitioning of the entire Cr from the matrix and the formation of the (Cr,Fe)23C6 phase in all HEAs.
No othermetal-carbide phasewas detected. The formation of (Cr,Fe)23C6 enhanced the overall hard-
ness of the HEAs. By increasing the amount of Al, the Cr amount decreased resulting in the reduction
of carbon diffusion and volume fraction of the (Cr,Fe)23C6 phase in HEAs. The hardness of matrix
phases and the overall hardness of HEAs increased with an increase in the amount of Al.

IMPACT STATEMENT
The detailed phase analysis reveals that C addition to AlxCoCrFeNiCu HEAs leads to the formation of
the (Cr,Fe)23C6 phase. The overall hardness can be controlled by the amount of C and/or Al.
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Multi-principal element (MPE) alloys, also known as
high-entropy alloys (HEAs), are a unique class of metal-
lic alloys that emerged in the last two decades [1–3].
These alloys are often defined as high-disorder degree
multicomponent alloys consisting of five ormore alloying
elements with near equi-atomic (equi-molar) composi-
tions [2,4,5]. However, it is known that changing the
compositions of the alloys can dramatically alter their
microstructures [6]. Due to the high-entropy effect, most
HEAs tend to form simple microstructures consisting
of random solid solutions [7,8]. These alloys can be
designed to have outstanding mechanical, thermal and
chemical properties due to their intense lattice distor-
tions (solution hardening), cocktail effects and sluggish
atomic diffusions [2,7,9–11]. Classical design of HEAs
is based on considering only substitutional alloying ele-
ments [2]. Therefore, the presence of multiple alloying
elements with different atomic radii on the substitutional
sites of each lattice can cause intensive lattice distor-
tions in these alloys which can result in high mechanical
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strengthening [12,13]. However, it has been shown that
the precipitate distribution in these alloys is sometimes
challenging and can detriment the ductility of these alloys
[14,15].

Recently the effect of the addition of interstitial ele-
ments to some HEAs has been investigated. In 2015, Wu
et al. [16] studied the effect of the addition of intersti-
tial carbon (C) to the equi-atomic FeNiCoCrMn alloy
showing noticeable improvement in its mechanical prop-
erties, and this work started a new strategy inHEAdesign
by doping interstitial elements. Their results showed that
the addition of 0.5 at% C did not change the phase
formation in the FeNiCoCrMn alloy, and the same sin-
gle face-centered cubic (fcc) phase was produced with
the presence of interstitial C; moreover, the addition
of C enhanced both yield strength and ultimate tensile
strength [16]. A similar strength improvement mech-
anism (interstitial strengthening) was observed in the
FeNiMnAlCr alloy by doping 0.5–1 at% B or 1.1 at% C
by Wang and Baker [17].
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In some other cases, the addition of the same intersti-
tial elements resulted in the formation of precipitates. Li
et al. studied the microstructure of Fe49.5Mn30Co10Cr10
(at%) HEA with the addition of 0.5 at% C [18], and
their results showed the formation of nano chromium
carbides causing an exceptional combination of strength
and ductility for their HEA. In a different work, Laurent-
Brocq et al. [19] studied the precipitation of carbonitrides
in equi-molar CrMnFeCoNi HEA by adding C and N.
Their results showed the formation of stable chromium
carbonitrides as a result of the addition of C and N [19].

These newly designed HEAs utilize interstitial and
substitutional solid solution strengthening mechanisms.
However, due to the presence of multiple alloying ele-
ments in different HEA systems, phenomena such as
solubility, diffusivity, and precipitation (e.g. carbide for-
mation) need to be studied further.

In the current work, we studied the effect of free
diffusion of C on phase formations in AlxCoCrFeNiCu
(x = 0.3, 1.5, 2.8) HEAs. Thermodynamically, the for-
mation of aluminum carbides is favorable in such HEAs.
We selected this HEA system because by increasing the
amount of Al in AlxCoCrFeNiCu HEAs the microstruc-
ture changes from single phase fcc (e.g. at x = 0.3) to a
mixture of a dendritic body-centered cubic (bcc) and an
inter-dendritic fcc (e.g. at x = 1.5), and then to a sin-
gle phase bcc at higher amounts of Al (e.g. at x = 2.8)
[20–22]. The inter-dendritic fcc phase (when x = 1.5)
forms by segregation of Cu in inter-dendrite regions [23].

Investigating the effect of C diffusion in phase for-
mations of AlxCoCrFeNiCu HEAs is very interesting
because it facilitates studying the competing mecha-
nisms between carbide and free graphite formations in
completely different microstructures created by varying
the Al content. Cr plays the role of a carbide form-
ing element, where Co and Ni are graphitizing elements
which destabilize the carbides to form free graphite. It
is known that the formation of chromium-carbide com-
pounds improves the hardness and the strength of metal-
lic alloys [24]. However, these compounds, specifically
M23C6-type carbides, are the primary sites for fatigue
crack initiations [25].

In addition to studying the effects of C on the phase
formations in AlxCoCrFeNiCu (x = 0.3, 1.5, 2.8) HEAs,
the total amount of diffused C in the alloy systems was
measured by Leco combustion analysis in this work. Dif-
fusivity of C in crystalline materials can change based
on the material structures, their packing densities, and
atomic coordination [26,27]. Therefore, investigating the
diffusivity of C in these HEAs, when their structures
transform based on the Al content, can provide valu-
able information for further studies on interstitial dif-
fusion mechanisms in these alloys. We also measured

the microhardness of different phases in all three HEAs
to determine the effect of the addition of C on their
hardness.

To produce the HEA samples for characterization,
high-purity metal powders (> 99.9%; spherical gas
atomized powders with the size of ∼40 μm) were
weighed andmixed for 30minusing aTurbulamixer. The
powders were then placed into an ET10 IBIDEN graphite
crucible with purity of <100 ppm ash and melted in
an induction furnace (Thermal Technology LLC, Model:
1000-4560-FP30) filled with argon gas with atmospheric
pressure. The samples were held at 1600°C for 1 h. After
the furnace was cooled down to room temperature, the
HEA samples were broken out of the graphite crucibles
and sectioned. Samples were mounted in bakelite and
polished using traditional metallography and polishing
was sufficient to reveal the microstructures. A Nikon
Ephiphot 200 optical microscope was used to observe the
microstructures with visible light. A Panalytical X’Pert
Pro multi-purpose diffractometer was used to perform
x-ray diffraction (XRD) on HEA specimens. The XRD
was scanned over 2θ angles from 5° to 100° over the
period of one hour. Direct calculations as well as Panalyt-
ical Xpert Pro Software were used to index the phases in
XRD patterns and the same results were obtained. Scan-
ning electron microscopy (SEM), electron backscatter
diffraction (EBSD) and energy-dispersive spectroscopy
(EDS)were performed on aHeliosNanolab 600. ATukon
micro-hardness tester and a Steuers Duramin Hardness
Tester were used for Vicker’s hardness indentations. Each
micro-hardness indentation used a 50 g load and 15 s of
indentation. To determine the weight percentage of car-
bon that diffused into the HEA samples, a Leco CS600
was used to perform the combustion analysis.

To determine the crystallographic information such as
structures and lattice constants of the formed phases in
the AlxCoCrFeNiCu HEAs with the addition of C, XRD
patterns of the specimens were analyzed, as shown in
Figure 1. In addition to the expected fcc and/or bcc struc-
tures as the matrix phases, an M23C6-type chromium-
iron carbide phase was also formed in all three alloys.
This phase has the Fm-3m space groupwith 10.5 Å lattice
constant.

In addition to the formation of the chromium-
iron carbide phase, increasing the amount of Al in
AlxCoCrFeNiCu HEAs stabilizes more bcc phase with
respect to the fcc phase. Furthermore, an ordered bcc
phase was also observed at the highest concentration
of Al (x = 2.8). These results are in good agreement
with previous studies on AlxCoCrFeNiCu HEAs with-
out C [28]. According to the XRD patterns (Figure 1),
the lattice parameter of the bcc structure was 2.877Å
with the Im-3m space group while it was 3.616Å for the
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Figure 1. XRD patterns of AlxCoCrFeNiCu (x = 0.3, 1.5, 2.8) HEAs with the addition of C.

Figure 2. SEM micrographs and EBSD phase maps of (left column) Al0.3CoCrFeNiCu, (middle column) Al1.5CoCrFeNiCu, and (right
column) Al2.8CoCrFeNiCu. Black needle shape microstructures are graphite flakes.

fcc phase with the Fm-3m space group. The chromium-
iron carbide phase formed in HEAs was Cr23−xFexC6
(x = 1, 2, 3) type. These three carbide phases have the
same structures (Fm-3m) with very similar lattice con-
stants, a = 10.516Å for Cr22FeC6 [29], a = 10.507Å for
Cr21Fe2C6 [29], and a = 10.505Å for Cr20Fe3C6 [25].
The chromium-iron carbide phase is named (Cr,Fe)23C6
in the current work. It should be noted that Cr22FeC6
is known to be the most stable chromium-iron carbide
structure due to its more negative formation and reaction

energies with respect to Cr21Fe2C6 and Cr20Fe3C6
[25,29].

To further investigate the phases, EBSD analyses were
performed on the samples. The crystallographic infor-
mation obtained from XRD indexing was used to select
the phases and the hit rates were 96.52%, 94.53%, and
93.79% for Al0.3CoCrFeNiCu, Al1.5CoCrFeNiCu, and
Al2.8CoCrFeNiCu alloys, respectively. The EBSD phase
maps (Figure 2) indicated that the addition of C caused
segregation of a secondary (Cr,Fe)23C6 phase in all three
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Figure 3. EDS elemental maps of (top row) Al0.3CoCrFeNiCu, (middle row) Al1.5CoCrFeNiCu, and (bottom row) Al2.8CoCrFeNiCu.

HEAs. The structures of the matrix phases which were
formed by the rest of the alloying elements changed from
fcc (x = 0.3) to a mixture of fcc and bcc (x = 1.5) and
then to a single phase bcc (x = 2.8) confirming the lit-
erature results on phase formations of AlxCoCrFeNiCu
without C [20–22].

The elemental EDS analyses, in Figure 3, revealed
the distributions of the alloying elements in different
phases observed in Figures 1 and 2. In SEM micro-
graphs (top row in Figure 2 and left column in Figure 3),
the darker regions are the (Cr,Fe)23C6 phase while the
lighter areas are the matrix phase. As it can be seen in
EDS maps (Figure 3), Fe was the only element which
was presented in both carbide and matrix phases, with
a lower concentration in the (Cr,Fe)23C6 phase and a
higher concentration in the matrix phase. Cr was par-
titioned and formed the (Cr,Fe)23C6 phase with C and
Fe. The matrix phase (single phase) in Al0.3CoCrFeNiCu
and Al2.8CoCrFeNiCu HEAs contained the rest of the
alloying elements. On the other hand, the EDS results
for Al1.5CoCrFeNiCu showed that the two matrix phases
consisted of a Cu-rich inter-dendritic fcc phase along
with a dendritic bcc phase containing Al, Co, Ni, Fe and a
low amount of Cu. These results showed that the addition
of C only partitioned Cr from the three studied HEAs
and the rest of phases were formed similar to the cases
without C [20–22].

In addition to the phase formation analyses, com-
bustion analysis was also done for all the samples to
determine the weight percentage of C that diffused into
the HEA samples. The results are shown in Figure 4(a).
The materials were prepared in graphite crucibles (under
the exact same conditions) allowing free diffusion of C
into the microstructures, however results showed dif-
ferent amounts of C in different samples. The amount
of diffused C decreased as the molar percentage of Al
increased. This shows that the diffusivity of C decreased
by increasing the amount of Al.

Increasing the amount of Al is expected to stabilize the
bcc structure [22]. Since the diffusion coefficient of C is
generally higher in the bcc phase than in the fcc due to its
lower packing density (68% in bcc, and 74% in fcc), the
amount of diffusedC is expected to increase by increasing
the amount of Al. However, our results showed a reverse
behavior. To explain this behavior, it should be noted that
C partitioned Cr and formed (Cr,Fe)23C6 phase because
the interstitial formation energies ofC inCr is lower com-
pare to other alloying elements [30]. Therefore, increas-
ing the molar fraction of Al, which means decreasing the
molar fraction of Cr, leads to a lower diffusion of C into
the HEAs. Molar fractions of Al and Cr were determined
to be 0.057 and 0.19, 0.23 and 0.15, and 0.36 and 0.13,
for x = 0.3, x = 1.5, and x = 2.8, respectively. The cal-
culated volume fraction of the (Cr,Fe)23C6 phase in the
HEAs (shown in Figure 4(a)) confirmed that the decreas-
ing the amount of Cr (by increasing the amount of Al)
resulted in a lower amount of diffused C. The volume
fractions were calculated by the analysis of the optical
micrographs using ImageJ. The phase characterization
results showed that the addition of enough C can entirely
partition Cr from the matrix. And even with the pres-
ence of the graphitizing elements (Co andNi), chromium
carbide could be formed if sufficient C is provided. In
addition to the (Cr,Fe)23C6 phase, graphite flakes were
also observed in the microstructures of AlxCoCrFeNiCu
HEAs. These graphite flakes had type A morphologies
which are the most common graphite morphology in
most iron-based alloys [31]. To analyze the amounts of
graphite flakes, five different 1mm× 1mm areas of each
sample were scanned under the optical microscope by
using ImageJ, the volume fractions of graphite flakes in
themicrographs were calculated. The results showed that
the volume fraction of these graphite flakes decreased
slightly as the Al content was increased: 11, 9, and 8 for
Al0.3, Al1.5, and Al2.8, respectively. This can be explained
by the fact that the solubility of graphite (C) decreased by
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Figure 4. (a) Weight percentage of C and volume fraction of (Cr,Fe)23C6 phase in the microstructures of AlxCoCrFeNiCu HEAs; the error
bars are standard deviations of three samples for each HEA. (b) Vickers microhardness of AlxCoCrFeNiCu HEAs; five different data points
were collected for each phase of each HEA, and the error bars show the standard deviations. (c)–(e) Optical micrographs of HEAs showing
the regions from which microhardness values were collected. Black needle shape microstructures in (c)–(e) are graphite flakes.

increasing the amount of Al in the alloying system [32].
These graphite flakes (black needle shape microstruc-
tures) can be seen in the micrographs of Figures 2
and 4.

Vickers microhardness of different phases of AlxCoCr
FeNiCu (x = 0.3, 1.5, 2.8) HEAs was measured to inves-
tigate the effects of the carbon on the hardness of these
HEAs and the results are illustrated in Figure 4(b). As it
can be seen, the hardness of the matrix phases increased
as the amount of Al increased. This trend and the hard-
ness values are consistent with the previous reported
results in the literature for AlxCoCrFeNiCu HEAs with-
out C [20,33]. In Al1.5CoCrFeNiCu, the hardness of the
matrix is the average of both dendritic and inter-dendritic
phases observed in Figure 4(d). The measured hardness
of the (Cr,Fe)23C6 phase showed almost equivalent values
in all three HEAs.

The overall microhardness of the HEAs was calcu-
lated by multiplying the microhardness of each phase
by its volume fraction (Figure 4(b)). The results showed
that the formation of the (Cr,Fe)23C6 phase enhanced
the overall hardness of the HEAs. Also, the overall hard-
ness of HEAs was increased by increasing the amount
of Al. Moreover, the overall Vickers microhardness of
AlxCoCrFeNiCu (x = 0.3, 1.5, 2.8) HEAs was measured
including all the phases with or without graphite flakes.
The results for all phases including graphite flakes were
365 VH, 428 VH, and 593 VH for Al0.3, Al1.5 and Al2.8,
respectively. And microhardness values for all phases

without graphite flakes were 545 VH, 650 VH, and 756
VH for Al0.3, Al1.5 and Al2.8. Since the graphite flakes are
softer than other phases in the alloys, the Vickers hard-
ness values were lower for cases including the graphite
flakes compared with those without them.

In summary, the effects of the addition of C on phase
formations in AlxCoCrFeNiCu (x = 0.3, 1.5, 2.8) HEAs
were studied. The experimental characterization results
showed that the free diffusion of C resulted in partition-
ing of entire Cr from the matrix and the formation of
the high hardness (Cr,Fe)23C6 phase in all the HEAs. The
formation of the (Cr,Fe)23C6 phase enhanced the overall
hardness of theHEAs. The rest of elements (Al, Co, Fe, Ni
and Cu) formed an fccmatrix phase in Al0.3CoCrFeNiCu
and a bcc matrix phase in Al2.8CoCrFeNiCu. The matrix
phase in Al1.5CoCrFeNiCu contained a Cu-rich inter-
dendritic fcc phase and a dendritic bcc phase. When
the amount of Al was increased, the Cr amount was
decreased; this resulted in lowering the amount of dif-
fused C in the matrix and volume fraction of the
(Cr,Fe)23C6 phase in HEAs. By increasing the amount
of Al, the hardness of matrix phases increased due to a
higher volume fraction of the bcc phase, and the overall
harness of HEAs increased.
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