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Evaluation of computational techniques for solving the Boltzmann transport equation for lattice
thermal conductivity calculations

Aleksandr Chernatynskiy* and Simon R. Phillpot
Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611, USA

�Received 7 June 2010; published 4 October 2010�

Three methods for computing thermal conductivity from lattice dynamics �the iterative method, the varia-
tional method, and the relaxation-time approximation� are compared for the prototypical case of solid argon.
The iterative method is found to produce results in close agreement with Green-Kubo molecular-dynamics
simulations, a formally correct method for computing thermal conductivity. The variational method and
relaxation-time approximation are found to underestimate the thermal conductivity. The relationship among the
methods is established; a combination of the iterative and variational methods is found to have a fastest
convergence. Formal convergence of the iterative method is demonstrated and a simple mixing rule is shown
to provide stability in practice. The ability to use these methods to provide detailed insight into the relationship
between phonon properties and thermal conductivity is demonstrated.

DOI: 10.1103/PhysRevB.82.134301 PACS number�s�: 44.05.�e, 63.20.kg

I. INTRODUCTION

Fast and reliable prediction of the thermal conductivity of
electrical insulators remains a challenge. The direct nonequi-
librium molecular-dynamics �MD� method and the equilib-
rium Green-Kubo �GK� approach both suffer from the long
simulation times and significant size effects.1 These make it
impossible to couple them to first-principles molecular-
dynamics methods while classical empirical and semiempir-
ical potentials may not display sufficiently high materials
fidelity. At the same time, the development of the perturba-
tion theory within density-functional theory allows the third-
order force-constant matrices to be determined without re-
sorting to the numerical differentiation.2 This has revitalized
interest in lattice dynamics methods to solve the Boltzmann
transport equations �BTE� for phonons. There are three ma-
jor approaches for the approximate solution of the �BTE�: the
relaxation-time approximation,3,4 the variational approach,5–8

and the iterative method.9,10 Each method has potential ad-
vantages and drawbacks. The main drawback of the
relaxation-time approximation is that it is not intrinsically
controlled, thus making it difficult to quantify errors in the
method, or to systematize improvements to it. In practice,
however, results from the relaxation-time approximation
compare very favorably with experiment. In the relaxation-
time approximation, one is not limited to lattice dynamics for
computing phonons relaxation times, which may also be cal-
culated by molecular-dynamics methods; thus the relaxation-
time approximation can account for the full anharmonicity of
the system. An important advantage of the variational ap-
proach is that, in contrast to the relaxation-time approxima-
tion, it is intrinsically a controlled approximation to the cor-
rect solution, always producing a lower bound for the
thermal conductivity. However, there are no systematic ap-
proaches for the development of high-quality variational
functions. Various variational functions were investigated by
Pettersson;8 the quality of these variation functions, and oth-
ers, will be assessed here. The iterative method is the most

recent technique.9 Its main advantage is that it enables
the numerical solution of the linearized Boltzmann equa-
tion without resort to any prescribed form of the solution,
as required by the relaxation-time approximation or var-
iational principle. Its main disadvantage is that it typi-
cally requires an order of magnitude longer computational
time.

In this paper, we compare the performance the three
approaches against each other, establish the connections
among different methods, and present technical details
of their implementations. A simple representative problem
is considered: the thermal conductivity of a solid argon,
a classic case investigated in a detail previously by
both lattice dynamics4,9 and various molecular-dynamics
techniques.4,11–15

The paper is organized in the following way. A brief de-
scription of the theory is presented in Sec. II; validation
of our implementations of the various methods is given
in Sec. III. The results obtained by the various methods
are compared with each other and with molecular-dynamics
results in Sec. IV. Section V contains our conclusions. A
more detailed description of BTE and solution methods is
presented in the Appendix A. Details of the application
of BTE to phonons are given in Appendix B while tech
nical details of our implementations are given in Appendix
C.

II. THEORY

In this section we briefly outline the various methods for
the calculation of the thermal conductivity from lattice dy-
namics. The appendices contain a full description of the
theory, including the technical details of the implementation.
The three methods that we discuss in this paper �variational,
iterative, and relaxation-time approximation methods� are
concerned with the solution of the canonical form of the
linearized BTE for phonons �see Eq. �A10��
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�T
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In this expression, the branch index n and the reciprocal
vector k� label phonon states, v�k�,n is the group velocity of the
phonon; fk�,n

0 is the equilibrium Bose-Einstein distribution; T
is the temperature; kb is a Boltzmann constant; �k�,n is the
unknown perturbation to the distribution function associated
with the steady-state, nonequilibrium conditions caused by
temperature gradient, �T; and � is the equilibrium transition
rates for a specific process. In this approximation, � includes
only three-phonon processes; such three-phonon processes
are well known to be the dominant process associated with
the intrinsic conductivity; however, four-body and higher
body processes can also contribute to the thermal conductiv-
ity. The appropriateness of this approximation and the mag-
nitude of the contributions from the higher order processes
are assessed in Sec. IV. We begin by briefly outlining the
three processes.

A. Iterative method

The iterative method starts from Eq. �1�. By rearranging
the terms, an iterative process is set up �see Appendix A�

F� k�,n
i+1 = F� k�,n

0 +
1

Qk�,n

 
 �

n�n�
��F� k��,n�

i − F� k��,n�
i ��k�,n;k��,n�

k��,n�

+
1

2
�F� k��,n�

i + F� k��,n�
i ��k�,n

k��,n�;k��,n��dk��dk�� i = 1,2,3. . . .

�2�

The iterative process is launched with an initial condition

F� k�,n
0 = −

fk�,n
0 �1 + fk�,n

0 �v�k�,n

TQk�,n
, F� k�,n

1 = 0. �3�

In this initial condition each mode behaves as if all other
modes are in equilibrium, which is equivalent to the
relaxation-time approximation discussed below. In these ex-
pressions, F� k�,n is a proxy for the distribution-function pertur-
bation

�k�,n = F� k�,n · �T . �4�

Physically, this representation is consistent with assumption
the linear-response theory underlying Fourier’s law. In Eq.
�3�, quantity Qk�,n is defined as

Qk�,n =
 
 �
n�n�

��k�,n;k��,n�
k��,n� +

1

2
�k�,n

k��,n�;k��,n��dk��dk��. �5�

As we will see shortly, Qk�,n is inversely proportional to the
single-mode relaxation time. The thermal conductivity is cal-
culated from Fourier’s law using the standard expression for
the heat current in terms of the distribution function �Eq.
�A19��

k = −
 �
n

��k�,n

fk�,n
0 �1 + fk�,n

0 �

kBT
v�k�,n � F� k�,n

i dk� . �6�

The iteration scheme is terminated once the difference be-
tween values of function F� k�,n on two consecutive steps is
below the specified accuracy level �alternatively, one can use
convergence in the thermal-conductivity values�. The steps
in the calculation using the iterative method are completely
deterministic. Convergence of the series can be established
since the iterative procedure can be viewed as an implemen-
tation of a steepest descent algorithm for the solution of the
set of linear equations. In particular, the matrix representing
this set of equations is positive definite and symmetric �as
shown in Appendices A and B�, thus satisfying all the nec-
essary conditions for convergence of the steepest descent al-
gorithm. The result of the iterative process is an estimate of
the thermal conductivity of the system, again within the ap-
proximation of three-phonon processes only. Higher order
phonon processes could be added; however, each additional
order would involve an additional integration over the Bril-
louin zone. While possible, in principle, addition of such
higher order terms pushes the limits of practicability since
the double integration associated with the cubic terms is al-
ready one of the computational bottlenecks in these methods.
The other bottleneck is the computation of the third-order
dynamical matrices.

B. Variational method

The variational principle for the Eq. �1�, see Appendices
A and B, asserts the existence of a functional, �k�,n, that
reaches its minimum for the perturbation, �, that is the exact
solution to the BTE. The thermal conductivity, in turn, can
be represented in terms of such a functional as
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The value of 1 /k, therefore, reaches its minimum for the �k�,n
that is the solution of the Eq. �1�; thus any estimate of k from
the variational method is a maximum, at least within the
three-phonon approximation. There are two possible ap-
proaches to calculating k from the variational approach. In
the first approach, one can pick a candidate form for �k�,n,
based on analysis or intuition, and then calculate the thermal
conductivity from Eq. �7�. In the second approach, �k�,n can
be represented as a linear combination of a chosen basis; Eq.
�7� is then minimized with respect to the coefficients of the
expansion. Both of these approaches will be analyzed below.

C. Relaxation-time method

The relaxation-time approximation assumes that for small
deviations from equilibrium, the rate at which the distribu-
tion function for each mode returns to equilibrium is propor-
tional to the deviation from equilibrium, with some relax-
ation time, regardless of whether other modes are in
equilibrium or not

− v�k�,n ·
� fk�,n

0

�T
� T =

fk�,n − fk�,n
0

�k�,n
. �8�

This approach encapsulates all the phonon-scattering physics
into the mode relaxation time �k�,n. Thus this method can be
viewed as a generalization of the classic kinetic-theory ap-
proach for thermal conductivity. The relaxation time, the in-
verse of the linewidth of the phonon state, can be determined
using many-body perturbation theory.4,16 Again using the ex-
pression for the heat current and Fourier’s law, the thermal
conductivity is then calculated as

k =
 �
n

���k�,n�2
fk�,n

0 �1 + fk�,n
0 �

kBT2 v�k�,n � v�k�,n�k�,ndk� . �9�

Interestingly, there is an intimate connection between itera-
tive method and relaxation-time approximation. Comparing
Eqs. �6� and �9� one can see that the relaxation time can be
formally defined in the iterative scheme as

Using the expression for the F� k�,n
0 from Eq. �3�, a little algebra

yields an expression for the relaxation time that is identical
to the one derived from many-body perturbation theory �Eq.
16 in Ref. 4�. Thus, the relaxation-time approximation is
formally identical to the first step in the iterative procedure.
Subsequent iterations give ever more precise solutions to the
BTE.

Computation of the integrals in Eq. �2� is generally
straightforward, with the only major difficulty being the han-

dling of the energy � function that enters transition rates �.
We choose to use the approach proposed by Pettersson;7 de-
tails of this computation are presented in Appendix C. In this
approach, the energy � function is taken into account analyti-
cally, thus reducing the inner integration from three-
dimensional to two-dimensional but changing the integration
domain from the first Brillouin zone to the “energy-
conservation” surface in the first Brillouin zone. The shape
and location of this energy-conservation surface are deter-
mined in following manner: for every kx, ky pair a scan of the
of the quantity 	�=�0
�1−�2 is performed along kz di-
rection. A change of sign in 	� indicates that the energy-
conservation surface has been crossed; the value of the inte-
grand is then carefully approximated at the crossing point.
For a more precise determination of the position of the en-
ergy surface, additional gridding along the kz direction is
added. This additional gridding does not have the effect of
increasing the density of the k-point mesh but only more
precisely determining the location of the energy-conservation
surface. Using these additional points helps resolve conver-
gence issues, as described in the next chapter.

III. COMPUTATIONAL SETUP AND VALIDATION OF THE
METHODS

In this section we validate our implementation of the cal-
culation of thermal conductivity from BTE, using solid argon
as a well-studied prototype. The solid phase of Ar has an fcc
lattice with the cubic unit cell consisting of four atoms. The
interatomic interactions are described by a standard Lennard-
Jones �LJ� potential

V = 4��� r0

r

12

− � r0

r

6� . �11�

There are a number of different parameterizations of the LJ
potentials for argon. In order to make a direct comparison
with previous work, we employ two different potentials. One
parameterization, which we denote Potential I, is from the
work of Omini and Sparavigna,9 and has �=0.009105 eV,
r0=3.445 Å; the interaction cutoff is 2.5a0, where a0
=5.326 Å is the equilibrium lattice constant. The cutoff is
implemented with a shifted-force function to ensure the con-
tinuity of energy and forces at the cutoff. We compare results
of our implementation of the iterative procedure with previ-
ous work9 using this potential. A second parameterization,
which we denote Potential II, is from Turney et al. and has
�=0.01042 eV and r0=3.40 Å; the shifted-force interaction
cutoff is 2.0a0, where a0=5.25 Å. For this potential the val-
ues of the thermal conductivity have been determined from
MD simulations.13 Also, relaxation–time-approximation re-
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sults are available for Potential II. We, therefore, use this
parameterization for comparison between different lattice dy-
namics methods, as well as for comparison with the MD
simulations.

Lattice dynamics calculations are traditionally supposed
to be performed at the zero-temperature equilibrium lattice
constant; however the results at temperatures above �Tm /3,
where Tm is the melting temperature are not accurate for any
calculations based on the finite order perturbation theory, as
was shown by Horton and Cowley.17 The quasiharmonic ap-
proximation is the standard vehicle to overcome this diffi-
culty, by treating force constants as dependent on the volume
of the unit cell. The thermal conductivity of argon is very
sensitive to the lattice constant;12 hence for comparison with
the previous work, identical simulation conditions must be
used: when Potential I is employed we use lattice constants
appropriate for a given temperature as obtained from
experiment;18 when Potential II is employed we use lattice
constants determined by MD simulation with the same
potential.13 We note that these Lennard-Jones potentials
overestimate thermal expansion of the argon.

We report results of the calculations for Potential I in
Table I. All these calculations used a k-point grid of 9�9
�9 with additional gridding along the z axis of ten k points
�see Appendix C�. We note that the results of this implemen-

tation of the iterative procedure �column 4� are in excellent
agreement with the previously reported data using this
method �column 3�. This agreement provides strong verifica-
tion not only for the iterative method but also for the imple-
mentations of the relaxation-time approximation and varia-
tional methods since all three methods share the same
subroutines for the computation of the scattering amplitudes,
the most complicated part of the calculation.

Given that we have thus established the correctness of
the implementation, we now address the saturation of the
results with regards to the k-point grid and convergence with
regards to number of iteration steps. The thermal conductiv-
ity for Potential I at T=20 K is used to investigate these
issues.

Determination of the density of k points required to give
converged results has two aspects. First, for a given N�N
�N grid, saturation of the result with additional refining k
points along the z direction needs to be established. Second,
saturation needs to be established as a function of N in the
N�N�N grid itself. The left panel in Fig. 1 shows the de-
pendence of the thermal conductivity on the number of
points in the refinement for the 9�9�9 and 13�13�13
integration grids. In both cases after ten additional points the
result is converged to within 2% of the fully converged
value. The right panel in Fig. 1 illustrates the necessity of
this refinement. The open squares show the inverse thermal
conductivity, 1 /k, as a function of 1 /N, but without addi-
tional refinement. This result demonstrates a linear trend,
similar to that observed by Turney et al.4 Such a linear trend
was attributed to the inclusion of phonons of increasing
wavelengths into the calculations with a denser k grid. How-
ever, the data with the additional refinement in the z direction
shows that this is a result of a poor description of the energy
conservation surface. Of course, a finer grid in all three
k-space directions would provide a more accurate determina-
tion of the energy surface, as well as better sampling of the
Brillouin zone, but is not practical because of the high com-
putational load. Hence we use additional k points along the
lines parallel to z axis as described above. Use of the grid
with the additional refinement along z axis yields the data
denoted by the solid circles in the right panel of Fig. 1. These
results saturate to within 5% of the converged values for an

TABLE I. Comparison of this implementation and literature val-
ues for thermal conductivity of solid argon using Omini and Spar-
avigna potential �Potential I�. The lattice parameters are taken from
experiment.

T
�K� 	a /a0

k iterative �Ref. 9�
�W/mK�

k iterative �this work�
�W/mK�

20 0.001279 1.66 1.67

30 0.003600 1.00 1.03

40 0.006884 0.72 0.73

50 0.010791 0.58 0.54

60 0.015352 0.41 0.40

70 0.020672 0.31 0.30

80 0.027010 0.24 0.22

0.8

1

1.2

1.4

1.6

1.8

0 5 10 15 20 25

k
(W

/m
K

)

Number of additional k-points

9x9x9
13x13x13

0.5

0.6

0.7

0.8

0.9

1

1.1

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

191715 13 11 9 7

1/
k

1/N

N

FIG. 1. Thermal conductivity as a function of the integration mesh parameters. Left panel: saturation of the result with the additional
gridding. Right panel: saturation with the integration grid with ��� and without ��� refinement.
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11�11�11 k mesh. By contrast, without refinement the
thermal conductivity estimated with an 11�11�11 k grid is
only 60% of the converged value. Calculations on a wide
variety of systems show that the underestimate of the thermal
conductivity without z-axis refinement of the k mesh is
endemic.19

We turn now to the number of iteration steps used in the
iterative method. As discussed in Appendix A, the iterative
technique is mathematically equivalent to the steepest de-
scent algorithm for the solution of the system of linear equa-

tions. As such, the procedure is inherently convergent since
the matrix of coefficients of these linear equations is positive
definite and symmetric. Previous work however,9 found that
coarse k-mesh solutions might become unstable, an effect
that we also observe. We attribute this behavior to deviations
from the symmetry of the matrix caused by numeric errors
associated with the accounting of the different types of the
phonon processes. We find that by treating the iterative pro-
cess as a self-consistency problem and applying very simple
mixing rule, this problem can be eliminated

F� k�,n
i+1 =

1

2
F� k�,n

i +
1

2�F� k�,n
0 +

1

Qk�,n

 
 �

n�n�
��F� k��,n�

i − F� k��,n�
i ��k�,n;k��,n�

k��,n� +
1

2
�F� k��,n�

i + F� k��,n�
i ��k�,n

k��,n�;k��,n��dk��dk��	 . �12�

Examples of the convergence of the solution for the 7�7
�7 k meshes at 20 K are presented in Fig. 2. The left panel
shows the thermal conductivity as a function of the number
of iteration steps with and without mixing. Clearly, mixing
completely eliminates oscillations in the result. For compari-
son, we also present in the right panel of the Fig. 2, the
thermal conductivity as calculated by the variational formula
�Eq. �7�� with the F� k�,n

i as a variational function. We first note
that without mixing, the solution shows a sharp decline in the
thermal-conductivity value �indicating a strong decrease in
the quality of the variational function� after the sixth step in
the iteration process. It also indicates that the variational for-
mula is significantly more sensitive to the numerical instabil-
ity than Eq. �6�. In contrast, mixed F� k�,n

i produces a stable
solution. Interestingly, the thermal conductivity computed
from Eq. �7� converges to the final value in just 3–4 steps,
comparing to 10–15 steps required by the iterative formula
�Eq. �6��.

IV. COMPARISON OF LATTICE DYNAMIC METHODS

The results presented in this paper are all obtained by
lattice dynamics methods and include only the three-phonon

processes. To assess the appropriateness of this underlying
assumption, it is necessary to have fiducial data �correct re-
sults� against which to compare these data. For a given po-
tential we take the results obtained from molecular-dynamics
simulations: either nonequilibrium molecular dynamics or
Green-Kubo techniques. If the simulation temperature is
high enough that the difference between quantum and clas-
sical phonon occupation numbers are not important, these
classical methods should yield correct results. Although solid
argon is not in the classical regime below �50–60 K, it has
been demonstrated4 that 20 K is a sufficiently high tempera-
ture. However, it is important to remember that there are
subtleties in the use of these methods also.1 Moreover, these
simulation techniques, while formally correct at high tem-
perature, typically have fairly large error bars associated with
them �10–15 % error is reported in Ref. 12 for Green-Kubo
MD� and are very sensitive to such simulation details as the
interaction cutoff. For example, different Green-Kubo MD
simulations of the thermal conductivity of argon at 20 K, all
using the same potential, but different cutoffs, and hence
slightly different volumes, have yielded values of 0.90,14

1.1,12 1.2,4 1.57,13 and 1.63 �Ref. 15� W/mK. At the same
time, direct MD result from Turney et al.4 yielded 1.4
W/mK. With such scattered data, it is not obvious what

1.2

1.3

1.4

1.5

1.6

1.7

1.8

0 5 10 15 20 25 30

k
(W

/m
K

)

Iteration step

Iterative

No mixing
With mixing

1.2

1.3

1.4

1.5

1.6

1.7

1.8

0 5 10 15 20 25 30

k
(W

/m
K

)

Iteration step

Variational

No mixing
With mixing

FIG. 2. Convergence of the iterative solution for 7�7�7 k mesh at 20 K. Left panel shows the values of thermal conductivity as
computed from Eq. �6� with and without mixing. Right panel shows thermal conductivity computed by variational formula �Eq. �7��, using
perturbation from the iterative process. Notice, that with mixing it converges in 3–4 steps, compare to 10–12 step in iteration formula.
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is the best fiducial data to use. Our choice is to reproduce
the conditions for the calculations reported in Ref. 13
exactly: all parameters for Potential II �cutoff, energy,
and length scale� and unit-cell volumes are taken from
there.

Table II presents the results of simulations of the thermal
conductivity by the Green-Kubo method13 �column 3�, and
the values obtained in this work with the iterative method
�column 4�, variational method �column 5—with perturba-
tion function obtained by iterative method, and column 6
with generic perturbation functions, see below�, and the re-
laxation time approximation �Column 7�. Column 8 contains
the results of previous calculations using the relaxation time
approximation by Turney et al.

First, comparing the full iterative solution to Green-Kubo
molecular-dynamics results,13 we see good overall agree-
ment. While the two methods yield somewhat different val-
ues, there is no systematic deviation: some are larger in MD,
others are larger in lattice dynamics. We ascribe these differ-
ences to numerical errors. Since the MD simulations also
include processes of more than three phonons, we conclude
that in the case of solid argon, three-phonon processes are
sufficient to represent the thermal-transport properties.
Omini and Sparavigna9 reached the same conclusion on the
basis of the agreement with the experimental data for solid
argon while Turney et al. reached the opposite conclusion
based on the relaxation time approximation results; we dis-
cuss this issue further below.

Second, the variational technique provides essentially the
same results as iterative method if a converged F� k�,n

i is used as
a trial function. This is expected, since Eqs. �6� and �7� are
equivalent, when F� k�,n

i is the solution of the BTE. Actually,

we observed that even a nonfully converged F� k�,n
i is a very

good choice of trial function since even the first iteration
produces an estimate of the thermal conductivity within 10%
of the converged value �see Fig. 2�.

We have assessed the capabilities of ten “standard”
choices for the trial functions;8 these include trial functions
based on the k vector, the group velocity, and their products
with various powers of the phonon frequency

F� k�,n = k� · �k�,n
i , i = − 2,− 1,0,1,2,

F� k�,n = v�k�,n · �k�,n
j , j = − 2,− 1,0,1,2. �13�

The first of these functions is motivated by the fact that it
produces correct, infinite thermal conductivity if only normal
processes are taken into account. However, it has the short-
coming that there are always modes that produce heat flow
along the thermal gradient direction, thereby reducing the
calculated thermal conductivity. The group-velocity trial
function is an attempt to correct that issue since it guarantees
that each mode transfers heat against temperature gradient.

None of these functions individually produces converged
values of thermal conductivity closer than 75% of the itera-
tive result. The standard choice of the k vector as a trial
function turns out to be a poor choice, the thermal conduc-
tivity being two orders of magnitude smaller than the full
solution, indicating the �well-known� importance of the Um-
klapp processes. Of the standard variational functions, the
best function is the group velocity of the phonons: F� k�,n
=v�k�,n; this typically generates value of thermal conductivity
of about 75% of the iterative result.

Given that none of the variational functions matches the
correct results alone, it is interesting to explore the effects of
linear combination. A linear combination of functions in Eq.
�13� when optimized can typically produce values for the
thermal conductivity in excess of 90% of the full solution, as
indicated in column 6 of Table II. In principle, of course, one
is not limited to these 10 functions at all. One can use any set
of “basis” functions in the three-dimensional k space to de-
scribe the trial function. We built such a basis from the
Chebyshev polynomials �assuming temperature gradient is in
z direction�

Fk�,n
z = Tp�vk�,n

x /vmax
x �Tq�vk�,n

y /vmax
y �Tl�vk�,n

z /vmax
z � ,

l = 1,3,5,7,9, p,q = 0,2,4,6,8. �14�

The specific appropriate choice of p, q, and l values is related
to the symmetry properties of the perturbation function: it
has to be odd along the temperature gradient direction and

TABLE II. Thermal conductivity of solid argon by Turney et al. potential.

T
�K� 	a /a0

k GK-MD
�Ref. 13�
�W/mK�

k iterative
�W/mK�

k variational
�function from iterative�

�W/mK�

k variational
�functions set from Eq. �12��

�W/mK�
k relaxation time

�W/mK�

k relaxation time
�Ref. 4�
�W/mK�

20 0.00939 1.57 1.66 1.66 1.50 1.48 1.50

30 0.01384 0.90 0.87 0.87 0.81 0.79 0.93

40 0.01868 0.57 0.60 0.60 0.53 0.53 0.66

50 0.02408 0.42 0.43 0.43 0.39 0.38 0.51

60 0.03028 0.33 0.31 0.31 0.27 0.27 0.40

70 0.03733 0.24 0.26 0.26 0.22 0.23 0.32

80 0.04602 0.22 0.19 0.19 0.16 0.17 0.27
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even in any direction perpendicular to it. The choice of
Chebyshev polynomials is dictated by their numerical con-
venience and their excellent convergence properties �group
velocities are normalized to maximum value in order to en-
sure argument range of �−1,1�, the interval of interest for
Chebyshev polynomials�. Figure 3 presents the thermal con-
ductivity at 20 K as predicted by the variational method ver-
sus the number of basis functions in Eq. �14� used in the
expansion. The calculated thermal conductivity converges
slowly; for the largest number of basis functions we looked
at, 55, the result is 1.57 W/mK, about 95% of the true value.
Hence the variational method can be a viable alternative to
other methods. Its applicability to other systems requires ad-
ditional investigation.

Third, the relaxation time approximation �column 7�
slightly underestimates the thermal conductivity, a result also
reported previously for argon and other systems.9,10 How-
ever, this behavior is not universal, and we have observed
that in some other materials, the relaxation-time approxima-
tion produces results virtually identical with the full
solution;19 we have also found materials for which the
relaxation-time approximation overestimates the correct
value.19 This is a direct consequence of the relaxation-time
approximation being an intrinsically uncontrolled approxi-
mation: in contrast to the variational method the direction of
the error is undetermined.

Comparing our results using the relaxation-time approxi-
mation with previously published data,4 we observe that our
implementation consistently produces lower values of the
thermal conductivity, especially at high temperature. We at-
tribute this to two factors. First, we use a different method
for treating the � function describing the conservation of
energy in the three-phonons processes. Turney et al. used a
Lorentzian representation with variable width, the latter be-
ing controlled by the half-width of the phonons states 
�

���� + ��� − ���� =
1

�

�

��� + ��� − ����
2 + �2 ,

� = 
� + 
�� + 
��. �15�

As the temperature increases, this broadening increases as
well, resulting in a wider and lower peak for the � function

representation; a self-consistent procedure is used for the
phonon states half-width 
� Ideally, the result of the numeri-
cal integration over the representation of the � function in
Eq. �15� should not depend on the broadening parameter: a
wider peak will add a contribution from the neighboring in-
tegration points, offsetting the lowering of the peak. How-
ever if the relatively coarse k-point mesh is used for the
integration �we found that even 20�20�20 is still too
coarse� then these neighboring points are too far away to
make a contribution. As a result this method can lead to an
underestimate of equilibrium transition rates and phonon
half-widths, resulting in an overestimate in the thermal con-
ductivity, especially at high temperature. To avoid this effect,
our calculations do not use an approximation for the � func-
tion but integrate explicitly over the “energy conservation”
surface �see above and Appendix C for a complete descrip-
tion�. Second, only nearest neighbors are taken into account
for the anharmonic calculations in Turney et al., an assump-
tion that usually leads to an overestimate of the thermal con-
ductivity in lattice dynamics9 �Also, different equilibrium
volumes were used in Ref. 4� Our results therefore, do not
support the notion that lattice dynamics methods intrinsically
overestimate the thermal conductivity at high temperature, as
was suggested by Turney et al., at least for solid argon.

Comparing the various methods, we observe that the it-
erative method produces reliable and consistent results. The
variational method and relaxation-time approximation gener-
ally produces thermal conductivity within 25% of the true
value. The advantage of the variational method relative to the
relaxation-time approximation is the fact that it is guaranteed
to produce a lower bound for the three-phonon contribution
to thermal conductivity while the relaxation time approxima-
tion can have an error in either direction. A disadvantage of
the variational method is that a single set of calculations
produces only one component of the thermal conductivity
tensor.

Concluding the comparison of the different methods for
calculating thermal conductivity, we address the issue of the
computational load. We recall that the integration of the k
vectors over the Brillouin zone �see Eq. �5�� is the bottleneck
in the calculations. The relaxation-time approximation and
the variational method with “generic” trial functions require
only one double integration over the Brillouin zone. How-
ever, these result in errors in the thermal conductivity of 25%
and 10%, respectively. The variational method with F� k�,n

i as a
trial function requires at least two iterations �i.e., takes ap-
proximately twice as long�, for which the error is reduced to
about 10%; 3–4 iterations produces full convergence. The
iterative method requires 10–15 steps for achieving conver-
gence. Thus from a computational point of view, the iterative
procedure with a variational formula for thermal conductiv-
ity produces the highest fidelity results with the fewest num-
ber of calculations.

Solution of the BTE by these methods also allows the
calculation of a number of other characteristics of the sys-
tem, including individual phonon relaxation times, and con-
tributions to the thermal conductivity as a function of phonon
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FIG. 3. Thermal conductivity by variational method as a func-
tion of the size of the basis set.
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energy or momentum. Detailed insights into phonon-phonon
scattering can also be obtained, as illustrated in Fig. 4; all the
data is for temperature of 20 K. The top panel shows average
phonon lifetimes; the middle panel shows the contribution to
the thermal conductivity from the phonons of each fre-
quency. These spectral contributions are presented from the
relaxation-time approximation �dashed curve� and the full
iterative solution �solid curve�. This shows that the larger
values of the thermal conductivity by the iterative method
compared to the relaxation-time approximation are produced
by the increased contributions from the phonons with fre-
quencies in the 0.5–1.5 THz range. Comparison of the top
and middle panel also demonstrates that while low-energy
phonons �below 0.2 THz� are the longest living phonons,
they produce relatively small contribution to the thermal
conductivity due to the limited number of available states
and small amount of energy that they can carry. The bottom
panel of Fig. 4 shows a map of the scattering amplitudes for
phonons: the darker the color, the larger the cumulative am-
plitude of the processes that involves phonons with the fre-
quencies on the horizontal and vertical axes. This combined
map shows processes with both �0+�1=�2 and �0=�1
+�2, with �0 along the horizontal axis and �1 and �2 along
the vertical axis. This map has three distinct areas. Areas 1
and 2 represent the amplitude of the process of two phonons
scattering to one. Area 3 contains the process of one phonon
scattering into two phonons. Clearly, the dominant process

�the brightest spots on the map� involves phonons with high
frequency �1.6–1.8 THz� splitting into two phonons, with the
lower frequency 0.8–0.9 THz, and the reverse process. This
strong scattering of the high-frequency phonons creates an
excess of phonons in the midfrequency range �0.5–1.5 THz�;
that is, their distribution most strongly deviates from the
equilibrium, making them the major heat carriers. Due to the
large number of three-phonon processes they can participate
in, the distribution of high-frequency phonons rapidly returns
to the equilibrium value. Therefore, they do not make a sig-
nificant contribution to the thermal conductivity.

V. CONCLUSIONS

In conclusion, we have presented a direct comparison of
three different methods for computing the thermal conduc-
tivity from the solution of the Boltzmann transport equation.
All the necessary mathematical apparatus has been pre-
sented, as well as technical details of the implementation.
The iterative method predicts thermal conductivity in close
agreement with MD data while the variational method and
relaxation time approximation underestimate it by �10%
and �25% correspondingly. The other findings of this paper
are the following: �a� additional gridding for more precise
determination of the integration surface is a reliable and con-
sistent method to ensure rapid convergence of the computed
value of thermal conductivity with respect to k-point mesh.
�b� The iterative method is inherently convergent, as has
been observed in practice. �c� A simple mixing rule is a re-
liable way to achieve stability of the iterative process even
for the coarse k-point grids. �d� The combination of the it-
erative technique for computing consecutive approximations
to the solution to the BTE �Eq. �2�� and variational formula
�Eq. �7�� to compute thermal conductivity from these ap-
proximations is the fastest way to reach convergent values
for the thermal conductivity on the example of the solid ar-
gon. �e� These methods allow the connections between ther-
mal conductivity and phonon properties to be determined.

Finally, this paper demonstrates that at least in simple
solids, cubic term in the energy expansion suffice to deter-
mine thermal conductivity over a wide temperature range.
This might not be the case for ionic materials that have a
large variety of complicated atomic structures. Additional
difficulty in the ionic materials is a long-range electrostatic
interactions, influence of which requires additional investiga-
tions.
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APPENDIX A: BTE AND SOLUTION METHODS

1. Linearized Boltzmann equation

Although long established �see, for example Refs. 3 and
5�, it is useful to rehearse the analysis of the linear BTE as it
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FIG. 4. �Color online� Top panel: averaged phonon lifetimes as
a function of frequency. Middle panel: contribution to the thermal
conductivity from the phonons with a given frequency �solid line—
full solution, dashed line—relaxation-time approximation�. Bottom
panel: map of the cumulative scattering amplitude.
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helps establish the nomenclature to be used throughout these
appendices. The probability density distribution function,
f��r��, describes the probability of finding a particle in some
state labeled by � in the region around point r� in space. The
value of f��r�� can change for a number of reasons: �i� if the
distribution function has a nonzero gradient, then the number
of particles in the region will change with a rate proportional
to the gradient and to the velocity v� of the particles �diffu-
sive, or entropic term�; �ii� if there are external forces acting
on the system, the particles will move; and �iii� particles may
interact with each other �variously called the interaction
term, the scattering term or the collision integral�. In equilib-
rium �or under steady-state conditions� the value of the dis-
tribution function should be constant at any point; hence the
rate of change in the probability distribution arising from all
three terms must be zero

ḟ��r�� = ḟ��r��dif f + ḟ��r��ext + ḟ��r��scatt = 0. �A1�

The diffusive term can be understood in the frame of refer-
ence that moves with the particle. If at time zero it was
f��r��, it becomes f��r�+v�t� at a later time t due to particle
motion

ḟ��r��dif f = − v�� ·
� f��r��

�r�
. �A2�

The external force term, ḟ��r��ext, depends on the type of par-
ticles considered. For example, electrons can be subject to a
force arising from an electric or magnetic field. As we are
interested in phonons, this external force term can be taken
to be zero. Finally, the scattering term describes the effect of
interaction either among particles or between particles and
imperfections in the lattice. This term has the effect of
changing the state of the particle. We split this term into
probabilities, P, from events when a single phonon change
its state, P���, such as scattering from lattice defects; three
phonon process, P����� and high order terms such as
electron-electron collisions and fourth-order in phonon-
phonon interactions, P�������

− ḟ��r��scatt = �
��

P��� + �
����

P����� + �
������

P������� + ¯ .

�A3�

The net probability for each individual process is the differ-
ence between processes in which particles leaves state � and
the inverse processes in which particles enter state �; hence
for the first term in the Eq. �A3� we have

P��� = f��1 
 f���L�
�� − �1 
 f��f��L��

� . �A4�

In this expression we also separate the occupation numbers
of the initial and final state. The quantity L is called the
intrinsic probability of the transition. The plus �minus� signs
in the brackets correspond to the case of bosons �fermions�.
For fermions, transitions are prohibited if there are no par-
ticles in the initial state, or if the final state is occupied,

reflecting the Pauli principle. For bosons there is no restric-
tion on the number of particles in the final state. In fact, the
transition probability is enhanced if there is particle present
in the final state: this is known as a stimulated emission
phenomenon. Mathematically, this stimulated emission
comes from the normalization conditions for the matrix ele-
ment of the creation and annihilation operators in the case of
bosons, as will be illustrated below.

In a similar manner, the three-particle probability can be
written as

P����� = f�f���1 
 f���L���
�� − �1 
 f���1 
 f���f��L��

���

+
1

2
�f��1 
 f����1 
 f���L�

����

− �1 
 f��f��f��L����
� � . �A5�

The factor of one-half in front of final two terms is for when
a particle in state � is produced as a result of interaction of
two particles in states �� and ��, for which interchange of ��
and �� represents the same process. Corresponding expres-
sions can be written for the four particles processes.

A phonon in an infinite, periodic solid is described by two
variables: the reciprocal lattice vector, k�, and a phonon-
branch index n. As a result, summations over all the states in
the above equations involve integration over the Brillouin
zone and summation over the branch index. Thus the BTE is
a nonlinear integrodifferential equation that is essentially im-
possible to solve analytically. The first simplification step is
to linearize the BTE using the following ansatz:

f� = f�
0 − ��

� f�
0

�E�

, �A6�

where f�
0 is the equilibrium Bose-Einstein distribution func-

tion hence the derivative is easily calculated. E� is the energy
of the state �, and �� is the perturbation in the distribution
function, which is assumed small. One further assumes that
local equilibrium is maintained at each point in space, r�, but
that the temperature might change from point to point. This
implies that �� depends on position r� only through tempera-
ture. As a result, the diffusive term can be written as

− v�� ·
� f��r��

�r�
� − v�� ·

� f�
0

�T
� T . �A7�

Substituting the ansatz from Eq. �A6�, into the expression for
the probability P, and keeping terms to first order in �� we
obtain

P��� =
1

kT
��� − ����f�

0�1 
 f��
0 �Ln

n� =
1

kBT
��� − ������

��,

�A8�

where we used the fact that by the principle of the detailed

balance L�
��=L��

� . The 1 /kbT prefactor arises from the deriva-
tive of the equilibrium distribution function. A similar ex-
pression can be derived for the three-particle term
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P����� =
1

kBT
���� + ��� − ����f�

0 f��
0 �1 
 f��

0 �L���
�� � +

1

kBT
�1

2
��� − ��� − ����f�

0�1 
 f��
0 ��1 
 f��

0 �L�
����	

=
1

kBT
���� + ��� − ��������

�� +
1

2
��� − ��� − ������

����	 �A9�

� is the equilibrium transition rate between the states defined by its subscripts and superscripts, defined as the number of
transitions per unit of time if the system is in thermodynamic equilibrium. In all these expressions we also use the fact that in
thermodynamic equilibrium �f�= f�

0� the scattering term vanishes. Higher order terms are similar. Collecting all these together,
we obtain the following linearized BTE �sometimes also called canonical form of BTE�

− v�� ·
� f�

0

�T
� T =

1

kBT��
��

��� − ������
�� + �

����
���� + ��� − ��������

�� +
1

2
��� − ��� − ������

����� + ¯	 . �A10�

This equation is fairly general and applicable to either elec-
trons or phonons in the solids �by selecting appropriate pro-
cesses that is possible for the particular particles�. All the
details of the interactions among particles are encapsulated
in the parameters �; the exact form of these parameters does
not affect the solution methods that we discuss in the next
session.

2. Solution methods

There are a variety of solution methods for analyzing the
BTE. In particular, in the case of electrons �electrical con-
ductivity is a transport property� there is a vast literature20

that discusses methods ranging from Monte Carlo methods
to linear algebra and path integral techniques. Application of
these methods is possible due to the fact that usually only

two-particles events need be taken into account: three elec-
tron events are impossible and four electron events are very
rare. As a result, only a single integration over the Brillouin
zone is required. For the case of phonons, three-particle in-
teractions are present and are the dominant contribution to
the intrinsic thermal conductivity of materials. In this section
we discuss in details three methods for analyzing the BTE
with three-phonon processes and determining the thermal
conductivity: an iterative approach,9 a variational method,5

and a relaxation-time approximation.4

3. Iterative solution

From the conceptual perspective, the iterative approach is
�deceptively� simple. Let us start by writing the BTE for
three-phonon processes only, where from Eq. �A10�, we have
calculated the derivative on the left-hand side

−
E�

kBT2 f�
0�1 + f�

0�v�� · �T =
1

kBT� �
����

���� + ��� − ��������
�� +

1

2
��� − ��� − ������

�����	 . �A11�

We proceed by representing the perturbation to the distribution function as

�� = F� � · �T . �A12�

Substituting into Eq. �A11�, we obtain

� f�
0�1 + f�

0�E�v�� − T �
����

��F� � + F� �� − F� �������
�� +

1

2
�F� � − F� �� − F� �����

�����	 · �T = 0. �A13�

Equating the contents of the curly brackets to zero and pulling F� � from under summation sign we get

f�
0�1 + f�

0�v��E� − T �
����

��F� �� − F� �������
�� +

1

2
�− F� �� − F� �����

����� = TF� � �
����

�����
�� +

1

2
��

����� . �A14�

Introducing the new variable

Q� = �
����

�����
�� +

1

2
��

����� �A15�

and rearranging the terms yields the self-consistency equation
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F� � = −
f�

0�1 + f�
0�v��E�

TQ�

+
1

Q�
�
����

��F� �� − F� �������
�� +

1

2
�F� �� + F� �����

����� . �A16�

Numerical solutions to this equation can be found by iteration

F� �
i+1 = F� �

0 +
1

Q�
�
����

��F� ��
i − F� ��

i �����
�� +

1

2
�F� ��

i + F� ��
i ���

�����, i = 1,2,3, . . . . �A17�

With the initial condition

F� �
0 = −

f�
0�1 + f�

0�v��E�

TQ�

, F� �
1 = 0. �A18�

Once F� �
i+1=F� �

i within some tolerance for all �, the solutions
are self-consistent, and the iterative process is terminated.

The thermal conductivity may then be calculated by using
Fourier’s law U�=−k����T and an expression for the heat
current U� in terms of the distribution function

U� = �
�

E�v��f� = �
�

E�v��� f�
0 −

� f�
0

�E�

��

= �

�

E�v��

f�
0�1 + f�

0�
kBT

F� � · �T = �
�

E�v��

f�
0�1 + f�

0�
kBT

F� � · �T ,

�A19�

where the first term in the brackets disappears since there is
no heat current in the thermal equilibrium. This produces the
following expression for the thermal conductivity tensor:

k̄ = − �
�

E�

f�
0�1 + f�

0�
kBT

v�� � F� �
i . �A20�

The last issue to be addressed is the convergence of the pro-
cedure. Equation �A17� can be viewed as a set of linear
equations

A���F�� = b�,

A��� = ���� +
1

Q�
�
��

�− ����
�� + ����

�� −
1

2
��

���� −
1

2
���

���
 ,

b� = −
f�

0�1 + f�
0�v��E�

TQ�

. �A21�

Rewriting them in this way makes it clear that the iterative
procedure is nothing but a simple implementation of the con-
jugate gradient method that is guaranteed to converge, if the
matrix A��� is symmetric and positive definite.21 Using the
properties of the equilibrium transitions rates, �, see Eq.
�B11�, one can easily show the symmetry; positive-
definiteness is explicitly demonstrated in Eq. �B12� for the
operator representing BTE. While, in principle, in the worst
case scenario convergence requires a number of steps equal
to the dimension of the matrix A���, in practice satisfactory
convergence for thermal conductivity occurs in as few as ten

iterations. A nice feature of this approach is that one obtains
complete thermal conductivity tensor from one set of calcu-
lations.

4. Variational solution

The linearized BTE in its canonical form, Eq. �A10�, can
be viewed as X= P�, where P is a linear operator. This equa-
tion may be analyzed using variational methods if the opera-
tor P obeys appropriate conditions on symmetry and positive
definiteness5,22

��,P�� = ��,P�� ,

��,P�� � 0, for any � , �A22�

where � . . . � represent the scalar product between two func-
tions; the function �� is a function of the state �, hence
��� ,���=������. As we will see in the following, the P
operator that represents phonons interactions obeys proper-
ties of Eq. �A22�. Multiplying the BTE by � on both sides of
the equation, we obtain

��,X� = ��,P�� . �A23�

The variational principle then states that the function �,
which is the exact solution to BTE, maximizes the value of
�� , P��. This can be proven by considering another function
�, that satisfies �� ,X�= �� , P��, but not a solution to BTE
itself. Then

0 � ��� − ��,P�� − ��� = ��,P�� + ��,P�� − 2��,P��

= ��,P�� + ��,P�� − 2��,X� = ��,P�� + ��,P��

− 2��,P�� = ��,P�� − ��,P�� . �A24�

In this derivation we have used positive definiteness and lin-
earity of P and the fact that � obeys the BTE. A more con-
venient form of the variational principle for practical appli-
cations �including calculating the thermal conductivity� is

��,P��
��,X�2 = min. �A25�

In order to see why, consider the left-hand side of the BTE,
multiplied by �
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− ���,v�� ·
� f�

0

�T
� T� =

�T

T
· �

�

��v��E�

� f�
0

�E�

= −
U�

kT
· �

�

��v��E�

� f�
0

�E�

=
1

kT���

��v��E�

� f�
0

�E�

2

=
T

k���

��v��

� f�
0

�T 
2

=
T

k���

��v��

� f�
0

�T 
2

=
T

k
��,X�2��T=1,

�A26�

where we have again used the fact that heat current is zero in
equilibrium. Collecting all the terms together, we see that
inverse of thermal conductivity k reaches its minimum value,
when � is the solution of the BTE �in the unity temperature
gradient�

1

k
=

1

T
min

��,P��
��,X�2��T=1

. �A27�

From this point, the calculation of thermal conductivity pro-
ceeds in the standard manner for variational methods. Linear
combination of known trial functions �i are chosen: �
=�ici�i; variational integrals Pij = ��i , P� j� and Xi= ��i ,X�
are evaluated. The set of coefficients ci that minimizes the
variational function yields the best approximation �for these
trial functions� for the inverse of thermal conductivity. This
set might be found by solving Pijcj =Xi. In order to see that
this is equivalent to the minimum of the variation function
we minimize it �Eq. �A27�� with respect to coefficient ck and
use Pijcicj =Xici.

5. Relaxation-time approximation

Finally, let us discuss the relaxation time approximation.
In this method, the scattering integral in the initial Boltz-
mann equation is approximated as

− ḟ��r��scatt =
f� − f�

0

��

�A28�

effectively absorbing all the interactions details for each
mode into a single state-dependent relaxation time, ��. From
the perspective of many-body theory, a small perturbation to
the Hamiltonian can be seen as producing two effects: shift-
ing the eigenvalues of the unperturbed Hamiltonian and pro-
viding a finite lifetime to these states. The finite lifetime is
usually described by the linewidth of a state in the presence
of the perturbation. Detailed analysis of the many-body per-
turbation theory for phonons was performed by Maradudin
and Fein,16 who derived the following expression for the
linewidth, also used by:4


� =
��

16N
�
����

�
������
2��f��

0 + f��
0 + 1����E� − E�� − E����

+ �f��
0 − f��

0 ����E� + E�� − E��� − ��E� − E�� + E�����

�A29�

here, 
����� is a Fourier transform of the cubic term in the
expansion of the total energy �see Appendix B�. The relax-
ation time is then inversely proportional to the linewidth

�� =
1

2
�

. �A30�

Using Eqs. �A1�, �A7�, and �A28�, we obtain for the devia-
tion of the distribution function

f� − f�
0 = v�� ·

� f�
0

�T
� T��. �A31�

Substituting this into the expression for the heat current, Eq.
�A19�, and applying Fourier’s law we obtain the expression
for thermal conductivity tensor

k̄ = �
�

E�
2 f�

0�1 + f�
0�

kBT2 v�� � v����. �A32�

By introducing mode heat capacity this transforms into well-
known expression �omitting the state indexes�

k̄ij = �
�

Cvviv j� . �A33�

A connection can be established between the relaxation-time
approximation and the iterative technique described earlier.
A little algebra shows that the thermal conductivity from Eq.
�A32� is identical to the thermal conductivity obtained from
the first iteration step of Eqs. �A17� and �A20�. That is, the
first step of the iterative procedure yields the relaxation-time-
approximation result.

APPENDIX B: APPLICATION TO PHONONS

1. Harmonic approximation

In this section we discuss the application of transport
theory to the case of phonons in infinite solids. We start by
recalling the BTE from Eq. �A10�

− v�� ·
� f�

0

�T
� T =

1

kBT
�
����

���� + ��� − ��������
��

+
1

2
��� − ��� − ������

����� . �B1�

Here the parameters that need to be calculated are the equi-
librium transition rates �. From the standard harmonic ap-
proximation, phonon frequencies and eigenvectors are deter-
mined by the eigenvalue equation

�
J

�MI
−1/2MJ

−1/2ĀIJ;k� − �k�;n
2

�IJ�e�J;k�;n = 0, �B2�

where the dynamical matrix A is defined as
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ĀIJ;k� = �
l
� �2E

�R� I;0 � R� J;l
�

R� I;0
0 ,R� J;l

0

e−ik�R� l. �B3�

In this expression symbols I ,J , . . . represent atomic indices
within the elementary cell of the crystal �I=1, . . . ,N, where
N is the number of atoms in the elementary cell�, while
l , l� , . . . run over all the cells in the system, and a summation
over all repeated indices is implicit. R� I;l

0 represents the equi-
librium positions of the atoms.

Limiting ourselves to the quadratic terms in the energy
expression, we arrive at the picture of the ideal gas of
bosons, i.e., the noninteracting phonons in the solid. Natu-
rally, a solid of this type would have an infinite thermal
conductivity since phonons would propagate and carry en-
ergy without any interruption. The cubic and higher terms
introduce interactions among phonon states �which is the
same as to say that phonons are no longer eigenstates of the
system�, leading to the final intrinsic thermal conductivity of
the solids. Indeed, if these higher order terms are sufficiently
large, the harmonic approximation becomes much less use-
ful; in particular, the concepts of the wavevector and polar-
ization begin to lose their meanings. This is the situation in

amorphous materials23 and strongly chemically disordered
materials. However, for most crystalline systems, the influ-
ence of the higher order terms in the energy expansion might
be described in terms of modifications of the phonons states.
Rather than being represented as a � function in the density
of states, each phonon now represented by a peak of the
finite width at some shifted frequency. Higher order terms in
the energy expansion contribute to these frequency shifts and
phonon widths. Formal expansion is in powers of the ratio of
mean-square displacement to the interatomic distance:17 	
=��	x2� /R. The leading term for the frequency shifts con-
tain contributions from the square of the cubic term and the
fourth-order term in the energy expansion, while the leading
term for the phonon widths contain square of the cubic term
only. For example, in solid argon, 	�0.2 near the melting
temperature of 80 K:4 hence higher orders might have an
effect of �20% compare to the cubic term. Here we will
consider the cubic term in the energy expression only; this is
the largest contributor to the finite thermal conductivity.

It is convenient to represent the cubic term in the solid
Hamiltonian Hp in terms of suitably defined creation and
annihilation phonon operators

Hp =
1

6

1

V1/2 �
IJK,k�k��k��

B̄IJK;k�k��k��x�I;k�x�J;k��x�K;k�� =
1

6

1

V1/2 �
IJK,k�k��k��

B̄IJK;k�k��k��

mI
1/2mJ

1/2mK
1/2 �

nn�n�

e�I;k�;n
� e�I;k��;n�

� e�I;k��;n�
� xk�;n

� xk��;n�
� xk��;n�

�

=
1

6 �
nn�n�,k�k��k��


nn�n�;k�k��k���ak�;n
� − a−k�;n��ak��;n�

� − a−k��;n���ak��;n�
� − a−k��;n�� ,


nn�n�;k�k��k�� = i
��/2�3/2

V1/2 �k�;n
−1/2

�k��;n�
−1/2

�k��;n�
−1/2 �

IJK

B̄IJK;k�k��k��

mI
1/2mJ

1/2mK
1/2e�I;k�;n

� e�J;k��;n�
� e�K;k��;n�

� �B4�

in this expression B is a Fourier transform of the third-order force-constant matrix

B̄IJK;k�k��k�� = �q,k�+k��+k���
ll�
� �3E

�R� I;0 � R� J;l � R� K;l�
�

R� I;0
0 ,R� J;l

0 ,R�
K;l�
0

e−ik��R� l−ik��R� l�. �B5�

By expanding the brackets in the Eq. �B4�, we immediately see the possible processes that can take place upon interactions of
the phonons

Hp =
1

6 �
nn�n�,k�k��k��


nn�n�;k�k��k���ak�;n
� − a−k�;n��ak��;n�

� − a−k��;n���ak��;n�
� − a−k��;n��

=
1

6 �
nn�n�,k�k��k��


nn�n�;k�k��k���ak�;n
� ak��;n�

� a−k��;n� − ak�;n
� a−k��;n�ak��;n�

� + ak�;n
� a−k��;n�a−k��;n� − a−k�;nak��;n�

� ak��;n�
� + a−k�;nak��;n

� a−k��;n�

+ a−k�;na−k��;n�ak��;n�
� � . �B6�

Each term describes a specific three-phonon process. For ex-
ample, the first term describes the process in which a phonon
in the mode n� with the momentum −k�� splits into the two
phonons with the modes n and n�, and k vectors k� and k��.
Notice that Eq. �B6� does not include any terms with three

creation operators or annihilation operators, as they would
violate energy and momentum conservation. The transition
rate between initial state �i� and final state �f� due any of
these processes can be described by the Fermi golden rule
as22
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Pif =
2�

�
�f �Hp�i�2��Ef − Ei� . �B7�

Let us consider the first term in Eq. �B6� again. If the initial
state for this process k� ;n, k�� ;n�, and −k�� ;n� have occupation
numbers nk�;n, nk��;n�, and n−k��;n�, then in the final states they
are nk�;n+1, nk��;n�+1, and n−k��;n�−1. Any other combinations
of the initial and final states will produce zero matrix ele-
ment due to the orthonormality of the eigenstates. As a re-
sult, we obtain

�f �Hp�i�2 = �nk�;n + 1,nk��;n� + 1,n−k��;n�

− 1�
nn�n�;k�k��k��ak�;n
� ak��;n�

� a−k��;n��nk�;n,nk��;n�,nk��;n��
2

= �nk�;n + 1��nk��;n� + 1�n−k��;n�
nn�n�;k�k��k��
2 . �B8�

In the case of a thermal system, the average number of
phonons in the given state is described by the distribution
function fk�;n �note that state is described by k-vector index k�
and branch index n as oppose to generic state index � that we
used in Appendix A�. We therefore arrive at the following
expression for the transition rate:

Pif =
2�

�

nn�n�;k�k��k��

2 �fk�;n + 1��fk��;n� + 1�f−k��;n�����k�;n

+ ��k��;n� − ��−k��;n�� . �B9�

By comparing this to Eq. �A5�, we identify this contribution

with the second term in Eq. �A5�. By inspection of Eq. �B6�
we can identify the rest of the terms in Eq. �A5�. Hence,
equilibrium transition rates � are given by

�k�;nk��;n�
k��;n� =

2�

�

nn�n�;k�k��k��

2 fk�;n
0 fk��;n�

0 �f−k��;n�
0 + 1�����k�;n

+ ��k��;n� − ��−k��;n�� ,

�k�;n
k��;n�k��;n� =

2�

�

nn�n�;k�k��k��

2 fk�;n
0 �f−k��;n�

0 + 1��f−k��;n�
0 + 1�����k�;n

+ ��−k��;n� − ��−k��;n�� . �B10�

These are the only expressions that are required for the so-
lution of the BTE by the iterative approach and relaxation
time approximation. For the variational solution one needs,
in addition, to establish the properties, Eq. �A22�, of the
operator P, representing the right-hand side of the BTE in
the case of phonons.

The symmetry properties of the transition probabilities are
easily verifiable from the properties of the Bose-Einstein dis-
tribution

����
�� = ����

�� , ����
�� = ���

���, �B11�

which in turn allows us to establish the properties of Eq.
�A22�: positive definiteness and symmetry. Writing down the
scalar product

��,P�� =
1

kBT
�

�����

������ + ��� − ��������
�� +

1

2
��� − ��� − ������

�����
=

1

kBT
�

�����

������ + ��� − ��������
�� � +

1

kBT
�

�����

����1

2
���� − ��� − ������

����
=

1

2kBT
�

�����

������� + ��� − ��������
�� � + �������� + �� − ��������

�� � − ������� + ��� − �������
�����

=
1

2kBT
�

�����

���� + ��� − ��������
�� ��� + ��� − ����� , �B12�

where we have relabeled the summation index in the second
line �↔��, split the first term into two while relabeling in-
dexes �↔�� in the third line, and used the symmetries of �
to arrive at the final expression. From this expression it is
obvious that properties of Eq. �A22� are satisfied. This ex-
pression is actually used for the numerical calculations in the
variational solution as well since it is requires the calculation

of only one ����
�� .

APPENDIX C: IMPLEMENTATION AND TECHNICAL
DETAILS

Here we describe the details of numerical calculations in-
volved in the implementation of the three methods. We begin
with a discussion of the kind of calculations that are actually
involved. Also, we concentrate on the variational principle

since it is somewhat easier to describe; all the machinery is
directly applicable in the iterative solution and relaxation-
time approximation with only a few modifications. As we
learned from Appendix A, the three-phonon contribution to
the thermal conductivity can be approximated as

1

k
=

1

T
min

��,P��
��,X�2��T=1

=

1

2kBT2 �
�����

���� + ��� − ����
2����

�� �

��
�

v�� ·
� f�

0

�T
� T��
2 . �C1�

The state index in the phonons case is represented by
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k� vector and branch index n. Summation over the k
vectors therefore is substituted by the integration over
first Brillouin zone according to the standard recipe. The

replacement of the sum by an integration leads to a
multiplicative factor of 8�3�3 /V, where V is the vol-
ume

1

k
=

1

2kBT2

8�3�3

V
min


 
 
 �
nn�n�

���k�;n + �k��;n� − �k��;n��
2�k�;nk��;n�

k��;n� �dk�dk��dk��

�
 �
n

v�k�;n ·
� fk�;n

0

�T
� T�k�;ndk�
2 . �C2�

The complicated shape of the first Brillouin zone for general
lattices makes the evaluation of these integrals difficult.
However, it is considerably simple for the orthorhombic, te-
tragonal, and cubic primitive cells that we discuss below.

Calculations begin with the solution of the usual phonon
problem in the first Brillouin zone on a k-point mesh. For the
choices of primitive unit cells above, a simple orthogonal
mesh will suffice. An odd number of nodes in each direction
is used since for such a mesh the sum of coordinates of any
two points is a coordinate of another point on the mesh. This
is important for the handling of the k-vector � function that
enters Eq. �C2�. The k-dependent lattice sums of Eqs. �B3�
and �B5� are calculated using previously calculated and
stored real space second- and third-order dynamical matrices.
The second-order matrices are diagonalized in order to ob-
tain the phonon frequencies and eigenvectors; the group ve-
locities are the calculated by the numerical differentiation.
With the choice of the trial function we are now ready to
calculate integrals in Eq. �C2�.

Triple integration over the Brillouin zone is reduced to
double integration by the presence of the � function that
represents momentum conservation. We therefore must per-
form “only” six-dimensional �6D� integration. The � func-
tion that is responsible for the conservation of energy re-
duces it to five-dimensional �5D�. While handling the first �
function is relatively straightforward, the energy � function
requires considerable care. Two different methods have been
proposed in the literature for use in the numerical calcula-
tions. One is to substitute some representation of the � func-
tion �Gaussian, or Lorentzian, for example� and perform 6D
integration.23,24 While simple in implementation, reliable re-
sults from this method should not depend on the width of the
�-function representation. To achieve this, very fine integra-
tion meshes must be used, which are very time consuming.
An interesting approach was used by Turney et al.,4 where
the width of the �-function representation was a k-dependent
quantity, determined in a self-consistent matter. An alterna-
tive method is to reduce the integration to the 5D by analyti-
cally evaluating the � function5


 
 
 ���k�;n+��k��;n�−��k��;n�
dkx�dky�dkz� =
 
 
 �EdS�dk�� =
 
 
 �EdS�

dk��

dE
dE =
 
 
 �EdS�

dE

��v�
=
 
 dS�

��v�

=
 
 �v�dkx�dky�

��vz��v�
=
 
 dkx�dky�

��vz�
,

E = ��k�;n + ��k��;n� − ��k��;n�,v =
�E

�
=

1

�
� �E

�kx�
,
�E

�ky�
,
�E

�kz�

 . �C3�

The difficulty in this case is that domain of integration now
is a surface in the k space, called the energy surface, the
locations of which needs to be identified. The following
method due to Pettersson7,8,10 is able to do this. For a given
kx and ky coordinates, the energy argument in the � function
is scanned along the kz direction. A change in sign signifies

the surface position; linear interpolation is then used to de-
termine the precise crossing point. The group velocity vector
at this point indicates the orientation of the surface �from Eq.
�C3�� and allows us to calculate its area �with the restriction
that it must belong to the integration domain, i.e., the first
Brillouin zone�. The value of the integrand also has to be
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evaluated at this crossing k point. The integrand includes the
eigenvalues, eigenvectors and the Fourier transform of the
third order dynamical matrix. An important issue is that po-
sition of the surface in general will not coincide with the
k-point mesh used for the calculations. Moreover, it is pos-
sible that when comparing the energies at two neighboring k
points a branch crossing had occurred somewhere in between
or that there is a degenerate eigenstate at one or both of those
k points. In these cases one would use incorrect eigenvalue/
eigenvector pair in the calculations. Using the wrong eigen-
vectors will significantly alter the results of the calculations.
In order to avoid such a mismatch, perturbation theory cal-
culations are performed for every k point with the change in
dynamical matrix produced by the small displacements along
kz as a perturbation

MI
−1/2MJ

−1/2ĀIJ;k� = MI
−1/2MJ

−1/2�
l

ĀIJ;le
−ik�R� l

= MI
−1/2MJ

−1/2�
l

ĀIJ;le
−i�k�0+	kz�R� l

= MI
−1/2MJ

−1/2��
l

ĀIJ;le
−ik�0R� l − 	kz�

l

ĀIJ;lRzl

+
1

2
	kz

2�
l

ĀIJ;lRzl
2 + ¯	

= MI
−1/2MJ

−1/2ĀIJ;k�0
+ 	kzD̄IJ

1 + 	kz
2D̄IJ

2 . �C4�

The quadratic term is included since in some cases the first
term is identically zero due to symmetry of the crystal. First-
order perturbation theory then provides the correction to the
eigenvalues

�k�,n
2 = �k�0,n

2 + 	kze�I;k�0;n
� D̄IJ

1 e�J;k�0;n + 	kz
2e�I;k�0;n

� D̄IJ
2 e�J;k�0;n,

�C5�

where again, the second term is taken into account only if
first one is identically zero. Correction to the eigenvectors
appears only if the initial state is degenerate and represents
rotation in the degenerate subspace. A detailed description of
this procedure can be found in many quantum-mechanics

textbooks.22 The last step needed in order to guarantee a
proper eigenvalue/eigenstate pair is to resort the corrected
eigenvalues �and eigenvectors� in ascending order and use
the eigenvalue with the original branch index for the inte-
grand calculation. Figure 5 illustrates the whole procedure on
the example of two states: while scanning state 1, there will
be no crossing of the energy surface detected.

Going along state 2 in Fig. 5, a crossing will be detected.
However, at point k0 the order of the states is reversed, com-
pare to the order at the crossing point. Performing a pertur-
bation calculation will change the magnitude of the eigenval-
ues, while resorting them will put them in correct order.
From Fig. 5 one can also see that next grid point k0+1 can
also be considered as a starting point of the calculations,
going into negative direction along z axis. In fact, we per-
form calculations at both of these points and average out the
result with the proper weight.

These calculations take a fairly small amount of time be-
cause for every k point the correction to the eigenvalues can
be precalculated up to displacement factor and because de-
generate eigenvectors can be rotated in advance. Therefore,
once the position of the energy surface is identified and 	kz
is known, one just need multiply the correction by it and
resort eigenvalues. Finally, in order to increase accuracy of
the calculations, additional fine gridding is used along z di-
rection only. These additional points are not treated as an
integration points; rather this fine gridding allows for the
precise determination of the integration surface. The results
presented in the body of the paper illustrate this point.
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