Perkinsus sp. (Alveolata, Perkinsidae) a Parasite of the Clam Meretrix meretrix (Veneridae) from Arabian Gulf: Ultrastructural Observations of the Trophozoites and the Cellular Response of the Host

Abdel-Azeem S. ABDEL-BAKI ${ }^{1,2}$, Saleh AL-QURAISHY ${ }^{1}$, Mohamed A. DKHIL ${ }^{1,3}$, Elsa OLIVEIRA ${ }^{4}$, Graça CASAL ${ }^{4,5}$ and Carlos AZEVEDO ${ }^{1,4}$
${ }^{1}$ Zoology Department, College of Science, King Saud University, 11451 Riyadh, Saudi Arabia; ${ }^{2}$ Zoology Department, Faculty of Science, Beni-Suef University, Egypt; ${ }^{3}$ Department of Zoology and Entomology, Faculty of Science, Helwan University, Egypt; ${ }^{4}$ Department of Cell Biology, Institute of Biomedical Sciences (ICBAS/UP) and Laboratory of Pathology, Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Porto, Portugal; ${ }^{5}$ Department of Sciences, High Institute of Health Sciences (CESPU), Gandra, Portugal

Abstract

Genus Perkinsus Levine, 1978 (Alveolata, Perkinsidae) an intracellular pathogenic parasite is described from the mantle and gill filaments of a commercially important clam, Meretrix meretrix, collected from the Arabian Gulf, Saudi Arabia. This genus contains currently seven named species: P. marinus, P. olseni (P. atlanticus), P. chesapeaki (P. andrewsi), P. mediterraneus, P. honshuensis, P. beihaiensis and P. qugwadi. Meanwhile, some unnamed Perkinsus sp. have been described in wide variety of mollusc species. Ultrastructural features of Perkinsus sp. trophozites and the host reaction are described. The different developmental stages of trophozoites appeared as single or grouped cells surrounded by amorphous material that constituted cysts or nodules randomly distributed throughout the connective tissue of the mantle. The early trophozoites were generally spherical to ellipsoidal with a circular nucleus containing a prominent central nucleolus. The cytoplasm had several small vacuoles which coalesce to form a great vacuole in the later trophozoites and the nucleus becomes eccentric. Some lomosomes were observed between the wall and the plasmalemma of trophozoites. A large number of degraded and pyknotic cell and several cellular structure with lysed aspects were encountered in the surrounding area near the cysts. Ultrastructural data showed that the lysed granular cells and the coalescence of the granules result in the cyst that encapsulates various trophozoites. In the current study, we describe for the first time the presence of Perkinsus sp. as well as the host reaction in clams from the Saudi Arabian coasts.

Key words: Perkinsus, trophozoite, encapsulation, ultrastructure, clam, Meretrix meretrix, Arabian Gulf.

[^0]
INTRODUCTION

Parasites of the genus Perkinsus constitute a small group of protists that has been known to cause serious and extensive mortalities worldwide in commercially important species of marine bivalves throughout the world. The systematic position of the genus Perkinsus was created as new genus and simultaneously erecting a new species (P. marinus) (formerly described as Dermocystidium marinus from bivalves in USA) (Mackin et al. 1950) which were included in the new phylum Apicomplexa (Levine 1978). Later, it was proposed that this phylum should be transfer to a new phylum, Perkinsozoa (Norén et al. 1999) and more recently, in a new extensive taxonomic revision, the genus Perkinsus was transferred to the following groups: - Alveolata Cava-lier-Smith, 1991; Protalveolata Cavalier-Smith, 1991; and Perkinsidae Levine, 1978 (Adl et al. 2012). Since the creation of P. marinus, several new species were successively erected in different countries: P. olseni in Australia (Lester and Davis 1981), P. atlanticus in Portugal (Azevedo 1989), P. qugwadi in Canada (Blackbourn et al. 1998), P. andrewsi in USA (Coss et al. 2001), P. chesapeaki in USA (McLaughlin et al. 2000), P. mediterraneus in Spain, Mediterranean Sea (Casas et al. 2004), P. honshuensis in Japan (Dungan and Reece 2006), and P. beihaiensis in China (Moss et al. 2008). However, based in phylogenetic analysis, P. atlanticus was considered as a synonym of P. olseni (Murrell et al. 2002) and P. chesapeaki was reported as junior synonym of P. andrewsi (Burreson et al. 2005). So far, only seven species of this genus have been described from bivalves, but in addition, some of non-identified Perkinsus species have been referred in different countries, as in Australia (Goggin and Lester 1995), in France (Goggin 1992), in Spain (Sagristà et al. 1995), in Korea (Choi and Park 1997, Park et al. 1999, Choi et al. 2002), and in the Pacific coast of North and Central America (Ralph et al. 2004), in Brazil (Sabry et al. 2009). On the other hand, it was suggested that P. karlssoni described from bay scal-
lop (McGladdery et al. 1991) should be considered as an invalid Perkinsus species (Goggin et al. 1996). Some previous studies concerning the encapsulation of trophozoites on species of the genus Perkinsus, as response of the infected bivalves, have been observed in several host species (Azevedo 1989; Montes et al. 1995, 1997; Sagristà et al. 1995, 1996; Blackbourn et al. 1998; Park et al. 1999; Casas et al. 2004; Villalba et al. 2004; Dungan and Reece 2006).

In the present study, therefore, we provide for the first time ultrastructural data of Perkinsus trophozoites and a description of some aspects of the host reaction from infected clams collected in the Arabian Gulf.

MATERIALS AND METHODS

During a parasitological survey fifty living specimens of mature clams Meretrix meretrix Linnaeus, 1758 (Veneridae) (29-37 cm in shell length), were collected from the coastal waters of the Arabian Gulf near the city of Damamm ($\left.26^{\circ} 52^{\prime} \mathrm{N}, 50^{\circ} 02^{\prime} \mathrm{E}\right)$. Several organs and tissues were microscopically examined, but the parasite was only observed in the gills and mantle. Small fragments of infected organs were excised and examined under the light microscope with Nomarski differential interference contrast (LM-DIC) optics for the purpose of morphological study and measurement. For TEM studies, small fragments of infected tissues were fixed in 5% glutaraldehyde in a 0.2 M sodium cacodylate buffer (pH 7.2) for 24 h at $4^{\circ} \mathrm{C}$, washed overnight in the same buffer at $4^{\circ} \mathrm{C}$, and postfixed in $2 \% \mathrm{OsO}_{4}$ buffered with the same solution for 4 h at the same temperature. After dehydration in a graded ethanol-series followed by propylene oxide ($6-8 \mathrm{~h}$ in each change), samples were embedded in Epon. Semithin sections were stained with methylene blueAzur II. Ultrathin sections were cut with a diamond knife, doublestained with uranyl acetate and lead citrate, and observed in a JEOL 100 CXII TEM operated at 60 kV .

RESULTS

Macroscopic observations of the gills and mantle revealed some small milky-whitish cysts found in 48% (24/50) of examined clams. Serial semithin sections of

Figs 1-4. Light and transmission electron micrographs of Perkinsus sp. trophozoites (Tz) infecting the gill and mantle of the clam Meretrix meretrix collected from the Arabian Gulf. 1 - semithin section of trophozoites (arrowheads) encapsulated in cysts located in connective tissues of mantle (H). $\mathbf{2}$ - ultrathin section of the periphery of a cyst located. The trophozoites are isolated or grouped and both are composed by a surrounding wall, a nucleus (Nu) and a spherical prominent nucleolus (Nc) and the cytoplasm contains vacuoles (V) with several dimensions. The trophozoites are encapsulated by a homogenous amorphous substance $\left(^{*}\right)$ and more externally by dense cellular debris of host $\left({ }^{* *}\right) .3-$ ultrathin section of a group of trophozoites and a single trophozoite with the some morphological aspects described in the figure 2.4 - ultrathin section of a group of two juxtaposed trophozoites separated by the adhering wall (arrowheads) and encapsulated in the homogenous mass $\left({ }^{*}\right)$. The nuclei (Nu) and the nucleolus (Nc) are present.

the infected gills and mantle, observed under the LMDIC, showed different sized cysts and nodules in the connective tissue of the mantle were highly stained by toluidine blue (Fig. 1). Inside these cysts, various large cells (trophozoites), generally grouped, were observed (Fig. 1). At the ultrastructural level, it was observed that these cysts and large cells were delineated by a fibrogranular wall (Figs 2-4) with characteristics similar to trophozoites of the genus Perkinsus. Several trophozoites at different stages of maturation and varying size (up to about $18 \mu \mathrm{~m}$ diameter) were observed (Figs $2-4$). Single and grouped trophozoites can be localised in cysts interior (Figs 2, 3).

The earliest trophozoites were generally spherical with a circular nucleus containing a prominent central nucleolus (Figs 2, 3). The cytoplasm was occupied by several mitochondria, ribosomes, lipid droplets and several small vacuoles. All the developmental stages of the trophozoite were surrounded by a thin wall composed of one amorphous material (Figs 2-4). The oldest stages of trophozoite maturation presented a similar general morphology, but the large vacuole occupied much of the cell volume (Figs 4, 5). These trophozoites contained eccentric nucleus with a prominent nucleolus (Figs 5-8). The cyst was internally formed of a homogenous matrix that surrounded the trophozoites located in the central zone of the cyst (Figs 4,5) and more externally by host cells with pyknotic nuclei and numerous granules. The granules varied in size, some coalescing into dense granules (Fig. 4) and others containing membrane remains (Fig. 5). Lomosomes were observed in closed contact with the internally region of the trophozoite wall (Figs 6,7). These granular cells exhibit some aspects of lysis (Figs 7, 8). The lysis of these granular cells and the coalescence of their granules constituted an amorphous and highly eosinophylic material that encapsulated various trophozoites (Figs 7, 8).

DISCUSSION

Microscopic features of the present microorganism indicated that the parasite cell correspond to the typical morphology of trophozoites of the genus Perkinsus of different described species (Azevedo 1989, Montes et al. 1995, Sagristà et al. 1995, Blackbourn et al. 1998, Casas et al. 2004, Dungan and Reece 2006, Choi and Park 2010, Sanil et al. 2012).

The development of the cysts or nodules here reported, containing individual and grouped encapsulated trophozoites at different stages of maturation, seems to be a natural defensive reaction that results of the infiltration hemocytes. These morphological and ultrastructural aspects that have been reported in several infected organs of different host species are similar to those previously described in several hosts infected by Perkinsus spp. (Perkins 1976; Chagot et al. 1987; Azevedo 1989, 1990a, b; Montes et al. 1995, 1997; Casas et al. 2004; Dungan and Reece 2006). Unfortunately, the zoosporulation induced with fluid thioglycollate medium according to the Ray's technique (Ray 1952, 1966; Perkins 1976; Azevedo et al. 1990a; Casas et al. 2002) was not performed; however, the morphological ultrastructure of the trophozoites and the surrounding host reaction shows the evident specific organization of the presence of Perkinsus spp.

The host reaction observed in the present studies corresponds to the two kind of material forming the cysts. The central zone of cyst is occupied by trophozoites surrounded by a homogenous amorphous material, which is the result of a complete disaggregation of the host cellular components intermingled with hemocytes, as was previously reported in other species (Azevedo 1989, Sagristà et al. 1995, Blackbourn et al. 1998, Choi et al. 2002, Casas et al. 2004, Dungan and Reece 2006, Moss et al. 2008). The external layer that

4

Figs 5-8. Transmission electron micrographs of Perkinsus sp. trophozoites (Tz) infecting the gill and mantle of the clam Meretrix meretrix collected in the Arabian Gulf. 5 - ultrathin longitudinal section of an ellipsoidal trophozoite showing the wall in contact with the homogenous amorphous mass of the cyst, the nucleus with a prominente nucleolus (Nc) and their fibrillar center (FC). The cytoplasm contains some small vacuoles (arrows). $\mathbf{6}$ - ultrathin longitudinal section of an ellipsoidal trophozoite showing the surrounding wall (W), the lomosome (arrow), the nucleus (Nu) in peripheral position and a voluminous central vacuole (V). $\mathbf{7 - u l t r a s t r u c t u r a l ~ d e t a i l s ~ o f ~ t h e ~ p e r i p h e r y ~ o f ~}$ the cyst of Perkinsus sp. surrounded by the homogenous and amorphous mass $\left({ }^{*}\right)$ showing trophozoite with a prominent nucleolus (Nc) having a fibrilar center (FC) and more externally a dense layer composed of a compacted lysed host cells $\left({ }^{* *}\right)$. In closed contact with the wall is observed a lomosome (arrow). $\mathbf{8}$ - the external wall layer of a cyst ${ }^{\left({ }^{* *}\right)}$ contacting with numerous disorganized host cells (H), most of them with advanced aspects of lyses and some pyknotic nuclei (arrows).
surrounds the central zone of the cyst is denser relatively the central zone and containing several debris of reactive host cells, sometimes difficulty to identify, and several surrounding host cells, some of which with lysed aspects. These results indicate that the host reaction due to the presence of Perkinsus trophozoites occurring in molluscs is mainly produced by phagocytising activity (Cheng 1987; Montes et al. 1995, 1997; Sagristà et al. 1995; Casas et al. 2002; Villalba et al. 2004; Moss et al. 2008) by which the host cells appear to undergo lysis. Several similar descriptions of a strong host reaction in clams resulting in encapsulation of the parasite have been recorded in several species of the genus Perkinsus (Chagot et al. 1987, Gogin and Lester 1987, Azevedo et al. 1990b, Montes et al. 1997, Casas et al. 2004, Dungan and Reece 2006).

The lomosomes, membranous structures that differentiate between the wall and plasmalemma in different phases of the life cycle (Perkins and Menzel 1967, Perkins 1976, Azevedo et al. 1990a, McLaughlin et al. 2000, Casas et al. 2002), were observed in trophozoites on present study. These structures seemed not to be a well clear-cut function. Considering the reduction of the number of lomosomes at the final phase of zoosporulation, just before the opening of the discharge tube, it was suggested that these structures may interfere in the opening tube (Azevedo et al. 1990a). However, the appearance of these structures in most of the literature concerning Perkinsus spp. were not reported or, if it was cited, few suggested function have been performed.

These results here reported are the first records of a Perkinsus species infecting molluscs in the Saudi Arabia coasts.

Acknowledgement. The authors extend their appreciation to the Distinguished Scientist Fellowship Program (Project no. RGP-VPP-002) at King Saud University, Saudi Arabia for funding this work. We would like to thank the comments and suggestions of the reviewers. This work complies with the current laws of our country.

REFERENCES

Adl S. M., Simpson A. G. B., Lane C. E., Lukes J., Bass D. et al. (2012) The revised classification of Eukaryotes. J. Eukaryot. Microbiol. 59: 429-493
Azevedo C. (1989) Fine structure of Perkinsus atlanticus n. sp. (Apicomplexa, Perkinsea) parasite of the clam Ruditapes decussatus from Portugal. J. Parasitol. 75: 627-635
Azevedo C., Corral L., Cachola R. (1990a) Fine structure of zoosporulation in Perkinsus atlanticus (Apicomplexa: Perkinsea). Parasitology 100: 351-358

Azevedo C., Corral L., Cachola R., Perkins F. O. (1990b) Fine structure of a new parasite (Perkinsus-like species) of Ruditapes decussatus (BivaIvia) from Portugal. In: Perkins F. O. and Cheng T. C. (eds), Pathology in Marine Science. Academic Press, 181-187
Blackbourn J., Bower S. M., Meyer G. R. (1998) Perkinsus qugwadi sp. nov. (insertae sedis), a pathogen in protozoan parasite of Japanese scallops, Patinopecten yessoensis, cultured in British Columbia, Canada. Can. J. Zool. 76: 942-953
Burreson E. M., Reece K. S., Dungan C. F. (2005) Molecular, morphological, and experimental evidence support the synonymy of Perkinsus chesapeaki and Perkinsus andrewsi. J. Eukaryot. Microbiol. 52: 258-270
Casas S. M., La Peyre J. F., Reece K. S., Azevedo C., Villalba A. (2002) Continuous in vitro culture of carpet shell clam Tapes decussatus protozoan parasite Perkinsus atlanticus. Dis. Aquat. Org. 52: 217-231
Casas S. M., Grau A., Reece K. S., Apakupakul K., Azevedo C., Villalba A. (2004) Perkinsus mediterraneus n. sp. a protistan parasite of the European flat oyster Ostrea edulis from the Balearic Island, Mediterranean Sea. Dis. Aquat. Org. 58: 231-244
Chagot D., Comps M., Boulo V., Ruano F., Grizel H. (1987) Histological study of a cellular reaction in Ruditapes decussatus infected by a protozoan. Aquaculture 67: 260-261
Cheng T. C. (1987) Some cellular mechanisms governing self and nonself recognition and pathogenicity in vertebrates and invertebrates relative to protistan parasites. Aquaculture 67: 1-4
Choi K. S., Park K. I. (1997) Report on the occurrence of Perkinsus sp. in the Manila clams, Ruditapes philippinarum in Korea. J. Aquacult. 10: 227-237

Choi K. S., Park K. I. (2010) Review on the Protozoan parasite Perkinsus olseni (Lester and Davis, 1981) infection in Asian waters. In: Ishimatsu A. and Lie H.-J. (eds), Coastal Environmental and Ecosystem Issues of the East China Sea. Nagasaki University, Terrabub, Tokyo, 269-281
Choi K. S., Park K. I., Lee K. W., Matsuoka K. (2002) Infection intensity, prevalence and histopathology of Perkinsus sp. in the manila clam, Ruditapes philippinarum, in Isahaya Bay, Japan. J. Shellfish Res. 21: 119-125

Coss C. A., Robledo J. A. F., Ruiz G. M., Vasta Gr. (2001) Description of Perkinsus andrewsi n. sp. isolated from the Baltic clam (Macoma balthica) by characterization of the ribosomal RNA locus, and development of a species-specific PCR-based diagnostic assay. J. Eukaryot. Microbiol. 48: 52-61
Dungan C. F., Reece K. S. (2006) In vitro propagation of two Perkinsus spp. parasites fron Japaneses Manila clams Venerupis philippinarum and description of Perkinsus honshuensis n. sp. J. Eukaryot. Microbiol. 53: 316-326

Goggin C. L. (1992) Occurrence of parasites of the genus Perkinsus in France. Bull. Eur. Assoc. Fish Pathol. 12: 174-176
Goggin C. L., Lester R. J. G. (1995) Perkinsus, a protistan parasite of abalone in Australia: a review. Mar. Freshw. Res. 46: 639-646
Goggin C. L., Lester R. J. G. (1987) Occurrence of Perkinsus species (Protozoa, Apicomplexa) in bivalves from the Great Barrier Reef. Dis. Aquat. Org. 3: 113-117
Goggin C. L., McGladdery S. E., Whyte S. K., Cawthorn R. J. (1996) An assessment of lesions in bay scallops Argopecten irradians attributed to Perkinsus karlssoni (Protozoa, Apicomplexa). Dis. Aquat. Org. 24: 77-80

Lester R. J. G., Davis G. H. (1981) A new Perkinsus species (Apicomplexa, Perkinsea) from the abalone Haliotis ruber. J. Invertebr. Pathol. 37: 181-187
Levine N. D. (1978) Perkinsus gen. n. and other new taxa in the Protozoan phylum Apicomplexa. J. Parasitol. 64: 549
Mackin J. G., Owen H. M., Collier A. (1950) Preliminary note on the occurrence of a new protistan parasite, Dermocystidium marinum n. sp. in Crassostrea virginica (Gmelin). Science 111: 328-329
McGladdery S. E., Cawthorn R. J., Bradford B. C. (1991) Perkinsus karlssoni n. sp. (Apicomplexa) in bay scallops Argopecten irradians. Dis. Aquat. Org. 10: 127-137
McLaughlin S. M., Tall B. D., Shaheen A., Elsayed E. E., Faisal M. (2000) Zoosporulation of a new Perkinsus species isolated from the gill of the softshell clam Mya arenaria. Parasite 7: 115-122
Montes J. F., Durfort M., Garcia-Valero J. (1995) Cellular defence mechanism of the clam Tapes semidecussatus against infection by the protozooan Perkinsus sp. Cell Tissue Res. 279: 529-538
Montes J. F., Del-Rio J. A., Durfort M., Garcia-Valero J. (1997) The protozoan parasite Perkinsus atlanticus elicits a unique defensive response in the clam Tapes semidecussatus. Parasitology 114: 339-349
Moss J. A., Xiao J., Dungan C. F., Reece K. S. (2008) Description of Perkinsus beihaiensis n. sp., a new Perkinsus sp. parasite in oysters of Southern China. J. Eukaryot. Microbiol. 55: 117-130
Murrell A., Kleeman S. N., Barker S. C., Lester R. J. G. (2002) Synonymy of Perkinsus olseni Lester \& Davis, 1981 and Perkinsus atlanticus Azevedo, 1989 and an update on the phylogenetic position of the genus Perkinsus. Bull. Eur. Assoc. Fish Pathol. 22: 258-265
Norén F., Moestrup O., Rehnstam-Holm A. (1999) Parvilucifera infectans Norén Moestrup, gen. et sp. nov. (Perkinsozoa phylum nov.): a parasitic flagellate capable of killing toxic microalgae. Eur. J. Protistol. 35: 233-254
Park K. I., Choi K. S., Choi J. W. (1999) Epizootiology of Perkinsus sp. found in the Manila clam, Ruditapes philippinarum in Komsoe Bay, Korea. Environ. Sci. 32: 303-309

Perkins F. O. (1976) Zoospores of the oyster pathogen, Dermocystidium marinum. Fine structure of the conoid and other sporozo-an-like organelles. J. Parasitol. 62: 959-974
Perkins F. O., Menzel R.W. (1967) Ultrastructure of sporulation in the oyster pathogen Dermocystidium marinum. J. Invertebr. Pathol. 9: 205-229
Ralph E. A., Dungan C. F., Meyers T. R., Reece K. S. (2004) Perkinsus sp. infection risk of Manila clams, Venerupis philippinarum (Adams and Reeve, 1850) on Pacific coast of North and Central America. J. Shellfish Res. 23: 101-105
Ray S. M. (1952) A culture technique for the diagnosis of infection with Dermocystidium marinum Mackin, Owen and Collier in oysters. Science 166: 360-361
Ray S. M. (1966) A review of the culture method for detecting Dermocystidium marinum with suggested modifications and precautions. Proc. Shellfish Ass. 54: 55-69
Sabry R. S., Rosa R. D., Magalhães A. R. M., Barracco M. A., Gesteira T. C. V., Silva P. M. (2009) First report of Perkinsus sp. infecting mangrove oysters Crassostrea rhizophorae from the Brazilian coast. Dis. Aquat. Org. 88: 13-23
Sagristà E., Durford M., Azevedo C. (1995) Perkinsus sp. (Phylum Apicomplexa) in Mediterranean clam Ruditapes semidecussatus. Ultrastructural observations of the cellular response of the host. Aquaculture 132: 153-160
Sagristà E., Durford M., Azevedo C. (1996) Ultrastructural data on the life cycle of the parasite, Perkinsus atlanticus (Apicomplexa), on the clam, Ruditapes philippinarum in the Mediterranean. Sci. Mar. 60: 283-288
Sanil N. K., Suja G., Lijo J., Vijayan K. K. (2012) First report of Perkinsus beihaiensis in Crassostrea madrasensis from the Indian subcontinent. Dis. Aquat. Org. 98: 209-220
Villalba A., Reece K. S., Ordás M. C., Casas S. M., Figueras A. (2004) Perkinsosis in molluscs: a review. Aquat. Living Resour. 17: 411-432

Received on $1^{\text {st }}$ March, 2013; revised on $14^{\text {th }}$ May, 2013; accepted on $15^{\text {th }}$ June, 2013

[^0]: Address for correspondence: Abdel-Azeem S. Abdel-Baki, Zoology Department, College of Science, King Saud University, 11451 Riyadh, Saudi Arabia; E-mail: azema1@yahoo.com

