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PHYSICAL REVIEW B

VOLUME 51, NUMBER 5

1 FEBRUARY 1995-1

Anomalous-diffusion model of ionic transport in oxide glasses

D. L. Sidebottom, P. F. Green, and R. K. Brow
Department 1845, Sandia National Laboratories, Albuquerque, New Mexico 87185-0607
(Received 20 June 1994; revised manuscript received 12 September 1994)

The power-law frequency dependence of both the conductivity, o(w), and permittivity, €(®), of ion-
conducting materials suggests that self-similar or scale-invariant behavior influences the transport of
ions at high frequencies. Using an anomalous-diffusion model, we derive relevant power-law expressions
for o(w) and &(w) and compare these with measurements performed on LiPO; glass. Superior fits to the
measured data are obtained compared to the commonly used Kohlrausch-Williams-Watts (KWW)
description of the electrical modulus, most particularly in the notorious high-frequency regime. Evalua-
tion of our results in terms of an anomalous-diffusion model suggests the dominance of interaction-based

constraints to diffusion.

I. INTRODUCTION

The electrical properties of ion-conducting glasses
display frequency dependences that are, at present, still
poorly understood.! The permittivity € and the conduc-
tivity o, real and imaginary parts of the complex dielec-
tric constant €* =g—io /w, exhibit power-law behavior.
Power-law behavior is normally associated with systems
that are either self-similar or possess scale invariances.
Such systems exhibit identical behavior once appropriate
rescaling is performed. 2

Jonscher® observed that the behavior of o(w) for a
variety of ion-conducting materials could be well de-
scribed by an equation of the form

oc=0yt+A4,0", (1)

where 0.5<n <0.9. This common behavior of a wide
variety of dissimilar materials led Jonscher to describe
Eq. (1) as the “universal” response. While oy and 4,
merely establish the scales of the dc and ac conductivi-
ties, respectively, the exponent n is related to the nature
of the physical process controlling the conduction of ions.
Unlike situations of strict universality, where n is con-
stant for all materials, the range of n observed by Jonsch-
er suggests that n» may vary among differing subclasses of
materials. Thus, the response of n to variables such as
temperature, ion concentration, and glass structure,
should provide additional insight into the underlying
physics. In this regard some recent studies have been
presented. Lee, Liu, and Nowick,* for example, have
shown that for the network forming glass, Na,0/3SiO,,
n exhibits a temperature dependence and increases to a
value of 1.0 as the temperature approaches zero Kelvin.
This trend has also been more generally discussed by
Angell.® With regard to glass structure, Kahnt® found
that o(®) of a wide variety of structurally different ion-
conducting glasses could be scaled so as to describe a
common universal curve with n =~0.67+0.03. This pro-
vides strong evidence that scale invariances exist in ion-
conducting glasses.

The dc part of the conductivity o, appears to be
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reasonably well understood. It is currently thought to
arise from the activated hopping of ions past local energy
barriers. This is supported by the Arrhenius temperature
dependence commonly exhibited by o, and a number of
theoretical efforts which have been successful in predict-
ing the activation energies associated with the dc conduc-
tivity including early work by Anderson and Stuart’ and
more recent work by Elliot.® In these approaches, the
energy barrier faced by the ion is decomposed into a
Coulombic interaction between the ion and the network
and a strain energy contribution. As a result, the motion
of the ion is coupled with the mechanical dynamics of the
host glass.’

The ac part of the conductivity remains an enigma. As
the power-law feature is most prominent at high frequen-
cies, it presumably must represent short-time motion that
occurs prior to the hopping of the ion past its barrier; i.e.,
motion of the ion within its potential well, or possibly
reiterative pairwise hopping between adjacent sites. 1°

Empirically, the ac part can be obtained by assuming
that the response of the electric displacement D, to incre-
ments of the electric field are described at short times by
a Curie-von Schweidler® current

j()=dD,/dt=t"" . )

There are currently two basic views on how this
Curie-von Schweidler current arises. In the first, the
high-frequency power law is assumed to represent the
high-frequency wing of a relaxation process whose low-
frequency wing is covered by dc conductivity.!! This re-
laxation is presumed to result from hopping of ions over
local energy barriers at high frequencies and long-range
excursions over multiple barriers at low frequencies.

The second view interprets the frequency dependence
of the conductivity as simply the result of changes in the
manner in which the ions diffuse.!?> At long times (low
frequency) the mean-square displacement of a diffusing
ion is linear in time reflecting a constant coefficient of
diffusion and hence also constant conductivity. At short-
er times, the ion is strongly influenced by the local envi-
ronment including interactions with other neighboring
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ions, and exhibits a mean-squared displacement which in-
creases more slowly.

In this spirit, a number of theoretical papers have re-
cently proposed a model based upon anomalous diffusion
to account for the ac part of the conductivity. >~ !¢ Nu-
merical simulations for the mean-square displacement,
(r?), of an ion performing a random walk on a fractal
lattice indicate

t'™" 0<n<l1;
t; r>§

r<
(r?) e« & 3)

While a random walk on a fractal lattice is the tradi-
tional model for anomalous diffusion, more recent Monte
Carlo simulations by Maass er al.'° suggest that such
diffusion can arise from Coulombic interactions in a
disordered medium. Thus the actual presence of fractal
structures does not appear to be a requirement.

The model appears to be of some general validity and
has been successful at describing the dynamics of amor-
phous systems such as gels at the large length scales
probed by light scattering!’ and polymers at the short
length scales probed by neutron scattering. '*

In this paper, we begin from Eq. (3) and derive expres-
sions for e(w) and o(w). While the power-law forms ob-
tained are not particularly new, our final expressions and
related parameters involved can be traced back to physi-
cally relevant length and time scales involved in the
diffusion process. In this sense, they provide a sound
analytical approach to data reduction.

We compare our predictions with measurements per-
formed on LiPO; as well as with data taken from the
literature for which both o(w) and &(w) are available.
Generally, the power-law fits are far superior to fits ob-
tained by the more common electrical modulus formalism
originated by Moynihan and co-workers, *?° as they are
particularly successful at reproducing the much discussed
high-frequency wing of M"' (o).

II. THEORY

We begin by considering a parallel plate capacitor with
the material occupying the space between the plates. The
magnitude of the displacement field that arises from an
applied voltage across the plates is D, =¢*E, and for a
parallel plate is equal to the charge density on the plates
Q/A.?! When a step voltage is applied causing E to in-
crease from zero to some finite value E,, the rate of
change of D, produces a current

dD, 4d(Q/A) ., ._ de
dt  dt =j= dt

Comparing Eq. (4) with the generalized form of Ohm’s
Law,

j@)=o()E, , (5)

E, . 4)

one arrives at the correspondence
o= de
dt’

or
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e=[odt. ©6)

The conductivity can be obtained from the diffusivity
by use of the Nernst-Einstein relation

e’p,
= 7
o kBTD ; )
and since
_1d,,
D P dt(r ), (8)

one finds from Eq. (6) that

_ ep.
" 6kyT

£ (r2y=K(r?) . 9)

In an effort to maintain consistent units, we formalize
Eq. (3) as
R3(t/t)' ™" r<§
~lexesy; r>e,
tc=t0(§/Ro)2/(1~n) , (11)

(r?) (10)

where R, and t, are appropriate length and time scales
for the discretized short-time motion, ¢, is the time re-
quired to complete a mean-square displacement of £ and
Eq. (11) follows from the boundary condition at r =¢,
and t =t,. Introducing the reduced time 7=t /t,, Eq. (9)
becomes

1—n .
AT ; T<T,

e(r)= (12)

A,y T>T,,

where 4, =KR3}and 4,=KEXt,/t,).
Consider now the ratio 4,/ A,, which upon applica-
tion of Eq. (11) becomes

A /A=t /ty)" . (13)

Since a typical ratio of f./tq>>1 and n >0, then
A, >> A,, and we can parametrize Eq. (12) as

e(r)=A, 77"+ 4,7, (14)

which asymptotically behaves as Eq. (12) away from 7.
Following a related derivation by McCrum, Read, and
Williams?? based upon Boltzmann superposition, we can
now use Eq. (14) to obtain £*(®). Including the instan-
taneous polarization, €, that arises from distortions of
the charges inside the medium, the response of D, to an
infinitesimal increase in the electric field is given by

dD,=¢ dE +dE[ A\(1—u)! ™"+ A,(t—u)],
or
— a dE _ 1—n
De—ewE+A1f_w7u—(7' w)' " "du

+A2f_rm%(r—u)du . (15)

The electric field is assumed to be oscillatory so that
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E(r)=E,e'",

where Q=wt,=w/w, and upon integrating??> Eq. (15)
becomes

D,/E=¢*=¢+ A4,8(n)Q" " !|sin %]—icos nTTr]
~1.142/(),
or
e=ec,+4,g(n)sin | (@1, (16a)
o=we"=wyA,+wyA,g(n)cos 121 ]Q (16b)
where g(n)=(1—n)I'(1—n)=T(2—n).
Upon switching to a new frequency scale,

Q. =owt,=w/v,., introducing from comparison with Eq.
(1), 0g=wy4,, and applying Eq. (13), these expressions
become

(0o/€y)
e=¢, [1+——9————g(n)sin n_27£ 02_1] ,  (17a)
o=0,|1+g(n)cos L Qrl, (17b)
with
o,=K&o, . (17¢)

At this point the derivation is complete and results in
two simultaneous expressions for both €(w) and o(w) in-
volving a set of four parameters: o, €, @., and n. The
first two of these parameters, o, and €, establish the
scale for the conductivity and permittivity, while the
third, w,, establishes the frequency scale which separates
the two regimes of diffusion.

In passing we wish to point out that these expressions
can be further simplified by invoking the so-called
Maxwell relation; i.e., that 0y/e ,, =w, is proportional to
the crossover frequency w,.° Then Egs. (17a) and (17b)
simplify further to

e=¢, |1+h(n)sin |[2Z (a)/a)a)"_l}, (18a)

o=0¢ |[1+h(n)cos | L (a)/a)a)”], (18b)
with

h(n)=f"g(n),

wU:wa .

While this simplification amounts to only a trivial sub-
stitution, it highlights the unique scale invariance that
occurs. Only two parameters, o, and €, are needed to
establish the absolute scale of each function both along
the ordinate as well as the abscissa. This ability to scale o
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and € is a stringent requirement the measured data must
meet.

Our final expressions for o and € involve a total of four
fitting parameters (0, €., ®., and n). This is one more
than the more widely practiced method of data analysis
involving the electrical modulus, M*(w)=1/c*(w) that
was introduced by Macedo, Moynihan, and Bose. 19 The
shape of M*(w) can be approximately fit using the La-
place transform of d ¢,, /dt where

da(H)=exp [—(t/‘rm o ] (19)

is the Kohlrausch-Williams-Watts (KWW) relaxation
function. In addition, Ngai!! has shown that this descrip-
tion of M *(w) results in a corresponding contribution to
o(w) of the form

oxww=B exp(—E, /kyTo' °m (20)
where E, is the “primitive” activation energy.

While Eq. (19) can fit much of M*(w), it is widely ac-
knowledged that the quality of the fit deteriorates severe-
ly at high frequencies,® precisely where the anomalous-
diffusion mechanism is most active. While some argue
that the shape of M'(w) has “no significance relative to
the motion of mobile ions”,?® others argue that the
discrepancy between M'"(w) and the KWW fit arises
from the presence of a second mechanism associated with
ion motion along an asymmetric double-well potential
(ADWP),?* such that

o apwp=CT% , @=~0.310.2 . 1)

The significance of this second contribution will be dis-
cussed in a later section.

The motivation for the KWW relaxation function is
partly due to its overwhelming ability to describe a diver-
sity of relaxation processes. This relaxation function is
often interpreted as the result of several exponential re-
laxations, occurring in parallel, with a distribution of re-
laxation times. In this sense, the smallness of S, is a
measure of the breadth of that distribution. Thus 7,, and
B,. together with €, are the three parameters required
for fitting using the KWW relaxation.

While the present proposed fitting requires four param-
eters, o and €, are well-defined material properties and
are easily found from the asymptotic behavior of o and &,
respectively. Furthermore, the exponent n can be deter-
mined from o, and €, independently of w,, by con-
sideration of the ratio

w(e—€,)
——— =tan

=const , (22)
o—oy

or from consideration of the ratio of ac and dc activation
energies, given by

E,=—kzTlnd,=(1—n)E,, . (23)

This last result has been emphasized in work by Almond
and West?® and shown by Dyre? to be a consequence of
the scaling behavior often observed in o(w). It is also
analogous to that proposed by Ngai!! between the dc
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conductivity and the “primitive” relaxation. These ex-
pressions thus aid in the determination of the parameters
and serve to decrease the overall ambiguity of the fit.

III. EXPERIMENT

Lithium metaphosphate (LiPO;) glass was made by
melting mixtures of Li,CO; and NH,H,PO, in platinum
crucibles in air at 800°C for 2 h and casting into ingots.
Samples were annealed at 300°C, then cooled to room
temperature. The ingots were sectioned into square plates
(3 cm X3 cm X1 mm) suitable for mounting into a
custom-made impedance cell. These plates were rean-
nealed at 300°C and an approximately 1-cm? area on op-
posite faces was coated with Ag paint.

Measurements were performed in an environment of
dry nitrogen. Two spring loaded contacts connected the
Ag plates of the sample to the input ports of a commer-
cial impedance analyzer (Schlumberger 1260) which to-
gether with a dedicated computer and software acquired
measurements of the real and imaginary parts of the com-
plex impedance of the material as a function of frequency
between 1—10° Hz. Final calculations of o and ¢ as well
as M’ and M' were performed separately using the raw
data and pertinent dimensions of the sample. Effects of
electrode polarization!® are clearly seen at low frequen-
cies in o(w) and e(w), and we have omitted the data in
these regimes when performing fits.:

IV. RESULTS

Measurements of o and € at 34°C over a range of fre-
quencies from 1 to 10° Hz are reproduced in Fig. 1(a). At
low frequencies, electrode polarization effects are wit-
nessed, most notably in €. A measurement of o(w) at
—140°C is shown for comparison with that at 34°C in
the inset to Fig. 1(a) and indicates a linear behavior con-
sistent with the ADWP described by Eq. (21), but situat-
ed roughly a decade lower than the above-ambient spec-
tra. Hence the contribution from the ADWP to the mea-
sured o(w) is negligible at the temperature and frequency
range we have investigated. A more complete discussion
of our subambient work is the subject of a forthcoming
publication. 26

M'"(w) and M'(w) that result from o and € are plotted
in Fig. 1(b). These display the usual features for M’ and
M’ as seen by others. In the M?* representa-
tion, electrode polarization effects are sharply suppressed
at low frequencies. Included in the figure is a fit using the
KWW approach [Eq. (19)] with 8,, =0.60. While this fit
does reproduce the features of M''(w) out to about 10*
Hz, it severely underestimates the data at higher frequen-

cies. Also included in both Figs. 1(a) and 1(b) are fits of"

Egs. (17). Unlike the KWW fit, the power-law expres-
sions reproduce the features of M’ and M’ over the en-
tire frequency range.

A series of measurements from 22 to 83 °C are shown
in Figs. 2(a) and 2(b) using the modulus representation.
We observe r,,=1.9%0.2 decades  implying
B,. =~0.58+0.05 and constant with temperature. Fits of
the power law are included and the parameters obtained
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FIG. 1. (a) o and ¢ at 34°C. The lines are fits of Egs. (17) with
the parameters listed in Table I. Inset shows a comparison with
the ADWP contribution observed at —140°C. (b) Some data
presented in the electrical modulus formalism. The dashed lines
are fits of Eq. (19) for 8,, =0.60.
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FIG. 2. (a) M"(w) and (b) M'(w) for temperatures between
22 and 83°C. Solid lines are fits of Egs. (17) with the parameters
listed in Table I.
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are listed in Table I. We observe that the exponent » is
fairly constant at about 0.67+0.03.

The value of n obtained from fits can also be compared
with that which arises from plotting Eq. (22) versus fre-
quency as shown for 34°C in Fig. 3. Such a plot is con-
stant over the frequency range of 10? to 10° Hz and from
Eq. (22) this constant value results in n =0.66+0.03 in
excellent agreement with that obtained by fitting o and €.

In Fig. 4 we plot w, vs 1/T. Included are data beyond
83 °C, for which o could be determined but for which fits
were not feasible due to w, increasing beyond 10° Hz, to-
gether with measurements of w, by Martin.?” These de-
scribe an Arrhenius behavior of the form

w,=fA.exp(—E 4 /kgT), (24)

with E;,=0.66+0.02 eV, and 4,=4X 10" Hz. This pre-
factor is similar to that seen by others and is in the range
of frequencies where infrared quasilattice vibrations of
nonbridging oxygens (NBO’s) and ions typically occur, as
was discussed by Angell.’

Particularly important is the ability of Egs. (17) to fit
the high-frequency wing of M"'. It has been widely ac-
knowledged that fits using the KWW typically miss this
wing and underestimate the actual data at these frequen-
cies. The B, of such fits can be estimated from the
linewidth of M. From the measured linewidths we
find B, =0.58£0.05 over the entire temperature range
investigated. This value is, however, in strong conflict
with that predicted by the coupling model'! obtained
from o(w) and described by Eq. (20), B,
=1—n =0.33%0.05. These S’s represent linewidths of
about 2 decades and 3.5 decades, respectively. This enor-
mous difference is surprising for two accepted approaches
to analyzing the same set of electrical data.?®

The superiority of the power-law fit to describe the
electrical properties of these ionic glasses as compared to
that offered by the KWW is not isolated to LiPO; but can
also be seen in previously published results for which an
independent KWW fit has already been performed.

Measurements on 0.4Ca(NO;),/0.6KNOj; in the melt
and Li,O/Al,0;/28i0, in the glass published by Moy-
nihan and co-workers!®?° offer an excellent source for
comparison. In addition to M’ and M, they also have
provided o and e. Figures 5(a) and 6(a) show their data
as taken from figures published in their paper together
with fits by us using Egs. (17). Figures 5(b) and 6(b) show
the corresponding modulus of these data along with the
same power-law fits used in Figs. 5(a) and 6(a) and the

TABLE I. Results of fitting Eqgs. (17).
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FIG. 3. Test of Eq. (22) at 34°C. The line represents the con-
stant behavior with n =0.66+0.03.

KWW fit of Moynihan and co-workers. It is clearly evi-
dent, in spite of the errors introduced from transcribing
the original data, that the power law provides an overall
superior fit. This superiority is particularly evident at the
high frequencies where the anomalous diffusion is most
important.

While the superiority of the power-law fit stems partly
from the additional parameter required, the parameter
set itself is far from ambiguous, being composed of two
well-defined material parameters (o,¢€,) and additional
constraints such as that produced by Egs. (22) and (23).
Instead we argue that it is the difference in the physics
that makes the fit superior. The KWW, while certainly a
suitable empirical choice for constructing M *(w) rarely
does the job properly. That it commonly cannot fit the
high-frequency wing of M'’ suggests that it fails to really
describe the true physics behind ionic motion in these
systems.

We find that Egs. (17) provide an excellent description
of the present experimental results. While one could

T (°C) o, (mho/m) € n o, (Hz)
22 1.6x1077 8.4 0.67 2.6X10?
34 3.9%x1077 8.3 0.67 6.4X% 10
43 8.2x1077 8.3 0.67 1.3x10*
53 1.7X107¢ 8.4 0.67 2.7X10*
63 3.6X107¢ 8.4 0.67 5.8x10*
73 7.0X107¢ 8.3 0.67 1.1X10°
83 1.3X 1073 8.3 0.67 2.1X10°

10° — : . .
o LiPOa ]
10 |
F E =0.66 eV ]
N de 3
T s 1
= 10 3 3
© E ]
8 . -
10° F °© present 1
:F e Martin ]

101 L 2 2 a1 1 n " n " 1 " " 1 .
2 2.5 3 3.5 4
1000/T (K)

FIG. 4. Arrhenius plot of w, from the present study and
from measurements by Martin (Ref. 27). The line is an Ar-
rhenius fit with dc activation energy, E . =0.66+0.02 eV.
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FIG. 5. Data from Macedo, Moynihan, and Bose (Ref. 19)
for 0.4Ca(NO;),/0.6KNO; in both the (a) power-law and (b)
electrical modulus representations. Solid lines are a fit of Egs.
(17) with 0,=1.5X10"° €,=7.7, n=0.60, o, =3.3X10%.
Dashed line is a fit of the KWW [Eq. (19)] provided by Moy-
nihan, Boesch, and Laberge (Ref. 20).
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FIG. 6. Data from Macedo, Moynihan, and Bose (Ref. 19)
for Li,0/Al,0,/2Si0, in both the (a) power law and (b) electri-
cal modulus representations. Solid lines are a fit of Egs. (17)
with 0,=9.1X1071, ¢_=8.9, n =0.68, . =7.9X 102 Dashed
line is a fit of the KWW [Eq. (19)] provided by Moynihan,
Boesch, and Laberge (Ref. 20).
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choose to view Egs. (17) as merely a set of empirical rela-
tions involving o, €., ®., and n, without any loss in
describing the observed behavior, we now consider what
these parameters convey about the anomalous-diffusion
process and its scales.

First, using Eq. (17c) and the experimentally deter-
mined values (p, =3X 10?7 m~3), we obtain £=~1.4 A
averaged over the temperature range investigated. This
is well in accord with our expectations based upon ion
hopping over local barriers associated with displacement
to an adjacent site. Considering the paucity of structure
available at such a small scale, it seems apparent that the
walker must be influenced by interactions of a host of
neighboring ions which also perform the same rapid wig-
gling.

Second, one generally finds that (@) does not continue
to rise as a power law as o approaches O, but instead
would approach a constant value, €,,,=¢, +Ag, if not
for the electrode polarization effects.”” An example of
this is shown in Fig. 5(a) where €,,~16. Our measure-
ments at high temperatures also displayed such behavior
with €.,,~18. While not specifically accounted for in
our model, this low frequency limiting permittivity can
be understood by the following physical argument. The
permittivity is limited by the maximum dipole moment
that forms between a nonbridging oxygen (NBO) and the
diffusing ion. As the ion diffuses, the moment increases,
but when the ion passes beyond &, the ion has roughly
moved into an adjacent site and now its dipole moment is
associated to the new NBO. Thus the dipole moment
passes through a maximum at p_,, =e(Ryga/2) or
roughly p.. . ~e&. Using, as a first approximation, the
classical expression for the permittivity of a thermo-
dynamic system of permanent but randomly oriented di-
poles,?! Ae=p,p?/3kT, we estimate €,,,~21 in accord
with the measured result.

Last, we reflect upon the value of n =0.67 observed.
This value was commonly found in a recent literature
survey we conducted?® suggesting that it is a universal
value. This particular value is in the range of that ob-
tained at low temperatures in the Monte Carlo simulation
by Maass et al.!® This together with the small scale of £,
tends to support the Coulombic interaction-based
diffusion models such as the jump-relaxation model of
Funke!? and the Coulomb-interacting lattice gas model of
Maass and co-workers. 114

V. CONCLUSIONS

The conductivity and permittivity of ion-conducting
glasses display power-law dependences on frequency.
These power laws are found to conform to predictions of
a model based upon the anomalous diffusion of ions at
short lengths. Many in the past have used the more trad-
itional data treatment based upon a KWW decay func-
tion used to describe the corresponding electrical
modulus. This traditional approach commonly underesti-
mates the data at high frequencies. We find, however,
that the proposed power-law treatment provides a superi-
or fit which is capable of describing both the o(w) and
e(w) curves as well as M'(w) and M (w) over the entire
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range of frequencies [particularly the high-frequency
wing of M (w)].

It is also important to stress that the superiority of the
power-law fit is a general result of the form of Egs. (17).
Although Egs. (17) were derived beginning from
anomalous-diffusion concepts, the basic starting point is
embodied in the so-called Curie-von Schweidler current,
j(t)=t~". These power laws are somewhat generic and
can be interpreted as empirical functions of the parame-
ters 0, €, and n as well as in terms of the anomalous-
diffusion parameters. Either way, Egs. (17) provide a su-
perior description of the dielectrical properties of these
ion-conducting glasses as compared with fits of KWW as
described by Moynihan and Macedo.

However, should we choose to interpret our results for
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LiPO; in terms of anomalous-diffusion parameters £ and
n, the results clearly suggest that the anomalous diffusion
originates from Coulombic interactions rather than from
details of the structure. This is consistent with the
findings of Kahnt,® and is apparent from the extremely
small (substructural) size of £ which indicates that the
anomalous diffusion is limited to regions below about 2
A.
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