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Scaling parallels in the non-Debye dielectric relaxation of ionic glasses
and dipolar supercooled liquids

D. L. Sidebottom, P. F. Green, and R. K. Brow
Sandia National Laboratories, Albuquerque, New Mexico 87185-1349

~Received 6 May 1996; revised manuscript received 18 February 1997!

We compare the dielectric response of ionic glasses and dipolar liquids near the glass transition. Our work
is divided into two parts. In the first section we examine ionic glasses and the two prominent approaches to
analyzing the dielectric response. The conductivity of ion-conducting glasses displays a power law dispersion
s(v)}vn, wheren'0.67, but frequently the dielectric response is analyzed using the electrical modulus
M* (v)51/«* (v), where«* (v)5«(v)2 is(v)/v is the complex permittivity. We reexamine two specific
examples where the shape ofM* (v) changes in response to changes in~a! temperature and~b! ion concen-
tration, to suggest fundamental changes in ion dynamics are occurring. We show, however, that these changes
in the shape ofM* (v) occur in the absence of changes in the scaling properties ofs(v), for whichn remains
constant. In the second part, we examine the dielectric relaxation found in dipolar liquids, for which«* (v)
likewise exhibits changes in shape on approach to the glass transition. Guided by similarities ofM* (v) in
ionic glasses and«* (v) in dipolar liquids, we demonstrate that a recent scaling approach proposed by Dixon
and co-workers for«* (v) of dipolar relaxation also appears valid forM* (v) in the ionic case. While this
suggests that the Dixon scaling approach is more universal than previously recognized, we demonstrate how
the dielectric response can be scaled in a linear manner using an alternative data representation.
@S0163-1829~97!02725-2#

I. INTRODUCTION

A diversity of scientific disciplines endeavor to under-
stand dynamic processes by examining the dielectric re-
sponse of materials to an applied time-varying electric field.
These include chemists and chemical engineers who study
electrolytic solutions, solid state physicists interested in elec-
tron transport in semiconductors, materials scientists inter-
ested in ionic and dipolar relaxation in solids, and biologists
concerned with ion transport through cell membranes.1 In the
linear response regime at moderate field strengths, the dielec-
tric response is completely characterized by the permittivity,
«* (v)5«8(v)1 i«9(v), a property of the material alone,
where the real and imaginary components represent the stor-
age and loss, respectively, of energy during each cycle of the
electric field.

Although all study the same quantity, namely, the permit-
tivity, each of these research fields often focuses upon dif-
fering materials and differing physical processes, and in
many instances, the dynamics of interest are deemed to be
better understood by plotting data in one of several alterna-
tive, but in principle equivalent, representations. A partial list
of representations seen in the literature include the imped-
ance (Z*51/iv«* ), the conductivity (s*5 iv«* ), and the
electric modulus2,3 (M*51/«* ). While each scientific disci-
pline has developed its own preferred style for representing
data, alternative representations are equally valid and, as we
show, may provide new insight into the dynamics at hand.

Ion relaxation in glass is a good example. The choice of
data representation has been4 and still remains5–7 a testy sub-
ject between those preferring the electric modulus and those
preferring the conductivity. Proponents of the modulus ap-
proach interpret the broad, asymmetric Gaussian-like shape

of M* (v) as indicative of a nonexponential decay of the
electric field in response to an applied displacement field.2,5

This decay is reasonably well described by a stretched expo-
nentiale2(t/t)b, where the smallness of the exponentb char-
acterizes the degree of non-Debye behavior. This particular
decay function is also used to describe dipolar reorientation
in supercooled liquids8,9 and is found in a variety of other
relaxation phenomena in amorphous materials including me-
chanical, volumetric, nuclear magnetic resonance, and mag-
netic relaxation.10

In the conductivity representation,6,7,11,12the conductivity
of ion-conducting glasses exhibits a power law at high fre-
quencies that is terminated at lower frequencies by dc con-
duction,

s~v!5s01Avn5s0@11~v/v0!
n#. ~1!

This frequency dependence can be interpreted as the result of
ion diffusion through the host compounded by ion-ion
interactions.13–16The exponentn similarly characterizes the
deviation from Debye behavior and can be regarded as a
direct measure of the interionic coupling strength.17–19

Although the exponentb obtained fromM* (v) appears
to vary from one material to the next, many have shown that
s~v! exhibits linear scaling, whereby data plotted on a
double-logarithmic scale can be shifted vertically~by s0!
and horizontally~by v0! as indicated in Eq.~1! so as to
collapse onto a single scaling curve.20,21 Furthermore, the
scaling curve obtained is remarkably common to a wide va-
riety of ionic materials withn'0.6760.05 and suggests that
the dynamics of ion motion may be universal.22

Scaling is an important property for any dynamic process
to possess as it implies that one may separate the thermody-
namics, entering only through the scales themselves, from

PHYSICAL REVIEW B 1 JULY 1997-IVOLUME 56, NUMBER 1

560163-1829/97/56~1!/170~8!/$10.00 170 © 1997 The American Physical Society



the inherent physics involved in the dynamical process
which is completely described by a single scaling function.
This separation of the scales from some simpler underlying
physics has proved to be of great merit in many scientific
fields including second-order phase transitions, percolation,
and other critical phenomena.23

In this paper we examine alternative data representations
for both ionic glasses and for dipolar liquids. Our paper is
divided into two sections. In the first section, we consider
ionic glasses. We review the prevailing standard approaches
to data analysis and interpretation of ionic relaxation and
then examine two special instances where linear scaling oc-
curs in s~v!, but is simultaneouslyabsent inM (v). This
previously unrecognized scaling mismatch is resolved by us-
ing only model-free general considerations to demonstrate
how scales ins~v! are incorporated intoM (v) in an irre-
ducible manner when data are transformed. The importance
of these findings is that, in both instances, even the most
fundamental notions about ion dynamics drawn from thes
representation are essentiallyreversedfrom those previously
drawn from considerations ofM (v) alone.

In the second section, we consider the dielectric response
of dipolar liquids. We again review prevailing data analysis
methods and draw particular attention to numerous similari-
ties with those methods used for ionic glasses. We demon-
strate that a scaling approach proposed by Dixon8,24 to col-
lapse«9(v) data for dipolar liquids can also be successfully
applied to collapseM 9(v) of an ionic glass. Guided by the
scaling mismatch we observed in the ionic case, we provide
evidence that an alternative data representation exists where
simple linear scaling prevails.

Throughout the paper, we endeavor to keep our argu-
ments as rudimentary as possible by avoiding the use of any
specific model or theory. While these results at present apply
only to the ionic glasses and dipolar liquids we have inves-
tigated, there is a generic flavor about our findings which
suggests straightforward extensions could be made to relax-
ation phenomena found in other fields.

II. IONIC GLASSES

The dielectric response of ionic glassformers is dominated
by the diffusion of cations through the glass matrix. At low
frequencies, the random diffusion of these cations results in a
dc conductivitys(v)5v«9(v)5s0 @i.e., «9(v)}v21#. At
higher frequencies, a power law dispersion is observed@see
Eq. ~1!#, «9(v)}vn21. Thus the presence of mobile ions
results in«9(v) which varies monotonically with frequency
and exhibits no peak corresponding to the one seen in dipolar
relaxation.

An additional consequence of free charge carriers is the
artifact of electrode polarization,2 which occurs when ions,
unable to exchange with typical metal electrodes, pile up
near the interface, resulting in substantial rises in«8(v) at
low frequencies. In the 1970s, many researchers opted to
study the dielectric response caused by ion relaxation using
the reciprocal quantityM* (v)51/«* (v), known as the
electrical modulus,2,3 in which the electrode polarization ar-
tifacts are suppressed. Typical features ofM* (v) include a
broad, asymmetric peak in the imaginary part and a sigmoi-
dal step in the real part. The similarity of these shapes to loss

and storage of mechanical stress associated with relaxation
processes is evident and has naturally led to similar interpre-
tations. Since the breadth ofM 9(v) is typically greater than
1.14 decades~characteristic of a Debye or single exponential
decay!, the shape ofM* (v) is commonly associated with a
nonexponential time-dependent process. By far, the most
common choice is the stretched exponential decay function

f~ t !5exp$2~ t/t!b%, ~2!

related toM* (v) as3

M* ~v!5
1

«`
H 12LS 2

df

dt D J ,
where L(x) is the Laplace transform ofx. The stretching
parameterb is approximately equal to 1/W, whereW is the
full width at half maximum~FWHM! of M 9(v) normalized
to that ~1.14 decades! of a Debye process. Although the
stretched exponential decay function is suitable for describ-
ing much ofM* (v), from low frequency up to just past the
maximum inM 9(v), it nearly always underestimates the
measured data at high frequencies.

Based upon consideration of the high-frequency limiting
variations of the fit given by Eq.~2! and of the data, the
relationn512b has often served to bridge the analysis of
M 9(v) with that of the power law seen ins~v!. However,
this relationship is not strictly valid25 since in reality the fit
of Eq. ~1! fails to account for the data at high frequencies.
The conductivity scaling exponentn is sometimes referred to
as the ‘‘coupling parameter’’ in reference to a popular cou-
pling model17–19for non-Debye dynamics. In the instance of
ionic relaxation, this model proposes that interionic interac-
tions ~coupling! are responsible for the non-Debye response.
A situation of n51 corresponds to maximum coupling
strength and would be reflected inM* (v) by an extremely
broad (b50) decay, while no coupling (n50) would yield
a Debye relaxation (b51).

In the following we reexamine two special cases: one an
ionic glass in the melt aboveTg where the modulus shows
substantial broadening with increasing temperature and the
other a concentration study of alkali-thioborate glasses con-
ducted by Patel and Martin26–28where the modulus exhibits
substantial narrowing with decreasing ion concentration. Al-
though both situations appear to suggest that linear scaling is
not present, we demonstrate that simple linear scaling is in
fact maintained in the conductivity representation of these
data.

A. CKN

Measurements on ionic glass formers extending through
the glass transition are scarce,29–31 but indications are that
while the shape ofM 9(v) is constant belowTg , it broadens
appreciably with increasing temperature aboveTg . Conse-
quently,M 9(v) spectra can be adjusted or ‘‘scaled’’ so as to
collapse onto a common curve for temperatures belowTg ,
but cannot be similarly collapsed aboveTg .

32 This behavior
was nicely demonstrated by the temperature dependence of
the electrical modulus of the fragile glass former
0.4Ca~NO3!2-0.6KNO3 ~CKN! measured by Howell, Bose,
Macedo, and Moynihan29 ~HBMM !. They observed that the
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shape ofM 9(v) was temperature independent belowTg and
henceb was constant. Upon increasing temperature above
Tg , M 9(v) broadened andb steadily decreased, suggesting
an increase in the non-Debye behavior. This particular be-
havior seems to be unique to electrical relaxation, since all
other relaxation processes~e.g., mechanical, light scattering!
typically exhibit opposite behavior with a tendencytoward
Debye behavior with increasing temperature.32

In an effort to understand the puzzling temperature depen-
dence seen in CKN, we have repeated these measurements
with an emphasis upon the conductivity. CKN was pre-
pared from reagent-grade materials, dried, and melted at
about 600 K. At 450 K, a small commercial air variable
capacitor (C0'19 pF) was placed into the melt and the
sample cooled to 333 K ('Tg) where it was annealed in the
manner of HBMM. Impedance measurements15 were per-
formed from 262.6 to 377.8 K at about 5-K intervals roughly
every 30 min.

Figures 1~a! and 1~b! show our results forM 9(v) and
s~v!, respectively. In Fig. 1~a! we have normalizedM 9(v)
by its maximum value and adjusted the frequency scale such
that the peaks coincide. As can be seen from the figure, it is
not possible to reduce the data to a common curve. As ob-
served by HBMM previously, each spectrum systematically
broadens with increasing temperature aboveTg . In Fig. 1~b!,
however, we scales~v! according to Eq.~1! over the same
temperature range and find a surprisingly different result,
namely, thats~v! temperaturescan be scaled, i.e., collapsed
to a single curve, well described by a power law withn
50.61.

The discrepancy betweenM 9(v) ands~v! illustrated in
Fig. 1 has not to our knowledge been previously recognized
in the 20 years since the electrical modulus formalism was
introduced and has a profound impact upon our understand-
ing of ion dynamics. The interpretation commonly drawn
from M 9(v) in Fig. 1~a! is thatsignificant changesoccur in
the mechanism of ion motion nearTg . The power law analy-
sis instead indicates that the mechanism of ion motion is
actuallyunchangedover the entire temperature range inves-
tigated.

To reconcile the discrepancy betweenM 9(v) ands~v!,
we consider explicitly how scaling forms fors~v! and
«8(v) become incorporated intoM* (v). Again, we strive to
avoid model-dependent formulations to keep the develop-
ment as generally valid as possible. Sinces~v! varies like

s5s01Avn, ~3!

a form for «8(v) consistent with the Kramers-Kronig rela-
tions would be22,33

«85«`1Bvn21, ~4!

whereB/A5tan(np/2) and«` is the background contribu-
tion to «8 arising from unrelated processes occurring at
higher frequencies. If we now rewrite Eq.~3! in the form of
a scaling relation

s5s0@11~v/v0!
n#, ~5!

then Eq.~4! becomes

«85«`@11l21 tan~np/2!~v/v0!
n21#, ~6!

where

l5
v0

~s0 /«`!
. ~7!

Although these power law forms fail to describe«8(v) at
low frequencies15 and s~v! at high frequencies where the
conductivity is dominated by constant loss phenomena,11,21

they do provide an accurate description of the experimental
data over a range of frequencies of present interest which
bracket the peak inM 9(v). They are particularly successful
at describing the high-frequency wing ofM 9(v), where fits
by Eq. ~2! consistently fail. Starting from Eqs.~5! and ~6!,
one can now expressM* (v) in terms of the reduced fre-
quencyy5v/v0 as

33

M 8~y,l,n!5
1

«`

ly@ly1tan~np/2!yn#

~11yn!21@ly1tan~np/2!yn#2
,

~8a!

M 9~y,l,n!5
1

«`

ly~11yn!

~11yn!21@ly1tan~np/2!yn#2
.

~8b!

A key feature of Eqs.~8! is the presence ofl as an irre-
ducible parameter. In Fig. 2 we demonstrate the influence of
this irreducible parameter upon the shape ofM 9(v) by com-
putingM 9(y,l,n) from Eq. ~8b! for fixed n50.60 at a va-
riety of l between 100 and 0.1. As shown in the figure,
M 9(y,l,n) can generally be segmented, at least forl.1,

FIG. 1. ~a! M 9(v) of CKN reduced so that peaks coincide
showing the failure of scaling. The inset shows how the width of
M 9(v) ~normalized to that of a Debye relaxation! narrows with
decreasing temperature.~b! s~v! of CKN reduced according to Eq.
~1!. Both above and belowTg , the data collapse upon a common
power law withn50.6160.03.
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into three distinct regions of frequency-dependent behavior
relative to the position of the peakyp :

~ I! y1, y,yp ,

~ II ! y21/W, y.yp ,

~ III ! yn21, y@yp . ~9!

In the first and second regions, the nonexponential decay
function @Eq. ~2!# provides an adequate description of
M 9(v). However, that same fit underestimates region III,
where the slope is determined solely by the conductivity ex-
ponentn. It is only region II that is affected by variations in
l. As l is increased,substantial narrowing~i.e., W de-
creases! occurs in the modulus~see inset!. Again, we stress
that this narrowing occurs as a direct result ofl. All the
curves in Fig. 2 are obtainedwith n fixed, which implies
s~v! remainsscale invariant.

For CKN we can computel directly from the data@see
Eq. ~7!# and the result is shown in Fig. 3. We find thatl

increases with decreasing temperature and, as shown in the
inset to Fig. 3, that our experimentalb~l! is in good agree-
ment with thel-dependent narrowing found from the simu-
lation. We conclude that the temperature-dependent changes
in b occur without corresponding loss of scaling in the con-
ductivity and are merely the result of how scales in the con-
ductivity representation become irreducibly incorporated into
the modulus representation. These scales are just a reflection
of changing thermodynamic fields, and consequently the
shape changes inM* (v) do not indicate anyintrinsic
changes in ion dynamics nearTg . In sharp contrastto the
findings of HBMM, the present power law analysis of the
conductivity indicates a relaxation process that isinvariant
with temperaturesince the conductivity can be described by
a simple scaling relation throughout the entire temperature
rangebothabove and belowTg .

The value ofn50.61 seen here for CKN is slightly less
than the 0.67 seen in many other glasses and could indicate
that CKN belongs to a different universality class. Whether
this exponent exhibits a temperature dependence at much
higher temperatures is not known. However, we note the
dynamic light scattering measurements34 of the structural re-
laxation in CKN over the same temperature range of the
present study could be described by a stretched exponential
with a constantb50.3960.05 ~i.e., 12b50.61!.

B. Thioborate glasses

In the literature we are aware of only one other example
of a system in which substantial changes inb were observed.
Patel and Martin26 ~PM! studied the sodium-thioborate
glassesxNa2S(12x)B2S3 and observed extreme narrowing
~b approaching 1! of M 9(v) asx was decreased. Their in-
terpretation of this narrowing was based upon the coupling
model view thatn512b is a measure of the interaction
between ions. Naturally, asx decreases, the average spacing
between cations increases, leading to a reduction of the
cation-cation coupling~n approaches 0! and eventually a De-
bye or exponential relaxation (b51) of the ions as they
move about independent of one another.

On the surface, these findings appear to provide strong
support for the coupling model picture of ion motion. Even
more importantly, the concentration dependence ofb ob-
served by PM suggests a corresponding concentration depen-
dence ofn, as implied byn512b. If this is true, then
universalityof n is clearly ruled outsincen would depend
upon the ion separation distance and must necessarily vary
from one system to the next. However, the validity of the
n512b relationship is questionable. Indeed, in a more re-
cent publication,35 direct fits of Eq.~1! to s~v! of the Na-
thioborates were reported which indicate little or no system-
atic concentration dependence of the power law exponent,
with n'0.7, near the universal value. Thus it again appears
that one’s perspective on ion dynamics is substantially al-
tered by examining the same data in an alternative represen-
tation.

In light of these considerations, we have reexamined the
measurements of Patel with an eye towards how the conduc-
tivity varies with concentration. Our method follows that
used for CKN above where we begin by estimatingl(x)
from data published in the literature26–28,35and provided by

FIG. 2. Plot ofM 9(y,l,n) evaluated from Eq.~8b! for n fixed
at 0.60 and a variety ofl. The three characteristic regions discussed
in Eq. ~9! are highlighted. The inset shows same plots on a linear
scale to highlight the pronounced broadening inM 9(v) that occurs
with decreasingl.

FIG. 3. Plot of l(T) determined from conductivity data for
CKN. The inset showW21(l) obtained from the simulations pre-
sented in Fig. 2~dashed line! together with experimental values of
W21(l) for CKN ~open circles! for comparison.
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Patel.36 We then compare experimental values ofb@l(x)#
directly with b~l! obtained from simulations of
M* (y,l,n) with fixed n50.70. A concurrent analysis is
conducted for the comparable potassium-thioborate glasses
xK2S(12x)B2S2, recently presented in thesis work of
Patel.27,36

At each composition, values ofl were determined from
s~v! and«8(v) over a range of temperatures and an average
was obtained. The resultingl(x), shown in the inset to Fig.
4, indicate substantial increases inl with decreasingx, be-
low about x50.03. For the Na-thioborate glassesl}1/x,
whereas for the K-thioborate glassesl}x21/2. In Fig. 4 we
plot the experimentally observedb(x) now asb@l(x)#, to-
gether with b~l! as determined from simulations of
M 9(y,l,n50.70). Despite the differingl(x) exhibited by
each glass, the agreement inb~l! is excellent.

We can provide some understanding for the increase ofl
with decreasing ion concentration. Since the dc conductivity
results from random diffusion of ions, each hopping about
the lattice at some temperature-dependent rate proportional
to v0 , it can be expressed through the Nernst-Einstein rela-
tion ass0}(e

2re /kT)j
2v0 , wherere is density of ions and

j is the rms distance covered in a single hop.15 It then fol-
lows from Eq.~7! thatl is proportional tokT«` /e

2rej
2 and,

owing to theexplicit inverse dependence uponre , should
increase with decreasing ion concentration as was observed.

In any event, results of our comparison betweenM (v)
and s~v! represent an important finding which leads us to
draw conclusions regarding the concentration dependence of
ion motion which areoppositeto those drawn by PM. As we
have shown, theb(x) dependence observed by PM conforms
to changes in the shape ofM 9(v) which arise solely from
changes in the scales~particularlyre! without the necessity
for changes in the interionic coupling as characterized by
n. This coupling parameter is independent of ion concentra-
tion, and hences~v! is scale invariantover the entire range
of compositions investigated. Thus there exists aunique
scaling function, determined solely by the exponent n, which
characterizes the fundamental physics underlying ion mo-
tion. The specific value ofn observed here is approximately
the same as that (n50.6760.05) seen in a large variety of
other ion-conducting glasses and supports the universality

proposal. Furthermore, the absence of a compositional de-
pendence ofn rules out the importance of anyinterionic
interactions upon the nature of ion motion.

III. DIPOLAR LIQUIDS

In dipolar liquids a dielectric response results from the
reorientation of permanent dipoles and is most often studied
using «* (v). This reorientation is slowed dramatically in
the supercooled regime just above the glass transition mak-
ing the relaxation accessible to traditional radio frequency
techniques. The analysis of«* (v) is much the same as that
applied toM* (v) in ionic glasses since the shapes of these
two functions are remarkably similar. For example, both ex-
hibit the same three regions of frequency-dependent behavior
outlined in Eqs.~9!, both are reasonably well described in
the first and second regions by Eq.~1!, and in both cases this
description underestimates the data in the high-frequency re-
gion. Both show temperature dependencies forb, but while
M 9(v) for ionic glasses (Mi9) narrows on approach toTg
from above,«9(v) in dipolar liquids («d9) broadens.

As a consequence of the temperature-dependent broaden-
ing of «d9(v), no linear scaling is possible in this data rep-
resentation. Instead, in a recent series of letters, Dixon and
co-workers8,37,38 have introduced a scaling approach by
which the dielectric response could be collapsed to a single
scaling curve. They examined a dozen molecular glass-
forming liquids and showed that plots ofY«

5(1/W)ln(«9vp /D«v), whereW is the FWHM of «d9(v)
normalized to that of a Debye process~1.14 decades! and
D«5«d8(v50)2«d8(v5`) is the relaxation strength, ver-
susX«5(1/W)(111/W)ln(v/vp) did in fact collapse all the
spectra onto a single, hence universal, scaling curve. Since
then, the dielectric loss of an orientationally disordered crys-
tal, cyclo-octanol, has been included to this same scaling
curve and suggests that the approach may be of a more uni-
versal nature than previously recognized.37 The scaling ap-
proach has also been used to provide indirect evidence for a
special divergent susceptability38 near the glass transition.
However, deviations from this universal curve have been
noted for polymeric glass formers,9 and others39 have re-
cently suggested the scaling is only approximately success-
ful, failing at large values ofX« . Further, the scaling ap-
proach is not linear, and there seems to be no physical
explanation for this nonintuitive scaling approach.

Driven by the similarities in the frequency dependence
of «d9(v) and Mi9(v) and the similar manner by which
Eq. ~1! underestimates the high-frequency data in each,
it seems only natural to attempt to Dixon scaling approach
for Mi9(v), with YM5(1/W)ln(M9vp /DMv) and XM

5(1/W)(111/W)ln(v/vp). Again, this scaling is motivated
entirely from the parallels which we have noted above be-
tween«d9(v) andMi9(v), including evidence from Menon
and Nagel,38 that«d9(v) generally exhibits frequency depen-
dences identical to those outlined in Eqs.~9!.

Results for CKN are shown in Fig. 5 where the Dixon
scaling approach is quite successful in collapsingMi9(v) for
a range of temperatures~including Tg! over which W
changes substantially from 1.1 to 1.8. Furthermore, the
present scaling curveYM(XM), is virtually identical to the

FIG. 4. Comparison ofb@l(x)# for alkali-thioborate glasses
with the theoretical prediction~solid line! based upon Eq.~8b! with
n fixed at 0.70. The inset showsl(x) as discussed in the text.
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universal curveY«(X«) found for a dozen supercooled dipo-
lar liquids by Dixonet al.,8 except forXM.4 where system-
atic deviations occur. The slope ofYM(XM) increases
steadily from20.9 nearXM51 to about20.7 nearXM
57, but there is no clear evidence that a limiting power law
YM}XM

2g is attained. We do note though that the data at
XM.5 when fit by a single power law yield a slopeg
50.7060.03, in close agreement with the value 0.7260.03
found38 in the dipolar case. Again, all this scaling occurs
with apparent indifference to the glass transitionTg
'335 K, where the temperature dependence ofvp changes
abruptly as shown in the inset of Fig. 5.

The apparent success of Dixon dipolar scaling for ionic
CKN is an interesting result since the connection between
these two dielectric phenomena is not transparent. The physi-
cal processes in each appear to be quite different;«d9(v) is
associated with dipolar reorientation, whereasMi9(v) results
from ionic motion. The finding, however, appears inconsis-
tent with our earlier contention that the ionic spectra for
CKN exhibit linear scaling ins~v! with a temperature-
independent exponentn. To see this, consider how the
Dixon scaling acts upon each of the three regions in Eqs.~9!.
The Dixon approach results in the following corresponding
dependences forY(X):

~ I! X0,

~ II ! X21,

~ III ! X~n22!/@11~1/W!#5X2g. ~10!

So if n is constant andW varies with temperature~as we
contend for CKN!, g should likewise be temperature depen-
dent, making the apparent success of the scaling for CKN in
Fig. 5 at largeX an unexpected result.

To understand one possible source for this discrepancy,
we return to our formal expressionM 9(y,l,n) for assis-
tance. We start by extending theM 9(y,l,n) curves shown in
Fig. 2 to some arbitrarily wide frequency window (1026

,y,1018) and then perform the Dixon scaling. The result
shown in Fig. 6~a! is what we had expected. We find that
while the scaling is successful~for l>1! in regions I and II,
the tails of each individual spectrum, which vary asvn21

regardless ofl ~orW!, project outward in a tangential fash-
ion asX(n22)/@11(1/W)# and cannot be incorporated into the
Dixon master curve.

The wide frequency window used to construct Fig. 6~a! is
experimentally unrealistic though. A more typical window
might at best span only ten decades beyondvp . Indeed, if
the evaluation ofM 9(y,l,n) is truncated to a narrower win-
dow of frequency extending only fromy51026 to y5106,
as shown in Fig. 6~b!, these tangential tails are no longer
visible and the success of the Dixon scaling is enhanced.
Hence the apparent success of the Dixon scaling obtained in
Fig. 5 for CKN may in fact be a fortuitous consequence of a
limited frequency window.

Do the results in Figs. 6~a! and 6~b! for the ionic case
imply that the actual success of the Dixon scaling in the
dipolar situation likewise depends upon the frequency range
accessible? A clarification of this issue will necessarily re-
quire spectra which cover a wider frequency range, although
we note that an already impressive range of 13 decades was
employed in the study by Dixonet al.8

Nevertheless, high-frequency data are very important for
determining the actual success of the scaling. One can show
@see Eq.~10!# that application of the Dixon approach to re-
gions I and II amounts to little more than a normalization
procedure, in which the slope of«9(v) in region II (1/W) is
first extracted and then used to adjust spectra toY5X21.

FIG. 5. Dixon scaling approach applied toMi9(v) of CKN from
Fig. 1~a!. The solid line indicates the approximate slope of the
scaling curve at largeXM , g50.7060.03. Crosses locate the po-
sition ofY«(X«) observed for several dipolar liquids~Ref. 8!. The
inset shows how the temperature dependence ofvp/2p for
Mi9(v) ~solid circles, Ref. 30; open circles, present work! changes
significantly nearTg .

FIG. 6. ~a! Plot of the Dixon transformation applied to
M 9(y,l,n) evaluated from Eq.~8b! for n fixed at 0.60 and 1026

,y,1018. The solid line indicates failure of the data to collapse at
high frequencies.~b! The same spectra now truncated aty5106.
The inset shows an expanded view of Fig. 6~a! highlighting devia-
tions from the Dixon scaling curve for smalll.
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This part of the scaling is not particularly insightful. Instead,
it is only in region III where actual success of the scaling
approach represents a potentially significant finding. Unfor-
tunately, this third region is also the least represented portion
of the scaling curve. For any typical finite-frequency win-
dow, region III (X.5) is chiefly defined by only the few
lowest-temperature data sets wherevp is positioned to the
low-frequency side of the window. Spectra at higher tem-
peratures are not equivalently represented at largeX, but
instead are systematically truncated by the window edge as
vp increases with increasing temperature. Since a majority
of the individual spectra do not extend into region III, the
success of the Dixon transformation atX.5 may only be
fortuitous. Some support for this position comes from recent
observations9,39 that despite agreement in regions I and II,
deviations from the DN master curve do occur atX.5.

While we acknowledge that many of the issues we raise
regarding the Dixon scaling rely upon our assumption that
M 9(y,l,n) ~developed for the ionic case! behaves in the
same fashion as«d9(v), we wish to highlight an additional
interesting feature inM 9(y,l,n) which surfaces at smalll.
As shown in the inset to Fig. 6~b!, spectra atl,3 exhibit a
noticeable deviation (Y.0) from the Dixon curve (Y50) at
negativeX. This behavior is interesting since a similar de-
viation was recently highlighted by Schonhalset al.9 for
polymericglass formers. This deviation can be traced back to
the emergence at smalll of a fourth region of frequency
dependence occurring aty<yp ~visible in Fig. 2 for
l50.1!, whereM 9(y,l,n)}yk with k,1. While the Dixon
transformation precisely compensates thev1 behavior of re-
gion I, it overcompensates thevk behavior of this new re-
gion, leading to the observed deviation seen in the inset of
Fig. 6~b!. This suggests a possible classification of
materials—simple molecular liquids with largel and poly-
mers with smalll—and may be worthy of future investiga-
tion.

In any event, the numerous similarities seen in the dielec-
tric relaxation for the dipolar and ionic situations and the
apparent success of Dixon scaling, fortuitous or not, suggests
to us a new perspective on the absence of linear scaling for
«d9(v). This perspective results from the one-to-one corre-
spondence between the frequency-dependent features of
Mi9(v) and«d9(v) taken together with our previous finding
illustrated in Fig. 1 that whenMi9(v) ~which violates linear
scaling! is transformed into a reciprocal representation,
namely, the conductivity given bys i(v)5v« i9(v), the re-
laxation then displays linear scaling.

This new perspective is deepened by the improved under-
standing ofMi* (v) which we have gained through examin-
ing its power law origins in an alternative data representa-
tion. Specifically, we saw how scaling parameters present in
s i* (v) become convolved intoMi9(v) in a nontrivial fash-
ion such that variations in these scales~i.e., l! alone, say,
with temperature, could cause significant changes in the
shape ofMi9(v), resulting in the apparent absence of linear
scaling.

Given the similarities inMi9(v) and«d9(v) that we have
discussed above, it is natural to speculate that there is an
alternative representation related to«d9(v) just ass i(v) is
related toMi9(v), which exhibits linear scaling. Since the

immediate corollary tos i(v), vMd9(v), has no traditional
interpretation for dipolar materials, we instead have chosen
to examine the resistivity,r*5M* / iv, which like
vMd9(v) is reciprocal to«* , but yet retains a physical iden-
tity.

To test these ideas, we have measured«d* (v) of glycerol
and salol at several temperatures over a range of frequencies
from 1 Hz to 1 MHz using a commercially available imped-
ance analyzer~Schlumberger 1260!. Our dielectric cell again
consisted of a commercially available air variable capacitor
~with a nominal capacitance of 19 pF in air!, which was
immersed into a small vial of reagent grade melt. The vial
was situated in a cryostat and its temperature regulated to
better than60.2 K.

Examples of«d9(v) for glycerol are shown as an inset to
Fig. 7~a!, and analysis has revealed that the peak positions
and widths are in excellent agreement with other literature
values.24 As observed by others, we find a modest broaden-
ing of «d9(v) with decreasing temperature for glycerol and a
more substantial broadening for salol. In neither case, how-
ever, are the changes as dramatic as forMi9(v) of ionic
CKN. In Figs. 7~a! and 7~b!, we plotrd(v)5Md9/v for data
at several temperatures which have been shifted vertically
(r0) and horizontally (v0) so as to best coincide. From these
figures, we conclude thatrd(v) can be scaled in a linear
manner for both materials. The scaling curves so obtained
exhibit two apparent asymptotic trends; a power law at high
frequencies of the formrd(v)}vm22 crossing over at lower

FIG. 7. ~a! Plot of rd(v) of glycerol at several temperatures
linearly scaled~see discussion in text! so as to collapse to the com-
mon curve. The solid line indicates the asymptotic power law ap-
parent at high frequencies. Inset shows«d9(v/2p) of glycerol at
213.8, 222.2, 234.6, and 250.0 K for comparison.~b! Plot of
rd(v) of salol at several temperatures linearly scaled so as to col-
lapse to the common curve.
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frequencies to a constant,r0 . Thus, as we observed in the
ionic situation, switching to the reciprocal representation
seems to produce a linearly scalable quantity and in principle
simplifies the overall description of the dielectric response.

IV. SUMMARY

In conclusion, we have explored similarities in the dielec-
tric response of ionic and dipolar glassformers. We have
demonstrated that the scaling approach proposed by Dixon
et al. previously applied only to dipolar relaxation is also
successful for ionic relaxation and seems to be of a more
universal nature than previously thought. Despite its suc-
cesses, however, a physical interpretation of this nonintuitive
scaling approach is still missing. In ionic glasses we have
demonstrated how acutely the interpretation of relaxation
data can be reversed merely by examining different represen-
tations of the same data. Two examples were reviewed for

which the data in one representation suggested significant
changes in ion dynamics occur in the melt aboveTg and in
the glass at low ion concentration. In an alternative represen-
tation, this same data obey simple linear scaling to revealno
intrinsic changesoccurring in the ion motion. As a logical
extension of our findings for the ionic case, we demonstrate
that a similar situation occurs in the dipolar case where re-
sponse functions for dipolar relaxation exhibit linear scaling
in an alternative data representation and can be collapsed
onto a master curve in a straightforward manner.
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