

Missouri University of Science and Technology Scholars' Mine

Physics Faculty Research & Creative Works

Physics

01 Aug 2017

Electron-Impact Ionization of Laser-Aligned Atoms --Contributions from Both Natural and Unnatural-Parity States

Andrew James Murray

James Colgan

Don H. Madison *Missouri University of Science and Technology*, madison@mst.edu

Matthew Harvey

et. al. For a complete list of authors, see https://scholarsmine.mst.edu/phys_facwork/1738

Follow this and additional works at: https://scholarsmine.mst.edu/phys_facwork

Part of the Physics Commons

Recommended Citation

A. J. Murray et al., "Electron-Impact Ionization of Laser-Aligned Atoms -- Contributions from Both Natural and Unnatural-Parity States," *Journal of Physics: Conference Series*, vol. 875, no. 7, Institute of Physics - IOP Publishing, Aug 2017.

The definitive version is available at https://doi.org/10.1088/1742-6596/875/7/062005

This work is licensed under a Creative Commons Attribution 3.0 License.

This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been accepted for inclusion in Physics Faculty Research & Creative Works by an authorized administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

Electron-Impact Ionization of Laser-Aligned Atoms – Contributions from both Natural and Unnatural-Parity States.

Andrew James Murray¹, James Colgan^f, Don Madison[†], Matthew Harvey^{*} and Ahmad Sakaamini^{*}

^{*} Photon Science Institute, School of Physics & Astronomy, University of Manchester, Manchester M13 9PL, UK. [£] Los Alamos Labs, Los Alamos, New Mexico, NM 87545, USA. [†] Department of Physics, Missouri Science & Technology, Missouri, Rolla, MO 65409, USA.

Synopsis. The progress of experimental and theoretical measurements for (e,2e) ionization cross sections from laser-aligned atoms is presented here. It is found that both natural and unnatural parity contributions must be included in the models to emulate the experimental data.

In this work experimental and theoretical results will be presented for (e,2e) ionization measurements from laser-excited and aligned atoms. The experimental data are taken in Manchester, whereas theoretical results are from the groups of Don Madison in Missouri, and James Colgan at Los Alamos Labs in the USA.

The motivation for these studies arises since time-independent distorted wave (DWBA, 3DW) models predict zero flux for atoms aligned orthogonal to the scattering plane (as in fig 1,2), in disagreement with experimental data. By contrast, time-dependent close coupling (TDCC) models predict a non-zero crosssection under these conditions, and conclude it is the unnatural parity contributions to the cross section that produce this flux [1-4]. An unnatural parity state has parity $(-1)^{L+1}$, compared to a natural parity state that has parity $(-1)^{L}$.

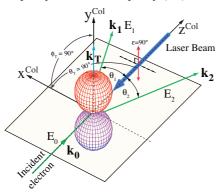


Figure 1. Ionization from atoms aligned orthogonal to the scattering plane using linearly polarized radiation at $\varepsilon = 90^{\circ}$. DW theories predict the cross section to be identically zero in this configuration, whereas the TDCC model predicts a finite cross section, as found by experiment.

It is important in these studies that the laserexcited P-state is fully aligned (L=1, mL=0), with minimum contribution from any orientation of the target (L=1, $m_L = \pm 1$). For this reason alkali-earth atoms are chosen since they have no hyperfine structure, and so can be aligned to better than 99% accuracy. Mg, Ca and Sr are to be used in these studies, so the effects of mass can also be determined.

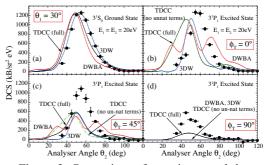


Figure 2. Comparison of experiment and theory for Mg, in the $3^{1}S_{0}$ ground state and $3^{1}P_{1}$ excited state at different angles ϕ_T to the plane. The data are normalized to the TDCC calculation for the $3^{1}S_{0}$ state. The TDCC calculations are shown both with and without unnatural parity contributions.

The atoms are aligned using continuous wave radiation. Cross-sections will be determined for the incident electron in the scattering plane (as in fig. 1), and for out-of-plane geometries. The laser radiation will be injected into the interaction region through angles determined by theory, so that the cross-section sensitivity to different parity contributions can be explored.

The progress of this combined study will be presented here.

References

- [1] KL Nixon et al. 2011 Phys Rev Lett 106 123201
- [2] KL Nixon et al. 2014 Phys Rev Lett 112 023202
- [3] S Amami et al. 2014 Phys Rev A 90 062707
- [4] G Armstrong et al. 2015 Phys Rev A 92 032706

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Published under licence by IOP Publishing Ltd

¹E-mail: Andrew.Murray@manchester.ac.uk