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ON SIZE MAPPINGS

WLODZIMIERZ J. CHARATONIK AND ALICJA SAMULEWICZ

ABSTRACT. A real-valued mapping r from the hyperspace
of all compact subsets of a given metric space X is called a
size mapping if r({x}) = 0 for x ∈ X and r(A) ≤ r(B) if
A ⊂ B. We investigate what continua admit an open or
a monotone size mapping. Special attention is paid to the
diameter mappings.

1. Introduction. Size is a natural notion: it is a nonnegative real
number informing how “large” a given object is. The notion of category
allows us to define small and large sets (in topological terms) sets of
the first category (size zero) and of the second category (size one). Also
volume, area and their generalization Lebesgue measure in Rn, are
examples of size. Many prominent mathematicians (for instance Henri
Lebesgue, Felix Hausdorff) contributed to the development of measure
theory, created with connection to the need of defining size of sets. So
we can say that a set is large if its measure (or external measure) is
a big number. On the other hand, we can say that a set is large if it
contains two points which are far from each other. Therefore we have
a few examples of size: category, Lebesgue measure (and in general
nonatomic measures) and diameter. All of them have two properties
which agree with our intuition of size: any single point is of size zero
and the size of a subset is not bigger than the size of a set containing
it. Those properties can be accepted as the definition of size. In the
following we will consider size mappings (compare [16]) defined on the
hyperspace of all compact nonempty subsets of a given metric space
equipped with the Hausdorff metric (we will denote it by (2X , dH)).
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46 W.J. CHARATONIK AND A. SAMULEWICZ

Definition 1.1. A mapping r : (2X , dH) → R is said to be size
provided that

1) r({x}) = 0 for each point x ∈ X;

2) if A ⊂ B then r(A) ≤ r(B) for every set A,B ∈ 2X .

Let us notice that diameter and nonatomic measures do not “distin-
guish” some sets and their proper subsets. For instance, the diameters
of the interval [0, 1] and the set {0, 1} are equal. It is the same about
the Lebesgue measure of the Cantor set and its two-point subset. More-
over, nonatomic measures fail to be continuous.

Definition 1.2. A continuous mapping ω : 2X → R is said to be a
Whitney map provided that it satisfies the following conditions:

1) ω({x}) = 0 for each point x ∈ X;

2) if A ⊂ B and A �= B, then ω(A) < ω(B) for every set A,B ∈ 2X .

For the existence of a Whitney map, see [15, pp. 25 27].

Nadler, Jr., asked whether every continuum admits a monotone or
open Whitney map [15, pp. 468 469]. These questions were answered
in the negative by W.J. Charatonik (see [1] and [3, p. 215]; compare
Theorem 4.4 and Example 4.5 below). Further, Nadler asked whether
the circle S1 admits a metric (equivalent to the Euclidean one) such
that the diameter mapping is open [15, p. 472]. In this paper we give
a positive answer to this question (see Example 5.6).

Problem 1.3. For what continua X does there exist, for some equiv-
alent metric on X, an open (monotone, confluent) diameter mapping?

More generally, one can pose the following problem.

Problem 1.4. For what continua does there exist an open (monotone,
confluent) nontrivial size mapping?

In this paper we deal with those problems and we present some partial
results.
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Investigating openness of size mappings, we have seen that there are
two kinds of problems concerning openness: whether the size of a set
can be decreased or increased. Therefore we introduce the notion of
lower and upper semi-openness of a mapping into reals.

Then in Chapter 3 we investigate basic properties and relations
between notions of lower (upper) semi-openness, monotoneity and
confluence of size mappings. In Chapter 4 we show that for some
continua there is no confluent size mapping such that only singletons
have size zero. Chapter 5 deals with the diameter mapping. We prove
that some special kinds of continua admit an open diameter mapping.

2. Preliminaries. In this paper we consider metric spaces only. By
a continuum we mean a compact connected space consisting of more
than one point, and by a mapping we mean a continuous function. A
mapping f : X → Y between spaces X and Y is said to be

i) open if images of open subsets of X are open in f(X);

ii) monotone if preimages of points are connected;

iii) confluent if for every continuum K ⊂ f(X) and for every compo-
nent C of f−1(K) we have f(C) = K.

It is well known that open mappings of compact spaces and monotone
ones are confluent but not conversely.

Note that if Y is a subset of R equipped with the Euclidean metric,
then f : X → Y is open if and only if for every point x ∈ X and its
neighborhood U there is a number ε > 0 such that [f(x)−ε, f(x)+ε]∩
f(X) ⊂ f(U). Therefore, one can define further classes of mappings
having similar properties.

Definition 2.1. A mapping f : X → R is lower (upper) semi-open at
a point x ∈ X if for every neighborhood U there is a number ε > 0 such
that [f(x)− ε, f(x)]∩ f(X) ⊂ f(U) (or [f(x), f(x)+ ε]∩ f(X) ⊂ f(U),
respectively). It is called lower (upper) semi-open if it is lower (upper)
semi-open at every one of its points.

Now let us recall the definitions of some classes of spaces. By a
dendrite we mean a locally connected continuum containing no simple
closed curve. A local dendrite is defined as a continuum, every point
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of which has a neighborhood being a dendrite. It is well known that
a continuum is a local dendrite if and only if it is locally connected
and contains at most a finite number of simple closed curves (see [14,
p. 304]). A tree is a finite dendrite, i.e., a dendrite with finitely many
end points. The cone over a compact space X is the quotient space
(X × [0, 1])/(X × {1}) obtained by shrinking X × {1} in X × [0, 1] to
a point. The suspension of a compact space X is the quotient space
(X × [−1, 1])/(X × {1})/(X × {−1}) obtained by shrinking each of
X × {−1} and X × {1} to different points (vertices of the suspension).
Let us notice that cones and suspensions (of compact spaces) are
continua. We will use coordinates of points of cones and suspensions as
in the appropriate Cartesian products; in particular, A × {1} denotes
the one-point set for any A ⊂ X.

Recall that, for a given sequence of sets {Cn : n ∈ N} in a space X,
we denote by LiCn its lower limit, i.e., the set of points x ∈ X such
that each open neighborhood of x intersects all but finitely many of the
sets Cn; by LsCn its upper limit, i.e., the set of points x ∈ X such that
each open neighborhood of x intersects infinitely many of the sets Cn.
If LiCn = LsCn, we say that the sequence is convergent and denote
the common value of LiCn and LsCn by LimCn. Note that this notion
of convergence does agree with the one defined by the Hausdorff metric
([15, p. 4]).

3. Some properties of size mappings. It is obvious that every
monotone mapping is confluent but, in general, not conversely. If we
restrict our considerations to size mappings, the situation will slightly
change. Theorems 3.2 and 3.3 describe connections between lower semi-
open, monotone and confluent size mappings. To prove them we need
the following lemma.

Lemma 3.1. Let X be a continuum and r : 2X → R be a size
mapping. Then the set r−1([t, r(X)]) is arcwise connected for every
t ∈ [0, r(X)]. Moreover, if for every t ∈ [0, r(X)] the set r−1([0, t]) is
connected, then the mapping r is monotone.

Proof. Let t ∈ [0, r(X)]. The set r−1([t, r(X)]) is arcwise connected
because X belongs to it and for any element A ∈ r−1([t, r(X)]) there
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exists an ordered (by inclusion) arc in 2X joining A to X ([15, p.
59]). Now assume that for every t ∈ [0, r(X)] the set r−1([0, t])
is connected. The space 2X is unicoherent ([15, p. 178]), therefore
r−1(t) = r−1([0, t]) ∩ r−1([t, r(X)]) is connected and the mapping r is
monotone.

The following theorem states an equivalence between monotone and
confluent size mappings (for a Whitney map, see [4, p. 93]).

Theorem 3.2. Let X be a continuum and let r : 2X → R be a size
mapping such that r−1(0) is connected. Then r is monotone if and only
if r is confluent.

Proof. Since every monotone mapping is confluent, it suffices to show
the converse implication. Let t ∈ [0, r(X)] and C be components of
r−1([0, t]). Since r is confluent, then r−1(0) ∩ C �= ∅. So the set
r−1([0, t]) is connected because r−1(0) is connected. Therefore, by
Lemma 3.1, the mapping r is monotone.

Now we show a relationship between lower semi-openness and mono-
toneity of size mappings.

Theorem 3.3. Let X be a continuum and r : 2X → R be a size
mapping such that r−1(0) is connected. If r is lower semi-open, then r
is monotone.

Proof. Fix t ∈ [0, r(X)]. We prove that r−1([0, t]) is connected.
Suppose that there exist closed nonempty sets M and N in 2X such
that r−1([0, t]) = M ∪ N and M ∩ N = ∅. We consider two cases.

Case 1. r−1(0) ∩ M �= ∅ and r−1(0) ∩ N �= ∅. Then r−1(0) =
(r−1(0) ∩ M) ∪ (r−1(0) ∩ N ) and (r−1(0) ∩ M) ∩ (r−1(0) ∩ N ) = ∅, in
contradiction to connectedness of r−1(0).

Case 2. r−1(0) ∩ M = ∅, i.e., r−1(0) ⊂ N . Let t0 = inf {r(P ) :
P ∈ M}. Since M is compact, t0 is a positive number. The mapping
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r is lower semi-open, so for any set A ∈ M ∩ r−1(t0) and for every
neighborhood U of A we can find B ∈ U such that r(B) < r(A).
Obviously, such a set B belongs to N , so for every such A we can find
a sequence {An : n ∈ N}, with An ∈ N converging to A. Therefore,
A ∈ M ∩ N is in contradiction to the condition M ∩ N = ∅. We have
proven that r−1([0, t]) is connected for every t ∈ [0, r(X)]. Then, by
Lemma 3.1, r is monotone.

Remark 3.4. The converse implication to that of Theorem 3.3 is
not true. Namely, Illanes has shown in [12, p. 285] that there is a
continuum X having a monotone Whitney map (with the preimage
of zero connected) and such that no Whitney map on 2X is lower
semi-open. As another (simpler) example, one can consider any local
dendrite containing a simple closed curve equipped with a metric d
described in Theorem 5.20 below.

Theorem 3.3 implies that every open diameter or open Whitney map
is monotone. The following example shows that the assumption of
connectedness of the preimage of zero is essential.

Example 3.5. Let us consider the circle S1 equipped with such a
metric d that the diameter mapping diamd : (2S1

, dH) → R is open
(see 5.6) and the mappings g : S1 → S1 and r : (2S1

, dH) → R given
by the formulas g(z) = z2 and r(A) = diamd(g(A)). Note that r is an
open size mapping (see Proposition 3.6 below), but it is not monotone
because r−1(0) = {{z} : z ∈ S1} ∪ {{z, −z} : z ∈ S1} is not connected.

The following statement was used in Example 3.5.

Proposition 3.6. Assume that there exist a surjective mapping
f : X → Y and an open (monotone) size mapping r : 2Y → R. Then
there exists an open (monotone) size mapping r̃ : 2X → R defined by
the formula r̃(A) = r(f(A)).

Proof. The induced mapping 2f : 2X → 2Y between the hypersur-
faces of compact spaces X and Y is open (monotone) provided that
f : X → Y is [9, Theorems 3.2 and 3.5]. Thus the superposition of r
and 2f is an open (monotone) size mapping.
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Illanes [10, p. 517] proved the following theorem.

Theorem 3.7 (Illanes). For every locally connected continuum X,
there exists an open Whitney map for 2X .

So for every continuum which can be mapped onto a locally connected
continuum by an open (monotone) mapping, there exists an open
(monotone) size mapping.

Example 3.8. The Lelek fan ([5]) cannot be mapped onto any
locally connected continuum by an open or monotone mapping, because
confluent images of this continuum are homeomorphic to it (see [5]).
However, the Lelek fan admits an open Whitney map by [8, p. 678].

4. Size mappings for some special continua. Now assume that
r : 2X → R is a size mapping such that r−1(0) = F1(X) = ({x} :
x ∈ X}. We answer Problem 1.4 restricted to the class of mappings
being a common generalization of diameter and Whitney map, and we
describe some continua which have no confluent size mapping. The
following concept is a modification of one due to Czuba ([6]).

Definition 4.1. A proper nonempty closed subset A of a continuum
X is said to be an R3-set provided that there exists an open set U
containing A and a sequence {Cn : n ∈ N} of components of U such
that LiCn = A.

Example 4.2. Consider a plane continuum X consisting of the
segments joining the plane 〈0, 2〉 to the points 〈1/n, −1〉, the segments
joining the point 〈0, −2〉 to the points 〈−1/n, 1〉 and the segment
{0} × [−2, 2]. The segment {0} × [−1, 1] is an R3-set (even an R3-
continuum) in X.

Example 4.3. Take the Cantor ternary set C in the segment
[0, 1] × {0}. Replace every contiguous segment by a circle of the same
diameter described on it. The continuum consists of C, of all those
circles (let us denote their union by B) and two rays (i.e., one-to-one
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continuous images of [0, ∞)) approximating the corresponding upper
and lower halves of B ∪ C lying in the upper or lower half-planes,
respectively. This continuum, constructed by Czuba (unpublished),
contains an R3-set C ∩ ([0, 1/3] × {0}), but no R3-continuum.

Let us notice that containing R3-sets is a topological property, inde-
pendent on the choice of metric. This property is connected to admit-
ting confluent diameter and Whitney mapping. A link between them
is described in Theorem 4.4 below. The theorem is a generalization of
the results concerning Whitney maps only (compare [3, p. 215], and its
proof is similar to the one in [13, p. 213]).

Theorem 4.4. If a continuum X contains an R3-set and r : 2X → R
is a size mapping such that r−1(0) = F1(X), then r is not confluent.

Proof. Let X be a continuum, let B be an R3-set in X, and let U
be an open subset of X containing B. Let {Cn : n ∈ N} b a sequence
of components of U such that LiCn = B. Choose an arbitrary point
p ∈ B and a sequence {pn : n ∈ N} such that pn ∈ Cn, converging to
p. Then the set An = {p, pn, pn+1, . . . } is a compact subset of X and
LimAn = {p}.

Since the set B is closed, there is a number ε > 0 such that the closure
of the ε-ball V about B is contained in U . Let Dn be the component of
clV containing pn. For a given point x in bdV , define a subsequence
{Dn(x) : n ∈ N} of the sequence {Dn : n ∈ N} such that x /∈ LsDn(x).

Put B(x) = LsDn(x). Since B(x) is compact and does not contain
x, then there is a number ε(x) > 0 such that the ε(x)-ball about x and
the set B(x) are disjoint. Define V (x) as the ε(x)/2-ball about x. The
family {V (x) : x ∈ bdV } is an open cover of the compact set bdV ,
so one can choose a finite subcover {V (x1), V (x2), . . . , V (xi)} of bdV .
Let

ε0 = min{ε, ε(x1), . . . , ε(xi)},
B = {A ∈ 2X : diamd(A) ≥ ε0/2},
t = inf {r(A) : A ∈ B}.

Note that t > 0, since r−1(0) = F1(X). Consider the interval [0, t/2].
Clearly, r−1([0, t/2]) and B are disjoint. Let k be such an index that
r(Ak) ∈ (0, t/2].
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Suppose that r is confluent. Then, by Theorem 3.2, the mapping r
is monotone. In particular, r−1([0, t/2]) is connected.

For each j ∈ {1, . . . , i}, choose such an index nj ≥ k that Cnj
∩

clB(xj , ε0) = ∅. Then Dnj
∩ clB(xj , ε0) = ∅. By [13, p. 101], there

exist disjoint compact sets Hj and Kj such that Hj ∪Kj = clV , Dnj
⊂

Hj and clV ∩cl (B(xj , ε0)) ⊂ Kj . Define Wj = Hj\bdV = (X\Kj)∩V .
Note that Wj is an open set in X.

Let

L = {A ∈ r−1([0, t/2]) : A ⊂ H1 ∪ · · · ∪ Hi

and A ∩ Hj �= ∅ for each j ≤ i}.

The set L is closed in r−1([0, t/2]) and nonempty (because {pn1 , . . . , pni
}

∈ L). Define the set

M = {A ∈ r−1([0, t/2]) : A ⊂ W1 ∪ · · · ∪ Wi

and A ∩ Wj �= ∅ for each j ≤ i}.

Notice that M is open in r−1([0, t/2]) and M ⊂ L. We will show that
M = L. Let A ∈ L. Suppose that A /∈ M, i.e., A ∩ bdV �= ∅.
Then there exists j ≤ i such that A ∩ clB(xj , ε0/2) �= ∅. But
diamd(A) < ε0/2, so A ⊂ clV ∩ clB(xj , ε0) ⊂ Kj , which contradicts
the assumption that A ∩ Hj �= ∅. Thus L = M. Therefore L is both
open and closed in r−1([0, t/2]). On the other hand, r−1([0, t/2]) \ L
is nonempty, since it contains the set {{x} : x ∈ X \ clV }. Thus,
r−1([0, t/2]) is not connected, so r is not confluent.

The condition that the continuum contains no R3-sets is necessary
but not sufficient for the existence of a confluent size mapping with the
preimage of zero consisting of the singletons only.

Example 4.5. The double spiral continuum is the union of the sets
S1 = {exp(it) : t ∈ [0, 2π]}, M = {(1 + 1/t) exp(−it) : t ∈ [1, ∞)} and
K = {(1 − 1/t) exp(it) : t ∈ [1, ∞)}. The double spiral continuum X
contains no R3-sets. In spite of this, every size mapping r : 2X → R
such that r−1(0) = F1(X) is not confluent. Indeed, an argument from
[1] can be applied to any size mapping with this property (not only to
a Whitney map).
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Containing R3-sets does not interfere with an existence of open,
monotone or confluent size mappings which have preimages of zero
different from the set of singletons.

Example 4.6. Consider the continuum X described in Section 4.2.
It can be mapped under an open mapping onto an arc, so there exists
an open size mapping on 2X .

5. Some properties of diameter. Diameter plays a special role
in various attempts to “measure” sets: this notion is used for instance
in defining Lebesgue and Hausdorff measures. From a certain point
of view, diameter is more complicated than a Whitney map since its
properties (except continuity, of course) closely depend on the choice
of the metric. Nadler, Jr., has observed that the diameter mapping of
the unit circle equipped with the Euclidean metric is not open (see [15,
p. 471] and Example 5.1 below). He asked in [15, p. 472] if there is
an open diameter mapping for a circle. We answer this question in the
affirmative in Theorem 5.5.

Example 5.1 [15, p. 472]. Consider a circle S1 equipped with
the Euclidean metric d. Let {a, b, c} be the set of vertices of an
equilateral triangle inscribed in the circle. The set U = {A ∈ 2X :
dH(A, {a, b, c}) < 1/2} is open in (2S1

, dH), but diamd(U) is not open
in diamd(2S1

) = [0, 2] because for each A ∈ U the diameter of A is not
less than diamd({a, b, c}) =

√
3.

The question as to what continua admit metrics such that the diam-
eter mapping is open (monotone, confluent) is answered only partially.
A class of such continua are cones.

Theorem 5.2. Let (X, d) be a compact metric space of diameter 1,
and let Y be a cone over X equipped with the metric

ρ(〈x, s〉, 〈y, t〉) = 2|t − s| + d(x, y)min{1 − s, 1 − t}

for x, y ∈ X and s, t ∈ [0, 1]. Then the diameter mapping diamρ :
(2Y , ρH) → R is open.



ON SIZE MAPPINGS 55

Proof. Let us notice that diamρ(Y ) = 2, so diamρ(2Y ) = [0, 2] by
connectedness of 2Y . We have to show that for every A ∈ 2Y and
an open neighborhood U of A in 2Y , there exist positive numbers a1

and a2 such that (diamρ(A) − a1, diamρ(A) + a2) ∩ [0, 2] ⊂ diamρ(U).
Let us fix A ∈ 2Y , ε > 0 and U = {B ∈ 2Y : ρH(A,B) < ε}.
Define the family of mappings fα : Y → Y for each α ∈ [0, 1] by
the formula fα(〈x, s〉) = 〈x, 1 − α(1 − s)〉. Take α ∈ (1 − ε/2, 1]
and define Aα = fα(A). Then ρH(A,Aα) ≤ 2(1 − α) < ε and
diamρ(Aα) = α diamρ(A), so

diamρ(U) ⊃ {diamρ(Aα) : α ∈ (1 − ε/2, 1]}
= (diamρ(A) − (ε/2)diamρ(A), diamρ(A)].

Put a1 = (ε/2)diamρ(A). Now we find a number a2 > 0 such that

[diamρ(A), diamρ(A) + a2) ⊂ diamρ(U).

Since Y is compact, there are 〈x, s〉 and 〈y, t〉 such that diamρ(A) =
ρ(〈x, s〉, 〈y, t〉). Assume that t ≥ s. Then

ρ(〈x, s〉, 〈y, t〉) = d(x, y)(1 − t) + 2(t − s).

If t < 1, then choose a number η > 0 such that η < min{ε/2, 1−t}. For
each α ∈ [0, η] define Aα = A ∪ {〈y, t+α〉}. Then ρH(A,Aα) ≤ 2α < ε
and diamρ(Aα) ≥ ρ(〈x, s〉, 〈y, t+α〉) = 2(t+α−s)+d(x, y)(1−(t+α)) =
d(x, y)(1−t)+2(t−s)−αd(x, y)+2α ≥ diamρ(A)+α. If t = 1, then we
can assume that s > 0 (otherwise diamρ(A) = 2). In this case, choose
a number η > 0 such η < min{ε/2, s}. For each α ∈ [0, η], define
Aα = A ∪ {〈x, s − α〉}. Then ρH(A,Aα) ≤ 2α < ε and diamρ(Aα) ≥
diamρ(A) + α. The set Aε = {Aα : α ∈ [0, η]} is a continuum in
2Y , so the diameter on Aε has the Darboux property. Therefore,
diamρ(U) ⊃ diamρ(Aε) ⊃ [diamρ(A), diamρ(A) + η]. Putting a2 = η
we are done.

Recall that, for n ∈ {3, 4, 5, . . . }, the n-od is the cone over an n-point
set. The cones over {0} ∪ {1/n : n ∈ N} and over the Cantor set are
called the harmonic fan and the Cantor fan, respectively.

Corollary 5.3. An n-od, for n ∈ {3, 4, 5, . . . }, the harmonic fan and
the Cantor fan admit open diameter mappings.
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The next examples of continua with open diameters are suspensions
of some spaces. To simplify notation, put T = [−1, 1].

Theorem 5.4. Let (X, d) be a compact space of diameter 1, and let
Y be a suspension of X equipped with the metric

(∗) ρ(〈x, s〉, 〈y, t〉) = 2|t − s| + d(x, y)min{1 − |s|, 1 − |t|}
for x, y ∈ X and s, t ∈ T . Then the diameter mapping diamρ :
(2Y , ρH) → R is upper semi-open.

Proof. Let A ∈ 2X and a number ε > 0 be given. We prove that if
diamρ(A) < diamρ(Y ) = 4, then the image of the ε-neighborhood of A
in 2X contains an interval of the form [diamρ(A), diamρ(A)+a] for some
number a > 0. Let 〈x, s〉, 〈y, t〉 be two points of A with the greatest
distance, i.e., ρ(〈x, s〉, 〈y, t〉) = diamρ(A) and t ≤ s. Assume s < 1, and
put η = min{ε, 1−s}. For any α ∈ [0, η/2), define Aα = A∪{〈x, s+α)}.
(If s = 1, then let η = min{ε, t + 1} and Aα = A ∪ {〈y, t − α〉}.)
Notice that ρH(A,Aα) ≤ 2α < ε, so A = {Aα : α ∈ [0, η/2]}
is a subcontinuum in 2X contained in the ε-ball about A. Since
diamρ(Aα) ≥ ρ(〈x, s + α〉, 〈y, t〉) ≥ ρ(〈x, s〉, 〈y, t〉) + 2α − αd(x, y) ≥
diamρ(A) + α, then the image of A under diamρ contains the interval
[diamρ(A), diamρ(A) + η/2].

Theorem 5.5. If X is a discrete space, i.e., the distance of any two
distinct points is 1, then the diameter mapping for the suspension of X
equipped with the metric (∗) is open.

Proof. By Theorem 5.4, the diameter mapping diamρ is upper semi-
open, so it is enough to prove that it is lower semi-open. Let A ∈ 2Y

be such that diamρ(A) > 0. Let U be an open neighborhood of A.
Consider two cases.

Case 1. A ⊂ X × [0, 1] or A ⊂ X × [−1, 0]. By the symmetry we
assume A ⊂ X × [0, 1]. For s ∈ [0, 1], let As = {〈x, 1 − s(1 − t)〉 ∈ Y :
〈x, t〉 ∈ A}.

Case 2. A∩ (X × (0, 1]) �= ∅ �= A∩ (X × [−1, 0)). Then, for s ∈ [0, 1],



ON SIZE MAPPINGS 57

we put As = {〈x, st〉 ∈ Y : 〈x, t〉 ∈ A}.
Thus, in both cases, there exists ε > 0 such that As ∈ U for s ∈ [1 −

ε, 1]. By the definition of ρ, we have diamρ(As) < diamρ(A) for s < 1,
so diamρ({As : s ∈ [1 − ε, 1]}) is of the form [diamρ(A) − a, diamρ(A)]
for some a > 0. So diamρ is lower semi-open at A.

Example 5.6. The circle S1 is homeomorphic to the suspension of
a two-point space. In this way we obtain a construction of an open
diameter on the hyperspace of the circle.

Example 5.7. The assumption that the distances between any two
points of the space X are equal is essential in Theorem 5.5 for openness
of the metric ρ defined by (∗).

Indeed, let v1, v2, v3, v4 be the four vertices of a square of diameter 1
with their usual distances, i.e., d(v1, v2) = d(v2, v3) = d(v3, v4) =
d(v4, v1) =

√
2/2 and d(v1, v3) = d(v2, v4) = 1. Take the suspension

Y of {v1, v2, v3, v4} equipped with the metric ρ defined by (∗). Then
there is a number s > 0 such that the distances between any two
distinct points of the set A = {〈v1, s〉, 〈v2, −s〉, 〈v3, s〉, 〈v4, −s〉} are
the same. Denote the common distance by δ. Let ε be a small
positive number, and let A′ be a set with ρH(A,A′) < ε, such that
diamρ(A′) < diamρ(A). Then there are two positive numbers t1, t3
such that 〈v1, t1〉, 〈v3, t3〉 ∈ A′ and ρ(〈v1, t1〉, 〈v3, t3〉) < δ. Thus, either
t1 > s or t3 > s. Similarly, there are two positive numbers t2 and
t4 such that 〈v2, −t2〉, 〈v4, −t4〉 ∈ A′ and ρ(〈v2, −t2〉, 〈v4, −t4〉) < δ.
Thus, either t2 > s or t4 > s. By the symmetry, assume that t1 > s
and t2 > 2, and observe that

ρ(〈v1, t1〉, 〈v2, −t2〉) > ρ(〈v1, s〉, 〈v2, −s〉) = δ,

contrary to the assumption diamρ(A′) < δ. The proof is finished.

Problem 5.10. Does the suspension of any compact metric space
(continuum) admit an open diameter mapping? In particular, does the
n-dimensional sphere admit such a mapping?

Remark 5.11. If (X, d) is a continuum, then diamd : (2X , dH) → R is
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upper semi-open at {x} for every x ∈ X.

Proof. Let ε < diamd(X) and U = {A ∈ 2X : dH({x}, A) < ε}.
Then the set V = {{x, y} : d(x, y) < ε} is contained in U and
diamδ(V) = [0, ε). Suppose that there is a number t ∈ [0, ε) which
does not belong to diamd(V). Then the sets {y ∈ X : d(x, y) < t} and
{y ∈ X : d(x, y) > t} are open in X, disjoint and their union is X, in
contradiction to connectedness of X.

The next result concerns Cartesian products of continua.

Theorem 5.12. Let (X, d) and (Y, ρ) be continua, both of diame-
ter 1, and let d × ρ be the metric on X × Y defined by the formula

(d × ρ)(〈x, y〉, 〈u, v〉) = max{d(x, u), ρ(y, v)}.

Then the diameters diamd : (2X , dH) → R and diamρ : (2Y , ρH) → R
are both lower (upper) semi-open if and only if the diameter diamd×ρ :
(2X×Y , (d × ρ)H) → R is lower (upper) semi-open, respectively.

Proof. Denote the projections of a set C ⊂ X × Y onto X and Y
by PX(C) and PY (C). Note that diamd×ρ(C) = max{diamd(PX(C)),
diamρ(PY (C))} for every C ∈ 2X×Y .

Let A ∈ 2X×Y , ε > 0 and U = {C ∈ 2X×Y : (d × ρ)H(A,C) < ε}.
Since X × Y is compact, there is a finite set B ⊂ A such that
ρH(A,B) < ε/2 and diamd×ρ(A) = diamd×ρ(B). We can assume that
diamd×ρ(A) = diamd(PX(A)) and diamd×ρ(B) = diamd(PX(B)).

Necessity. Assume that diamd and diamρ are upper semi-open. We
will prove that diamd×ρ is. To this aim it is enough to find a number
η1 > 0 such that

[diamd×ρ(A), diamd×ρ(A) + η1] ∩ [0, 1] ⊂ diamd×ρ(U).

We can assume that diamd×ρ(A) < 1. Let V be the ε/4-ball about
PX(B) in X. By upper semi-openness of diamd, there is a number
η1 such that [diamd(PX(B)), diamρ(PX(B)) + η1] ⊂ diamd(V). For
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each α ∈ [0, η1], choose finite sets Bα,X ∈ V such that diamd(Bα,X) =
diamd(PX(B)) + α. Define the sets

Aα =
{〈x, y〉 ∈ Bα,X × PY (B) :

(∃〈u, v〉 ∈ B)(d(x, u) < ε/4 and ρ(y, v) < ε/4)
}
.

Note that (d × ρ)H(A,Aα) < ε and diamd×ρ(Aα) = diamd×ρ(A) + α
for each α ∈ [0, η1]. Therefore, [diamd×ρ(A), diamd×ρ(A) + η1] ⊂
diamd×ρ(U).

Now we assume that diamd and diamρ are both lower semi-open and
prove that diamd×ρ is lower semi-open, too. To do it we find a number
η2 > 0 such that [diamd×ρ(A)− η2, diamd×ρ(A)]∩ [0, 1] ⊂ diamd×ρ(U).

Consider two cases.

Case 1. diamρ(PY (B)) > 0. Let V be the ε/4-ball about PX(B)
in X, and let W be the ε/4-ball about PY (B) in Y . By lower
semi-openness of diamd and diamρ, there is a number η2 such that
[diamd(PX(B))−η2, diamρ(PX(B))] ⊂ diamd(V) and [diamρ(PY (B))−
η2, diamρ(PY (B))] ⊂ diamρ(W). For each α ∈ [0, η2], choose finite sets
Bα,X ∈ V and Bα,Y ∈ W such that diamd(Bα,X) = diamd(PX(B))− α
and diamρ(Bα,Y ) = diamρ(PY (B)) − α. Define the sets

Aα =
{〈x, y〉 ∈ Bα,X × Bα,Y :

(∃〈u, v〉 ∈ B)(d(x, u) < ε/4 and ρ(y, v) < ε/4)
}
.

Case 2. diamρ(PY (B)) = 0, i.e., PY (B) = {y}. By lower semi-
openness of diamd there is a number η2 > 0 such that, for each
α ∈ [0, η2], we can find a set Bα,X in X such that dH(Bα,X , PX(B)) < ε
and diamd(Bα,X) = diamd(B) − α. Put Aα = Bα,X × {y}.

Note that in both cases (d × ρ)H(A,Aα) < ε and diamd×ρ(Aα) =
diamd×ρ(A) − α for each α ∈ [0, η2]. Therefore, [diamd×ρ(A) −
η2, diamd×ρ(A)] ⊂ diamd×ρ(U).

Sufficiency. Suppose that diamd : (2X , dH) → R is not lower (upper)
semi-open at C ∈ 2X , i.e., for every ε > 0 there is a sequence of
negative (positive) numbers {tn : n ∈ N} converging to 0 and such
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that dH(C,D) < ε follows diamd(D) /∈ {diamd(C) + tn : n ∈ N}.
Put ε = diamd(C)/4 (C is not a singleton by Remark 5.11). Let
y be an arbitrary point of Y and U be the ε-ball about C × {y} in
2X×Y . Observe that diamd×ρ(C×{y}) = diamd(C) and diamd×ρ(B) =
diamdPX(B) /∈ {diamd(C) + tn : n ∈ N} = {diamd×ρ(C × {y}) + tn :
n ∈ N} for each B belonging to the ε-ball about C × {y} in X × Y , so
diamd×ρ is not lower (upper) semi-open at C × {y}.

Example 5.13. Tori Tn = (S1)n and spaces of the form Tm × Ik,
where k,m, n ∈ N, admit open diameter mappings.

Now we consider some special kinds of continua that admit open
diameter mappings. To this aim recall a notation and a definition. For
a given continuum X, the symbol C(X) denotes the subspace of 2X

consisting of all nonempty subcontinua of X.

Definition 5.14 [7, p. 556]. A continuum X is called arc-smooth at
q provided that there is a mapping α : X → C(X) satisfying

(a) α(q) = {q};
(b) for each x ∈ X \ {q}, the set α(x) is an arc from q to x;

(c) if x ∈ α(y), then α(x) ⊂ α(y).

Illanes proved that if X is an arc-smooth continuum, then there exists
an open Whitney map for 2X [11].

Theorem 5.15. If a continuum X is arc-smooth at a point q ∈ X,
then there is a metric ρ on X such that

(a) diamρ : 2X → R is lower semi-open;

(b) if A ∈ 2X and q /∈ A, then diamρ is upper semi-open at A.

Proof. Let ω : 2X → R be a Whitney map satisfying the condition

(1) if A,B,C ∈ 2X and A ⊂ B, then ω(B) − ω(A) ≥ ω(B ∪ C) −
ω(A ∪ C).

Such mappings do exist, as was observed in [2, p. 536].

For A,B ∈ 2X , let Dω(A,B) = ω(A ∪ B) − min{ω(A), ω(B)}. Then
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Dω is a metric on 2X (see [2, p. 536]). Denote by Γ(X) the space
of all order arcs in 22X

. Therefore we can consider the Hausdorff
metric D on Γ(X) induced by the metric Dω. For any x ∈ X, put
Ax = {α(y) : y ∈ α(x)}, and observe that Ax is an order arc from {q}
to α(x). Let ρ1 be a metric on X defined by ρ1(x, y) = D(Ax, Ay).
Note that Fact 7 of [2, p. 537] implies that if y ∈ α(x), then

(2) ρ1(x, y) = Dω(α(x), α(y)) = ω(α(x)) − ω(α(y)).

In particular ρ1(q, x) = ω(α(x)). Further, since for every order arc
A ⊂ 2X the partial mapping ω|A : A → [0, ∞) is an isometry (see [2,
p. 537]), the metric ρ1 is radially convex at q, i.e., if y ∈ α(x), then
ρ1(q, x) = ρ1(q, y) + ρ1(y, x). Moreover, by [2, p. 537], it satisfies the
following condition

(3) if ω(α(x)) = ω(α(y)) and x′ ∈ α(x), y′ ∈ α(y) with ω(α(x′)) =
ω(α(y′)), then ρ1(x′, y′) ≤ ρ1(x, y).

Now we will define the needed metric ρ. Assume diamρ1(X) ≤ 1
(we can achieve this by multiplying the metric ρ1 by a constant). Let
x, y ∈ X with ω(α(y)) ≤ ω(α(x)). Denote by y′ the only point of α(x)
satisfying ω(α(y′)) = ω(α(y)). Then we put

ρ(x, y) = 4(ω(α(x)) − ω(α(y))) + ρ1(y, y′)ω(α(y)).

We show that ρ is a metric. We need to check the triangle inequality

(4) ρ(x, z) ≤ ρ(x, y) + ρ(y, z)

only (the other two axioms are easy consequences of the definitions).
To this aim observe the following property of ρ.

(5) If x, y and y′ are as above, then ρ(x, y) = ρ(x, y′) + ρ(y, y′).

Assuming ω(α(z)) ≤ ω(α(x)), we consider three cases.

Case 1. ω(α(y)) ≥ ω(α(x)). Let z′ be the point of α(x) such that
ω(α(z′)) = ω(α(z)); let z′′ ∈ α(y) with ω(α(z′′)) = ω(α(z)), and let
x′ ∈ α(y) with ω(α(x′)) = ω(α(x)). By (5) we have to check that

ρ(x, z′) + ρ(z, z′) ≤ ρ(y, x′) + ρ(x, x′) + ρ(y, z′′) + ρ(z, z′′).

It is enough to show that ρ(z, z′) ≤ ρ(x, x′) + ρ(z, z′′). This inequality
is equivalent, by the definition of ρ, to

(6) ρ1(z, z′)ω(α(z)) ≤ ρ1(x, x′)ω(α(x)) + ρ1(z, z′′)ω(α(z)).
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By (3) we see that ρ1(z′, z′′) ≤ ρ1(x, x′), and since ω(α(x)) ≥ ω(α(z)),
(6) follows.

Case 2. ω(α(z)) ≤ ω(α(y)) < ω(α(x)). Let y′ ∈ α(x) with
ω(α(y′)) = ω(α(y)); z′ ∈ α(x) with ω(α(z′)) = ω(α(z)); and z′′ ∈ α(y)
with ω(α(z′′)) = ω(α(z)). By (5) we have to check that

(7) ρ(x, z′) + ρ(z, z′) ≤ ρ(x, y′) + ρ(y, y′) + ρ(y, z′′) + ρ(z, z′′).

Because ρ(x, z′) = ρ(x, y′)+ρ(y, z′′), it is enough to show that ρ(z, z′) ≤
ρ(y, y′) + ρ(z, z′′). By (3) and by the definition of ρ we have ρ(y, y′) ≥
ρ(z′, z′′), so (7) follows from the triangle inequality for ρ1 and the
definition of ρ.

Case 3. ω(α(y)) < ω(α(z)). Let z′ ∈ α(x) with ω(α(z′)) = ω(α(z));
let y′ ∈ α(x) with ω(α(y′)) = ω(α(y)), and y′′ ∈ α(z) with ω(α(y′′)) =
ω(α(y)). Again, by (5), we have to show

ρ(x, z′) + ρ(z, z′) ≤ ρ(x, y′) + ρ(y, y′) + ρ(y, y′′) + ρ(z, y′′).

By (5) we have to prove

ρ(x, z′) + ρ(z, z′) ≤ ρ(x, z′) + ρ(y′, z′) + ρ(y, y′) + ρ(y, y′′) + ρ(y′, z′),

or
ρ(z, z′) ≤ 2ρ(y′, z′) + ρ(y, y′) + ρ(y, y′′).

By the triangle inequality for ρ1, we have ρ(y′, y′′) ≤ ρ(y, y′)+ρ(y, y′′),
so it is enough to show that ρ(z, z′) ≤ 2ρ(z′, y′) + ρ(y′, y′′), which is
equivalent to

ρ1(y′, y′′)ω(α(y)) − ρ1(z, z′)ω(α(z)) + 8(ω(α(z)) − ω(α(y))) ≥ 0.

Using again the triangle inequality for ρ1, we have

ρ1(z, z′) ≤ ρ1(y′, y′′) + 2(ω(α(z)) − ω(α(y))),

so it is enough to show that

ρ1(y′, y′′)ω(α(y)) − ρ1(y′, y′′)ω(α(z)) − 2(ω(α(z)) − ω(α(y)))ω(α(z))
+ 8(ω(α(z)) − ω(α(y))) ≥ 0.
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This inequality is equivalent to

(ω(α(z)) − ω(α(y)))(8 − ρ1(y′, y′′) − 2ω(α(z))) ≥ 0.

Note that the first factor is nonnegative by the assumption, and the
second one is positive since diamρ1(X) ≤ 1. The proof that ρ is a
metric is complete.

To show that the mapping diamρ is lower semi-open, define a homo-
topy H : X × [0, 1] → X by the condition: H(x, t) is the only point of
the arc α(x) such that ω(α(H(x, t))) = tω(α(x)).

Observe that H(x, 0) = q and H(x, 1) = x. Moreover, for x �= y and
t < 1, condition (3) and the definition of ρ imply

(8) ρ(H(x, t), H(y, t)) < ρ(x, y).

Let A ∈ 2X be fixed, and let U be a neighborhood of A in 2X . Then
there is an ε > 0 such that {H(A × {s}) : s ∈ [1 − ε, 1]} ⊂ U , and
by (8) we infer that diamρ({H(A × {s}) : s ∈ [1 − ε, 1]}) is of the
form [diamρ(A) − η, diamρ(A)] for some η > 0, i.e., diamρ is lower
semi-open, so a) is shown. To show b), assume that A ∈ 2X and
q /∈ A. Let x, y ∈ A be two points such that diamρ(A) = ρ(x, y)
and ω(α(y)) ≤ ω(α(x)). Let U be an open neighborhood of A in 2X .
There is an ε > 0 such that {A ∪ {H(y, s)} : s ∈ [1 − ε, 1]} ⊂ U . Put
ys = H(y, s). We will check that ρ(x, ys) > ρ(x, y) for s < 1. By the
definition of ρ, we have

ρ(x, ys) − ρ(x, y) = ω(α(y))(4(1 − s) + sρ1(ys, y
′
s) − ρ1(y, y′)).

By the triangle inequality for ρ1, we have

ρ(x, ys) − ρ(x, y) ≥ ω(α(y))(4(1 − s) − (1 − s)ρ1(ys, y
′
s) − 2ρ1(y, ys)),

so

ρ(x, ys) − ρ(x, y) ≥ ω(α(y))(1 − s)(4 − ρ1(ys, y
′
s) − 2ω(α(y))).

Since s < 1, ω(α(y)) ∈ (0, 1] and diamρ1(X) ≤ 1, then all the factors
are positive and ρ(x, ys) > ρ(x, y). Therefore diamρ(A ∪ {H(y, s)}) >
diamρ(A) for s < 1, so diamρ({A ∪ {H(y, s)} : s ∈ [1 − ε, 1]}) is of
the form [diamρ(A), diamρ(A) + η] for some η > 0. So, diamρ is upper
semi-open at A, and b) is proved.



64 W.J. CHARATONIK AND A. SAMULEWICZ

Theorem 5.16. Let X1 and X2 be two continua that are arc-smooth
at points q1 ∈ X1 and q2 ∈ X2, respectively. Let X = X1 ∪ q1q2 ∪ X2,
where q1q2 is an arc such that q1q2 ∩ Xi = {qi} for i ∈ {1, 2}. Then
there exists a metric ρ on X such that diamρ : 2X → R is open.

Proof. For i ∈ {1, 2}, let ρi be a metric on Xi satisfying conditions
(a) and (b) of Theorem 5.15 and such that diamρi

(Xi) ≤ 1/2. For
i ∈ {1, 2}, let αi : Xi → C(Xi) be a mapping as in Definition 5.14 for
the arc-smooth continuum Xi. Choose a point p ∈ q1q2 \ {q1, q2}. Note
that X is an arc-smooth continuum with the mapping α : X → C(X)
defined by the following conditions:

(i) if x ∈ pqi, then α(x) is the only arc with end points p and x;

(ii) if x ∈ Xi, then α(x) = pqi ∪ αi(x).

We will define the needed metric ρ in several steps.

If x, y ∈ Xi, then ρ(x, y) = ρi(x, y).

Define ρ on the arcs pqi as the convex metric on arcs pq1 and
pq2 with ρ(p, qi) = 1. If x ∈ pqi and y ∈ Xi, put ρ(x, y) =
ρ(x, qi) + ρ(x, p)ρ(y, qi).

For x ∈ X, define w : X → R by

w(x) =
{

ρ(x, p) if x ∈ pqi,
1 + ρ(x, qi) if x ∈ Xi.

If x ∈ Xi ∪ pqi and y ∈ Xj ∪ pqj for i �= j and w(y) ≤ w(x), then let y′

be the only point of α(x) with w(y′) = w(y). Define

ρ(x, y) = ρ(x, y′) + w(y)/4.

To show that it is a metric, we need to check the triangle inequality

(1) ρ(x, z) ≤ ρ(x, y) + ρ(y, z)

only since the other two axioms are easy consequences of the definitions.
We shall consider several cases.

Case 1. x ∈ pqi.

1a) If z ∈ pqi, then (1) is a consequence of the triangle inequality for
the metric on pqi.
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1b) Assume now that z ∈ Xi. If y ∈ xqi, then (1) is easy to check.
Assume y ∈ px. We have to verify that

ρ(x, qi) + ρ(x, p)ρi(z, qi) ≤ ρ(x, y) + ρ(y, qi) + ρ(y, p)ρ(z, qi)

which is equivalent to

ρ(x, p)ρi(z, qi) ≤ 2ρ(x, y) + ρ(y, p)ρi(z, qi).

The last inequality is a consequence of the fact that diamρi
(Xi) ≤ 1/2.

The inequality (1) for the case if y ∈ pqj∪Xj for i �= j is a consequence
of the above consideration.

1c) Let z ∈ pqj ∪ Xj for i �= j. Then (1) for this case follows from
inequality (1) for cases 1a) and 1b).

Case 2. x ∈ Xi.

2a) If z ∈ pqi, then (1) is a consequence of inequality (1) for the case
1b).

2b) Let z ∈ Xi. If y ∈ Xi, then (1) follows from the triangle inequality
for ρi. If y ∈ pqj ∪ Xj for i �= j, then ρ(x, y) ≥ 1/4 and ρ(y, z) ≥ 1/4,
while ρ(x, z) ≤ 1/2.

If y ∈ pqi, then we have to show

ρi(x, z) ≤ 2ρ(y, qi) + ρ(y, p)(ρi(x, qi) + ρi(z, qi)).

By the triangle inequality for ρi, it is enough to show that

2ρ(y, qi) + ρi(x, z)(ρ(y, p) − 1) ≥ 0.

This inequality follows from the fact that 1 − ρ(y, p) = ρ(y, qi) and
ρi(x, z) ≤ 1/2.

2c) If z ∈ pqj∪Xj for i �= j, then (1) is a consequence of the previously
considered cases. This finishes the proof that ρ is a metric.

In the proof of upper semi-openness of diamρ, we will need a homo-
topy H : X × [0, 1] → X defined by the condition: H(x, t) is the only
point of α(x) with w(H(x, t)) = t w(x).
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To show upper semi-openness of diamρ at any A ∈ 2X , take an open
neighborhood U of A in 2X and consider two cases.

Case 1. p /∈ A. Let x, y ∈ A be two points such that diamρ(A) =
ρ(x, y) and w(x) ≤ w(y). For s ∈ [0, 1], put As = A ∪ {H(y, s)}.

Case 2. p ∈ A. If A∩(X1∪X2) �= ∅, then diamρ(A) = 1 = diamρ(X),
and thus diamρ is upper semi-open at A. Otherwise, there is a point
x ∈ pqi (for some i ∈ {1, 2}) such that diamρ(A) = ρ(x, p). For s ∈ [0, 1]
denote by xs the point of xqi such that ρ(xs, qi) = s ρ(x, qi) and put
As = A ∪ {xs}.

In each of the two cases there is an ε > 0 such that As ∈ U
for s ∈ [1 − ε, 1]. By the definition of ρ we have diamρ(As) >
diamρ(A) for s < 1, so diamρ({As : s ∈ [1 − ε, 1]}) is of the form
[diamρ(A), diamρ(A) + η] for some η > 0, so diamρ is upper semi-open
at A.

To prove lower semi-openness of diamρ at any A ∈ 2X , take again an
open neighborhood U of A in 2X and consider three cases.

Case 1. A ⊂ pq1 ∪ pq2. For s ∈ [0, 1] define As = H(A × {s}).

Case 2. p /∈ A and A ∩ (X1 ∪ X2) �= ∅. For s ∈ [0, 1] define
As = (A ∪ (pq1 ∪ pq2)) ∪ H(A ∩ (X1 ∪ X2) × {s}).

Case 3. p ∈ A and A ∩ (X1 ∪ X2) �= ∅. Then diamρ(A) = 1. For any
s ∈ [0, 1] and for i ∈ {1, 2} we define xi

s ∈ pqi by w(xi
s) = 1 − s. Put

As = (A ∩ {x ∈ X : w(x) ≥ s}) ∪ {x1
s, x

2
s}.

Observe that, in any case, there is an ε > 0 such that As ∈ U for
s ∈ [1 − ε, 1] and diamρ(As) < diamρ(A) for s ∈ [1 − ε, 1). Therefore,
diamρ({As : s ∈ [1 − ε, 1]}) is of the form [diamρ(A) − η, diamρ(A)] for
some η > 0, so diamρ is lower semi-open at A.

In this way the proof of openness of diamρ is complete.

Remark 5.17. Note that if Xi is a star-shaped continuum in a linear
space or a smooth dendroid (see [15, p. 117] for the definition), then
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Xi satisfies assumptions of Theorem 5.15. Also one can take one-point
spaces as X1 or X2.

Corollary 5.18. If X is either a dendrite containing a free arc or
a subcontinuum of the harmonic fan, then X admits an open diameter
mapping.

We gave some examples of spaces which admit open diameter map-
pings. However, the following question remains open.

Question 5.19. Does every dendrite (local dendrite, graph, locally
connected continuum) admit an open diameter mapping?

The theorem below is a contribution to this question. It shows
monotoneity and lower semi-openness only of a diameter mapping on
some local dendrites. For the existence of the needed convex metric on
any locally connected continuum, see [15, p. 38].

Theorem 5.20. Let X be a local dendrite equipped with a convex
metric ρ. Denote by t the smallest of diameters of simple closed curves
contained in X, and define a new metric d putting d = ρ if X is a
dendrite and d(x, y) = min{ρ(x, y), t/2} for each x, y ∈ X otherwise.
Then the diameter mapping diamd : (2X , dH) → R is monotone.
Moreover, it is lower semi-open if and only if X is a dendrite.

Proof. First we show that diamd is monotone. To prove that for each
number s ∈ [0, diamd(X)] the set diam−1

d (s) is connected, it suffices to
show connectedness of diam−1

d ([0, s]) and use Lemma 3.1.

Let A be a closed subset of X. Choose a point p in A. For every point
x ∈ X find an arc px of diameter equal to d(x, p). If there were two arcs
with this property, then their union would contain a simple closed curve
of the diameter less than t, so this arc is unique. For each α ∈ [0, 1]
define the mapping hα,p(x) = xα, where xα ∈ px and d(p, xα) =
α d(p, x). Observe that d(x, xα) = (1 − α)d(p, x). Let Aα = hα,p(A).
Then diamd(Aα) = α diamd(A) and dH(A,Aα) ≤ (1 − α)diamd(A).
Thus every set A can be joined to the singleton {p}, where p ∈ A,
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with the arc {hα,p(A) : α ∈ [0, 1]}. Obviously, this arc is contained
in diam−1

d ([0, t]). Since the set F1(X) = diam−1
d (0) is connected,

diam−1
d ([0, t]) is connected, too. Observe that if X is a dendrite, then

the set {Aα : α ∈ (1 − ε, 1]} is contained in the ε/2-ball about A, and
the image of this ball contains the interval ((1−ε)diamd(A), diamd(A)]
so diamd is lower semi-open. If X is not a dendrite, then any set which
is close to X has the diameter t/2, so diamd is not lower semi-open at
X.
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