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CONFLUENT MAPPINGS AND
ARC KELLEY CONTINUA

J.J. CHARATONIK', W.J. CHARATONIK AND J.R. PRAJS

ABSTRACT. A Kelley continuum X, also called a contin-
uum with the property of Kelley, such that, for each p € X,
each subcontinuum K containing p is approximated by arc-
wise connected continua containing p, is called an arc Kelley
continuum. A continuum homeomorphic to the inverse limit
of locally connected continua with confluent bonding maps is
said to be confluently LC-representable. The main subject of
the paper is a study of deep connections between the arc Kel-
ley continua and confluent mappings. It is shown that if a con-
tinuum X admits, for each € > 0, a confluent e-mapping onto
a(n) (arc) Kelley continuum, then X itself is a(n) (arc) Kelley
continuum. In particular each confluently LC-representable
continuum is arc Kelley. It is also proved that if continua X
and Y are confluently L£C-representable, then also are their
product X x Y and the hyperspaces 2X and C(X).

1. Introduction. The arc Kelley continua form a natural subclass
of Kelley continua, known also as continua with the property of Kelley,
or continua with property . In a recent study the authors proved that
each absolute retract for any of the classes of: hereditarily unicoherent
continua, tree-like continua, A-dendroids and dendroids, is an arc Kelley
continuum, [9]. All absolute retracts mentioned above share this
property with all members of another significant class, the class £LC of
locally connected continua. One of the basic and essential results of the
previous study says that every confluently T -representable continuum
(i.e., the inverse limit of trees with confluent bonding mappings, T
stands for the class of trees) is an absolute retract for hereditarily
unicoherent (tree-like) continua, [11]. These results led to the question
whether there is some deep connection between confluent mappings
and arc Kelley continua. For instance, is the inverse limit of arc
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Kelley continua with confluent bonding maps an arc Kelley continuum?
A similar question for Kelley continua is much easier to answer, see
Theorem 2.2 below. In the case of arc Kelley continua a real difficulty
is to prove that there is a sufficiently numerous family of arcwise
connected subsets in a space where the existence of a single arc is
far from being obvious. The study of this question, in particular, and
of connections between arc Kelley continua and confluent mappings in
general, is the main subject of this paper.

One of the most important results of the paper, and the main result of
Section 2, provides an answer to the above question in the affirmative.
More generally, we prove that the class of arc Kelley continua is
confluently whole (a class K of compacta is said to be confluently whole
if each confluently K-like compactum belongs to K). Special attention is
paid in the paper to the classes of confluently L£C-like and confluently
LC-representable continua. As an application of results obtained in
Section 2, we investigate in the next section a particular but important
case of atriodic confluently L£C-like continua. Section 4 is devoted to
studying properties of products and of hyperspaces of the considered
continua. For instance, we show that if a continuum is in any of these
classes, then its hyperspaces of subcontinua and of closed subsets also
are in the respective classes.

By a space we mean a topological space, and a mapping means a
continuous function. Let X be a metric space with a metric d. For a
point p € X and a subset A C X define d(p, A) = inf{d(p,a) : a € A};
we denote by B(p,e) the (open) ball in X centered at a point p € X
and having the radius €, and we put N(A4,¢) = U{B(a,¢) : a € A}
The symbol N stands for the set of positive integers, and R, denotes
the set of positive real numbers. The symbol Lim A,, stands for the
limit of a sequence of sets A,, as defined for example in [31, 4.9, page
56].

A compactum means a compact metric space and by a continuum we
mean a connected compactum. A tree is a graph containing no simple
closed curve. A continuum is said to be tree-like (arc-like, circle-like)
provided that for each £ > 0 it admits an e-mapping onto a tree (an
arc, a circle, respectively); equivalently, provided that it is the inverse
limit of an inverse sequence of trees (arcs, circles, respectively).
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Given a metric continuum X, we let C'(X) denote the hyperspace
of nonempty subcontinua of X equipped with the Hausdorff distance
H, see e.g., [30, (0.1), page 1, (0.12), page 10]. For a point p € X
the symbol C(p, X) denotes the hyperspace of subcontinua of X that
contain p.

The following notation will be used. Given an inverse sequence
S = {X,,f} of compact spaces X, with bonding mappings f7. :
X, — X, where the set of positive integers N is taken as the
directed set of indices, we denote by X = %in S its inverse limit and by
fn : X = X, the projections.

A mapping f: X — Y between continua is said to be:

(i) open if it maps open subsets of the domain onto open subsets of
the range;

(ii) monotone if it has connected point inverses;

(iii) confluent provided that for each subcontinuum @ of Y and for
each component K of f~1(Q) the equality f(/K) = Q holds.

(iv) OM-mapping provided that it can be represented as the compo-
sition of two mappings, f = f2 o f1 such that f; is monotone and f; is
open.

Obviously each monotone mapping is confluent, and each open one
is also, see [35, Theorem 7.5, page 148]. For relations between these
classes of mappings and for their properties, see e.g., [6, 27].

Let an ¢ > 0 be given. A mapping f : X — Y from a metric
continuum X is called an e-mapping provided that diam f~1(f(z)) < e
for each point z € X.

Let IC be a class of continua. The following definition is patterned
after the well-known concepts of arc-like, tree-like, circle-like, and, in
general, P-like spaces, where P is a given collection of compacta, see
[31, 2.12, 2.13, page 24; Proposition 12.18, page 243; Theorem 12.19,
page 246]; compare also [28, page 71 and Lemma 1, page 73].

Definition 1.1. A continuum X is said to be confluently K-like
provided that for each € > 0 there is a confluent e-mapping from X
onto a continuum Y belonging to K.
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We will also consider classes I of continua that are closed in the
topology generated by confluent e-mappings. The next definition says
this in a more precise way.

Definition 1.2. A class K of continua is said to be confluently whole
provided that the class of confluently K-like continua coincides with /C.

Following the term of a “representation by inverse limits” in [31, page
241], let us accept the following definition.

Definition 1.3. A continuum X is said to be confluently K-
representable provided that it can be represented as the inverse limit
of continua belonging to I, with confluent bonding mappings, i.e., if
there exist a sequence of continua X,, € K and a sequence of confluent
mappings f). : X, — X, such that X is homeomorphic to the
inverse limit %21 {X., f}. In the sequel we will neglect the mentioned

homeomorphism, and we will simply write X = @ {Xn, [}

Let us recall that some results concerning confluently L£C-representable
continua have already appeared in the literature. For example,
Hosokawa has shown in [18, Theorem 2.7, page 775] that if a mapping
f: X =Y from a continuum X onto a LC-representable continuum Y
is confluent, then the induced mapping C(f) is also confluent.

Since the projections in the inverse sequence of compacta with con-
fluent bonding mappings are confluent, [7, Corollary 4, page 5], the
following statement is a consequence of [30, Lemma 1.162, page 167].

Statement 1.4. For each class K of continua, if a continuum is
confluently K-representable, then it is confluently K-like.

Question 1.5. Let K be: (a) an arbitrary class of continua,
(b) the class LC of locally connected continua, (c) the class of compact
connected pohyhedra. Is it true that if a continuum is confluently KC-like
then it is confluently K-representable?
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The first version of this article was written before the results of the
paper [32] were obtained. In that paper a substantial progress was
obtained in the study of Question 1.5. Indeed, it is proved in [32,
Theorem 3.2] that if X is a one-dimensional continuum, then for any
collection K of graphs, X is confluently K-like if and only if X is
confluently K-representable. Unfortunately, the methods of [32], which
are very technical, cannot be directly applied to higher dimensions. In
this paper, in Section 3, we present a simpler proof of results of [32] in
the particular case K = {an arc, a circle}.

2. Arc Kelley continua. A metric continuum X is called a Kelley
continuum provided that for each point p € X, for each subcontinuum
K of X containing p and for each sequence of points p, converging to
p, there exists a sequence of subcontinua K, of X containing p, and
converging to the continuum K (see e.g., [30, Definition 16.10, page
538]).

The property, introduced by J.L. Kelley as Property 3.2 in [20,
page 26], has been used there to study hyperspaces, in particular
their contractibility (see, e.g., [30, Chapter 16], where references for
further results in this area are given). Now Kelley continua play an
important role in the investigation of various properties of continua,
they are interesting in their own right, and have numerous applications
to continuum theory; many of them are not related to hyperspaces.

The following condition equivalent to being Kelley continuum will be
used in the sequel, see [8, Observation 1.1, page 258].

Proposition 2.1. A metric continuum X is Kelley if and only if the
following condition holds.

(2.1.1) For each e > 0, for each K € C(X), for each point p € K and
for each sequence of points p, converging to p there is a sequence of
continua K,, € C(pn, X) such that if a subsequence K, is convergent
to a continuum L, then H(K,L) < ¢.

In the next result we use the term of a confluently whole class of
continua as introduced in Definition 1.2. Its proof is a straightforward
application of Proposition 2.1.
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Theorem 2.2. The class of metric Kelley continua is confluently
whole.

Statement 1.4 and Theorem 2.2 imply the following.

Corollary 2.3. FEach confluently LC-representable continuum is
Kelley.

Remark 2.4. (a) The above corollary is also a consequence of The-
orem 2 of [14, page 190] saying that an inverse sequence of Kelley
continua with confluent bonding mappings is a Kelley continuum. How-
ever, stronger results than Corollary 2.3 are shown below, see Corol-
lary 2.22.

(b) It is shown in Remark 3.8 below that the implication in Corol-
lary 2.3 cannot be reversed.

Remark 2.5. The definition of a Kelley continuum has been localized
in [34, Section II, page 291] as follows. A continuum X is Kelley at a
point p € X provided that for each K € C(p, X) and for each sequence
pr, converging to p there exists a sequence K, € C(p,,X) converging
to K. Using this concept and repeating arguments as in the proof
of Theorem 2.2, one can prove the following localized version of that
theorem.

Theorem 2.6. Let p be a point of a continuum X . If, for eache > 0,
the continuum X admits a confluent e-mapping f : X — Y onto some
continuum Y such that 'Y is Kelley at f(p), then X is Kelley at p.

A continuum X is said to have the the arc approximation property
provided that for each point p € X, for each subcontinuum K of X
containing p there exists a sequence of arcwise connected subcontinua
K, of X containing p and converging to the continuum K, see [16,
Section 3, page 113]. The following proposition is known, see [16,
Proposition 3.10, page 116].
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Proposition 2.7. If a continuum has the arc approximation prop-
erty, then each arc component of the continuum is dense.

Investigating absolute retracts for some classes of continua, we have
found that the following concept of arc Kelley continua that joins the
arc approximation property and Kelley continua turns out to be both
natural and useful. See [9, Definition 3.3].

A continuum X is called arc Kelley provided that for each point
p € X, for each subcontinuum K of X containing p and for each
sequence of points p, € X converging to p, there exists a sequence of
arcwise connected subcontinua K,, of X containing p,, and converging
to the continuum K. Therefore, the following equivalence holds, see [9,
Proposition 3.4].

Proposition 2.8. A continuum is an arc Kelley continuum if and
only if it is a Kelley continuum with the arc approximation property.

Remark 2.9. In the definition of arc Kelley continua, the arcwise
connected continua K, can be approximated from inside by locally
connected continua. Thus, we can assume in this definition that the
continua K, are locally connected.

Since arc approximation property is invariant under weakly confluent
mappings (thus under confluent ones), see [16, Theorem 3.5, page 114],
and since Kelley continua are preserved under confluent mappings, see
[34, Theorem 4.3, page 296], we have the next result.

Proposition 2.10. The confluent image of an arc Kelley continuum
is an arc Kelley continuum, i.e., if a continuum X is arc Kelley and a
surjection f: X =Y is confluent, then Y is arc Kelley.

Since the projections in an inverse sequence of continua with conflu-
ent bonding mappings are confluent, [7, Corollary 4, page 5], Proposi-
tion 2.10 leads to the following corollary.
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Corollary 2.11. Let X = @{Xn, Y, where X, are continua and

fr are confluent. If X s an arc Kelley continuum, then each factor
space X, also is an arc Kelley continuum.

However, the opposite implication, from each factor continuum being
arc Kelley to the inverse limit being arc Kelley (if the bonding map-
pings are confluent) is much more interesting for us. The most natural
way of showing this implication is to use Proposition 2.8 and prove the
implication separately for Kelley continua and for the arc approxima-
tion property. For Kelley continua the implication is already known,
i.e., Kelley continua are preserved under the inverse limit operation
with confluent bonding mappings, [14, Theorem 2, page 190]. But we
do not know whether for arc approximation property the implication
is true or not, and thus this “natural way” cannot be applied. The
authors are obliged to P. Krupski for his contribution to the discussion
about the following question.

Question 2.12. Let {X,, f} be an inverse sequence of arc Kelley
continua X,, with confluent bonding mappings f.. Is the inverse limit
of this sequence an arc Kelley continuum?

Let us come back to the obstacles discussed before Question 2.12. To
overcome them some auxiliary concepts will be used.

A finite indexed collection M = (My,..., My) of continua is called
a weak chain of continua provided that M; N M;11 # @ for each
ie€{l,...,k—1}. A weak chain is called a weak £-chain if diam M; <
for each i € {1,...,k}, see [31, 8.11, page 125]. If a point p € M, is
fixed, then we say that the weak e-chain starts at p. If, moreover, a
point g is in My, then M is said to be from p to q. Let UM stand for
M; U---U M. Recall the following observation, see [31, Lemma 8.13,
page 125].

Observation 2.13. If a continuum C' is the union of a finite
collection of its subcontinua, then for every two points ¢y,co € C the
elements of the collection can be indexed so as to form a weak chain
from c¢; to ca.
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Lemma 2.14. Let a continuum X satisfy the following condition.

(2.15) For each € > 0 there exists a 6 > 0 such that for each
continuum K in X, for every three points p,q € K and r € X with
d(p,r) < § there exists a weak e-chain (Mu,..., M) of continua in X
such that r € My, H(K,M; U---U M) < g, and ¢ € N(My,¢).

Let M = (My,...,My) be a weak chain of continua in X starting
at some point pg € X. Then for each € > 0 there are a weak e-chain
L = (Ly,...,Ly) of continua in X and a function o : {1,...,m} —
{1,...,k} such that:

(a) po € L1;
(b) if i <j, then a(i) < a(j);
(c) H(U{L; : a(i) = j}, M;) < ¢ for each j € {1,...,k}.

Proof. We will use the function § : Ry — R as defined in condition
(2.15) for the continuum X such that d(¢) < . For a given ¢ > 0 we
define §p = ¢ and 6; 1 = §(6;).

For each i € {1,...,k}, choose a point ¢; € M; N M;11. The
construction will be in k steps.

In the first step apply (2.15) for K = My, p = r = po, ¢ = ¢1
and € = 6p_1. Observe that in this step we have d(p,r) = 0 <
0(dk—1). According to (2.15) we get a weak dx_;-chain of continua
(L1,..., Ly, ) from py to some point r; such that d(r1,q1) < dx—1 and
that H(L1 J---u LmlyMl) < (5]9_1.

In the second step apply (2.15) for K = My, p = ¢, r = rg
g = ¢q2 and € = Jr_3. Note that in this step we have d(p,r) =
d(ri,q1) < 0kp—1 = 6(dk—2). By (2.15) we obtain a weak Jj_z-chain
of continua (L, 4+1,-- -, Lm,) from the point 7y to some point r2 such
that d(TQ, q2) < 0r_» and that H(Lm1+1 U---u LmZ,Mg) < Op_2.

Repeating this construction k times we obtain a finite sequence of
weak chains of continua

(Lmis1y++ oy Lm,,,) for i€{0,...,k—1} with mo=0
such that H(Lpy,41 U+ U L, Miy1) < 0 i1 < € and Ly, N

Ly, +1 # @. Define m = my, and a(j) =i for m; _1+1 < j < m;, where
i€{l,...,k}and j € {1,...,m}. It follows from the construction that
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(Ly,...,Ly) is a weak e-chain of continua that satisfies the needed
conditions (a), (b) and (c). O

For an arbitrary continuum X, define

7(X) = inf{e > 0 : there exists a finite collection
of subcontinua M; of X with diam M; < ¢ that covers X}.

Then 7(X) > 0. Note that 7(X) is a kind of a measure of nonlocal
connectedness of X. Namely, it is related to the property S of
Sierpiniski, and thereby the following is true (compare [31, Theorem
8.4, page 120]).

Statement 2.16. A continuum X is locally connected if and only if
T(X)=0.

The next result is a fundamental intermediate step in the proof of
one of the main results of the paper, viz. Theorem 2.21.

Theorem 2.17. Let X be a continuum. Then X s an arc Kelley
continuum if and only if the following condition holds.

(2.18) For each continuum K in X, for each point p € K and for
each sequence of points p, € X converging to p, there is a sequence of
continua K, converging to K with p,, € K,, and lim7(K,) = 0.

Proof. Tt follows from Remark 2.9 and Statement 2.16 that if X is an
arc Kelley continuum, then condition (2.18) holds. So, one implication
is proved.

To show the other one, assume (2.18). By Observation 2.13 condition
(2.18) implies the following one.

(2.19) For each continuum K in X, for each point p € K and for
each € > 0, there exists a 6 > 0 such that for each point r € X with
d(p,r) < ¢ there exists a weak e-chain M of continua in X that starts
at the point r and such that H(K,UM) < e.

We will show that condition (2.19) is equivalent to its uniform variant
(2.15). Indeed, note that the set
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Z ={(K,p,q,r): K € C(X);p,q€ K; and r € X}

is a closed subset of C(X) x X3, so we can apply a standard method
of proof. Suppose on the contrary that there is an g > 0 such
that for each n € N there is a quadruple (K,,pn,qn, ) € Z with
d(pn,rn) < 1/n satisfying the following condition:

(%) there is no weak go-chain M,, of continua in X from r, to ¢,
such that H(K,,UM,) < ¢ and ¢, is in an gp-neighborhood of the
last link of M,,.

By compactness of the set Z, we can assume that the sequence
of quadruples (K, pn,qn, ) converges to (Ko, po,qo,To) (note that
po = 7). By (2.19) there are weak 1/n-chains M! starting at r,, and
such that H(K,,UM') < 1/n. Again, by compactness, the unions
UM, converge to Kj. Thus, they are gj-close to continua K, for
almost all n € N, contrary to (x). Therefore, (2.15) holds, and thus
Lemma 2.14 can be applied to the continuum X.

Note that (2.18) implies by definition that X is a Kelley continuum.
To prove that it is an arc Kelley continuum, it remains to show, ac-
cording to Proposition 2.7, that it has the arc approximation property.
To this aim, take a subcontinuum K of X, choose a point p € K and
fix some € > 0. To complete the proof, it is enough to find a locally
connected continuum L C X such that p € L and H(K,L) < e.

Applying Lemma 2.14, we construct, by induction, a sequence of weak
chains (L%, ..., Ly ) and functions oy, : {1,...,mpy1} — {1,...,mp},

where n € N, such that putting

(%x) L,=L7TU---ULy
we have

(i) m; =1 and L} = K;

(ii) (LF,...,L% ) is a weak &/(2""!)-chain of continua for each
n>

)

1;
(iii) p € LY for each n € N;
(iv) if i < j, then ay, (i) < a,(j) for each n € N;
(v) H(LF, U{LI 0 (i) = j}) < /2.
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For each L,, defined by (xx) by condition (v) we get
(vi) H(Lp, Lyy1) < /27T

Thus, the sequence of continua L, converges to some continuum L
and H(K, L) < e. We will prove that L is locally connected by showing
that 7(L) = 0, see Statement 2.16.

For a given number ¢ > 0, choose k > 1 such that £/2F < ¢/3. Let,
forn € {0,1,2,...}, afunction ,8,’;"'" AL mpgnt — {1, ..., mi} be
the identity if n = 0, and if n > 0, put 6,’;’+" = Q410"+ OQk4n. Define
a sequence of weak chains (MF™ .. ME™) for n € {0,1,2,...}, by

MEtr = (L gt (G) =4} for i€ {l,...,my}.

Thus, we have H(MF™, M) < ¢/2k+n+1 Therefore, if n tends
to infinity, the sequence of continua Mf+” converges to a continuum
M; C L, and H(LF,M;) = H(MF,M;) < ¢/2%. Since diam (L¥) <
g/2k*1) we have diam (M;) < diam (LF) + 2H(LF, M;) < 3¢/2F < €.
To finish the proof, it is enough to observe that, by construction,
L:MluMQUUMmk O

To show the next result we need the following lemma.

Lemma 2.20. Given ¢ > 0, let f : X — Y be a confluent e-
mapping between compacta X and Y, and let M C Y be a locally
connected continuum. Then there exists a subcontinuum K C X such
that f(K) =M and 7(K) < e.

Proof. According to the Whyburn factorization theorem applied
to confluent mappings, see [35, (2.3), page 297] and [3, VII, page
215], the mapping f can be uniquely factorized as the composition
f = foo fir such that f; : X — Z is monotone and f : 7 — Y
is light and confluent. By the Hahn-Mazurkiewicz theorem [31, 8.14,
page 126], there exists a path g : [0,1] — M such that ¢([0,1]) = M.
By the path-lifting property for light confluent mappings (see [13,
Theorem 16], compare [22, Main Theorem, page 357 and Corollaries
2.1 and 2.3, page 364]) there is a path gy : [0,1] — Z such that
g = faogi. Define K' = ¢4([0,1]) € Z. Thus K’ is a locally
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connected continuum such that fo(K') = M. Let K = f;'(K').
Then f(K) = (fao f1)(f; Y(K')) = fo(K') = M. To finish the proof,
observe that the partial mapping f;|K : K — K’ is monotone and has
point-inverses of diameters less than €. Therefore, for sufficiently small
subcontinua of K’ their preimages under f; are continua of diameters
less than . Since the continuum K’ is locally connected, it has the
property S of Sierpiriski, see [31, Theorem 8.4, page 120], and thus it
can be represented as the union K/ = K] U---U K], of finitely many

continua K having diameters so small that for each i € {1,...,m} we
have diam (f; ' (K!)) < e. Since K = f7 ' (K))U---U fi Y(K"), we get
7(K) < ¢ as needed. The proof is complete. o

The following theorem is the most interesting and one of the main
results of the paper.

Theorem 2.21. The class of metric arc Kelley continua is conflu-
ently whole.

Proof. Let K denote the class of metric Kelley continua, and let a
metric continuum X be confluently KC-like. In view of Theorem 2.17, it
suffices to prove that X satisfies condition (2.18).

Take a subcontinuum K of X, a point p € K and a sequence of
points p, € X converging to p. For each n € N, let f, : X — Y,
be a confluent 1/n-mapping from X onto an arc Kelley continuum Y;,.
Thus, each Y, is Kelley continuum according to Proposition 2.8. By
Theorem 2.2 X is a Kelley continuum. Therefore, there are continua
L, C X such that p, € L, and Lim L,, = K. Since, for each n € N,
Y, is an arc Kelley continuum, the continuum f,(L,) C Y, is the limit
of some locally connected, see Remark 2.9, continua M, ,, C Y;, such
that gn = fn(pn) € Mp m for each m € N. For each pair of indices
n, m denote by K, ,, a continuum obtained from the continuum M, ,,
according to Lemma 2.20; thus, 7(K,.,,) < €. Since the continua
M,, ., are locally connected, Statement 2.16 implies 7(M,, ) = 0, and
since f, are 1/n-mappings, we conclude that 7(K,, ,,) < 1/n. Again,
since f,, are confluent and since they are 1/n-mappings, it follows that
H(Kym,Ln) < 1/n for almost all m € N. Applying the well-known
diagonal procedure to the double indexed sequence { K, , : n,m € N},
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one can choose a sequence of continua K, = K, ;,(,) converging to the
continuum K. The sequence satisfies the conditions required in (2.18).
The proof is complete. i

Since the projections in an inverse sequence of continua with confluent
bonding mappings are confluent, [7, Corollary 4, page 5], Theorem 2.21
and Corollary 2.11 lead to the following result.

Corollary 2.22. Let {X,, fI} be an inverse sequence of continua
X, with confluent bonding mappings fr,. Then the inverse limit space
X = @{Xn,fffl} is an arc Kelley continuum if and only if each
continuum X,, s such.

Remark 2.23. It is natural to ask whether confluent mappings in
the above results can be replaced by more general ones. A mapping
f X — Y is said to be semi-confluent provided that for each
subcontinuum @ of Y and for every two components C; and C3 of
f71(Q) either f(C1) C f(C2) or f(Cs) C f(C1). The class of semi-
confluent mappings, see [27, (vi), page 12 and Table II, page 28|,
appears as one of the smallest among all classes studied in the literature
that are wider than the one of confluent mappings. However, the reader
can easily verify that the following continuum X is semi-confluently
LC-representable and semi-confluently L£C-like, but it is not a Kelley
continuum. Indeed, consider an inverse sequence {X,, f}, where for
each n € N the continuum X, is a simple n-od, i.e., it is homeomorphic
to the cone over an n-element set, with the vertex v and with its arms
being straight line segments ve; for ¢ € {1,...,n}, and the bonding
mapping f"t! : X, 11 — X,, is such that if ¢ is the mid point of vey,
then

fati(v) = v,
ot vep 1t vent1 — ve C vey is linear,

™ |ve; : ve; — ve; is the identity mapping for i € {1,...,n}.

Thus, each X, is a Kelley continuum, each f}! is a semi-confluent
mapping, while X = &in {Xn, f} is not a Kelley continuum.
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Remark 2.24. Note that if X = @{Xn, 3, where X, are conflu-
ently £C-like continua and f;} are confluent mappings, then the contin-
uum X is confluently L£C-like. If, additionally, X is one-dimensional,
then X is confluently LC-representable, according to [32, Corollary
3.14]; actually, X is confluently graph-like in this case. However, the
question whether X is confluently LC-representable for higher dimen-
sional X remains open.

Question 2.25. Let X = @{Xn,f;;}, where X, are confluently

LC-representable continua and f;}, are confluent. Is then the continuum
X confluently LC-representable?

Since each locally connected continuum is a Kelley continuum, [19,
20.4, page 167] and has the arc approximation property, [16, Corollary
3.7, page 115], it is an arc Kelley continuum. Thus, we have the
following corollary, which is a stronger form of Corollary 2.3.

Corollary 2.26. Each confluently LC-like (confluently LC-represen-
table) continuum is an arc Kelley continuum. In particular, each such
a continuum X has the arc approrimation property and each of its arc
components is dense in X .

It will be shown in Remark 3.9 below that the implication in the
above corollary cannot be reversed.

3. Atriodic confluently LC-like continua. In this section
we discuss confluently LC-like continua in a specific but important
atriodic case. It was proved in [32, Corollary 3.5] that a nondegenerate
confluently £C-like atriodic continuum is either a solenoid or a Knaster
type continuum. This result is a consequence of a more general fact
proved there [32, Theorem 3.2]. Its proof is technical and depends on
a long collection of auxiliary results developed in [32]. Here we prove
that a substantial part of the above result about atriodic continua can
also be obtained by simple speculation based on the study from this
paper as well as on other known facts.

A continuum Y is called a triod provided that it contains a subcontin-
uum Z such that Y\ Z = E; U E; U E3, where the set E; are nonempty
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and mutually separated, see e.g., [19, 12.20, page 105]. If a continuum
does not contain any triod, it is said to be atriodic.

In [10, Theorem 3.1 and Corollary 3.3], the authors proved the
following.

Proposition 3.1. An arc Kelley continuum is atriodic if and only
if it contains no simple triod.

Proposition 3.2. If an arc Kelley continuum X contains no simple
triod, then each proper subcontinuum of X is an arc.

As a consequence of Proposition 3.2 and Theorem 2.21 (or Corollary
2.22) we have a corollary.

Corollary 3.3. A confluently LC-like continuum X is atriodic if and
only if it contains no simple triod.

Corollary 3.4. If a confluently LC-like continuum X contains no
simple triod, then each proper subcontinuum of X s an arc.

Proposition 3.5. If a confluently LC-like continuum X contains no
simple triod, then X is either confluently arc-like or confluently circle-
like.

Proof. Indeed, by Corollary 3.4, the continuum X is atriodic. Recall
that a confluent image of an atriodic continuum is atriodic, see [26,
Proposition 5.19, page 147]; compare [27, 8.4, page 71]. Therefore,
for each ¢ > 0 the continuum X admits a confluent e-mapping onto
an atriodic locally connected continuum. But an arc and a circle
are the only nondegenerate atriodic locally connected continua, so the
conclusion follows. mi

Similarly, we can prove the next proposition.

Proposition 3.6. If a confluently LC-representable continuum X
contains no simple triod, then X is either confluently arc-representable
or confluently circle-representable.
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Proof. Let X = %iLn{Xn,fZ,LL}, where X, are locally connected
continua and f;, are confluent. Using a similar argument to the one
in the proof of Proposition 3.6, we see that X,, is an arc or a circle
for almost all n. Since there is no confluent mapping from an arc
onto a circle, see [31, Theorem 13.31, page 292], it follows that either
almost all continua X,, are circles or almost all of them are arcs. This
completes the proof. i

As a consequence of Proposition 3.6 and of [5, Theorems 3.3 and 3.4,
page 224], we obtain the following result.

Corollary 3.7. Let a continuum X be confluently LC-representable.
Then the following conditions are equivalent:

(a) X contains no simple triod,
(b) X is atriodic;

(c) X is either a Knaster type continuum or a solenoid.
Corollary 3.7 justifies the following remark.

Remark 3.8. The sin(1/z)-curve is an arc-like Kelley continuum,
but it is not confluently LC-representable. Thus, the implication in
Corollary 2.3 cannot be reversed.

Remark 3.9. Also the implication in Corollary 2.26 (from the con-
dition that X is confluently £C-like to X is an arc Kelley continuum)
cannot be reversed. Indeed, let X be the simplest indecomposable con-
tinuum with three end points (in the sense that for any two continua
containing the point, one of them contains the other, [1, pages 660 and
661]; see [31, 1.5, page 5 and 1.10, page 7]). According to [11, Example
5.4], X is an arc Kelley continuum. Suppose that X admits a conflu-
ent e-mapping onto a locally connected continuum Y, where ¢ is less
than the minimal distance between any two end points of X. Being a
confluent image of X, the space Y is atriodic. Since confluent map-
pings preserve end points, [4, Lemma, page 172], and f cannot identify
any two end points of X, the continuum Y must have at least three
end points. There is no such locally connected atriodic continuum, a
contradiction.
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Theorem 3.10. Fach confluently circle-like continuum is a solenoid.

Proof. Let a continuum X be confluently circle-like. Thus, it is
atriodic, see [19, Exercise 39.7, page 260], and by Corollary 3.5 each
proper subcontinuum of X is an arc. Further, by Corollary 2.26 and
Proposition 2.8, the continuum X has property of Kelley. In [23,
Theorem 1, page 379], solenoids are characterized as circle-like continua
X having property of Kelley and such that each point = € X belongs
to an arc ab C X with a # x # b (thus X has no end point). Therefore,
only this last condition has to be proved.

Suppose on the contrary that there exists a point * € X such
that z is an end point of every arc containing it. Since each proper
subcontinuum of X is an arc, it follows that = is an end point of
X. Since confluent mappings preserve end points, [4, Lemma, page
172], there is no confluent mapping from X onto a circle, so X is not
confluently circle-like, a contradiction. o

The question whether each confluently arc-like continuum is a Knaster
type one was included as open in the original version of this paper. It
gave initial motivation to the entire study presented in [32]. A posi-
tive answer to this question is shown in [32, Corollary 3.4]. Combining
the above investigation with this last result from [32], we have the
following.

Corollary 3.11. For each nondegenerate continuum X, the follow-
ing conditions are equivalent:

(a) X is confluently LC-like and it contains no simple triod;
(b) X is atriodic and confluently LC-like;

(c) X is atriodic and confluently LC-representable;

(

d) X is either a Knaster type continuum or a solenoid.

4. Products and hyperspaces of confluently £C-like continua.
We start with a result that is related to Cartesian products.

Theorem 4.1. If continua X andY are confluently LC-representable
(are confluently LC-like), then the product X x Y is confluently LC-
representable (is confluently LC-like, respectively), too.
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Proof. We prove this for the version of “confluently LC-representable.”
For “confluently L£C-like” the argument is very similar.

Let X = @{Xn,fﬁl} and Y = @{Yn,gfn}, where X, and Y, are
locally connected continua and f; and g, are confluent. Then X XY is
homeomorphic to M { X XYy, f x g}, see [17, 2.5.D.(b), page 105].
Note that confluent mappings onto locally connected continua coincide
with OM-mappings, [27, (6.2), page 51], and the class of OM-mappings
has the product property (i.e., the product of two OM-mappings is also
an OM-mapping), see [27, (5.33), page 36]. Therefore, the product
mappings f7 X gn are confluent (compare also [33, Corollary, page
234]). The proof is complete. O

Questions 4.2. Are the converse implications to Theorem 4.1 true?
In other words, if X and Y are continua, does the condition that X xY
is confluently LC-representable (or confluently L£C-like) imply that X
is such? In particular, do the implications hold if Y = X?

Note that the answers to these questions are positive if we know
that projections (more general open mappings, more general confluent
ones) preserve the class of confluently L£C-representable continua. So,
the next question can be asked.

Question 4.3. Let a continuum X be confluently £C-representable
(or confluently £C-like), and let a mapping f : X — f(X) be confluent.
Is then f(X) confluently LC-representable (or confluently LC-like,
correspondingly)?

Given a metric continuum X, we let 2% denote the hyperspace of
nonempty closed subsets of X equipped with the Hausdorff distance
H, see e.g., [30, (0.1), page 1 and (0.12), page 10], and C(X) stands
for the hyperspace of subcontinua of X, i.e., of connected members of
2X. If k € N is fixed, then Cy(X) and Fy(X) mean the hyperspaces
of nonempty closed subsets of X with at most & components, and
consisting of at most k points, respectively. Thus, C1(X) = C(X),
and Fj(X) is homeomorphic to X. It is known that, for each k € N,
the space Ci(X) is an arcwise connected continuum, see [25, Theorem
3.1, page 240], and that Fj(X) also is a continuum, see [25, (a), page
877] and compare [29, 2.4.2, page 156, and Theorem 4.10, page 165].
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Given a mapping f : X — Y between continua X and Y, we let
2/ 2% — 2Y and Ck(f) : Cx(X) — Ci(Y) denote the corresponding
induced mappings defined by 2/(A4) = f(A) and Cx(A) = f(A). The
reader is referred to [12, 16, 19, 30] and the references therein for
properties of the induced mappings between hyperspaces.

Proposition 4.4. If a continuum X is confluently LC-representable,
then the hyperspaces 2 and C(X) are also confluently LC-representable.

Proof. Let X = %iLn{Xn,fZ,LL}, where X, are locally connected
continua and f? are confluent. Then 2X = lim {2%~ 2/m} and
C(X) = %iLn{C(Xn),C(f],;)}, see [17, 3.12.27 (f), page 245]; see also

[30, (1.169), page 171]. The induced mappings 2/m and C(f?) are con-
fluent, see [16, Corollary 4.5, page 134], and thus the result follows. O

Similarly, using [19, Proposition 22.4, page 189], one can prove the
next result.

Proposition 4.5. If a continuum X is confluently LC-like, then the
hyperspaces 2% and C(X) are also confluently LC-like.

It would be interesting to know when the inverse implications to that
of Propositions 4.4 and 4.5 are true.

Questions 4.6. Let X be a continuum such that the hyperspace
(a) 2%, (b) C(X) is confluently LC-representable (or is confluently £C-
like). Under what conditions is X confluently LC-representable (or is
it confluently LC-like, respectively)?

It is natural to ask if analogs of Propositions 4.4 and 4.5 are true for
the hyperspaces Cj(X) with £ > 1. A full answer to these questions is
presented below, see Proposition 4.9 and Corollary 4.14. Surprisingly,
the answer is positive for £ = 2 and negative for k£ > 2. The following
results will be used in the proof, see [25, Corollary 4.5, page 244] and
[12, Theorem 14, p. 788].
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Proposition 4.7. Let X = %iLn{Xn,f],;}, where X,, are continua

and fI' are surjections. For each k € N the hyperspace Cr(X) is
homeomorphic to the inverse limit @{Ck(Xn), Cr(fi)}.

Theorem 4.8. Let f : X — Y be an OM-mapping between continua.
Then the induced mapping C2(f) : Co(X) — Co(Y) is also an OM-
mapping.

Proposition 4.9. If a continuum X is confluently LC-representable,
then the hyperspace Co(X) is also confluently LC-representable.

Proof. Let X = @{Xn,fﬁl}, where X, are locally connected
continua and f are confluent. Then C3(X) = @{Cg(Xn),Cz(fn)}

according to Theorem 4.7. The coordinate spaces C2(X,,) are known to
be locally connected continua, see [36, Théoréme I1,,, page 191] and
compare [25, Theorem 3.2, page 240]. Further, f” are OM-mappings,
see [27, (6.2), page 51], whence the induced bonding mappings Ca(f7)
are also OM-mappings by Theorem 4.8. Since OM-mappings are
confluent, the conclusion follows. ]

Analogously, we have the following proposition.

Proposition 4.10. If a continuum X is confluently LC-like, then
the hyperspace Co(X) is also confluently LC-like.

The next questions are analogs of Questions 4.6.

Questions 4.11. Let X be a continuum such that the hyperspace
C3(X) is confluently L£C-representable (or is confluently £C-like). Un-
der what conditions is X confluently £C-representable (or is it conflu-
ently £C-like, respectively)?

The next theorem and the obtained corollary show connections be-
tween the property that some hyperspaces of a given continuum are
Kelley and local connectedness of the considered continuum. The main
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idea of the proof of the theorem below is due to Illanes, see [12, Exam-
ple 15, page 790].

Theorem 4.12. Let a continuum X be given. If the hyperspace
C3(X) is a Kelley continuum, then X is locally connected.

Proof. Suppose on the contrary that there is a point p € X at which
X is not locally connected. Let ¢ € X with ¢ # p, and let R be a
nondegenerate subcontinuum of X containing ¢ and not containing p.
Choose € > 0 such that:

(4.12.1) d(g,r) > 2¢ for some r € R;
(4.12.2) B(p,e) " N(R,¢) = &;

(4.12.3) there exists a sequence of points p, tending to p such that
each continuum containing p and p, has diameter greater than e.

For this ¢ there is a § > 0 as in the definition of a Kelley continuum
for C5(X). Let
K={{p} UK : K € C2(R)}.

Then K is a subcontinuum of C5(X) containing the sets {p,q} and
{p,q,r}. Taken € N such that d(p,p,) < 6. Then H({p, q}, {p,pn,q}) <
0, and therefore there is a subcontinuum £ of C3(X) containing
{p,pn,q} which is e-near to K. Let U = clx(B(p,e)) and V =
clx(N(R,¢)). Denote by KP, KP» and K? the components of U UV
containing the points p, p,, and g, respectively.

It is known that two compact subsets of a compactum Z are in the
same component of 2Z if and only if they intersect the same components
of Z, see [15, Lemma 23, page 214]. Taking Z = U UV, it follows
that each element of L intersects each of the sets KP, KP» and KY.
Thus each element of £ has exactly three components. Denote by
L an element of £ which is e-near to {p,q,r}. Then the component
of L contained in K79 must be e¢-near to {g,r}, a contradiction with
(4.12.1). o

Remarks 4.13. a) Note that in Theorem 4.12 one can replace C3(X)
by Ci(X) for an arbitrary k > 3, with a similar proof.

b) The same implication is true if we substitute, in Theorem 4.12,
Fj(X) in place of Cr(X).
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c) The converse is also true because the local connectedness of the
continuum X is equivalent to the local connectedness of the hyperspaces
C(X) and Fy(X), see [25, Theorem 3.2, page 240] and [24, Lemma 2,
page 286]; compare also [2, (a), page 877], and therefore each of them
is a Kelley continuum, [30, 16.11, page 539).

Theorem 4.12 and Remarks 4.13 imply the following corollary.

Corollary 4.14. The following conditions are equivalent for a
continuum X and an integer k > 3:

(4.14.1) the hyperspace Cy(X) is a Kelley continuum for each (for
some) k;

(4.14.2) the hyperspace Fi(X) is a Kelley continuum for each (for
some) k;

(4.14.3) the hyperspace Cy(X) is confluently LC-representable;
(4.14.4) the hyperspace Fy,(X) is confluently LC-representable;
(4.14.5) the hyperspace Cy(X) is confluently LC-like;

(4.14.6) the hyperspace Fi(X) is confluently LC-like;

(4.14.7) the hyperspace Cy(X) is locally connected;

(4.14.8) the hyperspace Fy,(X)

(4.14.9) X is locally connected.

is locally connected;
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