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ARC APPROXIMATION PROPERTY AND CONFLUENCE
OF INDUCED MAPPINGS

WLODZIMIERZ J. CHARATONIK

ABSTRACT. We say that a continuum X has the arc
approximation property if every subcontinuum K of X is the
limit of a sequence of arcwise connected subcontinua of X
all containing a fixed point of K. This property is applied
to exhibit a class of continua Y such that confluence of a
mapping f : X — Y implies confluence of the induced
mappings 27 : 2X — 2Y and C(f) : C(X) — C(Y). The
converse implications are studied and similar interrelations
are considered for some other classes of mappings, related to
confluent ones.

1. Introduction. For a metric continuum X we denote by 2% and
C(X) the hyperspaces of all nonempty compact and of all nonempty
compact connected subsets of X, respectively. Given a mapping
f : X — Y between continua X and Y, we let 27 : 2X — 2V
and C(f) : C(X) — C(Y) to denote the corresponding induced
mappings. Let 9 stand for a class of mappings between continua. A
general problem which is discussed in this paper is to find all possible
interrelations between the following three statements:

(1.1) feMy
(1.2) 2/ e
(1.3) C(f) eMm.

We do not intend to discuss the problem in full, for a wide spectrum
of various classes M of mappings. On the contrary, we concentrate our
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attention on the class of confluent mappings and on a few other classes
that are relatively close to confluent ones. On the other hand, however,
we consider several additional conditions that concern domain and/or
range spaces as well as the mappings. under which some implications
between statements (1.1), (1.2) and (1.3), while not true in general, are
valid.

2. Preliminaries. All spaces considered in this paper are assumed
to be metric. A continuum means a compact connected metric space.
A property of a continuum is said to be hereditary provided that every
subcontinuum of the continuum has the property.

Given a continuum X with a metric d, we let 2% denote the hyper-
space of all nonempty closed subsets of X with the Hausdorff metric

H(A, B) = max{sup{(d(a, B) : a € A},sup{d(b, A) : b € B}};

equivalently, with the Vietoris topology, see, e.g., [19 (0.1) and (0.12)].
Further, we denote by C(X) the hyperspace of all subcontinua of X, i.e.,
of all connected elements of 2%, and by Fy(X) the space of singletons,
ie., Fi1(X) = {{p} € 2¥ : p € X}. Note that F1(X) C C(X), and that
the following holds, see [19, Theorem (1.13)].

Proposition 2.1. For each continuum X the hyperspaces 2% and
C(X) are arcwise connected continua. In particular, the hyperspace
C(X) is a subcontinuum of the hyperspace 2% .

Proposition 2.2. For each continuum X the space Fy(X) of
singletons is homeomorphic (even isometric) to X, and thus it is a
subcontinuum of the hyperspaces 2% and C(X).

By an order arc in 2% we mean an arc ® in 2% such that if A, B € @,
then either A C B or B C A. The following facts are known, see [19,
Theorem (1.8) and Lemma (1.11)].

Fact 2.3. Let A,B € 2% with A # B. Then there exists an order
arc in 2% from A to B if and only if A C B and each component of B
intersects A.
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Fact 2.4. If an order arc ® in 2% begins with A € C(X), then
® C C(X).

The reader is referred to Nadler’s book [19] for needed information
on the structure of hyperspaces.

For a given point p of a space X and for a number £ > 0 we denote
by B(p,¢) the open e-ball about the point p in the space X. Further,
for a given subset A of X we denote by N(A,¢) the e-neighborhood of
Ain X, ie., N(A,e) = U{B(p,e):p € A}.

Let a subset A and a sequence of subsets A,, of a metric space X be
given. We use the notation A = Lim A,, in the usual sense as in [12,
p- 339]. For compact spaces this notion of limit is equivalent to that
using Hausdorff metric (see [19, Theorem (0.7)]). A continuum X is
said to be irreducible provided that there are two points of X such that
if a subcontinuum X’ of X contains these points, then X’ = X. Each
of these points is called a point of irreducibility of X.

A mapping means a continuous function. A mapping f : X = Y
between continua X and Y is said to be: confluent provided that
for each subcontinuum L of Y each component of f~1(L) is mapped
under f onto L; semi-confluent provided that for each subcontinuum
L of Y and for every two components K; and K of f~!(L) either
f(K1) C f(Ks3) or f(Ks2) C f(Ky) (or both); joining provided that
for each subcontinuum L of Y and for every two components K; and
K5 of f71(L) their images intersect, i.e., f(K1) N f(K2) # @; weakly
confluent provided that for each subcontinuum L of Y some component
of f~1(L) is mapped under f onto L; pseudo-confluent provided that
for each irreducible subcontinuum L of ¥ some component of f~!(L)
is mapped under f onto L.

Recently the following concept has been introduced in [17, p. 236].
Let a nonnegative integer n be given. A mapping f: X — Y between
continua X and Y is said to be: 0-weakly confluent provided that
it is a surjection; (n + 1)-weakly confluent provided that for each
subcontinuum L of Y there exists a component of f~!(L) such that
the partial mapping f|K : K — L is n-weakly confluent; No-weakly
confluent (or inductively weakly confluent) provided that it is n-weakly
confluent for every nonnegative integer n.

Thus it is evident that 1-weakly confluent mappings coincide with



110 W.J. CHARATONIK

weakly confluent ones. Further, the following fact is a consequence of
the definition, see [17, p. 236].

Fact 2.5. For every nonnegative integer n, an (n + 1)-weakly
confluent mapping is n-weakly confluent.

We have the following corollary.

Corollary 2.6. For every nonnegative integer n an n-weakly conflu-
ent (and Rg-weakly confluent) mapping is surjective.

The following proposition is known.

Proposition 2.7. Let a mapping between continua be given.
a) If it is confluent, then it is semi-confluent and surjective.

b) If it is semi-confluent, then it is joining.

(
(
(c) If it is semi-confluent and surjective, then it is weakly confluent.
(d) If it is weakly confluent, then it is pseudo-confluent.

(

e) If it is pseudo-confluent, then it is surjective.

Proof. Implications (a), (b), (d) and (e) are consequences of the
definitions; (c) is shown in [16, Theorem (3.8)]. u]

The next result is proved as Theorem 1 of [17, p. 236].

Theorem 2.8. Fach surjective semi-confluent mapping between
continua is Ng-weakly confluent.

Recall that a mapping r : X — Y C X is called a retraction if the
partial mapping r|Y : Y — Y is the identity.

Observation 2.9. Each retraction between continua is Ng-weakly
confluent.
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Remark 2.10. The concept of a joining mapping has been introduced
by T. Mackowiak in [15, p. 288]. In that paper, as well as in [16,
pp. 12-14], the reader can find some (but rather scanty) information
on these mappings. Note that a mapping of an arc onto a simple
closed curve that identifies the end points of the arc is joining while
not pseudo-confluent. A weakly confluent but not joining mapping
f:10,1] — [0,1] can be defined as one that is linear on the intervals
[a;,a;+1], where 0 = ap < a3 < az < az = 1, and such that for
0 =0bo < by <by <bz=1wehave f(ag) = b1; f(a1) = bo; f(az) = bs;
flag) = ba.

We will need the following general fact about confluent mappings.

Proposition 2.11. If a mapping f : X — Y between continua X and
Y is not confluent, then there are a continuum L in'Y and a component
C of fY(L) such that f(C) is a nondegenerate proper subset of L.

Proof. Assume that f is not confluent and let L' and C’ be two
continua in Y and X, respectively, such that C’ is a component of
f7H(L') and f(C') # L'. If f(C") is nondegenerate, we are done; so
assume that f(C’) = {p} for some point p in L'. Let ¢ € L'\{p}. Since
the decomposition of f~(L') into the components is 0-dimensional,
there are two open subsets U; and Us of X such that

UinUs =9, fYL)CcUUUy,, C CU and f~'(q) CUs.

Let {V;, : n € N} be a sequence of open subsets of ¥ such that

Vos1 CV, foreach neN and N{V,:neN}=L"

Then {f !(clV,) : n € N} is a decreasing sequence of compact
subsets of X whose intersection equals f~'(L’). Thus there is an index
no such that f=1(clV,,,) C U1UU,. Denote by C" a continuum properly
containing C’ and contained in f1(V,,), so C"” C U;. Finally, put
L = L'U f(C") and let C be the component of f~!(L) containing
C". Because C’ is a component of f !(L’), the continuum f(C") is
nondegenerate, and so is f(C). Since C C Uy, we have CNf~1(q) = &,
i.e., ¢ € L\ f(C). The proof is complete. O
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Let a mapping f : X — Y between continua X and Y be given.
A continuum L C Y is said to be 1° a continuum of confluence
for f provided that for each component K of f~1(L) the equality
f(K) = L holds; 2° a continuum of semi-confluence for f provided
that for every two components K; and K of f~1(L) either f(K;) C
f(K2) or f(K2) C f(K1) (or both); 3° a continuum of joining for
f provided that for every two components K; and Ko of f~(L) we
have f(K1) N f(K2) # @; 4° a continuum of weak confluence for f
provided that there exists a component K of f~!(L) such that the
equality f(K) = L holds.

Therefore, a mapping f : X — Y between continua X and Y is
confluent (semi-confluent, joining, weakly confluent) if and only if each
subcontinuum L of Y is a continuum of confluence (of semi-confluence,
of joining, of weak confluence, respectively) for f.

Observation 2.12. Let a mapping f : X — Y between continua X
and Y be given. A subcontinuum L of Y is a continuum of confluence
for f if and only if for each point z € f~1(L) there is a subcontinuum
K of X such that z € K and f(K)=L.

Observation 2.13. Let a mapping f : X — Y between continua
X and Y be given. A subcontinuum L of Y is a continuum of weak
confluence for f if and only if there is a subcontinuum K of X such
that f(K) = L.

Given a mapping f : X — Y between continua X and Y, we consider
mappings (called the induced ones)

27 2% 52V and C(f): C(X) — C(Y)
defined by
27(A) = f(A) for every Ac2¥
and

C(f)(A) = f(A) forevery A€ C(X).
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The following two facts are known, see [19, Theorem (0.49.1)].

Fact 2.14. The induced mapping 2/ : 2% — 2Y is surjective if and
only if f is surjective.

Fact 2.15. The induced mapping C(f) : C(X) — C(Y) is surjective
if and only if f is weakly confluent.

3. Arc approximation property. A space X is said to be arcwise
connected if every two points of X can be joined by an arc in X.

Let a subcontinuum K of a continuum X and a point p € K be given.
We say that K is arcwise approximated at the point p provided that
there is a sequence of arcwise connected subcontinua K, of X such
that p € K, for each n € N and K = Lim K,,. A subcontinuum K
of a continuum X is said to be arcwise approximated provided that
it is arcwise approximated at each point of K. In particular, this
condition is satisfied in the case when K C K, for each n € N. Then
we say that K is strongly arcwise approximated. In other words, a
continuum K C X is strongly arcwise approximated provided that
there is a sequence of arcwise connected subcontinua K, of X such
that K = Lim K,, C N{K,, : n € N}. A continuum X is said to have
the (strong) arc approximation property provided every subcontinuum
of X is (strongly) arcwise approximated.

As a direct consequence of the definition, we get the following char-
acterization.

Proposition 3.1. Let a continuum X, its subcontinuum K C X and
a point p € K be given. Then K is arcwise approximated at p if and
only if for each x € K and each € > 0 there is an arc J C N(K,¢) with
one end point at p and the other in B(z,¢).

Proof. If K is arcwise approximated at p and € > 0, let K’ be an
arcwise connected continuum containing p such that H(K,K') < e.
Take a point 2’ € B(z,e) N K'. Then the arc J joining p and z’ in K’
satisfies the required conditions.

On the other hand, assume that for each point x € K and for
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each € > 0 there is an arc J(z) C N(K,e) with one end point at p
and the other in B(z,e). Consider the cover {B(z,e) : * € K} of
K and choose a finite subcover {B(z;,¢) : ¢ € {1,2,...,n}}. Then
K' = U{J(z;) : i € {1,2,...,n}} is an arcwise connected continuum
such that H(K, K') < e. The proof is complete. O

Putting K = X in the definition of the strong arc approximation
property, we get the following fact.

Fact 3.2. If a continuum has the strong arc approximation property,
then it is arcwise connected.

Proposition 3.3. Let a continuum X, its subcontinuum K C X
and a point p € K be given, and let 7 : X — Y C X be a retraction
with p € Y. If K is arcwise approzimated at p, then r(K) is arcwise
approximated at p, too.

Proof. Let a sequence of arcwise connected continua K, converging
to the continuum K be given with p € K, for each n € N. Then r(K,)
are arcwise connected continua containing p and converging to r(K).
O

Corollary 3.4. Every retract of a continuum having the (strong) arc
approzimation property has the (strong) arc approzimation property.

The above corollary can be generalized as follows.

Theorem 3.5. Let a continuum X have the (strong) arc approzima-
tion property, and let a mapping f : X — Y be weakly confluent. Then
Y has the (strong) arc approzimation property.

Proof. Take a continuum L C Y and a point ¢ € L. Denote by
K a subcontinuum of X with f(K) = L and by p a point of K with
f(p) = q. Let arcwise connected continua containing p (containing K)
converge to K. Then f(K,,) are arcwise connected continua containing
g (containing L) and converging to L. O
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Proposition 3.6. Let a continuum X be given, and let K be a
subcontinuum of X. If every point of K has an arbitrarily small
arcwise connected closed neighborhood, then K 1is strongly arcwise
approximated.

Proof. Given a positive number ¢, we have to show that there
is an arcwise connected continuum L of X such that K C L and
H(K,L) < e. By assumption, for each point ¢ of K there exists a
closed arcwise connected neighborhood V(g) of ¢ such that V(q) is
contained in the e-ball about ¢. Thus {intV(g) : ¢ € K} is an open
covering of K and, by compactness of K, there is a finite set of points
{q1,--+ ,qm} of K, such that K C U{int V(¢;) : % € {1,...,m}}. Put

L=U{V(g):ie{1,...,m}}.

Note that L is an arcwise connected continuum which contains K and
which is contained in the e-ball about K in X. Therefore, H(K, L) < ¢,
and the proof is complete. ]

Since each point in a locally connected continuum has arbitrarily
small arcwise connected closed neighborhoods, see, e.g., [13, p. 254],
we get the following known result, see [7, Lemma 2.4] as a corollary to
Proposition 3.6.

Corollary 3.7. FEach locally connected continuum has the strong arc
approximation property.

The following observations are direct consequences of definitions.

Fact 3.8. If every nonempty proper subcontinuum of a continuum
is arcwise connected, then the continuum has the arc approximation
property, and each of its proper subcontinua is strongly arcwise ap-
proximated.

In particular, any solenoid, see, e.g., [19, p. 202], as well as the
simplest indecomposable continuum, see, e.g., [13, p. 204], compare
[19, p. 201], have the arc approximation property.
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As a special case of Fact 3.8, we get the following fact.

Fact 3.9. Every hereditarily arcwise connected continuum has the
strong arc approximation property.

In particular, any dendroid, i.e., an arcwise connected and hereditar-
ily unicoherent continuum, see [19, p. 16], has the strong arc approx-
imation property. Note that heredity of arcwise connectedness of the
continuum is an indispensable assumption in Fact 3.9.

Proposition 3.10. If a continuum X has the arc approximation
property, then every arc component of X is dense.

Proof. Suppose there is an arc component A of a point p of X that
is not a dense subset of X. Then there exists a continuum K such
that p € A C clA C K C X. Therefore, for each sequence of arcwise
connected subcontinua K, of X such that p € K,, for each n € N, we
have K,, C A, and thus no such sequence converges to K, contrary to
the assumption. O

Remark 3.11. The sin 1/z-circle, i.e., cl{(z,sin(1/z)) : 0 < z < 1}
with points (0, —1) and (1,sin 1) identified, is an example of an arcwise
connected continuum which does not have the arc approximation prop-
erty. Namely some subcontinua containing points at which the curve
is not locally connected are not arcwise approximated.

Theorem 3.12. Let a continuum X be given such that there are a
subcontinuum Co and a family of subcontinua {C, : a« € A} having the
following properties:

(3.13) X =Cou| J{Cq:a € A}
(3.14) Co ﬂC’a # 3 for every o € A;

(3.15) for every a € A each point of the intersection Cy N Cy has
arbitrarily small arcwise connected neighborhoods in both Cy and Cy;



ARC APPROXIMATION PROPERTY 117

(3.16) if a subcontinuum K of X is such that KNCq # @ # KNCpg
for some o, B € A and a # 8, then K N Cy # O

(3.17) Cy and C,, for every o € A have the (strong) arc approzimation
property.

Then the continuum X has the (strong) arc approzimation property.

Proof. We have to show that, for every continuum K C X and a
point p € K, there is a sequence of arcwise connected continua K,
containing p (containing K) and converging to K. Consider a family
L of subcontinua of K containing the point p and such that for each
member L of £ there exists a sequence of arcwise connected continua
L, with p € L, (with L C L,) and L = Lim L,,. The proof will be
completed if we show that K € L.

Observe that the family £ has the following properties:
(3.18) L is nonempty because the singleton {p} is in £;

(3.19) L is a closed subset of C(K) by the standard diagonal argu-
ment;

(3.20) if Ly,Ls € L, then Ly U Ly € L because the union of two
arcwise connected continua containing p (containing L; and contain-
ing Lo, respectively) is an arcwise connected continuum containing p
(containing Ly U Ly).

Note that conditions (3.18)—(3.20) imply that there is the greatest
(with respect to the inclusion) element M in L, i.e., such an element
M € L that if L € £, then L C M. We will show that M = K.
Suppose that M is a proper subset of K. Consider two cases.

Case 1. (K\M)NCy # @. Let z be a point of M Ncl(K\M) N Cy.
Note that (3.17) implies that M is not contained in Cp. Denote by
Ky the component of K N Cy that contains x. Thus there exists an
index a € A such that Ko " M NC, # . Denote by b a point of
KoN M NC, and consider a sequence of arcwise connected continua
M, containing p (containing M) and converging to M. Since Cjp has
the (strong) arc approximation property according to (3.17), there
is a sequence of arcwise connected continua B, C Cj containing b
(containing Kj) and converging to K. By (3.15) there is a sequence
of arcs D,, C C,, containing the point b and tending to {b} such that
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D, N M, # @. Then M, UD, U B, is a sequence of arcwise connected
continua each containing p (containing M U K;) and converging to
M U Ky. Thus, M UK, € £ and (by Case 1) properly contains M,
contrary to maximality of M.

Case 2. (K\M) N (Cy\Cy) # & for some o € A. Let x be a point
in (K\M) N (Cy\Co). If M C C,\Cy then we are done. So assume
M\C, # @. Denote by K, the component of K N C, that contains
x; and denote by b a point of Kqg N M N Cy. Let M,, be a sequence of
arcwise connected continua containing p (containing M) and converging
to M. Since C, has the (strong) arc approximation property according
to (3.17), there is a sequence of arcwise connected continua B, C C,
containing b (containing K) and converging to K. As previously, by
(3.15) there is a sequence of arcs D,, C C,, containing the point b and
tending to {b} such that D, N M,, # @. Then M, U D, U B, is a
sequence of arcwise connected continua each containing p (containing
M U Kj) and converging to M U Ky, contrary to maximality of the
continuum M. The proof is finished. i

Remarks 3.21. We shall show that the assumptions (3.15) and (3.16)
in Theorem 3.12 are necessary.

1) To see that (3.15) is essential, take as X the wedge (also called the
one-point union) of a solenoid Cy and an arc Ci:

X:COU01 and C’oﬁclz{p}

and note that Cy and C7 have the arc approximation property while X
does not by Proposition 3.10; condition (3.15) evidently does not hold.

2) Assumption (3.16) is indispensable by the following example.
Define X as the cone over the pseudo-arc P. Denote by v the vertex
of the cone X; let Cj be the singleton {v}, and for each o € P let
C, mean the straight line segment in X joining v and a. Then (3.13)
holds, X does not have the arc approximation property, and taking
K = P we see that (3.16) is not satisfied.

Now we intend to discuss the arc approximation property for hyper-
spaces. Recall the following result, see [19, Theorem (1.92)].
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Theorem 3.22. The following three statements are equivalent:
(a) the continuum X is locally connected:

(b) the hyperspace 2% is locally connected,

(c) the hyperspace C(X) is locally connected.

A general problem can be posed which is related in a way to Theo-
rem 3.22.

Problem 3.23. Find necessary and/or sufficient conditions under
which some implications are true between the three statements below:

(a) the continuum X has the arc approximation property;
(b) the hyperspace 2% has the arc approximation property;
(c) the hyperspace C(X) has the arc approximation property.

To see that the arc approximation property is weaker than local
connectedness for hyperspaces for continua, we need an example of
a not locally connected continuum X whose hyperspaces 2% and/or
C(X) have the arc approximation property. It can be observed that
the harmonic fan, i.e., the cone over {0} U{1/n : n € N}, is such a
continuum. However, a more general result can be shown.

Theorem 3.24. Let a continuum X be given such that there are a
subcontinuum Cy and a family of subcontinua {Cy : « € A} having the
following properties:

(3.13) X =Cou| J{Cq:a € A}
(3.14) CoNCy #2 forevery «€ A4;

(3.25) for every a € A each point of the intersection Co N Cy has
arbitrarily small arcwise connected neighborhoods in Cy;

(3.16) if a subcontinuum K of X is such that KNCq # @ # KNCp
for some a, 8 € A and o # B, then K N Cy # &;

(3.26) {KeC(X):KNCy+# o} islocally connected,
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(3.27) C(C4) has the (strong) arc approzimation property for every
a € A.

Then the hyperspace C(X) has the (strong) arc approzimation prop-
erty.

Proof. Observe that (3.16) implies
(3.28) C(X)={KeC(X):KnCo#2}U| J{C(Ca):a € A}.

Put
H={KeC(X): KNC, # 2},

and note that H is a continuum according to [19, p. 200]. We apply
Theorem 3.12 with C(X) in place of X, with # in place of Cy, and with
C(Cq) in place of C,. Thus, (3.28) stands for (3.13) in Theorem 3.12.
We have to verify that all the other assumptions, i.e., (3.14)—(3.17), of
that theorem are satisfied, which now run as follows.

(3.29) H ﬂ C(Cq) # 2 for every « € A;

(3.30) for every a € A each point of the intersection H N C(C,)
has arbitrarily small arcwise connected neighborhoods in both H and

C(Ca);
(3.31) if a subcontinuum K of C(X) is such that

KNC(Cy) # @ #KNC(Cp)

for some o, 8 € A and a # 3, then K NH # O;

(3.32) % and C(C,) for every a € A have the (strong) arc approxi-
mation property.

Indeed, (3.14) implies (3.29) because, if z € Cy N Cy, then {z} €
H N C(Cy). To show (3.31), assume that K is a subcontinuum of
C(X) that intersects both C(Cy) and C(Cg) for some o, € A and
a # (. Denote by K the union UK. Then K NCy # @ # K N Cp,
so KN Cy # @ by (3.16). Whence there is a continuum L in K that
intersects Cy, i.e., L € H, so L € H N K, which establishes (3.31).
Further, since the continuum H is locally connected by assumption
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(3.26), it has the strong arc approximation property according to
Corollary 3.7. This fact, together with (3.27) gives (3.32). So only
(3.30) needs an argument. Again, since # is locally connected by (3.26),
it has arbitrarily small arcwise connected neighborhoods of each point.
To show the other half of (3.30), take a continuum K contained in
Co N Cq, and let L € C(C,) be close to K. We have to construct a
small arc in C(C,) that joins K and L. By (3.25) there is a small arc
D in C, with DNK # @ # DN L. Then, according to [19, pp. 59, 64],
there are order arcs from K to K UD U L and from L to K UD U L.
The union f these two order arcs contains a small arc joining K and L
in C(Cy). The proof is complete. u]

Remark 3.33. If the continuum Cj is locally connected, then condition
(3.26) is satisfied, see [19, p. 200]. This fact will be used in Corollaries
3.38-3.41, while in Example 3.36 below we shall see that local connect-
edness of Cy is not necessary to show the (strong) arc approximation
property for C(X).

Remark 3.34. If the continuum X is hereditarily unicoherent, then
condition (3.16) in Theorems 3.12 and 3.24 may be replaced by a weaker
one

(3.35) C,NCgCCy forevery a,€A and o#p.

Indeed, if a point p € X is in the intersection C, N C3 for some
a,f € A with o # 3, then putting K = {p} in condition (3.16) we
infer that p € Cp, and thus (3.35) holds. On the other hand, if (3.16)
is not satisfied, then taking a continuum K that intersects C, and Cg
for some a,8 € A and « # 3 and is disjoint with Cy we see that the
continuum Cy U Cy U Cg U K is not unicoherent because (3.35) implies
that the intersection (CoUCoUCg)NK = (Co NK)U(CgNK) is not
connected.

Example 3.36. For each continuum P and for each zero-dimensional
compact set A there exists a continuum X, its subcontinuum Cj and
a family of subcontinua {C, : a € A} such that all assumptions of
Theorem 3.24 are satisfied and yet C is homeomorphic to P.
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Proof. Let an arbitrary continuum P be considered as a subset of the
Hilbert cube @, and let a zero-dimensional compact set A be given. In
the product @ x A define an equivalence relation ~ putting

(z,t) ~ (y,8) <= ax=ye€P or z=y and t=s.

Let X =Q x A/ ~, and let 7 : @ x A — X stand for the quotient
mapping. Further, for every a € A define C, = 7(Q x {a}) and
Co = (P x {a}), and note that Cy does not depend on «, as well
as that it is homeomorphic to P simply by its definition. The reader
can observe that assumptions (3.13), (3.14), (3.25), (3.16) and (3.27)
of Theorem 3.24 are satisfied. We show also that (3.26) holds true. As
previously put

H={KecCX): KNCy # @}

and note that 7 is a continuum according to [19, p. 200]. Let continua
K and L of H be close to each other. We will construct a small arc in
H joining K and L. Take a point g € K Ny and let a point z; € L
be close to zg. Then, for some o € A, we have x1 € C,. Since zy € C,
too, there is a small arc D in C, joining ¢ and x;. Then, according
to [19, pp. 59, 64], there are an order arc from K to K U D U L and
an order arc from L to K UD UL in ‘H. The union of these two order
arcs contains a small arc joining K and L in H. So H is locally arcwise
connected, and thus (3.26) is shown. The proof is complete. O

Corollary 3.37. Let (X1,p1) and (X2, p2) be pointed continua which
are locally connected at points py and ps, respectively. Assume that
the hyperspaces C(X1) and C(X2) have the (strong) arc approzimation
property. Then the hyperspace of the one-point union, C(X1V Xs3), has
the (strong) arc approzimation property.

Before we formulate further corollaries to Theorem 3.24, we recall
some concepts concerning dendroids. By an end point of a dendroid
X we mean such a point p of X that each arc containing p ends at p.
A locally connected dendroid is called a dendrite. By a finite dendrite
we mean a dendrite having finitely many end points. A dendroid X
having exactly one ramification point, i.e., a point being the center of
a simple triod contained in X, is called a fan, and the point is called
the top of the fan. A dendroid X is said to be smooth at a point p € X
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provided that if {a, : n € N} is any convergent sequence of points of
X, converging to a point ag € X, then the sequence of the (unique)
arcs pa, converges to the arc pag. A dendroid X is said to be smooth
provided that it is smooth at some point p € X, see, e.g., [19, p. 117].
Thus the harmonic fan is an example of a smooth fan. The structure
of the hyperspace C'(X) of a smooth fan X is described in a detailed
way in Theorem 3.1 of [4, p. 282]. In particular, it is known that if X
is a smooth fan with its top v, then the continuum

H={Ke(C(X):ve K}

is homeomorphic to the Hilbert cube, see [4, Theorem 3.1]; compare [3,
Theorem 8]. However, even if X is an arbitrary fan, not necessarily a
smooth one, the structure of its hyperspace C(X) can be described
in a similar way. This will be presented in the next corollary to
Theorem 3.24.

Corollary 3.38. For every fan X the hyperspace C(X) has the
strong arc approrimation property.

Proof. 1t is enough to consider the fan X as the union of arcs from
the top v to end points a of X. Putting Cyp = {v} and C, = va for
each end point « of X, we see that all the assumptions of Theorem 3.24
are satisfied. In particular, (3.26) holds by Remark 3.33. O

Corollary 3.39. If a dendroid X has all its ramification points in a
dendrite Cy C X, in particular if X has finitely many ramification
points, then the hyperspace C(X) has the strong arc approximation
property.

Corollary 3.40. Let a dendroid X be given such that there are a
dendrite Cy and a family of dendrites {Cy, : a € A} with

(3.13) X =Cou| J{Ca:a € A}

(3.14) ConNC, #D forevery o€ A;
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(3.35) CanNCs CCy forevery a,f€A and a#p.

Then the hyperspace C(X) has the strong arc approzimation property.

Corollary 3.41. Let a dendroid X be given such that there are
a dendrite Cy and a family of dendroids {Co : a € A} having the
following properties:

(3.13) X =Cou| J{Cq:a € A}

(3.42) CoNC, 1is a singleton for every o € A

(3.43) for every a € A the dendroid C, is locally connected at the
only point of the intersection Cy N Cy;

(3.35) ConNCs CCy forevery a,f€A and oFf;

(3.27) C(Cq) has the (strong) arc approzimation property for every
a € A.

Then the hyperspace C(X) has the (strong) arc approzimation prop-
erty.

Proof. Note that (3.16) of Theorem 3.24 follows from hereditary
unicoherence of the dendroid X, and (3.26) holds by Remark 3.33. All
other assumptions are also satisfied. a

The following theorem gives a method of constructing continua with
the arc approximation property.

Theorem 3.44. Let a continuum X be given such that, for each
point p € X, there are a sequence of continua X, C X and a sequence
of retractions r,, : X — X,, such that

(3.45) p€ X, forevery neN;

(3.46) the sequence of retractions r, converges to the identity, i.e.,
z = limr,(z) for each point x € X;
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(3.47) X,, has the arc approzimation property for every n € N.

Then the continuum X has the arc approrimation property.

Proof. Let K be a subcontinuum of X, and let p € K. Put
K, = rn(K). According to (3.47) for every n € N there are in X,
arcwise connected continua K, , (where m € N) containing p and
such that Lim,, oo Kpm = Kp. For sufliciently large n and m, the
continuum K, ., is close to K, so the proof is finished. a

Now we intend to show another theorem which says that if a con-
tinuum X can be approximated in a special way by a sequence of its
subcontinua X, the hyperspaces C'(X,,) of which have the arc approxi-
mation property, then the hyperspace C'(X) has the arc approximation
property. Namely, we have the following result.

Theorem 3.48. Let a continuum X be given such that, for each
point p € X, there are a sequence of continua X, C X and a sequence
of retractions r,, : X — X,, such that

(3.45) p€ X, forevery neN;

(3.46) the sequence of retractions r, converges to the identity, i.e.,
z = limr,(z) for each point x € X;

(3.49) C(X,,) has the arc approzimation property for every n € N.
Then the hyperspace C(X) has the arc approzimation property.

Proof. Let K be a subcontinuum of C(X), and let p € K € K.
We have to construct arcwise connected continua containing K and
approximating K. Put K, = r,(K) and K, = C(r,)(K). According to
(3.49) for every n € N there are in C'(X,,) arcwise connected continua
Ly.m (where m € N) containing K,, and such that Lim,, oo Ly m =
K. Thus, by (3.46), we have

(3.50) Lim K, = K.

Since K,, N K # @, for every n € N (the intersection contains p),
there is an arc D, in C(X,) from K, to K (it can be taken in the
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union of an order arc from K, to K, UK and an order arc from K to
K, UK). Moreover, since K,,’s tend to K by (3.46), we et

(3.51) LimD, = {K}.

Thus, for every n,m € N, the union £,, ,,UD,, is an arcwise connected
continuum containing K. For sufficiently large n and m, it is close to
K by (3.50) and (3.51). The proof is then complete. o

Remark 3.52. We cannot conclude that C(X) has the strong arc
approximation property if we assume the strong arc approximation
property for each C(X,). To see this, it is enough to consider the
simplest indecomposable continuum X, see, e.g., [13, p. 204], compare
[19, p. 201], and for each point p € X a sequence of arcs X,, containing
p and tending to X. The same example shows that in Theorem 3.44
we cannot conclude that X has the strong arc approximation property
if we assume the strong arc approximation property for each X,,.

Remark 3.53. Note that the continua X,, in Theorems 3.44 and 3.48
depend on the choice of the point p. It is not enough to have X, and
r,, for some point p € X, or even for points p forming a dense subset
of X, as can be seen from the following example.

Let X stand for the sin(1/x)-curve, p an arbitrary point at which X
is locally connected, and let X,, be a sequence of arcs in X containing p
and tending to X. Then all the assumptions of Theorems 3.44 or 3.48
are satisfied with this choice of p, while X and C'(X) do not have the
arc approximation property, namely, if ¢ is a point at which X is not
locally connected, then X and F}(X) are not arcwise approximated at
g and at {¢}, respectively.

Corollary 3.54. Let a continuum X be given such that, for each
point p € X, there are a sequence of continua X, C X containing
p and a sequence of retractions fn : Xpy1 — X, such that X 1is
homeomorphic to the inverse limit Liminv {X,,, fo}. If C(X,,) has the
arc approzimation property for every n € N, then the hyperspace C(X)
has the arc approrimation property.
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Proof. 1t is enough to apply Theorem 3.48 with r, as the projection
of Liminv {X,,, f,} onto X,,. o

Remark 3.55. Again we would like to stress that the inverse sequence
{ X, fn}o2 4 has to be chosen for each point p € X separately, and it is
not enough to have one such sequence. Really, in the previous example
we can choose arcs X, in such a way that X,, C X,,; and that X is
homeomorphic to Liminv {X,,, f,}.

To apply Theorem 3.48 to dendroids, we need the following result.

Theorem 3.56. Let a dendroid X be smooth at a point v € X,
and let a point p € X be given. Then there exists a sequence of finite
dendrites X, C X,41 C X with v,p € X,, for every n € N, and a
sequence of retractions v, : X — X, such that

(3.46) the sequence of retractions r, converges to the identity, i.e.,
z = limr,(z) for each point x € X.

Proof. A universal smooth dendroid Y is described in [18, p. 538] as
the inverse limit of an inverse sequence of finite dendrites Y,, with open
bonding mappings A, : Y,4+1 — Y,. Since the bonding mappings may
be thought of as retractions, we can consider each Y;, as a subcontinuum
of Y and each projection m, : Y — Y, as a retraction. It can be
observed from the construction of Y that, for every two end points e
and ey of Y, there is a homeomorphism of Y onto itself that maps e
onto e;. Let g be an embedding of X into Y such that Y is smooth at
g(v). Denote by e an end point of Y such that g(p) € g(v)e, and let h
be a homeomorphism of Y onto itself that maps e onto the end point
of Yo. Put

Xn =g ' (h (mn(h(9(X))))) and rn=gtohTlomohog.

Then all the required conditions are satisfied, and the proof is complete.
O

Remark 3.57. It is not known if an arbitrary dendroid X is homeo-
morphic to the inverse limit of an inverse sequence of (finite) dendrites
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X, C X with retractions as bonding mappings (compare, e.g., a remark
after Theorem 2 of [5, p. 261], so it is not known whether Theorem 3.48
can be applied to all dendroids.

Corollary 3.58. If a dendroid X is smooth, then the hyperspace
C(X) has the arc approzimation property.

Questions 3.59. a) For what dendroids X does the hyperspace
C(X) have the (strong) arc approximation property? b) Does C(X)
have the strong arc approximation property for every hereditarily
arcwise connected continuum X? c¢) Does 2% have the (strong) arc
approximation property for every smooth fan X or for every smooth
dendroid X?

Questions 3.60. Let an arcwise connected continuum X have the
strong arc approximation property. Do the hyperspaces: a) C'(X) b) 2%
also have the strong arc approximation property?

Several other questions are related to the arc approximation property
for hyperspaces 2% and C(X).

Question 3.61. For what continua X do the hyperspaces 2X and
C(X) have the arc approximation property?

As the reader has certainly observed, all locally connected continua
are such (by Theorem 3.22 and Corollary 3.7). In connection with
Problem 3.23 we have some particular questions.

Questions 3.62. Are the three statements: (a) the continuum
X has the arc approximation property, (b) the hyperspace 2% has
the arc approximation property, (c) the hyperspace C'(X) has the arc
approximation property, equivalent? If not, what implications between
(a), (b) and (c) are true?

Question 3.63. Let the hyperspace C'(X) of a continuum X have the
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arc approximation property. Does it follow that every arc component
of X is a dense subset of X?

Question 3.64. Assume continua X and Y have the (strong) arc
approximation property. (a) Does it follow that the product X x Y has
the (strong) arc approximation property? (b) What if Y = [0, 1]?

A continuum X is said to have the property of Kelley provided that,
for each point € X, for each sequence of points {z,} converging
to z and for each subcontinuum K of X containing x there exists a
sequence {K,} of subcontinua of X containing z, and converging to
the continuum K.

To prove the next result we need the notion of a Whitney map. Let X
denote a continuum. By a Whitney map for 2%, or for C(X), we mean
any mapping w : 2% — [0,00), or w : C(X) — [0,00), respectively,
satisfying

if ACB and A# B, then w(4)<w(B),

and
w({z}) =0 for each point =z € X.

The reader can find basic facts on these maps and a proof of their
existence in [19, pp. 24-29 and 399-511].

Recall that the symbol @ stands for the Hilbert cube.

Theorem 3.65. If a continuum X has the property of Kelley and
if the product X x Q has the arc approximation property, then the
hyperspace C(X) has the arc approzimation property.

Proof. If X has the property of Kelley, then the space A(X) of all
maximal order arcs in C'(X) can be embedded in X x ) as a retraction
of it, see [9, the last part of the proof of Corollary 3.3, p. 1148]. Let
r: X xQ — A(X) x [0,1] be a retraction, and let w : C(X) — [0,1] be
a Whitney map. Define a mapping m : A(X) x [0,1] = C(X) by the
condition: for every a € A(X) and ¢ € [0, 1] the value m(A,t) is the
only continuum A € A with w(A4) =t.
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As is observed in [9, p. 1148], the mapping m is a monotone surjec-
tion. In fact, take a continuum A € C'(X) and note that

m=1(A) = {(4,w(A)) € A(X) x [0,1] : A € A}.

Each order arc A satisfying A € A is the union of two order arcs: one
from {2z} to A for some point z € A, and the other from A to X. Thus
m~1(A) is homeomorphic to A(A) x {B € A(X/A) : A € B}, so it is
connected.

We have shown that the hyperspace C(X) is the image of X x @
under the composition of a retraction and of a monotone mapping,
thus under a weakly confluent mapping. Since the arc approximation
property is preserved by weakly confluent mappings, see Theorem 3.5,
the proof is complete. O

Usually it is not easy to verify whether X x @ has or does not have
the arc approximation property. The next statement shows that a
positive answer to Question 3.64 (b) implies that X x @ has the arc
approximation property provided X does.

Statement 3.66. If it is true that

(3.67) for each continuum X with the arc approzimation property the
product X x [0,1] has the arc approzimation property, then it is also
true that

(3.68) if a continuum X has the arc approximation property, then the
product X X Q has the arc approximation property.

Proof. Indeed, take an arbitrary point p of X x (). By homogeneity
of @, see [10], we can assume that p is of the form (z,0,0,0,...) for
some z € X. Substituting X x [0,1]" for X, and X x @ for X in
Theorem 3.44, the conclusion follows. O

4. Confluent mappings. We begin our study of interrelations
between conditions (1.1), (1.2) and (1.3) for the class 9 of confluent
mappings, recalling a known example which is due to Hiroshi Hosokawa
and Kazuhiro Kawamura, see [8, Example 5.1].
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Example 4.1. There exist continua X and Y and a confluent
mapping f : X — Y such that the two induced mappings 2/ and
C(f) both are not pseudo-confluent.

Proof. Let (r,9) denote a point of the Euclidean plane having r and
¥ as its polar coordinates. Take the unit circle

S={(1,9):9€][0,2x]}

and define two spiral lines H' and H?, both homeomorphic to a closed
half line, as follows:

1_ 9= in
H—{(r,ﬁ).§—251nT_1

2 _ 9= i 1
H —{(r,ﬁ).§—2<2+smr_1> andr6[2,l>}.

Thus H'! approaches the right semicircle {(1,9) : ¥ € [-7/2,7/2]} from
outside, while H? approaches the left one {(1,9) : ¥ € [r/2,37/2]} from
inside, and each of the two spiral lines has its turning points lying on
the half lines ¥ = —7/2 and ¢ = 7/2. Put

and r € (1,2]},

X =SUH'UH?

and note that X is a continuum.

Consider an equivalence relation on X such that the only nonde-
generate equivalence classes are two-point sets composed of antipodal
points of S, that is, equivalence classes of the relation are singletons
in H' U H? and the sets of the form {(1,9), (1,7 + 9)} for ¥ € [0, 7).
Denote by Y the quotient space, and let f : X — Y = f(X) stand
for the quotient mapping. One can define f using polar coordinates
in the following way. For each point (r,9) € X we define a point
f((r,9)) = (r,29) in the plane, and we put ¥ = f(X). Then the
partial mapping f : S : S — S has two-point point inverses, while
fIH! : H' — f(H') and f|H? : H? — f(H?) are homeomorphisms.
Therefore, the sets f(H') and f(H?) are spiral lines, each of which
approaches the whole circle S = f(S), namely, f(H*') from outside and
f(H?) from inside, and has its turning points all lying on the half line
Y=
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Now we intend to show that the induced mappings 2/ : 2X — 2 and
C(f) : C(X) = C(Y) both are not pseudo-confluent. We verify this
for C(f) first.

To this aim consider the following two arcs A' and A% in the
hyperspace C(S) € C(X). Fort € R, put 4, = {(1,9) : ¢ €
[t,t + m/4]}. Then the sets

Al = {A, -t € [—n/2,7/4]}
and
A% ={A;:te[n/2,5m/4]}

are the needed arcs. Note that C(f)(A') = C(f)(A?).

Now let us perform a similar construction in the spiral lines H' and
H?. Namely, consider subsets B! and B? of C(X), each of which is
homeomorphic to the closed half line and such that each element of B*
(of B2) is contained in H! (in H?, respectively), and that

dBN\B' = A' and clB*\B? = A%

The sets C* = A' U B! and C% = A% U B? are disjoint subcontinua of
the hyperspace C(X), each of which is homeomorphic to the familiar
sin(1/z)-continuum. Put £ = C(f)(C' UC?) and observe that C(f)
glues together the limit continua A! and A% of C! and C? only, whence
it follows that £ is an irreducible subcontinuum of C(Y'). Further, we
have C'(f)~(£) = C* UC? and neither of C! and C? is mapped onto £
under C(f). Thus, C(f) is not pseudo-confluent.

The reader can observe that the argument for 27 is similar. Since
the partial mappings f|H' and f|H? are one-to-one and f|S is two-
to-one, we infer that (2/)71(L) has three components: C' and C? as
above, and the third component whose image is contained in the arc
27 (AY) = 27(A?). Thus 2f is not pseudo-confluent, too. The proof is
finished. o

Remark 4.2. It will be shown later, in Example 4.24, that the induced
mappings 2/ and C(f) of the above Example 4.1 both are not joining.
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Thus it is natural to ask under what conditions concerning the
continua X and/or Y the implication from confluence of f to confluence
of the induced mappings holds true. A partial answer to this question
is presented below. The main idea of the proof is taken from one of
Theorem 2.5 in [7, p. 3], and it exploits the following lemma which is
shown in [8, Theorem 4.3] (for 2/) and in [7, Corollary 2.2] (for C(f)).

Lemma 4.3. Let a surjective mapping f : X — Y between continua
X and Y be confluent. Then each arcwise connected subcontinuum
of the hyperspace 2¥ (of the hyperspace C(Y)) is a continuum of
confluence for 21 (for C(f), respectively).

Theorem 4.4. Let a surjective mapping f : X — Y between
continua X and Y be confluent. Then the following two implications
hold. If the hyperspace

(i) 2¥
(i) C(Y)
has the arc approxzimation property, then the induced mapping
(i) 27 : 2% - 2Y
(i) C(f): C(X) = C(Y)

s confluent.

Proof. The argument for both versions (i) and (ii) is essentially the
same. We shall argue for (i) using the characterization of confluence
from Observation 2.12. Let £ be a subcontinuum of 2, and let
K € (2/)7Y(£). Since 2¥ has the arc approximation property by
assumption, there are arcwise connected continua £,, containing f(K)
and such that £ = Lim £,,. Let K,, be the component of (2f)~1(L,,)
containing K. Now Lemma 4.3 implies that 27(K,) = £,. Taking a
subsequence, if necessary, we can assume that the sequence {K,} is
convergent. Let K = Lim C,,. Then K is a continuum contained in 2%
containing K and such that 2/ (K) = £. The proof is complete. O

As a consequence of Theorem 4.4 and Corollary 3.7, we get a well-
known result, see [8, Theorem 4.4] and [7, Theorem 2.5].
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Corollary 4.5. Let a surjective mapping f : X — Y between
continua X and Y be confluent. If Y is locally connected, then

(i) 2/ : 2% — 2Y is confluent;
(ii) C(f) : C(X) = C(Y) is confluent.

Let us accept the following definition. A subcontinuum K of a
continuum X is said to be weakly arcwise approrimated provided that
there is a sequence of arcwise connected subcontinua K, of X such
that K = LimK,. A continuum X is said to have the weak arc
approzrimation property provided every subcontinuum of X is weakly
arcwise approximated. We will show that Theorem 4.4 cannot be
strengthened by replacing the arc approximation property by the weak
arc approximation property and getting the same conclusion.

Example 4.6. There are continua X, and Yy both having the
weak arc approximation property, and a surjective confluent mapping
f: Xo — Y; such that neither 2/ nor C(f) are pseudo-confluent.

Proof. Let continua X and Y have the same meaning as in Ex-
ample 4.1. Let H be a ray, i.e., a one-to-one continuous image of
[0,00). There exists a compactification X of H such that the remain-
der cl H\H is just X, and moreover that each subcontinuum of X
is approximated by a sequence of arcs contained in H, see [6, The-
orems 3.3 and 3.5]. Consider, as in Example 4.1, an equivalence re-
lation on X the only nondegenerate equivalence classes are two-point
sets composed of antipodal points of S, that is, equivalence classes of
the relation are singletons in H' U H? U H and the sets of the form
{(1,9), (1, 7+ )} for ¥ € [0, 7). Denote by Yy the quotient space, and
let f: X9 — Yy = f(Xo) stand for the quotient mapping. Arguing
exactly as in Example 4.1 one can verify that neither 2/ nor C(f) are
pseudo-confluent, while both X, and Y, have the weak arc approxima-
tion property. ]

Let us recall that the property of Kelley is closely related to confluent
mappings, see [20, Theorem 2.2 and 4.2] and that the property of
Kelley is weaker than local connectedness [19, p. 538]. So it could be
interesting to know if the property of Kelley can be substituted in place
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of local connectedness in Corollary 4.5. The negative answer can be
seen from the next example.

Example 4.7. There are continua X and Y both having the property
of Kelley, and a confluent surjection f : X — Y such that neither 27
not C(f) are pseudo-confluent.

Proof. In polar coordinates (r,¥) in the plane, put

H' = {(r,9):7=1+9" and 9 € [1,+00)},
H?>={(r,9):r=1-9""and 9 € (—o0, —1]},

and S = {(1,9) : 9 € [0,27]}, and define X = S U H* U H2. Observe
that H' and H? are rays approximating the circle S smoothly from
outside, H'! and H? are mutually symmetric with respect to the straight
line ¥ = £7 under the symmetry (r,¢) — (r, —), and that

H'NH?* ={(1+ (2kr) 1,0): k€ {1,2,3,...}}
U{(1+(2k+1)n) Y 7) - k€ {0,1,2,...}}.

One can verify that X has the property of Kelley.

Consider again, as in Examples 4.1 and 4.6, an equivalence relation
on X the only nondegenerate equivalence classes are two-point sets
composed of antipodal points of S, that is, equivalence classes of
the relation are singletons in H' U H? and the sets of the form
{(1,9), (1,7 + ¥9)} for ¥ € [0,7). Denote by Y the quotient space,
and let f: X - Y = f(X) stand for the quotient mapping. To verify
it is confluent, observe that the preimage of a proper subcontinuum of
f(S) has two components both contained in .S, each of which is mapped
onto the considered continuum. Preimages of other subcontinua of Y
are connected.

Now we intend to show that the induced mappings 2/ : 2X — 2 and
C(f) : C(X) = C(Y) both are not pseudo-confluent. We verify this
for C(f) first.

To this aim consider the following two arcs A' and A% in the
hyperspace C(S) € C(X). Fort € R, put 4, = {(1,9) : ¢ €
[t,t + m/4]}. Then the sets

A= {4, :te[0,37/4]} and A?={A,:t€ [r,Tn/4]}
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are the needed arcs. Note that C(f)(A') = C(f)(A?).

Denote by D! and D? the upper and the lower halves of the con-
tinuum X, respectively, i.e., (in the Cartesian rectangular coordinates
(x,y) in the plane)

D' = X n{(z,y) e R*:y >0}
and
D? = X n{(x,y) > R*:y <0}.

Consider subsets B! and B? of C(X), each of which is homeomorphic
to the closed half line, and such that each element of B! (of B?) is
nondegenerate and contained in D! (in D?, respectively), and that

cddB\B'=A' and clB*\B*= A%

The sets C* = A' U B! and C% = A% U B? are disjoint subcontinua of
the hyperspace C(X), each of which is homeomorphic to the familiar
sin(1/z)-continuum. Put £ = C(f)(C' UC?) and observe that C(f)
glues together the limit continua .A! and A% of C* and C? only, whence
it follows that £ is an irreducible subcontinuum of C(Y'). Further, we
have C(f)~1(£) = C' UC? and none of C! and C? is mapped onto £
under C(f). Thus, C(f) is not pseudo-confluent.

Exactly as in the proof of Example 4.1, the reader can observe that
the argument for 27 is similar. Since the partial mappings f|D! and
f|D? are one-to-one and f|S is two-to-one, we infer that (2/)71(L)
has three components: C! and C? as above, and the third component
whose image is contained in the arc 2f(A!) = 2(A2). Thus 27 is not
pseudo-confluent, too. The proof is finished. a

Now we will show that there is a confluent mapping f between some
continua such that C(f) is, while 2/ is not confluent. We start with a
proposition concerning a property of confluent mappings.

Proposition 4.8. Let a continuum Y, its subcontinuum L CY and
a point y € L be given. If a mapping f : X — Y between continua X
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and Y is confluent, then the number of components of f~1(L) is less
than or equal to the number of components of f~1(y).

Proof. Assign to each component of f~1(y) a component of f~1(L)
containing it. Since f is confluent, the assigning is well-defined and
onto. 0

The following fact is well-known [19, p. 30], but the special descrip-
tion of the hyperspace of the circle given in its proof will be used in the
sequel.

Fact 4.9. The hyperspace C(S) of the unit circle
S ={(1,9):9€]0,2n]}
is homeomorphic to the unit disk

D ={(r,9) :r €[0,1] and ¥ € [0, 27]}.

If A is a proper subcontinuum of S, then let m(A) be the midpoint
of the arc A and let [(A) be the length of A. Assign to A the point
(1-1(A)/2m,m(A)) € D, and assign to S the point 0.

Two lemmas will be needed to show the result. Let C stand for the
complex plane.

Lemma 4.10. Let D = {z € C : |z| < 1} be the unit disk, and
let s : D — D be the central symmetry defined by s(z) = —z. If a
continuum K C D satisfies the condition K N s(K) = &, then K is
contractible in D\{0}.

Proof. Denote by W the component of D\ K containing the center 0
of D, and note that 0 € W N s(W). If K is not contractible in D\{0}
and K N s(K) = &, then either s(K) C W or K C s(W). Observe
that the two inclusions are equivalent by taking the mapping s for
both members of the inclusion. If s(K) C W, then also s(W) C W,
whence W C s(W), and so s(W) = W. Since bdW C K and since



138 W.J. CHARATONIK

s(bd W) = bd s(W), the mapping s being a homeomorphism, we infer
that @ #bd W =bd s(W) C K N s(K), a contradiction. o

Put in polar coordinates (r, ?)
H={(r9) :r=1+97"and ¥ € [1,00)}

and

S ={(1,9):9 € [0,2x]}.

Lemma 4.11. If a continuum C C S x [0,1] C (SUH) x [0,1] 4s
contractible in S x [0, 1], then there is an open set U C (SUH) x [0, 1]
such that the component of U containing C' is contained in S x [0,1].

Proof. If C' is contractible in S x [0,1], then there is in S x [0,1] an
open set G containing C' such that G is homeomorphic to an open disk.
Then C is contained in an open set U C (SU H) x [0, 1] homeomorphic
to G x {0,1,1/2,1/3,...} satisfying the conclusion of the lemma.

Example 4.12. There are continua X and Y and a confluent
mapping f : X — Y such that C(f) is confluent while 2¢ is not.

Proof. Let X = S U H, where S and H are defined above. Consider
again an equivalence relation on X (the only nondegenerate equivalence
classes are two-point sets composed of antipodal points of S), that is,
equivalence classes of the relation are singletons in H and the sets of the
form {(1,9), (1, 7+ )} for ¥ € [0, 7). Denote by Y the quotient space,
and let f: X - Y = f(X) stand for the quotient mapping. To verify
it is confluent observe that the preimage of a proper subcontinuum of
f(S) has two components both contained in .S, each of which is mapped
onto the considered continuum. Preimages of other subcontinua of Y
are connected.

To verify that 2/ is not confluent, consider the continuum Fy(Y) C
2Y. Then (2/)7'(Fy(Y)) has two components: F;(X) and {{z, -z} :
x € S}. The latter is mapped onto F(f(S)) which is a proper subset
of F1(Y). Thus 27 is not confluent.
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Now we will prove that C(f) is confluent. Let £ C C(Y) be any
continuum. Consider three cases.

(1) £ c C(f(S)). Note that the partial mapping C(f)|C(S) is
confluent by Corollary 4.5 (ii), so we are done.

(2) L C C(f(H)). Since f|H is one-to-one, we see that C'(f) (L) is
connected.

To finish the proof, we have to consider the last case.

(3) LNC(f(S)) £ @£ LNC(f(H)). In this case we will show that
again C(f)"!(L) is connected. Suppose on the contrary that there
are nonempty, closed and disjoint sets .4 and B such that C(f) (L) =
AUB. Then their images C(f)(.A) and C f(B) are nonempty and closed
sets, the union of which is £, so they cannot be disjoint. Thus there
is a continuum L belonging to C(f)(A) N C(f)(B). Let K; € A and
K5 € B be such that

(4.13) L= f(K1) = f(K2).

We claim that

(4.14) L is a proper subcontinuum of f(S).

Indeed, if not, then either L C f(H) or f(S) C L. If L C f(H) or L
contains f(S) as a proper subset, then C(f)~1(L) is a singleton in C'(X)
by Proposition 4.8, contrary to the assumption (4.13); if L = f(5), then
C(f) (L) is homeomorphic to {(r,9) : r € [0,1/2] and ¥ € [0,27]}
using the homeomorphism described in the proof of Fact 4.9, so it is
connected, contrary to (4.13). So (4.14) is shown.

Denote by C the component of C'(f(S)) N £ containing L. Thus C is
a proper subcontinuum of £. We will show that

(4.15) C(f)"'(C) has exactly two components.

Since the partial mapping f|S : S — f(S) is confluent by its
definition, the induced mapping C'(f)|C(S) : C(S) — C(f(9)) is also
confluent according to Corollary 4.5 (ii). Thus, by Proposition 4.8, the
inverse image C(f)~'(C) has at most two components. It has at least
two components by (4.13) and (4.14). So (4.15) is shown.
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Denote by K and K’ the two components of C(f)~*(C), and note
that each of them satisfies the assumptions of Lemma 4.10, so they
are contractible in C'(S)\{S} according to Fact 4.9. Therefore, the
component of C'(S)\(K UK') containing the point S intersects F}(.S).
Thus there is an arc F contained in C(S) with one end point in
F1(S) and the other at S and such that F N (K UK') = @. Hence,
C(f(S)\C(f)(F) is an open set in C(f(S)) containing C. Since
f(S) € C(f)(F), we infer that C is contractible in C'(f(S)\{f(S5)}.

Because f(S) is not in C, there is a small open ball G about f(S)
in C(f(S)), and therefore we can define an embedding e of C(f(S))\G
into f(S) x [0,1] by e(P) = (m(P),1 — I(P)/2m), where m(P) is the
midpoint of an arc P in the circle f(S) and I(P) is its length (compare
the proof of Fact 4.9). Continua close to elements of C(f(S))\G are
arcs contained in f(H) or in f(5), so the embedding e can be extended
to an embedding e* of some neighborhood of C(f(S))\G into Y x [0, 1].
One can verify that all the assumptions of Lemma 4.11 are satisfied
with e*(C) in place of C, f(S) in place of S and f(H) in place of H.
So there is an open in C(Y) neighborhood U of C such that e*(U)
satisfies the conclusion of the lemma. Considering (e*)~! we see that
the component V of U containing C is contained in C'(f(S5)).

Denote by D the component of £L N containing C and observe that
D cCcV cC(f(S)). Note that (c1D) N (bdU) # @ by the boundary
bumping theorem, see [19, p. 626], so C is a proper subset of D, which
contradicts the definition of C. This finishes the proof. o

A continuum is said to be indecomposable provided that it is not the
union of two proper subcontinua. It is known, see [13, p. 207], that a
continuum is indecomposable if and only if each proper subcontinuum
has empty interior. Let us recall characterizations of hereditarily
indecomposable continua in terms of confluent mappings, see, e.g., [16,
p- 53], and of structure of hyperspaces, see, e.g., [19, p. 111].

Theorem 4.16. The following conditions are equivalent for a
continuum Y:

(i) Y is hereditarily indecomposable;

(ii) each mapping f : X =Y of a continuum X onto Y is confluent;
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(iii) each confluent mapping f : X — Y of a continuum X onto Y is
hereditarily confluent,

(iv) the hyperspace C(Y') is uniquely arcwise connected.

Further, let us recall that each hereditarily indecomposable contin-
uum has the property of Kelley [20, Theorem 3.1].

Example 4.17. There are two hereditarily indecomposable continua
X and Y and a surjective (confluent) mapping f : X — Y such that
27 is not confluent.

Proof. Denote by S the pseudo-circle and recall that there is a special
embedding of S into the plane such that S is preserved under the
central rotation of the plane by the angle 7/3, see [11, Sections 1 and
2]. Consequently, there is a homeomorphism h : S — S of S onto itself
such that the composition h o h is the identity on S. Replace one point
of the pseudo-arc P by the pseudo-circle S, see [1, p. 35], and let X
be the obtained space. Note that since S is nowhere dense in X, the
continuum X is hereditarily indecomposable. Define an equivalence
relation on X, the only nondegenerate equivalence classes of which are
sets of the form {z,h(z)} for all z € S. Denote by Y the quotient
space, and let f : X — Y be the quotient mapping. We will verify
that f is confluent. Indeed, if a continuum is contained in f(5), then
its preimage has two components, each of which is mapped onto the
continuum; otherwise, the preimage is connected. The continuum Y
is hereditarily indecomposable as a confluent image of a hereditarily
indecomposable continuum X.

We will show that 27 is not confluent. Note that (2/)~1(F;(Y)) has
two components: F;(X) and {{z, h(x)} : © € S}. The latter one is not
mapped onto F;(Y). The proof is complete. o

Questions 4.18. Let f : X — Y be the mapping of Example 4.17.
a) Is O(f) confluent? b) Is 27 weakly confluent?

Question 4.19. More generally, let f : X — Y be any (confluent)
mapping between hereditarily indecomposable continua. a) Is C(f)
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confluent? b) Is 2/ weakly confluent?

Now let us discuss implications in the opposite direction: from
confluence of the induced mappings 2/ and/or C(f) to one of f. It
can be shown that not only both of these implications are true but,
moreover, confluence of the mapping f is a consequence of a much
weaker assumption that either of the two induced mappings is joining.
Namely, we have the following result.

Theorem 4.20. Let a surjective mapping f : X — Y between
continua X andY be given. If the induced mapping either

(i) 2/ : 2% —2Y or
(i) C(f): C(X) = C(Y)

is surjective and joining, then f is confluent.

Proof. Argument for both versions (i) and (ii) is essentially the
same. We shall show (ii). Suppose on the contrary that f is not
confluent. Thus, by Proposition 2.11, there is a continuum L C Y and
a component K, of f~!(L) such that f(Kj) is a nondegenerate proper
subcontinuum of L.

Let p € L\ f(Kp). Then, according to Facts 2.3 and 2.4, there are in

C(Y) an order arc £ from {p} to L and an order arc Lo from f(Ky)
to L. It follows from the definition of £y that

(4.21) LoNFi(L) = @.

Since the space F1(L) of singletons of L is a continuum, see Proposi-
tion 2.2, we see that the union £ = F;(L)U £y U L5 is a subcontinuum
of C(L). Since f(Ky) C L, we have C(f)(F1(Ko)) C Fi(L) C L. Fur-
ther, since F;(Kjp) is a continuum (again by Proposition 2.2), there is
a component K; of C(f)~1(£) which contains F;(Kp). We claim that

(4.22) C(f)(K1) = F1(f(Ko))-

Indeed, the union UK; is a continuum in X containing Ky and
contained in f~1(L). Since K; is a component of f~!(L), we have
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UK, = Ky, whence it follows that Ky C C(Ky). Therefore, C(f)(K1)
is a continuum contained in £, containing F (f(Ky)) by the definition
of K1, and such that C(f)(K1) C C(f)(C(Ky)) C C(f(Kyp)). Note
that the only continuum having all these properties of C'(f)(K1) is the
continuum Fi(f(Ky)) itself. Thus, (4.22) is shown.

Similarly, there is a component Ky of C'(f) (L) which contains the
singleton {K(}. And again we claim that

(4.23) C(f)(K2) = {f(Ko)}-

Indeed, the union UK, is a continuum in X containing Ky and
contained in f~1(L). Since Ky is a component of f~!(L), we have
UK = Ko, whence it follows that Ko C C(Kp). Therefore, C(f)(K2)
is a continuum contained in £, containing {(f(XKo)} by the definition
of Kq, and such that C(f)(K2) C C(f)(C(Ky)) C C(f(Kop))- Note
that the only continuum having all these properties of C(f)(K2) is the
singleton {(f(Kp)}. Thus (4.23) is shown.

Now (4.22) and (4.23) imply that C(f)(K1) C Fi(L) and C(f)(K>) €

L2, whence it follows by (4.21) that C(f)(K1)NC(f)(K2) = @, contrary
to the assumption that C(f) is joining. The proof is finished. o

The converse implication to that of Theorem 4.20 is not true, that is,
confluence of f does not imply that any of the two induced mappings
2/ or C(f) is joining. Namely, the following statement holds true.

Example 4.24. Let f : X — Y be the confluent mapping of
Example 4.1. Then the two induced mappings 27 and C(f) both are
not joining.

Proof. We keep all the notation of Example 4.1. Moreover, for t € R
put Ay = {(1,9) : ¥ € [t,t +7/2]}, and
A ={A;:te[-n/2,0]} and A*={A}:tc [r/2,7]}.
Similarly, let B® and B* be subsets of C(X) each of which is home-

omorphic to the closed half line, and such that each element of B* (of
B*) is contained in H' (in H?, respectively), and that

cdB\B® =A% and clB*\B*= A"
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Further, we require that B' N B% = @ and that B? N B* is a singleton
which corresponds to the common end point of the considered half
lines. Then each of the sets C3 = A% U B® and C* = A* U B* is also
homeomorphic to the sin(1/z)-continuum, and

CNCl £+ i=j or {i,j}=1{24}.

Put M = C(f)(C*uC?uC3UC?) and observe that C(f) glues together
the limit continua A' and A% of C' and C2, and the limit continua .43
and A* of C? and C*, respectively. Further, we have

C(f)y " M)=ctu(ctuct)uc?,

and we see that C!, C2UC* and C? are components of C(f)~*(M). The
images of the components C! and C* under C(f) are disjoint, so C(f)
is not a joining mapping.

Since C! and C? are components of (2f)~1(M) also, we see that 2/
is not joining either. The proof is complete. o

Question 4.25. Let a mapping f : X — Y be given such that the
induced mapping 2/ : 2¥ — 2Y is confluent. Does it imply that the
induced mapping C(f) : C(X) — C(Y) is confluent?

5. Semi-confluent and joining mappings. Since each confluent
mapping is semi-confluent, and each semi-confluent surjective mapping
is weakly confluent, see Proposition 2.7 (a) and (b), Example 4.1 shows
that semi-confluence of a mapping f : X — Y between continua
X and Y does not imply semi-confluence of any of the two induced
mappings 2/ : 2X — 2Y and C(f) : C(X) — C(Y). A similar
statement holds true if the property “to be joining” is considered in
place of “to be semi-confluent,” see Example 4.24. So it is natural
to ask whether the implication holds true if the range hyperspace
is assumed to have the arc approximation property, or even to be
locally connected, similarly as it was shown for confluent mappings,
see Theorem 4.4 and Corollary 4.5. However, it is not the case: there
is no analogy for the considered implications between confluent and
semi-confluent mappings. Indeed, it is enough to consider a semi-
confluent (thus joining) but not confluent mapping f defined on a
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continuum to conclude, according to Theorem 4.20 and Proposition 2.7
(b), that neither 2/ nor C(f) is joining, in particular, semi-confluent.
For example, such is the mapping

(5.1) f:[-1,2] —[0,2] defined by f(¢) = |¢|

[16, Example 3.12]. So, even when both the domain and the range
space for f is as simple as an arc, the implication does not hold.

Concerning the implications in the opposite direction, i.e., from semi-
confluence of the induced mapping 2/ or C(f) to semi-confluence of
f, the situation has already been clarified in the above-mentioned
Theorem 4.20, where a stronger conclusion of confluence of f has been
obtained.

Questions 5.2. Let a mapping f : X — Y be given. Consider the
following assertions:

(i) the induced mapping 2¢ : 2X — 2V is semi-confluent,
(ii) the induced mapping C(f) : C(X) — C(Y) is semi-confluent.
(a) Does (i) imply (ii)?
(b) Does (ii) imply (i)?
Partial answers to the above questions can be derived from Theorems

4.4 and 4.20 and Proposition 2.7 (b). Namely, as direct consequences
of these theorems, we infer the following two results.

Proposition 5.3. Let a surjective mapping f : X — Y between
continua X and Y be given. If the induced mapping 2 : 2X — 2V s
joining, and if the hyperspace C(Y') has the arc approzimation property,
then the induced mapping C(f) : C(X) — C(Y) is confluent.

Proposition 5.4. Let a surjective mapping f : X — Y between
continua X and Y be given. If the induced mapping C(f) : C(X) —
C(Y) is surjective and joining, and if the hyperspace 2¥ has the arc
approzimation property, then the induced mapping 25 : 2%X — 2Y s
confluent.

6. Weakly confluent and related mappings. Let us observe
that, since each confluent mapping is weakly confluent, Example 4.1
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shows that weak confluence of a mapping f : X — Y between continua
X and Y does not imply weak confluence of any of the two induced
mappings 2/ and C(f). Even if C(Y) is locally connected, we can
have an example of a weakly confluent mapping f : X — Y between
continua X and Y such that the induced mapping C(f) is not weakly
confluent. However, an argument used to show that the example is
correct (which can obviously be proved directly) is a very particular
case of a much more general result that is interesting by itself. Thus
we prove this result first.

Theorem 6.1 Let a surjective mapping f : X — Y between continua
X and Y be given. If the induced mapping C(f) : C(X) — C(Y) is
n-weakly confluent, then the mapping f is (n + 1)-weakly confluent.

Proof. We proceed by induction. For n = 0 the implication is known,
see Fact 2.15 above. Postulate that it holds for all integers k < n where
n > 1. We have to verify that it is true for the integer n. So, assume
that the induced mapping C(f) is n-weakly confluent. We will show
(n 4 1)-weak confluence of f.

Take an arbitrary subcontinuum L of Y and consider the hyperspace
C(L) C C(Y). By virtue of n-weak confluence of C(f), there exists
a component K of C(f) }(C(L)) such that C(f)|K : K — C(L) is
(n — 1)-weakly confluent. Put K = UK. We claim that

(6.2) Kek.

Indeed, since C(f)|K is (n — 1)-weakly confluent, it is surjective, see
Fact 2.6, whence there is a continuum P € K such that C(f)(P) = L.
Note that P C K. Thus, there is an order arc Z from P to K in C'(X).
Then the image of Z under C(f) is {L}, so C(F)(ZUK) = C(L), and
since K is a component of C(f)~!(C(L)), we have Z C K, and (6.2)
follows.

Further, we claim that

(6.3) K = C(K).

To show the claim take an arbitrary subcontinuum A of K, and let
T be an order arc from A to K. Then we have C(f)(J UK) = C(L),
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and since K is a component of C(f) 1(C(L)), we have J C K, whence
A € K. This shows that C(K) C K. The other inclusion is obvious,
and so (6.3) holds true.

Therefore, we have proved that the partial mapping C(f)|C(K) :
C(K) — C(L)is (n—1)-weakly confluent. By the inductive assumption
this implies that f|K : K — L is n-weakly confluent. So, according to
the definition, the mapping f is (n 4 1)-weakly confluent. The proof is
finished. O

Let a mapping f : X — Y between continua X and Y be given.
Define inductively:

C'X)=X and C°(f)=f,
and, for every nonnegative integer n,
C™HH(X) = C(C™(X)) and C""H(f) = C(C™(f)).

Thus, for every nonnegative integer n we have C™(f) : C"(X) —
c™(Y).

As a straightforward consequence of Theorem 6.1 we get the following
corollary.

Corollary 6.4. Let k, m and n be integers such that
—1<k<m<n-1

Consider the following conditions:
(a) C™HL(f) is a surjection;
(b) C™k(f) is (k + 1)-weakly confluent;
(c) C™™(f) is (m + 1)-weakly confluent;
(d) f is (n+ 1)-weakly confluent.
Then the following implications are true: (a) — (b) — (¢) — (d).

Remark 6.5. The converse implication to that of Theorem 6.1 does
not hold. Even in the case when f is confluent, thus Ng-weakly
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confluent according to Theorem 2.8, the induced mapping C(f) does
not have to be 1-weakly confluent, as can be seen by Example 4.1 and
Proposition 2.7 (d). Moreover, also if the continua X and Y are locally
connected, the converse implication does not hold, as can be seen from
an example below.

Example 6.6. There is an Xy-weakly confluent and joining mapping
f from an arc onto a circle such that neither 2f nor C(f) are pseudo-
confluent (thus they are not weakly confluent).

Proof. As previously, let (r,9) denote a point of the Euclidean plane
having r and ¥ as its polar coordinates. Take the unit circle

S ={(1,9):9 €[0,2x]}

and define f :[0,1] — S by f(¢t) = (1,4nt) for each t € [0,1]. Then f
is Ro-weakly confluent (because for every proper subcontinuum L of S
there is a subinterval of [0, 1] which is mapped onto L homeomorphi-
cally) and joining.

The induced mapping C(f) : C([0,1]) — C(S) is not pseudo-
confluent. In fact, let

A(p) ={(1,9) : ¥ € [p,(13p + m) /12]} C 5,

and put
L={A(p): p € [-m,br]|} C C(S).

Then £ is an arc in C(S). Note that f~1(A(—m)) = {1/4,3/4}, so
there are two components of (C(f)) (L) whose images contain the
point A(—m). The reader can verify that none of them is mapped onto
£ under C(f). The argument for 2/ is similar, but

(27) " H(A(=m)) = {{1/4}, {3/4},{1/4,3/4}},

so there are three components of (27)~!(L) whose images contain the
point A(—7); and again none of them is mapped onto £ under 2. This
finishes the proof. a

If the mapping f : X — Y is n-weakly confluent only (without being
(n 4+ 1)-weakly confluent), then C(f) does not have to be n-weakly
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confluent, even if all considered spaces are locally connected. Namely,
we have the following example.

Example 6.7. For every positive integer n there are trees X and Y
and a surjective mapping f : X — Y such that f is n-weakly confluent
and C(f) is not n-weakly confluent.

Proof. Tt is known, see [17, p. 236], that for every positive integer
n there are trees X and Y and a surjective mapping f : X — Y such
that f is n-weakly confluent but not (n + 1)-weakly confluent. Thus
C(f) is not n-weakly confluent by Theorem 6.1. mi

As a particular case of Example 6.7, namely, for n = 1, we have the
following one, which is described in [17, p. 236].

Example 6.8. There exists a weakly confluent mapping f: X - Y
of the one-point union X of two triods onto a triod Y such that the
induced mappings 2/ and C(f) are not weakly confluent.

Proof. Let X be the union of two triods obtained by identifying some
two of their end points, and let Y be a triod. A mapping f: X — Y
is defined in [17, p. 236] which is weakly confluent while not 2-weakly
confluent. Thus, C(f) is not weakly confluent by Theorem 6.1. To see
that 2/ is not weakly confluent, take the following subcontinuum /C of
C(Y) C 2Y (we keep notation as in Figure 1 of [17, p. 236]):

K={{y}:ye DVUVE}| J{P€C(Y): PC EVUVBand ¢ € P}.

Then there exists exactly one point d € X with f(d) = D, and it can
be seen that the component of (2/)7(K) that contains {d} does not
contain the arc EV UV B. |

Question 6.9. What are relations between n-weak confluence of a
mapping f : X — Y and m-weak confluence of the induced mapping
272X — 2Y for nonnegative integers n and m?

A partial answer to this question is given by the following result.



150 W.J. CHARATONIK

Notwithstanding a stronger result will be shown later, see Theorem 7.2,
we present its proof now because it is much simpler than the proof of
Theorem 7.2.

Proposition 6.10. If the induced mapping 27 : 2% — 2Y is weakly
confluent, then the mapping f : X — Y is weakly confluent, too.

Proof. Suppose, on the contrary, that f is not weakly confluent.
Thus, there exists a subcontinuum L of Y such that no component of
its inverse image f !(L) is mapped onto L under f. Consequently,
there are two disjoint closed subsets K; and K, of f~1(L) such that
K\ UK, = f~1(L) and f(K1)\f(K2) # @. Let ¢ € f(K1)\f(K2).
There is in 2¥ an order arc £ from {g} to L (see Fact 2.3). Since 2/ is
weakly confluent, there is a continuum K in 2% such that 2/ (K) = L.
Denote by A and B the elements of K such that 2/(A4) = {q} and
2/(B) = L. Since K C C(X), see Fact 2.4, the sets A and B are
subcontinua of X with f(A) = {¢} and f(B) = L. Thus, we may
assume that A C K; and BN Ky # &. Define

Ky =Kn25 and Ky=K[|{Pe2¥:PNK,+#a}

Thus, K1 and IC3 are disjoint closed subsets of K such that L = KUK,
contrary to connectedness of IC. The proof is complete. u]

Observation 6.11. Let continua X and Y C X be given. If r : X —
Y is a retraction, then both 2" : 2% — 2Y and C(r) : C(X) — C(Y)
are retractions, so they are Ng-weakly confluent.

Questions 6.12. Let a mapping f : X — Y be given. Consider the
following assertions:

(i) the induced mapping 27 : 2X — 2V is weakly confluent,

(ii) the induced mapping C(f) : C(X) — C(Y) is weakly confluent.
(a)
(b)

Does (i) imply (ii)?
Does (ii) imply (i)?

7. Pseudo-confluent mappings. We start with two results that
concern pseudo-confluence of the induced mappings. Observe that if
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C(f) is pseudo-confluent, then it is surjective by Proposition 2.7 (e),
whence f is weakly confluent by Fact 2.15. So we have the following
result.

Theorem 7.1. Let a surjective mapping f : X — Y between
continua X and Y be given. If the induced mapping C(f) : C(X) —
C(Y) is pseudo-confluent, then the mapping f is weakly confluent.

A similar result for 2/, which we intend to prove now, forms a stronger
version of Proposition 6.10. Its proof, which is more complicated than
that of 6.10, uses Whitney maps for 2Y.

Theorem 7.2. Let a surjective mapping f : X — Y between
continua X and Y be given. If the induced mapping 27 : 2X — 2V
1s pseudo-confluent, then the mapping f is weakly confluent.

Proof. Assume on the contrary that 27 is pseudo-confluent while f
is not weakly confluent, i.e., there is a continuum L C Y such that no
component of f~1(L) is mapped onto L. Denote by d the metric in ¥
and by H the Hausdorff metric in 2¥ induced by d, and put

to = (1/2) -inf {H(f(K), L) : K is a component of f *(L)}.

We claim that tg > 0. In fact, if ¢, was zero, then there would
be a sequence of components of f~!(L) whose images under f were
converging to L and then the limit of a subsequence would be a
continuum mapped onto L under f. Thus, the claim is shown.

Denote by w : 2¥ — [0,00) a Whitney map. Continuity of w implies
that there is a number ¢* > 0 such that

(7.3)  foreach Be2Y if w(B)<t*, then diamB < t,.

Let {ay,az, ...} be a dense subset of L, and let {¢,,} be an increasing
sequence of numbers tending to t*. For each n € N define subcontinua
L,, and L], of L such that

an € Ly, L,CLl, w(L,) =t,, w(Ll) =tpy1-

n
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Denote by D,, an order arc in C(L) C C(Y) from L, to L!,. Since
w Y(tny1) N C(L) is a Whitney level in C(L), it is a continuum (see
[19, Theorem (14.2)], and therefore there is a continuum

L, C wil(tn_;_l) N C(L)
irreducible between L/ and L, ;. Then

EZCIU{EHUDn:nEN}

is an irreducible subcontinuum of C(L). Since 27 is pseudo-confluent,
there is a continuum K C 2% which is mapped onto £ under 2/. Denote
by K a component of f~!(L) such that K N (UK) # @. Then all
members of K are in the same component of (2f)~*(L), and thus by
Lemma 23 of [2, p. 214], each of them intersects K, i.e.,

(7.4) foreach A€2X if AcK, then ANK # 2.

Because H(f(K),L) > 2tg, density of the set {aj,az,...} implies
that there is a number m € N such that

(7.5) d(f(p),am) >ty for each point p € K.

Denote by P a member of K such that f(P) = L,,. Thus, by (7.4),
there is a point © € K N P. Then, since both f(z) and a,, are in f(P),
we have w(f(P)) > w({f(z),am}), and because d(f(z),an) > to by
(7.5), we get w({f(z),am}) > t* according to implication (7.3) in the
definition of ¢*. Consequently, w(f(P)) > t*, contrary to the fact that
f(P) € L. The proof is complete. O

As previously for confluent, semi-confluent and weakly confluent
mappings, and also for pseudo-confluent ones, Example 4.1 solves the
question concerning the implication from f to 2/ and C(f) in the
negative. And, again, a question can be asked concerning conditions
under which pseudo-confluence of f implies pseudo-confluence of 2/
and/or C(f). Let us recall that there exists a weakly confluent
mapping f from an arc onto a circle such that neither 2f nor C(f)
is pseudo-confluent, see Example 6.6. Example 6.6 shows that the
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implication from pseudo-confluence of f to pseudo-confluence of an
induced mapping is not true even if all continua under consideration
are locally connected. However, the continuum Y of Example 6.6 is a
cyclic graph, so it would be interesting to know whether the implication
holds true if these spaces are acyclic graphs. An example of a pseudo-
confluent but not weakly confluent mapping of an arc onto a simple
triod can be described as follows, see [14, Example 3.6]. Let X = [0, 1]
and Y be the union of three straight line segments agay, for k € {1,2,3}
having the point ag in common only. Define f : X — Y by the following
conditions: f(0) = a; and f maps the intervals [0,1/3], [1/3,2/3] and
[2/3,1] homeomorphically onto the arcs ajag U agaz, azap U apas and
azag U apay, respectively. The reader can verify that the mapping
f just defined is pseudo-confluent while not weakly confluent. Then
C(f) as well as 2/ are not pseudo-confluent by Theorems 7.1 and 7.2,
respectively.

Acknowledgment. The notion of the arc approximation property
and the idea of the investigation of this notion is due to Janusz J.
Charatonik, to whom I am very grateful. I would like to express my
sincere thanks to the referee who read the paper very carefully and
suggested changes which contributed to clarifying some proofs.

REFERENCES

1. J.M. Aarts and P. van Emde Boas, Continua as remainders in compact

extensions, Nieuw Arch. Wisk. (4) 15 (1967), 34-37.

2. W.J. Charatonik, R*-continua and hyperspaces, Topology Appl. 23 (1986),
207-216.

3. C. Eberhart, Intervals of continua which are Hilbert cubes, Proc. Amer. Math.
Soc. 68 (1978), 220-224.

4. C. Eberhart and S.B. Nadler, Jr., Hyperspaces of cones and fans, Proc. Amer.
Math. Soc. 77 (1979), 279-288.

5. J.B. Fugate, Small retractions of smooth dendroids onto trees, Fund. Math.
71 (1971), 255-262.

6. J. Grispolakis and E.D. Tymchatyn, Continua which admit only certain classes
of onto mappings, Topology Proc. 3 (1978), 347-362.

7. H. Hosokawa, Induced mappings between hyperspaces, Bull. Tokyo Gakugei
Univ. 41 (1989), 1-6.

8. , Induced mappings between hyperspaces 11, Bull. Tokyo Gakugei Univ.
44 (1992), 1-7.




154 W.J. CHARATONIK

9. H. Kato, A note on continuous mappings and the property of J.L. Kelley,
Proc. Amer. Math. Soc. 112 (1991), 1143-1148.

10. O.H. Keller, Die Homoiomorphie der kompakten konvezen Mengen in
Hilbertschen Raum, Math. Ann. 105 (1931), 748-758.

11. J. Kennedy and J.T. Rogers, Jr., Orbits of the pseudo-circle, Trans. Amer.
Math. Soc. 296 (1986), 327-340.

12. K. Kuratowski, Topology, Vol. I, Academic Press and PWN, 1966.
13. , Topology, Vol. II, Academic Press and PWN, 1968.

14. A. Lelek and E.D. Tymchatyn, Pseudo-confluent mappings and a classifica-
tion of continua, Canad. J. Math. 27 (1975), 1336-1348.

15. T. Mackowiak, Mappings of a constant degree, Bull. Acad. Polon. Sci. Ser.
Sci. Math. Astron. Phys. 23 (1975), 285-291.

16.

17. M.M. Marsh and E.D. Tymchatyn, Inductively weakly confluent mappings,
Houston J. Math. 18 (1992), 235-250.

18. L. Mohler and J. Nikiel, A universal smooth dendroid answering a question
of J. Krasinkiewicz, Houston J. Math. 14 (1988), 535-541.

19. S.B. Nadler, Jr., Hyperspaces of sets, Marcel Dekker, New York, 1978.

20. R.W. Wardle, On a property of J.L. Kelley, Houston J. Math. 3 (1977),
291-299.

, Continuous mappings on continua, Dissert. Math. 158 (1979), 1-95.

MATHEMATICAL INSTITUTE, UNIVERSITY OF WROCLAW, PL. GRUNWALDZKI 2/4,
50-384 WROCLAW, POLAND
E-mail address: wjcharat@hera.math.uni.wroc.pl

Current Address: DEPARTAMENTO DE MATEMATICAS, FACULTAD DE CIENCIAS,
U.N.A.M., Crupap UNIVERSITARIA, 04510, MExico, D.F., MEXIico
E-mail address: wjcharat@lya.fciencias.unam.mx



	Arc Approximation Property and Confluence of Induced Mappings
	Recommended Citation

	CHARA.dvi

