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equations on arbitrary time scales, hence combining and extending results for corresponding
differential and difference equations. Examples, some of which coincide with well-known results
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1. Introduction

Oscillation theory on Z and R has drawn extensive attention in recent years. Most of the
results on Z have corresponding results on R and vice versa because there is a very close
relation between Z and R. This relation has been revealed by Hilger in [1], which unifies
discrete and continuous analysis by a new theory called time scale theory.

As is well known, a first-order delay differential equation of the form

x′(t) + p(t)x(t − τ) = 0, (1.1)

where t ∈ R and τ ∈ R
+ := [0,∞), is oscillatory if

lim inf
t→∞

∫ t

t−τ
p(η)dη >

1
e

(1.2)
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holds [2, Theorem 2.3.1]. Also the corresponding result for the difference equation

Δx(t) + p(t)x(t − τ) = 0, (1.3)

where t ∈ Z, Δx(t) = x(t + 1) − x(t) and τ ∈ N, is

lim inf
t→∞

t−1∑
η=t−τ

p(η) >
(

τ

τ + 1

)τ+1

(1.4)

[2, Theorem 7.5.1]. Li [3] and Shen and Tang [4, 5] improved (1.2) for (1.1) to

lim inf
t→∞

pn(t) >
1
en

, (1.5)

where

pn(t) =

⎧⎪⎪⎨
⎪⎪⎩
1, n = 0,∫ t

t−τ
p(η)pn−1(η)dη, n ∈ N.

(1.6)

Note that (1.2) is a particular case of (1.5) with n = 1. Also a corresponding result of (1.4) for
(1.3) has been given in [6, Corollary 1], which coincides in the discrete case with our main
result as

lim inf
t→∞

pn(t) >
(

τ

τ + 1

)n(τ+1)

, (1.7)

where pn is defined by a similar recursion in [6], as

pn(t) =

⎧⎪⎪⎨
⎪⎪⎩

1, n = 0,

t−1∑
η=t−τ

p(η)pn−1(η), n ∈ N.
(1.8)

Our results improve and extend the known results in [7, 8] to arbitrary time scales. We refer
the readers to [9, 10] for some new results on the oscillation of delay dynamic equations.

Now, we consider the first-order delay dynamic equation

xΔ(t) + p(t)x(τ(t)) = 0, (1.9)

where t ∈ T, T is a time scale (i.e., any nonempty closed subset of R) with supT = ∞,
p ∈ Crd(T,R+), the delay function τ : T → T satisfies limt→∞τ(t) = ∞ and τ(t) ≤ t for all
t ∈ T. If T = R, then xΔ = x′ (the usual derivative), while if T = Z, then xΔ = Δx (the usual
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forward difference). On a time scale, the forward jump operator and the graininess function are
defined by

σ(t) := inf (t,∞)
T
, μ(t) := σ(t) − t, (1.10)

where (t,∞)
T
:= (t,∞) ∩ T and t ∈ T. We refer the readers to [11, 12] for further results on

time scale calculus.
A function f : T → R is called positively regressive if f ∈ Crd(T,R) and 1 + μ(t)f(t) > 0

for all t ∈ T, and we write f ∈ R+(T). It is well known that if f ∈ R+([t0,∞)
T
), then there

exists a positive function x satisfying the initial value problem

xΔ(t) = f(t)x(t), x(t0) = 1, (1.11)

where t0 ∈ T and t ∈ [t0,∞)
T
, and it is called the exponential function and denoted by ef(·, t0).

Some useful properties of the exponential function can be found in [11, Theorem 2.36].
The setup of this paper is as follows: while we state and prove our main result in

Section 2, we consider special cases of particular time scales in Section 3.

2. Main results

We state the following lemma, which is an extension of [3, Lemma 2] and improvement of
[10, Lemma 2].

Lemma 2.1. Let x be a nonoscillatory solution of (1.9). If

lim sup
t→∞

∫ t

τ(t)
p(η)Δη > 0, (2.1)

then

lim inf
t→∞

yx(t) < ∞, (2.2)

where

yx(t) :=
x(τ(t))
x(t)

for t ∈ [t0,∞)
T
. (2.3)

Proof. Since (1.9) is linear, we may assume that x is an eventually positive solution. Then, x is
eventually nonincreasing. Let x(t), x(τ(t)) > 0 for all t ∈ [t1,∞)

T
, where t1 ∈ [t0,∞)

T
. In view

of (2.1), there exists ε > 0 and an increasing divergent sequence {ξn}n∈N ⊂ [t1,∞)
T
such that

∫σ(ξn)

τ(ξn)
p(η)Δη ≥

∫ ξn

τ(ξn)
p(η)Δη ≥ ε ∀n ∈ N0. (2.4)
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Now, consider the function Γn : [τ(ξn), σ(ξn))T → R defined by

Γn(t) :=
∫ t

τ(ξn)
p(η)Δη − ε

2
. (2.5)

We see that Γn(τ(ξn)) < 0 and Γn(ξn) > 0 for all n ∈ N. Therefore, there exists ζn ∈ [τ(ξn), ξn)T
such that Γn(ζn) ≤ 0 and Γn(σ(ζn)) ≥ 0 for all n ∈ N. Clearly, {ζn}n∈N ⊂ [t1,∞)

T
is a

nondecreasing divergent sequence. Then, for all n ∈ N, we have

∫σ(ζn)

τ(ξn)
p(η)Δη

(2.5)
=

ε

2
+ Γn

(
σ
(
ζn
)) ≥ ε

2
(2.6)

and

∫σ(ξn)

ζn

p(η)Δη
(2.5)
=

∫σ(ξn)

τ(ξn)
p(η)Δη −

(
Γn

(
ζn
)
+
ε

2

)
≥ ε

2
− Γn

(
ζn
) ≥ ε

2
. (2.7)

Thus, for all n ∈ N, we can calculate

x
(
ζn
) ≥ x

(
ζn
) − x

(
σ
(
ξn
)) (1.9)

=
∫σ(ξn)

ζn

p(η)x(τ(η))Δη ≥ x
(
τ
(
ξn
))∫σ(ξn)

ζn

p(η)Δη

(2.7)
≥ ε

2
x
(
τ
(
ξn
)) ≥ ε

2
[
x
(
τ
(
ξn
)) − x

(
σ
(
ζn
))] (1.9)

=
ε

2

∫σ(ζn)

τ(ξn)
p(η)x(τ(η))Δη

≥ ε

2
x
(
τ
(
ζn
))∫σ(ζn)

τ(ξn)
p(η)Δη

(2.6)
≥

(
ε

2

)2

x
(
τ
(
ζn
))
,

(2.8)

and using (2.3),

yx

(
ζn
) ≤

(
2
ε

)2

. (2.9)

Letting n tend to infinity, we see that (2.2) holds.

For the statement of our main results, we introduce

αn(t) :=

⎧⎪⎪⎨
⎪⎪⎩

1, n = 0,

inf
λ>0

−λpαn−1∈R+([τ(t),t)
T
)

{
1

λe−λpαn−1(t, τ(t))

}
, n ∈ N,

(2.10)

for t ∈ [s,∞)
T
, where τn(s) ∈ [t0,∞)

T
.
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Lemma 2.2. Let x be a nonoscillatory solution of (1.9). If there exists n0 ∈ N such that

lim inf
t→∞

αn0(t) > 1, (2.11)

then

lim
t→∞

yx(t) = ∞, (2.12)

where yx is defined in (2.3).

Proof. Since (1.9) is linear, we may assume that x is an eventually positive solution. Then,
x is eventually nonincreasing. There exists t1 ∈ [t0,∞)

T
such that x(t), x(τ(t)) > 0 for all

t ∈ [t1,∞)
T
. Thus, yx(t) ≥ 1 for all t ∈ [t1,∞)

T
. We rewrite (1.9) in the form

xΔ(t) + yx(t)p(t)x(t) = 0 (2.13)

for t ∈ [t1,∞)
T
. Integrating (2.13) from t to σ(t), where t ∈ [t1,∞)

T
, we get

0 = x(σ(t)) − x(t) + μ(t)yx(t)p(t)x(t) > −x(t)[1 − μ(t)yx(t)p(t)
]
, (2.14)

which implies −yxp ∈ R+([t1,∞)
T
). From (2.13), we see that

x(t) = x
(
t1
)
e−yxp

(
t, t1

) ∀t ∈ [
t1,∞

)
T
, (2.15)

and thus

yx(t) =
1

e−yxp(t, τ(t))
∀t ∈ [

t2,∞
)
T
, (2.16)

where τ(t2) ∈ [t1,∞)
T
. Note R+([t1,∞)

T
) ⊂ R+([τ(t),∞)

T
) ⊂ R+([τ(t), t)

T
) for t ∈ [t2,∞)

T
.

Now define

zn(t) :=

⎧⎨
⎩
yx(t), n = 0,

inf
{
zn−1(η) : η ∈ [τ(t), t)

T

}
, n ∈ N.

(2.17)

By the definition (2.17), we have yx(η) ≥ z1(t) for all η ∈ [τ(t), t)
T
and all t ∈ [t2,∞)

T
, which

yields −z1(t)p ∈ R+([τ(t), t)
T
) for all t ∈ [t2,∞)

T
. Then, we see that

yx(t)
(2.16)
=

1
e−yxp(t, τ(t))

(2.17)
≥ 1

e−z1(t)p(t, τ(t))
=

z1(t)
z1(t)e−z1(t)p(t, τ(t))

(2.10)
≥ α1(t)z1(t) (2.18)
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holds for all t ∈ [t2,∞)
T
(see also [13, Corollary 2.11]). Therefore, from (2.13), we have

xΔ(t) + z1(t)p(t)α1(t)x(t) ≤ 0 (2.19)

for t ∈ [t2,∞)
T
. Integrating (2.19) from t to σ(t), where t ∈ [t2,∞)

T
, we get

0 ≥ x(σ(t)) − x(t) + μ(t)z1(t)p(t)α1(t)x(t) > −x(t)[1 − μ(t)z1(t)p(t)α1(t)
]
, (2.20)

which implies that −z1pα1 ∈ R+([t2,∞)
T
). Thus, −z2(t)pα1 ∈ R+([τ(t), t)

T
) for all t ∈ [t3,∞)

T
,

where τ(t3) ∈ [t2,∞)
T
, and we see that

yx(t)
(2.16), (2.17)

≥ 1
e−z1pα1(t, τ(t))

(2.17)
≥ 1

e−z2(t)pα1(t, τ(t))
=

z2(t)
z2(t)e−z2(t)pα1(t, τ(t))

(2.10)
≥ α2(t)z2(t)

(2.21)

for all t ∈ [t3,∞)
T
. By induction, there exists tn0+1 ∈ [tn0 ,∞)

T
with τ(tn0+1) ∈ [tn0 ,∞)

T
and

yx(t) ≥ zn0(t)αn0(t) (2.22)

for all t ∈ [
tn0+1,∞

)
T
. To prove now (2.12), we assume on the contrary that lim inft→∞yx(t) <

∞. Taking lim inf on both sides of (2.22), we get

lim inf
t→∞

yx(t) ≥ lim inf
t→∞

[
zn0(t)αn0(t)

]

≥ lim inf
t→∞

zn0(t)lim inf
t→∞

αn0(t)

(2.17)
= lim inf

t→∞
yx(t)lim inf

t→∞
αn0(t),

(2.23)

which implies that lim inft→∞αn0(t) ≤ 1, contradicting (2.11). Therefore, (2.12) holds.

Theorem 2.3. Assume (2.1). If there exists n0 ∈ N such that (2.11) holds, then every solution of
(1.9) oscillates on [t0,∞)

T
.

Proof. The proof is an immediate consequence of Lemmas 2.1 and 2.2.

We need the following lemmas in the sequel.

Lemma 2.4 (see [7, Lemma 2]). For nonnegative p with −p ∈ R+([s, t)
T
), one has

1 −
∫ t

s

p(η)Δη ≤ e−p(t, s) ≤ exp

{
−
∫ t

s

p(η)Δη

}
. (2.24)
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Now, we introduce

βn(t) := sup
{
αn−1(η) : η ∈ [τ(t), t)

T

}
(2.25)

for n ∈ N and t ∈ [s,∞)
T
, where τn(s) ∈ [t0,∞)

T
.

Lemma 2.5. If there exists n0 ∈ N such that

lim sup
t→∞

1
βn0(t)

(
1 − 1

αn0(t)

)
> 0 (2.26)

holds, then (2.1) is true.

Proof. There exists t1 ∈ [t0,∞)
T
such that −pαn0−1 ∈ R+([t1,∞)

T
) (see the proof of Lemma 2.2).

Then, Lemma 2.4 implies

αn0(t)
(2.10)
≤ 1

e−pαn0−1(t, τ(t))
≤ 1

1 − ∫ t
τ(t)p(η)αn0−1(η)Δη

(2.25)
≤ 1

1 − βn0(t)
∫ t
τ(t)p(η)Δη

, (2.27)

which yields

∫ t

τ(t)
p(η)Δη ≥ 1

βn0(t)

(
1 − 1

αn0(t)

)
∀t ∈ [

t1,∞
)
T
. (2.28)

In view of (2.26), taking lim sup on both sides of the above inequality, we see that (2.1) holds.
Hence, the proof is done.

Theorem 2.6. Assume that there exists n0 ∈ N such that (2.26) and (2.11) hold. Then, every solution
of (1.9) is oscillatory on [t0,∞)

T
.

Proof. The proof follows from Lemmas 2.1, 2.2, and 2.5.

Remark 2.7. We obtain the main results of [7, 8] by letting n0 = 1 in Theorem 2.6. In this case,
we have β1(t) ≡ 1 for all t ∈ [t0,∞)

T
. Note that (2.1) and (2.26), respectively, reduce tos

lim inf
t → ∞

α1(t) > 1, lim sup
t→∞

α1(t) > 1, (2.29)

which indicates that (2.26) is implied by (2.1).
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3. Particular time scales

This section is dedicated to the calculation of αn on some particular time scales. For
convenience, we set

pn(t) :=

⎧⎪⎪⎨
⎪⎪⎩
1, n = 0,∫ t

τ(t)
pn−1(η)p(η)Δη, n ∈ N.

(3.1)

Example 3.1. Clearly, if T = R and τ(t) = t − τ , then (3.1) reduces to (1.6) and thus we have

α1(t) = inf
λ>0

{
1

λ exp
{ − λp1(t)

}
}

= ep1(t),

α2(t) = inf
λ>0

{
1

λ exp
{ − eλp2(t)

}
}

= e2p2(t)

(3.2)

by evaluating (2.10). For the general case, it is easy to see that

αn(t) = enpn(t) (3.3)

for n ∈ N. Thus if there exists n0 ∈ N such that

lim inf
t→∞

pn0
(t) >

1
en0

, (3.4)

then every solution of (1.1) is oscillatory on [t0,∞)
R
. Note that (3.4) implies

lim supt→∞p1(t) ≥ 1/e > 0. Otherwise, we have lim supt→∞pn(t) < 1/en for n = 2, 3, . . . , n0.
This result for the differential equation (1.1) is a special case of Theorem 2.3 given in Section 2,
and it is presented in [3, Theorem 1], [4, Corollary 1], and [5, Corollary 1].

Example 3.2. Let T = Z and τ(t) = t − τ , where τ ∈ N. Then (3.1) reduces to (1.8). From (2.10),
we have

α1(t) = inf
λ>0

1−λp(η)>0
η∈[t−τ,t−1]

Z

{
1
λ

(
t−1∏

η=t−τ
[1 − λp(η)]

)−1}

≥ inf
λ>0

1−λp(η)>0
η∈[t−τ,t−1]

Z

{
1
λ

(
1
τ

t−1∑
η=t−τ

[1 − λp(η)]

)−τ}

≥ inf
λ>0

{
1
λ

(
1 − λ

τ
p1(t)

)−τ}
=
(
τ + 1
τ

)τ+1

p1(t).

(3.5)
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In the second line above, the well-known inequality between the arithmetic and the geometric
mean is used. In the next step, we see that

α2(t) = inf
λ>0

1−λp(η)α1(η)>0
η∈[t−τ,t−1]

Z

{
1
λ

(
t−1∏

η=t−τ
[1 − λα1(η)p(η)]

)−1}

≥ inf
λ>0

1−λ((τ+1)/τ)τ+1p1(η)p(η)>0
η∈[t−τ,t−1]

Z

{
1
λ

(
t−1∏

η=t−τ

(
1 − λ

(
τ + 1
τ

)τ+1

p1(η)p(η)
))−1}

≥ inf
λ>0

1−λ((τ+1)/τ)τ+1p1(η)p(η)>0
η∈[t−τ,t−1]

Z

{
1
λ

(
1
τ

t−1∑
η=t−τ

(
1 − λ

(
τ + 1
τ

)τ+1

p1(η)p(η)
))−τ}

≥ inf
λ>0

{
1
λ

(
1 − λ

τ

(
τ + 1
τ

)τ+1

p2(t)
)−τ}

=
(
τ + 1
τ

)2(τ+1)

p2(t).

(3.6)

By induction, we get

αn(t) ≥
(
τ + 1
τ

)n(τ+1)

pn(t) (3.7)

for n ∈ N. Therefore, every solution of (1.3) is oscillatory on [t0,∞)
Z
provided that there exists

n0 ∈ N satisfying

lim inf
t→∞

pn0
(t) >

(
τ

τ + 1

)n0(τ+1)

. (3.8)

Note that (3.8) implies that lim supt→∞p1(t) ≥ (τ/(τ + 1))τ+1 > 0. Otherwise, we would have
lim supt→∞pn(t) < (τ/(τ + 1))n(τ+1) for n = 2, 3, . . . , n0. This result for the difference equation
(1.3) is a special case of Theorem 2.3 given in Section 2, and a similar result has been presented
in [6, Corollary 1].

Example 3.3. Let T = qN0 := {qn : n ∈ N0} and τ(t) = t/qτ , where q > 1 and τ ∈ N. This time
scale is different than the well-known time scales R and Z since t + s/∈T for t, s ∈ T. In the
present case, (3.1) reduces to

pn(t) =

⎧⎪⎪⎨
⎪⎪⎩
1, n = 0,

(q − 1)
τ∑

η=1

t

qη
p

(
t

qη

)
pn−1

(
t

qη

)
, n ∈ N,

(3.9)
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and the exponential function takes the form

e−p
(
t, q−τ t

)
=

τ∏
η=1

[
1 − (q − 1)p

(
t

qη

)
t

qη

]
. (3.10)

Therefore, one can show

λe−λp
(
t, q−τ t

)
= λ

τ∏
η=1

[
1 − λ(q − 1)p

(
t

qη

)
t

qη

]

≤ λ

(
1 − λ(q − 1)

τ

τ∑
η=1

p

(
t

qη

)
t

qη

)τ

≤
(

τ

τ + 1

)τ+1 1
p1(t)

(3.11)

and

α1(t) ≥
(
τ + 1
τ

)τ+1

p1(t). (3.12)

For the general case, for n ∈ N, it is easy to see that

αn(t) ≥
(
τ + 1
τ

)n(τ+1)

pn(t). (3.13)

Therefore, if there exists n0 ∈ N such that

lim inf
t→∞

pn0(t) >
(

τ

τ + 1

)n0(τ+1)

, (3.14)

then every solution of

xΔ(t) + p(t)x
(

t

qτ

)
= 0, where xΔ(t) =

x(qt) − x(t)
(q − 1)t

, (3.15)

is oscillatory on [t0,∞)qN0 . Clearly, (3.14) ensures lim supt→∞p1(t) ≥ (τ/(τ + 1))τ+1 > 0. This
result for the q-difference equation (3.15) is a special case of Theorem 2.3 given in Section 2,
and it has not been presented in the literature thus far.

Example 3.4. Let T = {ξm : m ∈ N} and τ(ξm) = ξm−τ , where {ξm}m∈N is an increasing divergent
sequence and τ ∈ N. Then, the exponential function takes the form

λe−λp
(
ξm, ξm−τ

)
= λ

m−1∏
η=m−τ

[
1 − λ

(
ξη+1 − ξη

)
p
(
ξη
)]
. (3.16)
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One can show that (2.10) satisfies

αn

(
ξm

) ≥
(

τ

τ + 1

)n(τ+1)

pn
(
ξm

)
, (3.17)

where (3.1) has the form

pn
(
ξm

)
=

⎧⎪⎪⎨
⎪⎪⎩

1, n = 0,

m−1∑
η=m−τ

(
ξη+1 − ξη

)
p
(
ξη
)
pn−1

(
ξη
)
, n ∈ N.

(3.18)

Therefore, existence of n0 ∈ N satisfying

lim inf
m→∞

pn0

(
ξm

)
>

(
τ

τ + 1

)n0(τ+1)

(3.19)

ensures by Theorem 2.3 that every solution of

xΔ(ξm) + p
(
ξm

)
x
(
ξm−τ

)
= 0, where xΔ(ξm) =

x
(
ξm+1

) − x
(
ξm

)
ξm+1 − ξm

, (3.20)

is oscillatory on [ξτ ,∞)
T
. We note again that lim supm→∞p1(ξm) ≥ (τ/(τ + 1))τ+1 > 0 follows

from (3.19).
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