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ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 34, Number 1, Spring 2004

HEREDITARILY UNICOHERENT CONTINUA
AND THEIR ABSOLUTE RETRACTS

JANUSZ J. CHARATONIK, W�LODZIMIERZ J. CHARATONIK

AND JANUSZ R. PRAJS

ABSTRACT. We investigate absolute retracts for classes
of hereditarily unicoherent continua, tree-like continua, λ-
dendroids, dendroids and some other related ones. The main
results are: (1) the inverse limits of trees with confluent bond-
ing mappings are absolute retracts of hereditarily unicoherent
continua; (2) each tree-like continuum is embeddable in a spe-
cial way in a tree-like absolute retract for the class of hered-
itarily unicoherent continua; (3) a dendroid is an absolute
retract for hereditarily unicoherent continua if and only if it
can be embedded as a retract into the Mohler-Nikiel universal
smooth dendroid.

1. Introduction. According to a classical result of Borsuk [3,
p. 138] each dendrite is an absolute retract for the class of all compacta.
Consequently, any dendrite D is an absolute retract for each class C of
compacta (abbreviated AR (C)) such that D ∈ C. More generally, if
C1 ⊂ C2 for some classes C1 and C2 of spaces, then

(1.1) C1 ∩AR(C2) ⊂ AR(C1).

However, there are significant classes C of compact with some AR(C)-
spaces which need not be AR-spaces for all compacta. For example,
continua of dimension at most n, connected and locally connected
in dimension n are absolute retracts for the class of all compacta of
dimension at most n, see [29, § 53, Theorems 1 and 1′, p. 347]. Thus,
the opposite inclusion to (1.1) does not hold.
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More recently AR-spaces for some classes of continua had been
studied, e.g., by Maćkowiak in [34, 35] and [36]. Among other results,
he has shown the simplest Knaster indecomposable continuum, see, e.g.,
[29, § 48, Example 1, p. 204 and Figure 1, p. 205], and cones over zero-
dimensional compact spaces are AR-spaces for the class of hereditarily
unicoherent continua, see [34, Corollary 4, p. 181; Corollary 5 and the
paragraph following it, p. 183]. He has also shown that the pseudo-arc
is an AR for the class of hereditarily indecomposable metric continua,
see [35, Corollary 18, p. 78] and compare [36] for a generalization of
these results to the nonmetric case. Further, in [14], a large family
of classes K of continua was proved to have only locally connected
members of AR (K) and in [15] absolute retracts for tree-like continua
were studied.

In [32, p. 811], Maćkowiak has shown that each tree-like continuumX
can be embedded in a tree-like continuum Y = lim←−{Yn, fn}, where Yn

are dendroids and fn are open. Our results presented in Theorem 4.5
are much stronger: we embed X in the inverse limit Y of trees with
open bonding mappings in such a way that X is the kernel of Y , and
we show that then Y is an absolute retract for the class of hereditarily
unicoherent continua.

The classes of hereditarily unicoherent continua, tree-like continua,
λ-dendroids and dendroids appear in a natural way in various regions of
mathematical interest: the fixed point property, homogeneous spaces,
continuous and upper semi-continuous decompositions, (hereditarily)
indecomposable continua and many other areas of topology, and also
out of topology. These classes are hereditary and they have many
invariant properties with respect to numerous classes of mappings.
They proved to be important and are among the most extensively
studied classes of continua. By these reasons investigation of absolute
retracts for the mentioned classes of continua is both interesting and
important. As it has been shown in [11, 12] and [13], absolute retracts
for these classes have many interesting, strong and useful properties as,
for example, the generalized ε-push property, the arc approximation
property, the property of Kelley, homeomorphic translation of arcs and
many others. They also have similar properties as absolute retracts in
the classical theory of retracts, namely, for any such class C a retract
of a member of AR (C) is in AR (C) and each member of AR (C) is
an absolute extensor for C. Nevertheless, it follows from some results
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that are shown in the present paper, as the theorems on the inverse
limits of trees with confluent bonding mappings, Theorem 3.6, and on
embeddings of tree-like continua as kernels in absolute retracts for the
class of hereditarily unicoherent continua, Theorem 4.5, that they form
relatively large classes of continua.

The paper consists of six sections. After the introduction, some
auxiliary concepts and results are collected in the second section. The
third and the fourth sections form the main part of the paper. Section 3
is devoted mainly to studying the inverse limits of inverse sequences
of trees with confluent bonding mappings. It is shown that any such
continuum is an absolute retract for the class of hereditarily unicoherent
continua. In Section 4 it is proved that each tree-like continuum X can
be embedded in a tree-like absolute retract for the class of hereditarily
unicoherent continua Y so that X is a kernel of Y and Y/X is a
dendroid having the property of Kelley (thus being smooth). Section 5
summarizes the obtained results and provides some related examples.
Section 6 contains general open problems and some particular questions
that indicate directions of a further study in the area.

A long-term goal of our study is to find characterizations of absolute
retracts for the mentioned classes. The following problem emerges from
our investigations. Solving it seems to be the next step in this direction,
compare Questions 5.5 and 6.3 and see also other related questions in
Section 6 and in [11, 12] and [13].

1.2. Problem. Let continuum X be an absolute retract for the class
of hereditarily unicoherent continua (tree-like continua, λ-dendroids,
dendroids). Can X be represented as the inverse limit of an inverse
sequence of trees with confluent bonding mappings? In particular, is
each absolute retract for hereditarily unicoherent continua a tree-like
continuum?

By a space we mean a topological space and a mapping means a
continuous function. Given a space X and its subspace Y ⊂ X, a
mapping r : X → Y is called a retraction if the restriction r|Y is the
identity. Then Y is called a retract of X. The reader is referred to [3]
and [22] for needed information on these concepts.

Let C be a class of compacta, i.e., of compact metric spaces. Following
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[22, p. 80], we say that a space Y ∈ C is an absolute retract for the class
C, abbreviated AR (C), if for any space Z ∈ C such that Y is a subspace
of Z, Y is a retract of Z. The concept of an AR space originally had
been studied by Borsuk, see [3].

Let X be a metric space with a metric d. For a mapping f : A→ B,
where A and B are subspaces of X, we define d(f) = sup{d(x, f(x)) :
x ∈ A}. The symbol N stands for the set of all positive integers.

By a continuum we mean a connected compactum. A continuum X is
said to be unicoherent if the intersection of every two of its subcontinua
whose union is X is connected. X is said to be hereditarily unicoherent
if all its subcontinua are unicoherent. A hereditarily unicoherent and
arcwise connected continuum is called a dendroid. A locally connected
dendroid is called a dendrite. A tree means a graph containing no
simple closed curve or, in other words, a dendrite being the union of
finitely many arcs.

A continuum is said to be decomposable provided that it can be
represented as the union of two of its proper subcontinua. Otherwise
it is said to be indecomposable. A continuum is said to be hereditarily
decomposable provided that each of its subcontinua is decomposable.
A hereditarily unicoherent and hereditarily decomposable continuum
is called a λ-dendroid. A continuum is said to be tree-like (arc-like,
circle-like) provided that it is the inverse limit of an inverse sequence
of trees (arcs, circles, respectively).

Let D0 denote the class of dendrites, D the class of dendroids, λD of
λ-dendroids, T L of tree-like continua and HU the class of hereditarily
unicoherent ones. Then

(1.3) D0 ⊂ D ⊂ λD ⊂ T L ⊂ HU .

As was mentioned previously, according to the result of Borsuk, we
have

AR (D0) = D0 ⊂ AR(D) ∩AR(λD) ∩AR(T L) ∩AR(HU).

Note that the class of absolute retracts of all unicoherent continua
coincides with the class of retracts of the Hilbert cube, thus it also
coincides with the class of absolute retracts of all compacta. This class
is relatively well studied, and we do not investigate it here.
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2. Auxiliary concepts and results. In this section we collect
concepts and results used in the body of the paper, mostly introduced
and studied in our very recent papers, and therefore perhaps not
acknowledged to the reader. The aim of the section is to support the
reader in understanding our arguments applied in proofs of results in
the next section. We start with recalling the following concepts and
results taken from [11, Section 2].

A class S of nonempty spaces is called unionable provided that for
all members X,Y of S if X ∩ Y ∈ S, then X ∪ Y ∈ S.

2.1. Observation [11, Observation 2.2]. The following classes of
spaces are unionable: compact spaces of dimension less than or equal
to n, continua, hereditarily unicoherent continua, tree-like continua,
λ-dendroids, dendroids, dendrites.

Let X and Y be two disjoint spaces, U ⊂ X a closed subset of X,
and let f : U → Y be a mapping. In the disjoint union X⊕Y define an
equivalence relation ∼ by u ∼ f(u) for each u ∈ U . Then the quotient
space (X⊕Y )/ ∼ is denoted by X ∪f Y , see [19, Definition 6.1, p. 127]
and compare [41, p. 42].

A class S of nonempty spaces is called functionally unionable provided
that, for all members U,X, Y of S such that U = clU ⊂ X and for
each mapping f : U → Y if f(U) ∈ S, then X ∪f Y ∈ S. Each
functionally unionable class of spaces is unionable, but not conversely,
[11, Observation 2.7 and Remark 2.8].

2.2. Theorem [11, Theorem 2.5]. Let S be a unionable class of
spaces. If X ∈ AR(S) and Y ∈ S is a retract of X, then Y ∈ AR(S).

2.3. Proposition [11, Proposition 2.10]. All the classes of continua
listed in Observation 2.1 are functionally unionable.

2.4. Theorem [11, Theorem 2.11]. Let a class S of spaces be func-
tionally unionable. Then the following two conditions are equivalent:

(2.4.1) Y ∈ AR(S);
(2.4.2) for each space X ∈ S, for each closed subspace U ⊂ X such
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that U ∈ S and for each mapping f : U → Y with f(U) ∈ S there
exists a mapping f∗ : X → Y such that f∗|U = f .

A continuum X is said to have the property of Kelley provided that,
for each point p ∈ X, for each subcontinuum K of X containing p and
for each sequence of points pn converging to p, there exists a sequence
of subcontinua Kn of X containing pn and converging to the continuum
K, see, e.g., [23, p. 167] or [40, Definition 16.10, p. 538].

A continuum X is said to have the arc approximation property
provided that for each point x ∈ X, for each subcontinuum K of X
containing x, there exists a sequence of arcwise connected subcontinua
Kn of X containing x and converging to the continuum K, see [17,
Section 3, p. 113].

2.5. Proposition [13, Proposition 3.2]. If a continuum X has the
arc approximation property and contains no simple triod, then each
proper subcontinuum of X is an arc.

Investigating absolute retracts for some classes of continua we have
found that the following concept of the arc property of Kelley that joins
the arc approximation property and the property of Kelley turns out
to be both natural and useful.

A continuum X is said to have the arc property of Kelley, see [11,
Definition 3.3], provided that, for each point p ∈ X, for each subcontin-
uum K of X containing p and for each sequence of points pn converging
to p, there exists a sequence of arcwise connected subcontinua Kn of
X containing pn and converging to the continuum K.

2.6. Proposition [11, Proposition 3.4]. A continuum has the arc
property of Kelley if and only if it has the arc approximation property
and the property of Kelley.

To formulate the next result some definitions are in order first. A
dendroid X is said to be smooth provided that there is a point v ∈ X,
called an initial point of X, such that for each point x ∈ X and for each
sequence {xn} of points of X which tends to x, the sequence of arcs
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vxn is convergent and it has the arc vx as its limit. It is known that
the class of all smooth dendroids has a universal element, i.e., there is
a smooth dendroid that contains all other smooth dendroids, see [16,
Corollary 2, p. 165], [20, Theorem 3.1, p. 992] and [39]. Since each
dendroid having the property of Kelley is smooth, see [18, Corollary 5,
p. 730], we have the following results.

2.7. Corollary [11, Corollary 3.6]. Each member of AR(D) is a
smooth dendroid (with the property of Kelley).

2.8. Corollary [11, Corollary 3.7]. Let K be any class of continua
listed in (1.3). Then any member of AR(K) has the arc property of
Kelley.

Let X be a hereditarily unicoherent continuum, and let F(X) be the
family of all subcontinua of X intersecting all arc components of X.
The intersection of all members of the family F(X) is named the kernel
of X and is denoted by Ker (X). Since a continuum X is hereditarily
unicoherent if and only if the intersection of all members of any family of
subcontinua of X is a continuum, the kernel Ker (X) is a subcontinuum
of X.

If a closed subset C of a continuum X is given, then X/C is the
quotient space obtained by shrinking C to a point. Thus, if C is a
continuum, the quotient mapping q : X → X/C is monotone. See [44,
Chapter 7, p. 122] for the details.

2.9. Theorem [12, Theorem 3.5]. If X is a hereditarily unicoherent,
not arcwise connected continuum, then Ker (X) is the smallest contin-
uum Y such that X/Y is arcwise connected, i.e., X/Y is a dendroid.

2.10. Theorem [12, Theorem 3.7]. For each hereditarily unicoher-
ent, not arcwise connected continuum X, the kernel Ker (X) contains
all nondegenerate indecomposable subcontinua of X.

A subcontinuum T of a continuum X is said to be terminal in X
provided that, for each subcontinuum K of X the condition K∩T �= ∅
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implies K ⊂ T or T ⊂ K. Note that, according to the definition, the
whole continuum X is a terminal subcontinuum of itself, and that each
singleton is terminal.

2.11. Theorem [12, Theorem 3.8]. For each hereditarily unico-
herent, not arcwise connected continuum X, the kernel Ker (X) con-
tains all proper nondegenerate terminal subcontinua of any continuum
Y ⊂ X.

3. Absolute retracts as inverse limits. In the previous papers
[11, 12] and [13], the authors studied necessary conditions under which
a continuum belongs to AR (HU), AR (T L), AR (λD) or to AR (D).
Until now only a few examples of such continua are known which are
not dendrites (compare again Maćkowiak results in [34, 35] and [36],
cited in the beginning of the paper). In the present section we will
show that the inverse limits of inverse sequences of trees with confluent
bonding mappings are members of AR (HU), see Theorem 3.6. This is
one of the main results of the paper. Using this theorem it is possible to
get large classes of continua in AR (HU), AR (T L), etc., which are not
locally connected. But the authors do not know whether each member
of AR (HU) or of AR (T L), AR (λD) or of AR (D) can be represented as
the inverse limit of an inverse sequence of trees with confluent bonding
mappings, compare Problem 1.2 and Questions 6.2.

A mapping f : X → Y between continua is said to be confluent
provided that, for each subcontinuum Q of Y and for each component
K of f−1(Q) the equality f(K) = Q holds. Obviously, each monotone
mapping is confluent, and also open mappings, i.e, such surjections that
map open subsets of the domain onto open subsets of the range, are
known to be confluent, see [44, Theorem 7.5, p. 148]. For properties
of this class of mappings, see, e.g., [33]. Now we intend to show
that a continuum which is the inverse limit of an inverse sequence of
trees with confluent bonding mappings is in the class AR (HU). Some
introductory and auxiliary material is necessary first.

By a graph we mean a 1-dimensional, finite simplicial complex. In
particular, a tree can be seen as an (acyclic) graph if a finite set of its
vertices (that contains the set of all ramification points and of all end
points of the tree) is fixed.
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Let f : X → Y be a mapping between graphs X and Y . We say that
f is piecewise homeomorphic provided that there is a finite set VX ⊂ X
containing all ramification points and all end points of X such that for
each component C of X \ VX the partial mapping f |C : C → f(C)
is a homeomorphism. Elements of VX and of VY = f(VX) are called
vertices of the graphs X and Y , respectively, for the mapping f .

Observe that any open mapping between trees can be considered as
a piecewise homeomorphic one. More precisely, we have the following
assertion which is a particular case of Whyburn’s theorem (1.1) in [44,
p. 182]. A short outline of its proof is given below for the reader’s
convenience.

3.1 Assertion. Let f : X → Y be an open mapping between trees X
and Y . Then one can extend the sets of vertices of X and of Y so that
f considered as a mapping between the trees X and Y with the new sets
of vertices is piecewise homeomorphic.

Outline of proof. Let WX and WY be the sets of vertices of X and of
Y , respectively. Put

VY = f(WX) ∪WY and VX = f−1(VY ).

One can verify that f maps (X,VX) onto (Y, VY ) in a piecewise
homeomorphic way.

A similar assertion holds for monotone mappings under an additional
assumption.

3.2 Assertion. Let a monotone mapping f : X → Y between trees
X and Y be such that

(3.2.1) the set F = {y ∈ Y : f−1(y) is nondegenerate} is finite.

Then one can extend the sets of vertices of X and of Y so that f
considered as a mapping between the graphs X and Y with the new sets
of vertices is piecewise homeomorphic.

Outline of proof. Let WX and WY be the sets of vertices of X and of
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Y , respectively. Putting

VY =WY ∪ F and VX =WX ∪ bd f−1(VY )

and, proceeding as previously, we are done.

As a consequence of the above two assertions we have a lemma.

3.3. Lemma. Given trees X and Y , let a mapping f : X → Y be
either open or monotone satisfying conditions (3.2.1). Then

(3.3.1) there is a positive integer p and points y1, . . . , yp ∈ Y such
that for each δ > 0 there are connected and open subsets U1, . . . , Up of
Y with yi ∈ Ui and diamUi < δ for each i ∈ {1, . . . , p} such that for
each component C of Y \ (U1 ∪ · · · ∪Up) and for each component K of
f−1(C) the partial mapping f |K : K → C is a homeomorphism of K
onto C.

Recall that a space is said to be connected between two of its subsets A
and B provided that there is no closed and open subset C of the space
such that A ⊂ C and B ∩C = ∅, see [29, § 46, IV, p. 142]. Maćkowiak
has shown in [34, Proposition 1, p. 177], the following result that we
will use in the sequel. We copy it here only for the reader’s convenience.

3.4 Proposition (Maćkowiak). If A and B are closed subsets of a
subcontinuum X of a hereditarily unicoherent continuum Y and if a
closed subset L of Y is connected between A and B, then there is a
subcontinuum P of X ∩ L which intersects both A and B.

Proposition 3.4 will be used to show the next one.

3.5 Proposition. Let X be a subcontinuum of a hereditarily uni-
coherent continuum Y , and let U be an open subset of Y such that
X \ U has finitely many, say q, components K1, . . . ,Kq. Then there
are pairwise disjoint closed subsets L1, . . . , Lq of Y such that

(3.5.1) Ki ⊂ Li for each i ∈ {1, . . . , q};
(3.5.2) Li ∩ U = ∅ for each i ∈ {1, . . . , q};
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(3.5.3) Y = (L1 ∪ · · · ∪ Lq) ∪ U .

Proof. In Proposition 3.4 substitute A1 = K1 and B1 = K2∪· · ·∪Kq

and put L′1 = Y \ U . Then, according to Proposition 3.4, the set L′1
is not connected between A1 and B1, so there are two disjoint closed
subsets L1 and L′2 of L′1 such that A1 = K1 ⊂ L1, B1 ⊂ L′2 and
L′1 = L1∪L′2. In this way L1 is defined. Next use Proposition 3.4 again,
with L1 ∪U in place of U , and with A2 = K2 and B2 = K3 ∪ · · · ∪Kq.
Then L′2 is not connected between A2 and B2, so there are two disjoint
closed subsets L2 and L′3 of L′2 such that A2 = K2 ⊂ L2, B2 ⊂ L′3
and L′2 = L2 ∪ L′3. Continuing in this manner, we construct the
pairwise disjoint closed subsets L1, . . . , Lq of Y that satisfy conditions
(3.5.1) (3.5.3).

To prove the next result, we need the following auxiliary concept. Let
A,B,C,D and E be metric spaces, and let

f : A→ B, f ′ : B → D, g : A→ C, g′ : C → D, h : D → E

be mappings. Given ε > 0 we say that the diagram

B

u

f ′

Au

f

u

g

E Du
h

Cu

g′

commutes up to ε (or is ε-commutative) provided that

ρ(h(f ′(f(a))), h(g′(g(a)))) < ε for each a ∈ A,

where ρ stands for the metric in E.

Given ε > 0 and a mapping f between compacta, we denote by
δ(f, ε) a positive number that satisfies the conclusion of the definition
of uniform continuity of f for the number ε.

The following notation will be used. Given an inverse sequence
S = {Xn, fn} of compact spaces Xn with bonding mappings fn :
Xn+1 → Xn, where the set of positive integers N is taken as the
directed set of indices, we denote by X = lim←− S its inverse limit and
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by πn : X → Xn the projections. Further, let fn
m : Xn → Xm be the

bonding mapping fn
m = fm ◦ fm+1 ◦ · · · ◦ fn−1 of S for m < n and

fn
n = id|Xn. In particular, fn+1

n = fn.

3.6. Theorem. Let S = {Xn, fn} be an inverse sequence of trees
Xn with confluent bonding mappings fn. Then X = lim←− S ∈ AR(HU).

Proof. Since every confluent mapping between trees is the compo-
sition of a monotone and an open mapping, see [30, Corollary 5.2,
p. 109], we may assume without loss of generality that all the bonding
mappings fn : Xn+1 → Xn are either monotone or open. Moreover,
since every monotone mapping between trees is the limit of monotone
mappings satisfying condition (3.3.1), we may assume by [37, Lemma
1, p. 73] that the monotone bonding mappings fn are such that the set
{x ∈ Xn : f−1

n (x) is nondegenerate} is finite.

Let Y be a hereditarily unicoherent continuum with X ⊂ Y . For
each n ∈ N define an equivalence relation ∼n in Y by

x ∼n y ⇐⇒ x = y or x, y ∈ X and πn(x) = πn(y) ∈ Xn.

Since the class HU is functionally unionable (Proposition 2.3), we
conclude that Yn = Y/ ∼n is a hereditarily unicoherent continuum.
Let σn : Y → Yn be the quotient mapping. Define gn : Yn+1 → Yn by
gn(y) = σn(σ−1

n+1(y)) for any y ∈ Yn+1, note that this is a well-defined
surjective mapping, and that Y = lim←−{Yn, gn}. To define the needed
retraction r : Y → X we will construct, for each n ∈ N, retractions
rn : Yn → Xn such that the diagram

(3.6;k,m, n)

Ym

u

rm

Ynu

gn
m

u

rn

Xk Xmu
fm

k

Xnu
fn

m

commutes up to εm, for every k,m, n ∈ N with k ≤ m ≤ n where
lim εm = 0.

Let r1 : Y1 → X1 be an arbitrary retraction, and assume that for some
n ∈ N and for each k < n we have defined retractions rk : Yk → Xk such
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that the diagram (3.6;k′,m′, n′) commutes up to εm′ for every k′,m′, n′

satisfying k′ ≤ m′ ≤ n′ < n. For each m′ < n let ηm′ be a number
satisfying 0 < ηm′ < εm′ and such that the diagram (3.6;k′,m′, n′)
commutes up to ηm′ for every k′,m′, n′ satisfying k′ ≤ m′ ≤ n′ < n.
Choose δ < min{εn, δ(fn

1 , ε1 − η1), . . . , δ(fn
n−1, εn−1 − ηn−1)}.

We apply Lemma 3.3 to the mapping fn−1 = fn
n−1 : Xn → Xn−1. Let

points x1, . . . , xp ∈ Xn−1 and connected and open subsets U1, . . . , Up

of Xn−1 be as in Lemma 3.3, i.e., such that xi ∈ Ui and diamUi < δ for
each i ∈ {1, . . . , p} and that (putting U = U1 ∪ · · · ∪Up for shortness),
for each component K of f−1

n−1(Xn−1 \U) the partial mapping fn−1|K :
K → fn−1(K) is a homeomorphism onto a component of Xn−1\U . Let
K1, . . . ,Kq for some q ∈ N be all the components of f−1

n−1(Xn−1 \ U).
By Proposition 3.5 there are closed mutually disjoint subsets L1, . . . , Lq

of Yn satisfying the following conditions:

(3.6.1) Ki ⊂ Li for each i ∈ {1, . . . , q};
(3.6.2) Li ∩ g−1

n−1(r
−1
n−1(U)) = ∅ for each i ∈ {1, . . . , q};

(3.6.3) Yn = L1 ∪ · · · ∪ Lq ∪ g−1
n−1(r

−1
n−1(U)).

If y ∈ Li for some i ∈ {1, . . . , q}, then rn−1(gn−1(y)) /∈ U , and
we define rn(y) as the only point of Ki satisfying fn−1(rn(y)) =
rn−1(gn−1(y)). Thus the diagram (3.6;k′, n−1, n) commutes for y ∈ Li

and for arbitrary k′ ≤ n− 1.

Observe that (gn−1)−1(r−1
n−1(U)) ∩Xn = f−1

n−1(U) is an open subset
of the tree Xn that has finitely many components V1, . . . , Vs, for some
s ∈ N, and each of the components is mapped onto Ui for some
i ∈ {1, . . . , p}. Therefore g−1

n−1(r
−1
n−1(U)) can be written as the union

W1 ∪ · · · ∪ Ws of open mutually disjoint subsets Wi of Yn satisfying
Vi ⊂ Wi for each i ∈ {1, . . . , s}. Consider now the open set Wi for
some i ∈ {1, . . . , s}. The mapping rn|bdWi has already been defined.
Since clVi is an absolute retract, we can extend the retraction rn|bdWi

to a retraction rn|clWi : clWi → clVi. In this way the definition of rn
is finished.

Note that if y ∈ Wi for some i ∈ {1, . . . , s}, then both points
fn−1(rn(y)) and rn−1(gn−1(y)) are elements of cl fn−1(Vi) = clUj for
some j ∈ {1, . . . , p} and therefore the diagram (3.6;n − 1, n − 1, n)
is δ-commutative. By the choice of δ the diagrams (3.6;k,m′, n) are
εm′-commutative for each k ≤ m′ ≤ n.
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For each n ∈ N, let ρn : Y → Yn be the projection for the
inverse sequence {Yn, gn}. By [38, Theorem 2, p. 40], the sequence
of retractions {rn : n ∈ N} induces the existence of a unique surjective
mapping r : Y → X such that the diagrams

(3.6.4)

Yn

u

rn

Yu

ρn

u

r

Xk Xnu
fn

k

Xu πn

commute up to εn for every k, n ∈ N with k ≤ n. Since rns
are retractions, the diagram (3.6;k,m, n) commutes (exactly) for each
x ∈ Xn ⊂ Yn. Therefore, the diagram (3.6.4) commutes (exactly) for
x ∈ X with r(x) = 〈r1(x1), r2(x2), . . . 〉 = 〈x1, x2, . . . 〉 = x so r is the
needed retraction.

3.7. Corollary. Knaster type continua, i.e., inverse limits of arcs
with open bonding mappings, are in the class AR(HU).

Corollary 3.7 together with Theorem 2.4 generalize (in the realm of
metric spaces) Theorem 2 of [34, p. 179].

Since each fan, i.e., a dendroid having exactly one ramification point,
with the property of Kelley is the inverse limit of an inverse sequence
of finite fans with confluent bonding mappings, see [9, Theorem 3,
p. 75], we have the following corollary.

3.8. Corollary. Each fan with the property of Kelley is in the class
AR(HU).

The next corollary is due to Maćkowiak, see [34, p. 183].

3.9. Corollary. Each cone over a zero-dimensional compactum is
in the class AR(HU).

To show the sequential corollary we recall some auxiliary facts.
As was said previously, the class of all smooth dendroids (see the
definition just before Corollary 2.7 above) has a universal element. The
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one constructed in [39] is called the Mohler-Nikiel universal smooth
dendroid. Its construction as the inverse limit of an inverse sequence
of trees with open bonding mappings is recalled in [10, p. 14]. It is
known, see [10, Theorem 3.21, p. 14], that it has the property of Kelley.
Further, the property of Kelley implies smoothness of dendroids, [18,
Corollary 5, p. 730].

3.10. Corollary. The Mohler-Nikiel universal smooth dendroid is
in the class AR(HU).

Corollary 3.10 and Theorem 2.2 imply the next result.

3.11. Corollary. Each retract of the Mohler-Nikiel universal smooth
dendroid is in the class AR(HU).

3.12. Theorem. A dendroid is a member of AR(D) if and only if
it is a retract of the Mohler-Nikiel universal smooth dendroid.

Proof. One implication follows from Corollary 3.11 and from (1.1).
To see the other one, note that if a dendroid is in AR (D), then it
has the property of Kelley by Corollary 2.8, so it is smooth by [18,
Corollary 5, p. 730], and therefore embeddable in the Mohler-Nikiel
universal smooth dendroid.

As a consequence of Theorem 3.12 and Corollary 3.11, we get the
following.

3.13. Corollary. AR(D) ⊂ AR(HU).

It follows from the above corollary and from (1.1) that all four con-
sidered classes of absolute retracts coincide in the realm of dendroids.
So we have the next corollary.

3.14. Corollary. AR(D) = D ∩ AR(λD) = D ∩ AR(T L) =
D ∩AR(HU).
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The following question is related to Theorem 3.12, compare also
Question 6.5.

3.15. Question. Is every dendroid having the property of Kelley a
retract of the Mohler-Nikiel universal smooth dendroid?

4. Tree-like continua as kernels of absolute retracts. Now
we will prove that any tree-like continuum is a kernel of some tree-like
continuum in AR (HU). First we need a construction, a definition and
a lemma.

For given trees X and Y and for a piecewise homeomorphic mapping
f : X → Y we will construct a tree X∗ containing X and an open
extension f∗ : X∗ → Y of f . The tree X∗ is obtained from X by
adding needed parts of the tree Y at points where f is not interior, i.e.,
f(p) /∈ int f(U) for some U ⊂ X with p ∈ intU ; obviously a mapping
is open if and only if it is interior at each point of its domain. Precisely
we have the following construction.

4.1. Construction. Let f : X → Y be a piecewise homeomorphic
mapping between trees. For a vertex x ∈ VX ⊂ X, let T (x) be the
union of all components C of Y \ {f(x)} such that there is an open
neighborhood U of x in X satisfying f(U) ∩ C = ∅. Denote by X∗

the union X ∪ ∪{T (x) : x ∈ VX} with the natural topology, i.e.,
x ∈ clT (x) = T (x) ∪ {x} and T (x) ∩ T (y) = ∅ for x �= y. Define
f∗ : X∗ → Y in a natural way, i.e.,

f∗(p) =
{
f(p) if p ∈ X,
p if p ∈ T (x) for some x ∈ VX .

One can check that f∗ is an open extension of f . It will be called the
minimal open extension of f .

A mapping f : X → Y between continua X and Y is said to be
monotone relative to a point p ∈ X provided that for each continuum
Q ⊂ Y with f(p) ∈ Q the preimage f−1(Q) is connected. For dendroids
X, in particular for trees, monotoneity relative to p ∈ X is equivalent,
see [31, Corollary 2.10, p. 732], to the condition

(4.2) for each point x ∈ X the partial mapping f |px is monotone.
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Further, the following result is known, see [8, Corollary 3, p. 145].

4.3. Proposition. For each n ∈ N, let Xn be a dendroid, pn ∈ Xn

and fn : Xn+1 → Xn be a mapping which is monotone relative to pn+1

and such that fn(pn+1) = pn. Then the inverse limit lim←−{Xn, fn} is a
dendroid.

4.4. Lemma. Given two trees X and Y with X ∩ Y = {p},
define Z = X ∪ Y , and let f : Z → Y be a piecewise homeomorphic
retraction. Let f∗ : Z∗ → Y be the minimal open extension of f as
in the Construction 4.1. Denote by q1 : Z∗ → Z∗/(X ∪ f(X)) and
q2 : Y → Y/f(X) the quotient mappings. Then there is the unique
mapping g : Z∗/(X ∪ f(X))→ Y/f(X) such that the diagram

Z∗

u

q1

w

f∗
Y

u

q2

Z∗/(X ∪ f(X)) wg Y/f(X)

commutes. Moreover, the mapping g is open, monotone relative to
the point q1(X ∪ f(X)), and each component of (Z∗/(X ∪ f(X)) \
q1(X ∪ f(X)) is mapped homeomorphically under g onto a component
of Y/f(X) \ q2(f(X)).

Proof. Just define g(x) = (q2 ◦ f∗ ◦ q−1
1 )(x) for each point x ∈

Z∗/(X ∪ f(X)). Openness of g follows from that of f∗. For any
component C of Z∗/(X∪f(X))\q1(X∪f(X)) the partial mapping g|C
is a homeomorphism by its construction, and g is monotone relative to
the point q1(X ∪ f(X)) by (4.2).

4.5. Theorem. For each tree-like continuum X there is a tree-like
continuum Y containing X such that X = Ker (Y ) and Y ∈ AR(HU).
Moreover, Y is the inverse limit of trees with open, thus confluent,
bonding mappings.

Proof. Represent X as the inverse limit X = lim←−{Xn, fn} of trees
Xn with piecewise homeomorphic bonding mappings fn. Recall that
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πn : X → Xn denotes the nth projection mapping. For each k ∈ N,
choose a point vk ∈ X in such a way that

(4.5.1) X is the only subcontinuum of X containing almost all points
of the set {vk : k ∈ N}.
In the disjoint union X1 ⊕ · · · ⊕ Xn identify pairs of points πk(vk)
and fk−1(πk(vk)) for k ∈ {2, . . . , n}, and put Ln = X1 ∪ · · · ∪ Xn

with the above identifications, i.e., Xi ∩ Xj = ∅ if |i − j| > 1 and
Xi ∩ Xi+1 = {πi+1(vi+1)} = {fi(πi+1(vi+1))} for i ∈ {1, . . . , n − 1}.
For each n ∈ N, denote by rn : Ln+1 → Ln the natural retraction
such that rn|Xn+1 = fn and let G = lim←−{Ln, rn}. Since the bonding
mappings rn are retractions, we may assume that the sets Ln are
naturally embedded in G. Observe that, under this assumption,
X = lim←−{Xn, fn} ⊂ G. The threads {x1, x2, . . . } corresponding to
the points of any Ln have constant coordinates xk for k > n, while
the threads corresponding to the points of X have infinitely many
coordinates mutually different. Thus X ∩ Ln = ∅ for each n. We
have also G = cl (∪{Ln : n ∈ N}) = X ∪ ∪{Ln : n ∈ N}.

Any subcontinuum of G intersecting X and its complement G \ X
must contain almost all vks. Thus X is terminal in G by (4.5.1).

Using Construction 4.1, we will define inductively retractions r∗n
which extend retractions rn to some larger domain trees L∗n+1. Let
L∗1 = L1 and r∗1 : L∗2 → L∗1 be the minimal open extension of r1
as in 4.1. Next let r∗2 : L∗3 → L∗2 be the minimal open extension
of r2 : L3 → L∗2 understood as a mapping into the already defined
space L∗2. Continuing in the same way, we define open retractions
r∗n : L∗n+1 → L∗n for each n ∈ N. Define Y = lim←−{L

∗
n, r
∗
n}. Then Y is

in AR (HU) by Theorem 3.6, and X ⊂ G ⊂ Y .

We will show that X = Ker (Y ). Since X is terminal in G, we
get X ⊂ Ker (Y ) by Theorem 2.11. To prove the other inclusion we
will show that Y/X is arcwise connected. This will end the proof by
Theorem 2.9.

Let σn : Y → L∗n be the projections of the inverse limit lim←−{L
∗
n, r
∗
n}.

Then σn(X) = Xn for each n ∈ N by the construction. For each n ∈ N
there is the unique mapping gn : L∗n+1/Xn+1 → L∗n/Xn such that the
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diagram

L∗n+1

u

qn+1

w

r∗
n L∗n

u

qn

L∗n+1/Xn+1 wgn
L∗n/Xn

commutes, where qn and qn+1 are the natural quotient mappings.
The space Y/X is homeomorphic to lim←−{L

∗
n/Xn, gn} and lim←− qn is the

natural quotient mapping between X and Y/X.

By Lemma 4.4 and by the definition of the mapping r∗n we infer
that for each n ∈ N the mapping gn is monotone relative to the
point qn+1(Xn+1). Applying Proposition 4.3 the space Y/X is arcwise
connected.

4.6. Corollary. A tree-like continuum X is a member of AR(HU)
if and only if X is a retract of the inverse limit of trees with open
(equivalently: with confluent) bonding mappings.

Proof. Since the class of hereditarily unicoherent continua is (func-
tionally) unionable, see Proposition 2.3, one implication follows from
Theorems 2.2 and 3.6. The other one is a consequence of Theorem 4.5.

4.7. Corollary. There exist non-arcwise connected λ-dendroids in
AR(HU). In particular, they have the arc property of Kelley and thus
each of their arc components is dense.

4.8. Remarks. 1) A non-arcwise connected λ-dendroid X with
uncountably many arc components, each of which is dense in X,
has been constructed by Krasinkiewicz and Minc in [26, Example 4,
p. 285].

2) Theorem 4.5 leads to the existence of a large family of such λ-
dendroids as mentioned above. Indeed, each non-arcwise connected
λ-dendroid X is the kernel of a non-arcwise connected λ-dendroid Y ,
all arc components of which are dense in Y (since Y ∈ AR(HU)).
Further, each λ-dendroid Y constructed according to Theorem 4.5 has
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the arc property of Kelley, again since Y ∈ AR(HU).

Theorem 4.5 allows us to prove the following nontrivial inclusions.

4.9. Corollary. AR(D) ⊂ AR(λD) ⊂ AR(T L) ⊂ AR(HU).

Proof. The first inclusion is proved in Corollary 3.14.

Let X ∈ AR(λD) be a subset of a tree-like continuum T . By
Theorem 4.5 we may assume that a tree-like continuum Y ∈ AR(HU)
contains a homeomorphic copy X ′ of X such that X ′ = Ker (Y ). Since
X ∈ λD, the continuum Y is in λD by Theorem 2.10. We identify
X and X ′ by a homeomorphism, obtaining a tree-like continuum
Z = T ∪ Y by Proposition 2.3. Since Y is in AR (HU), there exists
a retraction r1 : Z → Y ; and because X ∈ AR(λD), there exists a
retraction r2 : Y → X. The restriction r2 ◦ r1|T : T → X is the
required retraction. Hence X ∈ AR(T L).

The proof of the last inclusion is similar.

5. Further results on tree-like continua. Consider the following
conditions that a continuum X can satisfy:

(5.1.1) X is the inverse limit of an inverse sequence of trees with
confluent bonding mappings;

(5.1.2) X is in AR (T L);

(5.1.3) X is in AR (HU);

(5.1.4) X is a tree-like continuum having the arc property of Kelley;

(5.1.5) X is a hereditarily unicoherent continuum having the arc
property of Kelley.

The following diagram shows known implications between conditions
(5.1.1) (5.1.5).

(5.1.1) w
Thm.3.6 (5.12)

u

Cor.2.8

w
Cor.4.7 (5.1.3)

u

Cor.2.8

(5.1.4) w
trivial

(5.1.5)

Since solenoids satisfy condition (5.1.5) but they are not tree-like and



HEREDITARILY UNICOHERENT CONTINUA 103

they do not belong to AR (HU), see [13, Corollary 3.18], then the class
in (5.1.5) is different from the other ones. Thus we have

• (5.1.5) �⇒ (5.1.3) and (5.1.5) �⇒ (5.1.4).

Further, as is shown in [13, Example 3.14 and Remark 3.16], the
Ingram continuum defined in [24] is a tree-like (but not arc-like)
continuum with the arc property of Kelley that is not in AR (HU).
Therefore,

• (5.1.4) �⇒ (5.1.3), and consequently (5.1.4) �⇒ (5.1.2).

Additionally we will show that there exists an arc-like continuum,
Example 5.4, that satisfies (5.1.4) and does not satisfy (5.1.1). To
show the example, we need some auxiliary results.

5.2. Proposition. Let S = {Xn, fn} be an inverse sequence of trees
Xn with confluent bonding mappings fn. If X = lim←− S does not contain
simple triods, then all trees Xn are arcs.

Proof. By Theorem 3.6 the continuum X is in AR (HU). Thus X
has the arc property of Kelley by Corollary 2.8, whence it follows by
Proposition 2.5 that each proper subcontinuum of X is an arc. Suppose
that some Xn is not an arc, and let T �= Xn be a triod in Xn. Thus
each component of π−1

n (T ) is a proper subcontinuum of X, so it is an
arc. Since the projection πn : X → Xn is confluent, [7, Corollary
7, p. 5] and since for each component C of π−1

n (T ) the restriction
πn|C : C → πn(C) = T is confluent, [4, p. 213]. So we have a confluent
mapping of an arc C onto a triod T , a contradiction with [33, p. 74].

The following concept is introduced in [13, Definition 3.10]. A
continuum X is said to have the local property of Kelley at a point
p ∈ X provided that there exists a neighborhood U(p) of p such that,
for each continuum K ⊂ U(p) with p ∈ K and for each sequence of
points {pn} converging to p, there is a sequence of continua {Kn} with
pn ∈ Kn converging to K. Note that the property of Kelley at a point
as defined in [43, p. 292] implies the local property of Kelley at the
point in the sense defined above.

The next result is shown as [13, Theorem 3.10].
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5.3. Theorem. If each nondegenerate proper subcontinuum of a
continuum X is an arc, and if X has the local property of Kelley at
each of its points, then X has the propety of Kelley.

5.4. Example. There exists an arc-like continuum having the arc
property of Kelley, which is not the inverse limit of an inverse sequence
of trees with confluent bonding mappings.

Proof. Let X be the simplest arc-like indecomposable continuum
with exactly three end points, a, b and c (here the term “end point”
is understood in the sense of [2, Section 5, p. 660]. The continuum X
is obtained as the intersection of unions of 1/2k-chains Ck of (closed)
disks in the plane such that

(5.4.1) for each n ∈ {0, 1, 2, . . . } the chain C3n+1 goes from a to c
through b; C3n+2 goes from b to c through a; and C3n+3 goes from a to
b through c;

(5.4.2) for each k ∈ N the chain Ck+1 refines Ck

(see [21, p. 142] and [41, pp. 7 8]). The continuum X can also
be seen as the inverse limit of an inverse sequence of closed unit
intervals Xn = [0, 1] with the same piecewise linear bonding mappings
fn = f : [0, 1]→ [0, 1] determined by

f(0) = 1
2 , f

(
1
2

)
= 1, f(1) = 0

and being linear on [0, 1/2] and [1/2, 1].

Suppose that X is the inverse limit of an inverse sequence of trees
Tn with confluent bonding mappings gn. Since X is arc-like, it is
atriodic, [23, p. 259]. Applying Proposition 5.2 we see that each factor
space Tn is an arc. Since inverse limits of arcs with confluent bonding
mappings are the same as ones of arcs with open bonding mappings,
called Knaster type continua, see [5, pp. 224, 231]; compare [42,
p. 455], X has at most two end points, see [28, p. 48].

We will show that X has the local property of Kelley at each of its
points. Let p ∈ X. If p is an end point of X, i.e., if p ∈ {a, b, c},
then X has the property of Kelley at p (and consequently it has
the local property of Kelley at p) by [27, p. 380]. If p is not an
end point of X, it follows from the construction of X that p has a
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neighborhood homeomoprhic to the product of the Cantor set and an
arc (since for small subcontinua containing the coordinate of pn ∈ Xn =
[0, 1] the restrictions of the bonding mappings are homeomorphisms).
Therefore, X has the local property of Kelley at p. It is proved in
[1, Theorem 8, p. 168] (compare also [1, Remarks, p. 168]), that
each proper subcontinuum of X is an arc. Applying Theorem 5.3
we conclude that X has the property of Kelley. Since each proper
subcontinuum of X is an arc, X has the arc property of Kelley.

The following question seems to be interesting in the light of Prob-
lem 1.2 in the introduction. Namely, Example 5.4 is our candidate for
solving Problem 1.2 in the negative.

5.5 Question. Is the continuum X of Example 5.4 a member of
AR (HU)?

Let us recall that, given a class S of spaces, a universal element of
S is a member of S in which each member of S can be embedded.
The reader is referred to the introductions of [37] and [25] and to [6,
p. 741] for information about the existence of universal elements for
various classes of continua.

Using Corollaries 2.7 and 3.10, we obtain the following.

5.6. Corollary. The Mohler-Nikiel universal smooth dendroid is a
universal element in the class AR(D).

It is shown in [25, Corollary 4.2, pp. 740] that there is no universal
element in the class λD. This result and Theorem 4.5 imply the next
one.

5.7. Theorem. There is no universal element in the class AR(λD).

Proof. If X is a λ-dendroid, then the continuum Y guaranteed
by Theorem 4.5 is also a λ-dendroid according to Theorem 2.10.
Therefore, a universal element X0 in the class AR (λD) must contain
homeomorphic copies of all continua Y of Theorem 4.5 for all λ-
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dendroids X and, consequently, X0 would be a universal element in
the class λD, a contradiction.

It is shown in [37, p. 72] that there exists a universal tree-like
continuum. From this result combined again with Theorem 4.5 we
can conclude the following.

5.8. Theorem. There exists a universal element T0 in the class
AR(T L). Furthermore,

(5.8.1) Ker (T0), and therefore also T0, is a universal element in the
class T L;

(5.8.2) T0 is the inverse limit of an inverse sequence of trees with
confluent bonding mappings.

Proof. Let T be a universal tree-like continuum, and let T0 be the
continuum Y guaranteed by Theorem 4.5 for the continuum X = T .
Thus we can assume that T0 is the inverse limit of trees with confluent
bonding mappings. Since the kernel Ker (T0) = T is a universal tree-
like, T0 is also a universal tree-like continuum.

The above result implies the next one.

5.9. Corollary. If X ∈ T L, then X ∈ AR(HU) if and only if X is
a retract of T0 for each (for some) embedding of X in T0.

A continuum X is said to be an absolute terminal retract provided
that if X is embedded in a continuum Y in such a way that the
embedded copy X ′ is a terminal subcontinuum of Y , then X ′ is a
retract of Y , see [15, Definition 4.1]. A compactum X is called

a) an approximative absolute retract, written AAR, provided that
wheneverX is embedded in a compactum, or equivalently in the Hilbert
cube, Y , for each ε > 0 there is a mapping f : Y → X ′ such that
d(f |X ′) < ε;

b) an approximative absolute neighborhood retract, written AANR,
provided that wheneverX is embedded in a compactum, or equivalently
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in the Hilbert cube, Y , for each ε > 0 there are a neighborhood U of
the embedded copy X ′ of X in Y and a mapping f : U → X ′ such that
d(f |X ′) < ε.

In [15] relations were shown between absolute retracts for the classes
of tree-like continua (T L), λ-dendroids (λD), dendroids (D), arc-like
continua (AL) and arc-like λ-dendroids (λAL), as well as between
AANR-continua and absolute terminal retracts. We quote principal
results of [15] because they give an essential information on absolute
retracts for the considered classes of continua. Namely, we have the
following three theorems [15, Theorems 3.3, 4.5 and Corollary 5.5].
The second one is the main result of [15].

5.10. Theorem. Let K be any of the following classes of continua:
T L, λD,D,AL and λAL. Then each member of AR(K) is an AAR.

5.11. Theorem. A continuum X is an AANR if and only if X is
an absolute terminal retract.

5.12. Theorem. Let K ∈ {T L, λD,D,AL, λAL}. If a continuum
X is in AR(K), then for each ε > 0 there are a tree T ⊂ X and a
mapping f : X → T such that d(f) < ε.

Besides, the following important result is shown in [15, Corollary 3.7].

5.13. Theorem. Each member of AR(T L) has the fixed point
property.

6. Problems. We close the paper stating some problems and
questions concerning the subject. They are related to the conjecture
stated in the introduction. The most general are the following.

6.1. Problems. Find intrinsic, i.e., structural, characterizations of
the following classes of continua

a) AR (D), b) AR (λD), c) AR (T L), d) AR (HU).

The authors wonder if the property described in Theorem 3.6 char-
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acterizes the class AR (HU). Namely, the next question is of a special
interest in view of the results of the paper.

6.2. Questions. Can every element of

a) AR (D), b) AR (λD), c) AR (T L), d) AR (HU)

be represented as the inverse limit of trees with confluent bonding
mappings, see Question 5.5?

We know that the classes AR (D), AR (λD) and AR(T L) are mutu-
ally different. However, we still cannot answer the following question.

6.3. Question. Is it true that AR (HU) = AR(T L)? (Equivalently,
is each member of AR (HU) a tree-like continuum, see Corollary 4.9?).

6.4. Question. Does there exist a universal element in the class
AR (HU)?

In the following question the concept of an absolute retract is not
used. If answered in the affirmative, it would give a characterization of
the class AR (D).

6.5. Question. Is every dendroid having the property of Kelley
the inverse limit of an inverse sequence of trees with confluent bonding
mappings?
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