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Abstract

Background: Polyurea crosslinked silica aerogels are highly porous, lightweight, and mechanically strong materials with
great potential for in vivo applications. Recent in vivo and in vitro studies have demonstrated the biocompatibility of this
type of aerogel. The highly porous nature of aerogels allows for exceptional thermal, electric, and acoustic insulating
capabilities that can be taken advantage of for non-invasive external imaging techniques. Sound-based detection of
implants is a low cost, non-invasive, portable, and rapid technique that is routinely used and readily available in major clinics
and hospitals.

Methodology: In this study the first in vivo ultrasound response of polyurea crosslinked silica aerogel implants was
investigated by means of a GE Medical Systems LogiQe diagnostic ultrasound machine with a linear array probe. Aerogel
samples were inserted subcutaneously and sub-muscularly in a) fresh animal model and b) cadaveric human model for
analysis. For comparison, samples of polydimethylsiloxane (PDMS) were also imaged under similar conditions as the aerogel
samples.

Conclusion/significance: Polyurea crosslinked silica aerogel (X-Si aerogel) implants were easily identified when inserted in
either of the regions in both fresh animal model and cadaveric model. The implant dimensions inferred from the images
matched the actual size of the implants and no apparent damage was sustained by the X-Si aerogel implants as a result of
the ultrasonic imaging process. The aerogel implants demonstrated hyperechoic behavior and significant posterior
shadowing. Results obtained were compared with images acquired from the PDMS implants inserted at the same location.
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Introduction

Design, development, and characterization of porous biomate-

rials is a rapidly growing area of materials science and has a broad

range of applications in biomedicine and, the medical device

industry [1,2,3,4,5,6,7,8,9]. Solid porous biomaterials have been

developed using a variety of methods and techniques such as

electrospinning, particle sintering, foaming, and sol-gel

[10,11,12,13,14]. Each method of material fabrication gives rise

to distinct physical and chemical features with a broad range of

properties to choose from. Since different cell types require

different architectures for the promotion or inhibition of adhesion,

proliferation, and differentiation, each technique serves a different

application window.

An important part of the design and development of new

biomaterials is the ability to image and locate the inserted material

after implantation with minimum harm to the patient. Implant

tracking and imaging is particularly important in applications

where the implant is designed to degrade over time, or, concerns

regarding implant travel exist. Integration of implants with nearby

tissue is also an important aspect that can be studied if a

non0invasive imaging technique exists. Imaging techniques used

today include MRI, X-ray, IR, CT scan, and, ultrasound-based

detection methods [15,16,17,18,19,20,21,22,23,24]. Among these

techniques sound-based detection is the most versatile, innocuous,

and inexpensive method currently available for diagnostic and

therapeutic studies since it does not require any patient

preparation and can be performed with relative ease. There is

increasing evidence that patients prefer ultrasound imaging to

other techniques such as MRI, X-ray, and CT scan since there is

no need for invasive procedures, injection of contrasting medium,

or exposure to harmful ionizing radiation [18].Furthermore, the

ability to visualize tissue in real-time motion and the superior

resolution of highly organized tissue such as a tendon [18] makes

ultrasound imaging a valuable tool.
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The ultrasonic properties of materials and the nature of their

interaction with the incoming ultrasound wave affect the quality,

clarity, sharpness, and accuracy of the ultrasound image formed

during sonography. This interaction is reflected in the acoustic

impedance of the material of interest which is derived from the

mass density of the material and the velocity of the acoustic wave

in that material [25,26]. The wave velocity is in turn affected by

the material stiffness and its elastic modulus [26]. Soft biological

tissue is typically modeled as a fluid [16] giving rise to acoustic

impedance values in the range of 160–165 KRayl [25] while stiff

porous solids such as bone have impedance values of the order of

780 KRayl [25]. Table 1 lists typical values for bulk density and

wave velocity for common biological and biomedical materials and

the corresponding acoustic impedance values.

Polyurea crosslinked silica aerogels (X-Si aerogel) [27] are

highly porous open-pore solids developed by means of the sol-gel

technique with unique and adjustable properties attractive to the

biomedical industry. With pore sizes typically less than 300 nm,

aerogels offer superior electric, thermal, and acoustic insulating

capabilities [28,29,30,31,32] attractive to a variety of industries

and applications. Recent in vivo [33] and in vitro [34,35] studies

have demonstrated short and long term biocompatibility of this

type of aerogel, paving the way for further understanding of the

behavior of this material in a biological and physiological

environment. The highly porous and mechanically strong nature

of X-Si aerogel creates well-defined acoustic and ultrasonic

characteristics that can be utilized for live imaging of aerogel-

based implants and medical devices.

In this study, we present the first evidence that in vivo polyurea

crosslinked silica aerogel implants can be imaged ultrasonically. A

General Electric Medical Systems LogiQe diagnostic ultrasound

machine was used to image X-Si aerogel implants inserted sub-

muscularly and subcutaneously in a) freshly euthanized Sprague-

Dawley rat and b) human cadaver at a 13 MHz setting-

significantly below the cavitation frequency [36]. Aerogel implants

showed strong contrast compared to neighboring soft tissue and

appeared isoechoic while polydimethylsiloxane (PDMS) control

material demonstrated hypoechoic behavior under similar condi-

tions. Crosslinked aerogel implants were easily identified and the

implant dimensions inferred from the images matched the physical

size of the implants. The aerogel implants also demonstrated some

hyperechoic behavior and significant posterior shadowing.

Materials and Methods

2.1 Synthesis of Aerogels
Two solutions, the first containing 3.85 mL tetramethoxysilane

(TMOS) and the second one containing 4.5 mL methanol and

1.5 mL water as well as a 25 mL of 3-aminotrioxypropysilane

were mixed in a 250 mL beaker with a sterile glass stirring rod.

The resulting sol (colloidal suspension) was immediately poured

into cylindrical molds and gelled within 60 sec while still cold. The

gels were aged for 3 hrs in a methanol bath and subsequently

washed with methanol (once) and four times with acetonitrile,

using 4–5 times the volume of the gel for each wash. Subsequently,

gels were transferred to an isocyanate bath containing 33 g of

Desmodur N3200 (Bayer) in 94 mL of acetonitrile. The volume of

the bath was again 4–5 times the volume of each gel. After 24 hrs,

the gels were transferred to fresh acetonitrile and they were heated

at 70uC for 72 hrs in a Blue-M Therm oven. At the end of the

period, the gels were washed another four times with fresh

acetonitrile (24 hrs each time) and then were dried by means of

Table 1. Comparison of typical acoustic impedance values for common biological and biomedical materials.

Material Impedance Z (KRayl) Velocity V (m/s) Density r (g/cm3)

Air25 0.04 330 0.0013 (at STP)

Blood25 161 1570 1.04

Soft tissues (avg)* 163 1540 1.01–1.06

Muscle25 170 1580 1.05

Bone{ 780 4080 1.5–2.0

Fat25 138 1450 0.94

Water25 148 1480 1.0

UHMWPE25 194 2000 0.94

Stainless steel25 4576 5800 7.93

Silicone (PDMS)‘ 150 1300 1.5

Aerogel (native)29 N/A 120–310 0.071–0.285

{Physics of the Human Body Irving P. Herman Chapter 7 Springer 2008.
*Yamauchi T, Yanai M, Takahashi S, Man NK (1996) Blood density monitoring during dialysis. Artif Organs. 9:981–985.
‘Oppenheim IJ, Jain A, Greve DW (2003) MEMS Ultrasoinc Transducers for the Testing of Solids. IEEE transactions on Ultrasonics, Ferroelectrics, and Frequency Control
50:305–311.
doi:10.1371/journal.pone.0066348.t001

Figure 1. PDMS and X-Si aerogel implants prior to implanta-
tion in Sprague-Dawley rat. Optical image of Sylgard 184 PDMS and
X-Si aerogel samples prior to insertion in Sprague-Dawley rat for
ultrasonic imaging.
doi:10.1371/journal.pone.0066348.g001

In Vivo Detection of Aerogels
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critical point drying, using liquid CO2 in a Polaron E3000. A

Table top Buehler slow speed saw was used for cutting samples

into smaller geometries prior to implant procedure (Figure 1).

Pigmented X-Si aerogel samples were synthesized according to

previously established recipe [37].

2.2 Synthesis of Sylgard 184 PDMS
Clear Sylgard 184 samples were prepared according to the

guidelines provided by the manufacturer(Dow Corning, Midland,

MI) i.e. a ratio of 10:1 elastomer prepolymer (A) to crosslinker (B).

The A and B components were thoroughly mixed in a Pyrex

container with a metallic spatula. The mixture was completely

outgassed in a Precision Scientific No. 6500 vacuum oven for

approximately 2 hrs until the mixture had no air bubbles

remaining. The outgassed mixture was then poured slowly into

square aluminum molds. The molds were then transferred to the

vacuum oven, out-gassed one more time, and finally heat cured at

80uC for 24 hrs while under vacuum. Polymer samples were cut to

Figure 2. Subcutaneous and sub muscular implant insertion in Sprague-Dawley rat. Optical images of (a) X-Si aerogel and Sylgard 184
implants being positioned in the abdominal region of a female Sprague-Dawley rat subcutaneously and sub-muscularly. (b) Abdominal section of rat
sealed, arrows indicating left and right abdominal positions of four implants. (c) Ultrasound probe positioning during scanning and acquisition of
images.
doi:10.1371/journal.pone.0066348.g002

In Vivo Detection of Aerogels
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dimensions similar to the X-Si aerogel sample prior to the

implanting stage (see Figure 1).

2.3 Imaging Procedure-female Sprague-Dawley Rat
A 150 g female Sprague-Dawley rat was selected for in vivo

analysis of the ultrasound properties of the PCSA implant and the

polydimethylsiloxane (PDMS) polymer-Sylgard 184 (Dow Corn-

ing, Midland, MI) used for comparison. The rat was sacrificed

with an overdose of CO2 immediately before implant surgery.

With the rat in the supine position, the abdomen was shaved and a

midline vertical incision was made from the xiphoid process

inferiorly down to the pelvic inlet. A subcutaneous plane was

created on the right half of the abdomen and a submuscular plane

was created on the left half of the abdomen. A X-Si aerogel

implant was inserted superiorly and a Sylgard 184 implant was

inserted inferiorly on each side of the abdomen within the newly

created pockets as shown in Figure 2a. The muscular layers and

cutaneous layers were then reapproximated with an absorbable

suture (Figure 2b). Ultrasound images of all four implants were

obtained in a longitudinal (vertically oriented) view with a 13 MHz

linear array probe generated by a General Electric Medical

Systems LogiQe (Healthcare, Wauwatosa, Wisconsin) diagnostic

ultrasound machine fitted with a 7.5- to 13-MHz linear array

transducer (Figure 2c).This study was approved by the Animal

Care and Use Committee at the University of Memphis.

2.4 Imaging Procedure-Human Cadaver
A human cadaver fixed in a solution of 75.68% isopropanol,

18.92% dipropylene glycol, and 5.4% formalin was used for this

section of the study. The skin over the parotid region (including

some subcutaneous tissue) was reflected laterally, and a buccal

branch of the facial nerve was dissected free of the surrounding

parotid gland tissue. Precut segments of pigmented and clear X-Si

aerogel implants were placed on the right cheek of the cadaver

(Figure 3) and in one case under the buccal nerve branch. The skin

flap was placed back over the implants (and the entire region) and

the ultrasound probe described previously was applied to the

exterior surface of the skin. Ultrasound images of both implants

were recorded at a frequency setting of 13 MHz longitudinally.

Data collection from the human cadaver qualified for exempt

status by the University of Tennessee Health Science Center

Institutional Review Board under Federal Regulations 45 CFR

46.102(f) definition of ‘‘Human Subjects’’. The cadaver was

collected from the Department of Anatomy & Neurobiology at

UTHSC, via the anatomical bequest program. All the cadavers

were donors. All donors sign a form that confirms that the

donations may be used for scientific research on the donation

form.

Results and Discussion

3.1 Imaging in a Hydrated Environment-Rat Model
Subcutaneous. Clear X-Si aerogel and Sylgard 184PDMS

implants inserted subcutaneously were easily identifiable com-

pared to the surrounding soft tissue when scanned at the13 MHz

setting with a linear array probe (Figure 4a). Aerogel implants

inserted subcutaneously appeared isoechoic, homogeneous, with

some posterior shadowing. The region immediately below the

implant appeared dark confirming strong ultrasound attenuation

expected of aerogels and their role as a highly attenuating

medium. Some echogenicity was also observed surrounding the

aerogel implant. The hyperechoic behavior particularly at the

boundary between the aerogel implant and the soft tissue is

attributed to the strong impedance mismatch between the soft

tissue and the aerogel implant. In order to calculate the acoustic

velocity v and acoustic impedance Z of X-Si aerogel used in this

study it was assumed that the propagation of ultrasound waves in

aerogels is via the skeleton and not the medium within the porous

system [29]. The ultrasound wave propagation was also treated as

a one-dimensional (1D) problem where incident, reflected, and

transmitted waves were all assumed to be normal to the interface.

The acoustic velocity v and acoustic impedance Z of X-Si aerogel

were then calculated using Equation 1 [31], [25]:

Z~ru~r

ffiffiffiffi

Y
p
ffiffiffi

r
p ð1Þ

Figure 3. Pigmented and clear X-Si aerogel implants inserted subcutaneously in a human cadaver. Pigmented and clear X-Si aerogel
implants positioned subcutaneously on the right cheek of human cadaver near and immediately under the bucal nerve region, before repositioning
the skin flap.
doi:10.1371/journal.pone.0066348.g003

In Vivo Detection of Aerogels
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Figure 4. Ultrasonic images of subcutaneous and sub muscular implants in Sprague-Dawley rat at 13 MHz. Ultrasound images of
Sylgard 184 and X-Si aerogel acquired from (a) subcutaneous and (b) submuscular abdominal implantation sites. Strong attenuation by X-Si implants
has lead to significant posterior shadowing (indicated by arrow) while minimum attenuation by PDMS has created image aberrations (indicated by
arrow) referred to as reverberations. Images reflect accurately the size and shape of the implants at both locations.
doi:10.1371/journal.pone.0066348.g004

In Vivo Detection of Aerogels
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Where Y is the stiffness (modulus) and r is the mass density of the

material. For a stiffness value of 120 MPa [27] and a density of

0.4 g/cm3, an acoustic velocity of 547 m/s was calculated which

lead to an impedance value of 2.26105 kgm22 s21 or 22 KRayl

for the X-Si aerogel implant.

Since aerogel-based implants are expected to be used primarily

in the peripheral regions of the body (at depths shallow in

comparison to the bony structure of the anatomy) it is unlikely for

aerogel-based implants to interfere with imaging of skeletal

structure. Also, given that the propagation of sound in a porous

material is governed mainly by physical characteristics such as

porosity (w) and tortuosity (q) [38], aerogels and bone could have

distinctly different appearances. The impedance value of 22

KRayl calculated here for a X-Si aerogel implant is significantly

different when compared to acoustic impedance values of common

in vivo materials such as those listed in Table 1, further suggesting

that such implants will be distinguishable when compared to other

materials, in particular bone.

The subcutaneous Sylgard 184 implant on the other hand

appeared hypoechoic and homogeneous, characteristics of a low

attenuating medium (see Figure 4a),similar to features seen in

ultrasound images of cartilage and silicone-based implants. In the

case of the Sylgard 184 PDMS implant aberrations in the form of

bright bands (indicated by the arrow, Figure 4a) were detected

immediately below the implant and echoes received from points

distal to this material were higher in intensity than echoes received

from a similar depth in the imaging plane, confirming that they

are indeed artifacts.

Sub-muscular. In the submuscular location, the X-Si aerogel

implant appears more hypoechoic with posterior shadowing,

indicating its deeper location (Figure 4b). The Sylgard 184

implant, despite being submuscular, retained imaging character-

istics similar to the subcutaneous placement due to the depth.

Despite the change in echogenicity with depth, the geometric

identity is retained. In all cases, the ultrasound images reflect

accurately the shape, size, and depth of insertion of both types of

implants.

3.2 Imaging in a cadaveric environment-Human cadaver

model. Both pigmented and clear aerogel implants appeared

isoechoic and homogeneous (see Figure 5a) but with less posterior

shadowing than in the immediate post-euthanized rat discussed in

section 3.1. At the imaged frequency the pigmented and clear

aerogels did not display noticeable differences except for obvious

geometrical differences. Once again, the ultrasound images reflect

accurately the shape, size, and depth of insertion of the implants.

The clear X-Si aerogel was imaged both in directions parallel

(Figure 5b) and perpendicular (Figure 5c) to the facial nerve,

positioned immediately above the implant, as indicated by the

arrows. Table 2 summarizes the ultrasonic responses of X-Si

aerogel implants as well as Sylgard 184 implants under various

conditions, as discussed in this work.

Summary and Conclusion
The ultrasonic behavior of X-Si aerogels were investigated

in vivo both in human cadaveric and freshly euthanized animal

models. The unique properties of X-Si aerogels have been

successfully utilized for in vivo imaging at various insertion depths.

Figure 5. Ultrasonic imaging of subcutaneous X-Si aerogel
implants in human cadaver at 13 MHz. (a) Ultrasonic images of
pigmented and clear X-Si aerogel implants positioned immediately
under the skin, in the parotid region. Some posterior shadowing is

observed. The structure of the pigmented (red) and clear aerogels were
indistinguishable at the imaged frequency. (b) Parallel and (c)
perpendicular orientations of clearX-Si aerogelwith respect to the facial
nerve, as indicated by the arrows.
doi:10.1371/journal.pone.0066348.g005

In Vivo Detection of Aerogels
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This study demonstrates the strong potential of aerogel-based

materials and scaffolds as a future biomedical material.
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