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MAXWELL GARNETT RULE FOR DIELECTRIC MIX-
TURES WITH STATISTICALLY DISTRIBUTED ORIEN-
TATIONS OF INCLUSIONS

M. Y. Koledintseva, R. E. DuBroff, and R. W. Schwartz

Missouri University of Science and Technology
Rolla, MO 65409-0040, USA

Abstract—An analytical model of an effective permittivity of a
composite taking into account statistically distributed orientations
of inclusions in the form of prolate spheroids will be presented. In
particular, this paper considers the normal Gaussian distribution for
either zenith angle, or azimuth angle, or for both angles describing
the orientation of inclusions. The model is an extension of the
Maxwell Garnett (MG) mixing rule for multiphase mixtures. The
resulting complex permittivity is a tensor in the general case. The
formulation presented shows that the parameters of the distribution
law for orientation of inclusions affect the frequency characteristics
of the composites, and that it is possible to engineer the desirable
frequency characteristics, if the distribution law is controlled.

1. INTRODUCTION

The problem of homogenization of different types of heterostructures
from electromagnetic point of view has acquired much attention in
the recent 10–15 years due to increased practical needs of design
and application of novel composite materials with desirable frequency
characteristics. Many papers have been published considering effective
permittivity and/or permeability formulations for different kinds of
composite media. Any linear particulate composite material can
be considered as a particular case of a generalized multiphase bi-
anisotropic medium with inclusions whose shape can be approximated
by ellipsoids. A host material, as well as inclusions, can be dielectric,
magnetic, magneto-dielectric, or conductive. These materials can
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be intrinsically isotropic or anisotropic. In addition, inclusions may
possess anisotropy of shape (unless they are spherical), and in the
general case, the axes of this anisotropy do not necessarily coincide
with crystallographic or structural axes of their constituent material.
Inclusions inside the host matrix may be arranged in an orderly
manner, or they may be randomly dispersed. This spatial distribution
may be homogeneously random, or form some inhomogeneities, like
layers or clusters. As for orientations of inclusions, their main axes may
be all aligned, or dispersed statistically, either with equal probability,
or according to some distribution function.

This paper is not aimed at the review of all existing numerous
theories and models of homogenization for all possible combinations of
host/inclusions types, though it is worth mentioning a number of key
publications, for example, [1–7], describing different homogenization
procedures for the generalized bi-anisotropic mixtures. In particular,
in these works, the most widely used mixing rules, such as
Maxwell Garnett (MG) [8] and Bruggeman [9], are applied to treat
mixtures with random, statistically equal positions of inclusions in
3D space. Extraction of effective electromagnetic properties for
ellipsoidal inclusions with arbitrary, yet fixed deterministic orientation
in 3D space, when all inclusions are aligned, has also been studied,
both analytically and numerically [10–22]. However, the problem of
statistical distribution of angles of orientation of ellipsoidal inclusions
is lacking attention.

The present paper is aimed at the development of a simple for
practical engineering applications model that will allow for calculating
an effective permittivity for a composite with statistically distributed
angles of orientation of ellipsoidal inclusions. The materials of
both inclusions and matrix are assumed to be linear, isotropic, and
homogeneous. The host is considered to be a dielectric, while
inclusions may be either dielectric or conducting. Both host and
inclusion materials may be frequency-dispersive. Anisotropy of
inclusions is due only to their ellipsoidal shape. The concentration of
inclusions is considered to be well below the corresponding percolation
threshold. At the same time, 3D spatial distribution of all inclusions
is considered to be homogeneous. With regards to wavelengths of
the electromagnetic fields inside inclusions and host matrix, they
are assumed to be long compared to the sizes of inclusions, so that
quasistatic conditions within inclusions will be fulfilled. Then, within
these limitations, the Maxwell Garnett rule may be applied.

The Maxwell Garnett (MG) mixing rule is a convenient model
for predicting electromagnetic properties of composites containing two
or more phases [6, 8, 23]. This model takes into account the frequency
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characteristics of materials comprising these composites [24–26]. In our
paper [27], it has been shown that the MG formulation can be used at
optical frequencies to predict frequency characteristics of composites
containing conductive inclusions (nanorods). In [27], several subtle
effects, such as the skin effect in conducting inclusions, the Drude
frequency dependence of metals, the effect of the mean free path in
small-size conducting inclusions, as well as the dimensional resonances
in the nanorods, have been taken into account.

The statistical distribution of the aspect ratio of the inclusions also
influences the electromagnetic (in particular, optical) characteristics
of the composites. An analytical model that takes into account the
statistical distribution of aspect ratios of the nanorods is presented
in [28]. In [29], the two-dimensional statistical distribution of both
aspect ratio and conductivity of inclusions have been considered, and
some examples of computations for complex permittivity of composites
at microwave frequencies have been given.

The objective of this paper is to extend the multiphase Maxwell
Garnett (MG) mixing theory to the case of statistically distributed
inclusion orientation. The necessity of having this model is dictated
by practical scenarios when synthesizing composite materials with
desirable dielectric responses. For example, in real composites, because
of the technological processes, such as extrusion, the orientation of the
nanorods typically is not uniformly distributed in three dimensions.
There is always some bias in the angles of orientation of the inclusions.
For this reason, it is important to include the statistical distribution
of the angles of orientation in a composite model.

In many practical cases, to achieve higher volume loading of
inclusions, higher packing density, and higher percolation threshold,
it is favorable to have inclusions, such as fibers or rods, all aligned.
However, it is difficult to achieve perfect alignment, and typically there
is some “cone” of distribution around the most probable direction.
Also, even in mixtures with nearly homogenous 3D random distribution
of ellipsoidal inclusion orientation, there may be some slight statistical
bias in orientation due to electrostatic interactions, or some kind of
mechanical stress. All these examples demonstrate the necessity of
taking into account distribution function models of orientation angles.

Section 2 of the present paper describes a mathematical model
of the composite including the statistical distribution of inclusion
orientation. Section 3 specifies effective permittivity tensors for some
particular cases. The conclusions are summarized in Section 4.
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2. MATHEMATICAL FORMULATION

2.1. Effective Permittivity Tensor for Oriented Inclusions

The objective of this section is to write the known Maxwell Garnett rule
in a form convenient for further introduction of statistical distributions
of angles of orientation of ellipsoidal inclusions. For this purpose, the
multiphase Maxwell Garnett formulation is used. In this formulation,
phases may differ by inclusion materials, and by the shapes of the
inclusions. In addition, each phase of inclusions may have different
distribution of spatial orientation.

Consider an individual dielectric ellipsoidal inclusion with
permittivity εi in a base material with permittivity εb. Assume
that both base and inclusion materials are linear, homogeneous, and
crystallographically isotropic.

The polarizability tensor for an ellipsoidal particle is diagonal

↔
α =

(
αx 0 0
0 αy 0
0 0 αz

)
, (1)

and has the following components [23]

αx =
4π

3
cxcycz(εi − εb) · εb

εb + Nx(εi − εb)
;

αy =
4π

3
cxcycz(εi − εb) · εb

εb + Ny(εi − εb)
;

αz =
4π

3
cxcycz(εi − εb) · εb

εb + Nz(εi − εb)
,

(2)

where cx,y,z denote the corresponding semi-axes of the ellipsoidal
inclusion, and the corresponding depolarization form factors are Nx,
Ny, and Nz. It is known that the relative permittivity tensor is related
to the electric susceptibility tensor ↔

χ
e

through
↔
ε

e
i =

↔
I + ↔

χ
e
, (3)

where
↔
I =

( 1 0 0
0 1 0
0 0 1

)
is the unity tensor. The suseptibility tensor

is
↔
χ

e
= ↔

α/ε0. (4)
The external susceptibility and permittivity tensors for an individual
inclusion are both diagonal

↔
χ

e
=

(
χxx 0 0
0 χyy 0
0 0 χzz

)
and ↔

ε
e
i =

(
εx 0 0
0 εy 0
0 0 εz

)
. (5)
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Assuming that the inclusion particle is a spheroid with the semi-axes
cx = cy, while cz is different, the components of the tensor ↔

ε
e
i can be

obtained from (2)–(4) as

εx = εy = 1 +
4π

3ε0
c2
xcz(εi − εb) · εb

εb + Nx(εi − εb)
;

εz = 1 +
4π

3ε0
c2
xcz(εi − εb) · εb

εb + Nz(εi − εb)
.

(6)

It should be mentioned that for ellipsoidal inclusions the values
cx, cy, and cz should be positive finite numbers. Any disk or cylinder
should be approximated by a corresponding closest ellipsoidal or
spheroidal shape with finite axes, so that corresponding depolarization
factors would be positive and finite as well.

If the inclusion is a rod with an aspect ratio a = l/d
(length/diameter), then its “semi-axes” are cx = cy = d, and cz = l.
The corresponding form factors in (6) can be calculated through their
aspect ratio as, for example, in [23, 28].

Recalling that the volume fraction of n inclusions is defined as

fi =
nVi

VΣ
, (7)

where VΣ = 1 is the total unit volume of the mixture, and that we
have only one inclusion (n = 1), the volume fraction coincides with the
volume of this inclusion. This is the volume of an individual spheroid
that is very close to that of the corresponding cylinder

fi = Vi ≈ π · d2l

4
, (8)

and the components (6) of the external permittivity tensor ↔
ε

e
i can be

written as

εx = εy = 1 +
16fi

3ε0
(εi − εb) · εb

εb + Nx(εi − εb)
;

εz = 1 +
16fi

3ε0
(εi − εb) · εb

εb + Nz(εi − εb)
.

(9)

The tensors ↔
χ

e
and ↔

ε
e
i are defined in the coordinate system (xyz) so

that the major axis of the ellipsoid coincides with the axis z. However,
for a mixture of inclusions, it is convenient to use a different coordinate
system, where the external electric field is, for example, polarized in the
+z-direction: ~Ee = Eeẑ, while the major axis of the inclusion is along
the z′ direction of the rotated coordinate system (x′y′z′), as is shown
in Figure 1. Then, to rewrite the tensor ↔

ε
e
i in this new coordinate
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system (x′y′z′), one must accomplish rotation on the angles θ and ϕ,
which are the angles between the major ellipsoid axis and the positive
direction +z along the axis z. In the coordinate system (x′y′z′), the
new external permittivity tensor is

↔
ε

new
i = Arot · ↔εe

i ·A−1
rot, (10)

where Arot is the rotation operator matrix, and A−1
rot is its inverse

matrix. The resultant new tensor of the effective permittivity can be
expressed in a compact form as

↔
ε

new
i = εx

↔
I + (εz − εx)

↔
W, (11)

where the matrix associated with the transformation of the coordinate
systems is

↔
W =




cos2 ϕ sin2 θ cosϕ sinϕ sin2 θ cosϕ cos θ sin θ
cosϕ sinϕ sin2 θ sin2 ϕ sin2 θ sinϕ cos θ sin θ
cosϕ cos θ sin θ sinϕ cos θ sin θ cos2 θ


 . (12)

Then the corresponding components of the new external permittivity
tensor can be substituted in the Maxwell Garnett mixing formula.
A tensor that will be used in the Maxwell Garnett formulation is
analogous to the coefficient ηi in the isotropic case, as in [28],

↔
η i =

↔
ε

new
i

εb
− ↔

I . (13)

Ez

Z

Y

ky

p
e

Z'

Y'

X 

X'

θ

ϕ
Hx

Figure 1. An individual electric dipole orientation with respect to the
vectors of the plane wave normally incident upon the composite layer.
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This tensor can be also represented in the following form through the
components of the external permittivity tensor of inclusions as

↔
η i =

(
εx

εb
− 1

)
· ↔I +

(
εz − εx

εb

)
· ↔W, (14)

or
↔
η i = ηi ·

↔
I + βi ·

↔
W, (15)

where

ηi =
εx

εb
− 1 (16)

and

βi =
εz − εx

εb
(17)

are scalar coefficients depending on the dielectric contrast of the
inclusion with respect to the base material background.

The tensor ↔
η i can be written then as

↔
η i =




ηi + βi cos2 ϕ sin2 θ βi cosϕ sinϕ sin2 θ βi cosϕ cos θ sin θ
βi cosϕ sinϕ sin2 θ ηi + βi sin2 ϕ sin2 θ βi sinϕ cos θ sin θ
βi cosϕ cos θ sin θ βi sinϕ cos θ sin θ ηi + βi cos2 θ


 .

(18)
Let us represent the Maxwell Garnett permittivity of isotropic

multiphase mixtures [5, 24] in the following form

εef = εb +

1
3

n∑
i=1

{
εbfiηi

3∑
k=1

1
1+Nikηi

}

1− 1
3

n∑
i=1

{
fiηi

3∑
k=1

Nik
1+Nikηi

} , (19)

where Nik are the corresponding depolarization factors for inclusions
of the i-th type, and indices k = 1, 2, 3 correspond now to indices x, y, z
for depolarization factors.

Quite formally, it is valid to substitute scalar values (εi, ηi, and
unity) in (19) by their tensors analogs (↔ε

new
i , ↔η i, and

↔
I ). Denominators

of fractions in tensor form should be substituted by multiplication by
the corresponding inverse matrices.

↔
εef = εb

↔
I +

1
3

N∑

i=1

εbfi

[
3∑

k=1

↔
η i ·

(↔
I + ↔

η iNik

)−1
]

·
{
↔
I − 1

3

N∑

i=1

fi

[
3∑

k=1

Nik
↔
η i ·

(↔
I + ↔

η iNik

)−1
]}−1

. (20)
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If there is a diphasic mixture, then the summation
N∑

i=1
is omitted,

and (20) simplifies to

↔
εef = εb

↔
I +

1
3
εbfi

3∑

k=1

↔
η i ·

(↔
I + ↔

η iNik

)−1

·
[
↔
I − 1

3
fi

3∑

k=1

Nik
↔
η i ·

(↔
I + ↔

η iNik

)−1
]−1

. (21)

This is a 3 × 3-component tensor in the general case, since it
is determined by the 3 × 3-component tensor

↔
W , which depends on

the angles θ and ϕ. The angle dependence is contained within the
components of the tensor ↔η i (18). Herein, both θ and ϕ are statistically
distributed. Assume that they are statistically independent of each
other, and then their distributions can be considered separately.

t 0 = 1

+ t

Y

Z

ν

θ

θ

t 0 = 0

t 0 = −1

− tν

Figure 2. Diagram for calculating probability density of orientation
with respect to the angle θ.
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2.2. Inclusion Orientation Statistics

The model in this section takes into account the statistical distribution
of the orientation of inclusions.

Some attempts to take into account the distribution of angles of
orientation of the dipole moments in composites were done in [30–
33]. In these publications, the dipole moments were magnetic
moments, associated with high-anisotropy hexagonal ferrite single-
domain independent particles. These magnetic moments were
distributed arbitrarily in the range of angles 0 ≤ θ ≤ 180◦. The
total magnetic susceptibility of the composite depends on the relative
number of particles in each of two non-interacting sets of particles
with opposite preliminary magnetization. The probability density is
comprised of two partial probabilities, corresponding to two oppositely
directed sets of magnetic dipoles.

Herein, let us use a similar approach to analyze orientations of
electric dipoles, corresponding to dielectric (or conducting) inclusions
in the form of prolate spheroids. The effective permittivity that takes
into account the statistical distribution of inclusion orientation will
obviously be a tensor, since the presence of any preferred orientation
leads to anisotropy of the material properties.

First, consider the dipole’s orientation with respect to the angle
θ, as is shown in Figure 2. It is convenient to introduce an auxiliary
parameter t = |cos θ|. The inclusion dipoles are oriented within
some limits t ∈ [tmin . . . tmax] ⊂ [0 . . . 1]. Let us separate inclusions
depending on whether they are oriented upwards (in the 1st quadrant),
or downwards (in the 4th quadrant), and introduce two partial
probabilities: q+(t) for dipoles directed upwards, and q−(t) for dipoles
directed downwards. We do not consider the other two quadrants
−2nd and 3rd, because it is the spatial angle ϕ that is responsible for
orientations in these quadrants. For the dipoles in the 1st quadrant,
the angle θ ∈ [0 . . . π/2] counts from the positive z direction. For the
dipoles in the 4th quadrant, symmetrically, the angle θ ∈ [0 . . . π/2]
counts from the negative z direction. Next, let us introduce a coefficient
νt = {0, 1/2, 1}, which shows the dominating direction. If νt = 0,
the direction upwards is dominating, and if νt = 1, the direction
downwards is dominating. When νt = 1/2, orientations in the 1st
and 4th quadrants are equally probable. Then the total probability of
orientation with respect to the angle θ is

p(t) = q+(t) · (1− νt) + q−(t) · νt. (22)

Assume that the partial orientations are distributed according to
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normal Gaussian law

q+(t) =
1√

2πσ+
t

exp
(
− t− t+0

2(σ+
t )2

)
;

q−(t) =
1√

2πσ−t
exp

(
− t− t−0

2(σ−t )2

)
,

(23)

where σ±t are the standard deviations (they may be different in the
general case), and t±0 correspond to the mean angles of orientation θ±0
(they also may be different in the general case, leading to asymmetry
of distribution).

When the coefficient responsible for the positive/negative
direction is νt = 1/2, the probability density is calculated as an average
of partial probabilities

p(t) =
q+(t) + q−(t)

2
. (24)

This happens, when the orientations are close to the (xy) plane from
the both positive and negative sides of the axis z. In the general case,
this distribution may be asymmetrical with respect to the plane (xy).
The inclusions are oriented with a symmetrical probability density
close to the (xy) plane, only if σ+

t = σ−t = σt; t±0 = 0, and the
corresponding mean angle is θ+

0 = θ−0 = π/2. In this case, the
probability density is

p(t) =
1√

2πσt

e
− t

2σ2
t . (25)

If the distribution of inclusion orientation is uniform within some
the limits t ∈ [t±min . . . t±max], then the partial probability densities are

q±(t) =
1∣∣t±max − t±min

∣∣ . (26)

Now let us consider the general case of an arbitrary bias in the
angle ϕ counted counterclockwise starting from the positive direction
of the axis x. Let us introduce another auxiliary variable u = cos ϕ,
where u ∈ [−1 . . . 1]. Since u = cosϕ has the same values in the upper
and lower half-planes of the plane (xy), it is reasonable to divide all
the inclusions into two groups:
a) with the electric dipoles oriented in the 1st and 2nd quadrants —

for ϕ ∈ [0 . . . π], and
b) with the electric dipoles oriented in the 3rd and 4th quadrants —

for ϕ ∈ [π . . . 2π], and consider probabilities of orientation within
these groups separately. The schematically these orientations are
shown in Figure 3.
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u0 = 0

X

Y

−νu +νu

ϕ

ϕ

ϕ

ϕu0 = −1 u0 = 1

−νu +νu

u0 = 0

Figure 3. Diagram for calculating probability density of orientation
with respect to the angle ϕ.

Let us introduce a parameter νu = {0, 1/2, 1}, which shows a
dominating direction — top half-plane or bottom half-plane on the
plane (xy). If νu = 0, the orientation is preferably in the upper half-
plane, if νu = 1, it is mainly in the lower half-plane, and if νu = 1/2,
the orientations are equally probable in both half-planes. Then the
total probability of orientation with respect to the angle ϕ can be
represented analogously to (22) as

p(u) = q+(u) · (1− νu) + q−(u) · νu, (27)
where the partial Gaussian probability densities are

q+(u) =
1√

2πσ+
u

exp
(
−u− u+

0

2(σ+
u )2

)
;

q−(u) =
1√

2πσ−u
exp

(
−u− u−0

2(σ−u )2

)
,

(28)

where σ±u are the standard deviations, that may be different in the
general case, and u±0 correspond to the mean angles of orientation ϕ±0
(they also may be different in the general case, leading to asymmetry
of distribution).

When the coefficient responsible for the orientation in the
upper/lower half-planes of (xy) is νu = 1/2, the probability density
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is calculated as an average of two partial probabilities

p(u) =
q+(u) + q−(u)

2
. (29)

In the general case, this distribution may be asymmetrical with
respect to the x axis, depending on the values σ±u and u±0 . However,
if νu = 1/2, σ+

u = σ−u = σu, and u+
0 = u−0 = 0, this means that

ϕ±0 = ±π/2, the majority of the dipoles are aligned along the y axis in
the positive or negative directions. In this case, the probability density
is

p(u) =
1√

2πσu

exp
(
− u

2σ2
u

)
. (30)

If νu = 1/2, σ+
u = σ−u = σu, while u+

0 = 1 and u−0 = −1, this means
that ϕ+

0 = 0 and ϕ−0 = π, so that the majority of dipoles are oriented
close to the axis x, then the probability density is

p(u) =
1√

2πσu

exp
(
− u

2σ2
u

)
cosh

(
1

2σ2
u

)
. (31)

For any arbitrary u+
0 = −u−0 , the probability density is

p(u) =
1√

2πσu

exp
(
− u

2σ2
u

)
cosh

(
u0

2σ2
u

)
. (32)

Consider the general case of arbitrarily biased statistical
distributed of both angles θ and ϕ, shown schematically by a cone of
orientations in Figure 4. The double probability density of orientation
is

p(t, u) = p(t) · p(u), (33)

X

Z

Y

θ

φ
0

0

Figure 4. A cone of orientation of a dipole moments in a composite
medium.
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provided that the distributions with respect θ and ϕ are statistically
independent, and the probabilities p(t) and p(u) are determined by (25)
and (30), respectively.

3. EFFECTIVE PERMITTIVITY FOR SOME
PARTICULAR CASES OF ORIENTED INCLUSIONS

The general tensor expression (20) for the effective permittivity of a
composite depends on the angles of inclusion orientation, ϕ and θ,
through the components of the tensor ↔η i (18). Let us consider statistics
of orientations for some particular cases of inclusion alignment.

For definiteness, assume that the Poynting vector ~Πinc = Πinc · ŷ
(or, equivalently, the propagation vector ~kinc = kinc · ŷ.) is normally
incident on the planar surface of the composite dielectric layer (xz).
Also, assume that the electric field vector of this incident wave is
polarized in the z-direction: ~Einc = Einc · ẑ. There are the following
cases.

a) Completely aligned case. If all the inclusions are oriented in
the same direction with the fixed angles θ and ϕ, then the resultant
effective permittivity is determined by the general formulas (20)
and (18), and no statistics are included.

b) Isotropic case. If all the inclusions within a homogeneous
isotropic dielectric base are randomly (evenly) oriented in 3D
space, then the integration over the angles θ ∈ [0 . . . π] and
ϕ ∈ [0 . . . 2π] of the angle-dependent components in (18) will
yield zeros, and the tensor ↔

η i will become diagonal with all three
components equal

↔
η i =

(
ηi 0 0
0 ηi 0
0 0 ηi

)
, (34)

that is, just a scalar value ηi = εx
εb
− 1.

c) Fixed angle θ, but arbitrary, homogeneously distributed,
random angle ϕ. Then the tensor ↔η i becomes diagonal with two
components being equal, and the third component being different:

↔
η i =




ηi 0 0
0 ηi 0
0 0 ηi + βi cos2 θ


 . (35)

If the angle θ is statistically distributed within the limits
[θmin . . . θmax], the probability density functions with respect to
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θ (or equivalently, x = |cos θi|) should be considered, and the
volume fraction function is then

fi(x) = nVip(x), (36)
where p(x) is the orientation probability density function defined
in a manner similar to (22), Vi is the volume of an inclusion (all
the inclusions herein are assumed to be of the same volume), and n
is the total number of inclusions per unit volume (concentration).
The limits of integration [xmin . . . xmax] depend on the range of
the possible angles [θmin . . . θmax]. The standard deviation σx

also determines the range of possible angles if this is a Gaussian
distribution. Then the limits of integration will be approximately

xmin = x0 − 3σx;
xmax = x0 + 3σx.

(37)

d) In-plane random distribution. If the angle θ is always equal
only to 0, but the inclusions are oriented randomly in a uniform
distribution with respect to the angle ϕ, then the ↔

η i tensor is
diagonal

↔
η i =

(
ηi 0 0
0 ηi 0
0 0 ηi + βi

)
. (38)

and there is no need of integration.
f) Arbitrarily biased and statistically distributed angles ϕ

and θ. The double probability density of orientation is p(t, u).
Then the volume fraction of inclusions with orientation (θ, ϕ) in
terms of (t, u) is

fi(t, u) = nVip(t, u). (39)
Hence, the effective permittivity (20) with statistically distributed
inclusions orientations can be represented as

↔
εef =εb

↔
I +

1
3

tmax∫

tmin

umax∫

umin

εbfi(t, u)
3∑

k=1

↔
η i(t, u)·

(↔
I +↔

η i(t, u)Nik

)−1

×
[
↔
I− 1

3
fi(t, u)

3∑

k=1

Nik
↔
η i(t, u)·

(↔
I +↔

η i(t, u)Nik

)−1
]−1

dudt. (40)

4. CONCLUSION

This analytical model allows for taking into the account the statistical
distribution of orientations of elongated (prolate) ellipsoids (or
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spheroids) in a homogeneous and isotropic dielectric base. The
inclusions are assumed to be also made of a homogeneous and
isotropic dielectric. This model extends Maxwell Garnett multiphase
formulations. Obviously, if there is some biased orientation of the
spheroid major axis, the mixture is anisotropic with the effective
permittivity described by a tensor. This anisotropy is induced
by the anisotropy of shape of inclusions (different depolarization
factors along the major and minor axes of the spheroid) and
their orientation. Different particular cases of possible inclusion
orientation are considered. In particular, the normal Gaussian
distributions for either zenith angle θ, or azimuth angle ϕ, or
for both angles θ and ϕ describing orientation of inclusions have
been introduced in the multiphase Maxwell Garnett formulation for
ellipsoidal inclusions. Though prolate spheroids were considered in
this paper, the formulation is also valid for disk-like oblate spheroids.
Then the zenith angle θ will be defined relative to the normal to the
“disk” plane, and the azimuth angle ϕ will be considered in the “disk”
plane.

A similar approach can be used for treating inclusions of
isotropic form (spheres), but made of intrinsically crystallographically
anisotropic materials, such as ferroelectric particles. Another case
is a combination of crystallographic anisotropy of inclusions with
anisotropy of shape, when the material is textured. Also, the base
dielectric with anisotropic permittivity can be considered using the
same approach.
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