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Location management in mobile ad hoc wireless networks
using quorums and clusters

Maggie X. Cheng1*,y, David H.-C. Du2 and Ding-Zhu Du2

1Computer Science Department, University of Missouri, Rolla, MO 65401, U.S.A.
2Computer Science and Engineering Department, University of Minnesota, Minneapolis, MN 55455, U.S.A.

Summary

Position-based reactive routing is a scalable solution for routing in mobile ad hoc networks. The route discovery

algorithm in position-based routing can be efficiently implemented only if the source knows the current address of

the destination. In this paper, a quorum-based location management scheme is proposed. Location servers are

selected using the minimum dominating set (MDS) approach, and are further organized into quorums for location

update and location query. When a mobile node moves, it updates its location servers in the update quorum; when a

node requests the location information of another node, it will send a query message to the location servers in the

query quorum. We propose to use the position-based quorum system, which is easy to construct and guarantees that

the update quorums always intersect with the query quorums so that at least one location server in the query

quorum is aware of the most recent location of the mobile node. Clusters are introduced for large scale ad hoc

networks for scalability. Experiment results show that the proposed scheme provides good scalability when

network size increases. Copyright # 2005 John Wiley & Sons, Ltd.

KEY WORDS: quorum; virtual backbone; minimum dominating set; location service; clustering

1. Introduction

Location management is an important part of wireless

communication in both cellular networks and ad hoc

wireless networks. In cellular networks, the commu-

nication between the mobile host and the base station

is just a single hop, and the communication across the

network is achieved through base stations that are

connected by a wired network. A mobile user’s loca-

tion information is stored in its designated base station

called Location Register and is updated every time the

mobile user moves around [1]. The location informa-

tion is retrieved when a location query is sent to the

location register.

In ad hoc wireless networks, there is no fixed

infrastructure, and mobile hosts move around fre-

quently. In the worst case, a point to point connection

between two mobile hosts may need network wide

flooding. Position-based routing schemes take advan-

tage of the locality of the destination and effectively

restrict the flooding to the area where the destination

node actually presents [9]. A prerequisite for position-

based routing is that the sender must know the current

position of the destination. A location service is used

by the sender to find out the position of the destination

in order to determine the best route. The reliability

and efficiency of the location service has direct effects

on the efficiency of the communication.

*Correspondence to: Maggie X. Cheng, Computer Science Department, University of Missouri, Rolla, MO 65401, U.S.A.
yE-mail: chengm@umr.edu
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The location service is provided by location servers

in ad hoc networks, which store the location informa-

tion for mobile nodes, and provide location informa-

tion whenever it is requested. These procedures are

called location update and location query, respec-

tively. The deployment of location servers is critical

on the quality of the location service. There is always

a trade-off between the efficiency of location update

and location query. Using more nodes as location

servers can provide fast location queries at high

success rates, but it introduces more overhead in

location updates.

In this paper, we present a dominating set based

location service scheme for ad hoc networks. We use

the dominating nodes as location servers and further

organize the servers into quorums. A dominating set is

a set of wireless nodes such that every node in the

network is either in the set or directly connected to a

node in the set. The role of the dominating nodes are

to store the location information of mobile nodes and

respond to location queries from the network. In

addition, the same set of dominating nodes can also

route flows and packages, compute and maintain

routes, etc. The advantage of using dominating nodes

over a flat structure without dominating nodes is that

not every node is involved in location service or

routing. Only the nodes that have the most recent

information about the topology of the network com-

pute the routes. The topology change caused by node

mobility is only propagated to these dominating nodes

rather than all nodes, therefore the update overhead is

reduced.

Quorum systems have been widely used in distrib-

uted file system for mutual exclusion of conflicting

actions. In a distributed file system, file servers are

divided into subsets, such that any two subsets inter-

sect, and no subset is included in another. These

subsets are called quorums. An important property

of the quorum system is that any two quorums inter-

sect. A read/write action needs to get permissions

from all the servers in a quorum, and a file server can

only issue a permission to one request at a time. If two

conflicting actions request to access the same re-

source, there must be at least one server that receives

two conflicting requests, but it can only send the

permission to one of them. Thus, mutual exclusion

is guaranteed.

The property that any two quorums intersect can

also be used in the location service in mobile comput-

ing. We can divide wireless nodes into quorums and

make each quorum a set of location servers. When a

mobile node moves, it only needs to update a quorum

of nodes; when a location server receives a location

query, it will send the query to all the nodes in the

same quorum. Since an update set and a query set

always intersect, at least one node in the query

quorum knows the most recent location information

of the mobile node.

The quorum design in wired networks is more

concerned with the other properties rather than the

location of the nodes in each quorum. Reference [7] is

an example of using unified quorum system for loca-

tion service, in which traditional quorum design

techniques are used. In wired/cellular networks, loca-

tion servers are connected via wired networks, there-

fore the number of hops between location servers is

not a concern. However, in multihop ad hoc networks,

it is a serious concern. The locations of server nodes,

the total span of each quorum, and the distance

measured in hops between the nearest nodes within

each quorum are very important, but have never been

an issue in wired networks. In previous works such as

References [6,7], quorums are formed among location

servers without considering the connectivity of the

quorum itself. Therefore, the location servers in a

quorum are interleaved with non-server nodes and

might be many hops away from each other. Thus the

quorum span can be spatially very large. By sending a

packet through a multiple-hop path, the message is

broadcasted to all nodes within one-hop distance of

the path due to its omni-directional transmission. The

longer the path is, the more energy and bandwidth are

wasted. With a unbounded quorum span, this quorum

system can be very inefficient in terms of energy and

bandwidth.

We propose to construct a minimum dominating set

first, which will be used as location servers. Then we

form quorums among dominating nodes based on

their locations. We further distinguish them as query

quorums and update quorums so that the intersection

is only guaranteed between query quorums and update

quorums. For large networks, we first divide dominat-

ing nodes into clusters that each have a complete

quorum system. Location updates are only propagated

in the same cluster, therefore, the network-wide flood-

ing is avoided. Location queries may involve commu-

nication across different clusters, which are routed

through cluster heads.

The major contributions of this work are the

following:

(1) We presented an efficient distributed algorithm

to find the location servers, which has the

same performance ratio as the centralized greedy
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algorithm and the worst case running time of

which is bounded.

(2) We designed a position-based quorum construc-

tion scheme, which is more suitable for wireless

communication in ad hoc networks than tradi-

tional quorum systems. The span of each quorum

is optimized based on the location distribution of

wireless nodes.

(3) To provide scalable location service in large net-

works, we proposed to use a clustering scheme

and then build quorum systems within clusters.

The clustering scheme makes it possible to have a

bounded quorum size when the network size

increases.

We assume the mobility pattern is pause and move,

i.e., nodes move and then pause for a longer time and

then move again, so we can model the node movement

by a join and a leave. We further assume the pause

time period is longer than the location update time. If

the network is highly mobile such that it changes

faster than the information is updated and retrieved,

then a network wide flooding is unavoidable.

The rest of the paper is organized as follows: in

Section 2, we review some of the recent works related

to location management. In Section 3 and 4, we

introduce our location management scheme in detail

and explain how location server nodes are selected

and organized into quorums. In Section 5, we present

how to preserve scalability by use of clusters. In

Section 6, we briefly discuss how to maintain the

quorum systems and clusters in response to the node

mobility and topology changes. Section 7 concluded

the paper with summaries and future work plan.

2. Related Work

2.1. Cellular Networks

Quorums have been used in cellular mobile systems

for locating the cell in which a mobile node is

currently located [10–12]. In cellular networks, the

cellular coverage area is divided into cells, and a

cluster of neighboring cells constitute a registration

area (RA), and one or more RAs constitute a zone. In

each zone, there is only one location server associated

with it. Since using only the mobile node’s identity to

determine its location servers fails to exploit the

locality of reference characteristics, and using solely

the mobile node’s location will lead to uneven dis-

tribution of responsibility, a mobile node’s location is

stored in several location servers scattered across the

network. Quorums are used to guarantee that the

update set and the query set intersect, and dynamic

hashing is used to balance the service load among

location servers. This is different from mobile ad hoc

networks, where the network is infrastructure-less,

and each mobile node is potentially a candidate

location server that also moves around.

2.2. Ad Hoc Networks

In Reference [8], a virtual backbone is used to store

the location databases, and the databases are dynami-

cally organized into quorums of the same size, such

that every two quorums intersect. The set of backbone

nodes are determined using a network wide flooding

such that the backbone nodes are uniformly distrib-

uted within the network, and each non-backbone node

is connected to at least one backbone node.

How to divide the backbone nodes into quorums is

a design choice, and it is also based on the traffic

pattern. In large networks, the actual number of

location databases is large. As a result the quorum

size has to be large in order to ensure the intersection

between any two quorums. Thus the cost of location

update increases. In this case, network nodes can be

divided into p groups by calculating the modulo p of

the node ID number. Each resulting group contains the

virtual backbone nodes as well as non-virtual back-

bone nodes, and the databases are organized into

quorums among the virtual backbone nodes within

each group. The problem with this approach is that the

path between a pair of backbone nodes is possibly

interleaved by nodes in other groups. So the commu-

nication involved in a location update or location

query may be routed through a multihop path consist-

ing of both backbone nodes and non-backbone nodes

of different groups, of which the number of hops is

unbounded.

The proposed location management system also

uses quorums, but it is different from References

[6–8] in that it limits the path length of location

update and location query by having quorums with

bounded spans. The location server selection and

quorum construction are detailed in Sections 3 and 4

separately.

3. Minimum Dominating Set Construction

The proposed location management scheme in-

volves two phases: location server selection and
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query/update set construction. We first build the

minimum dominating set (MDS) among all wireless

nodes, and use the dominating nodes as location

servers. Thus, each wireless node is at most one hop

away from a location server. In the following sections,

we use black nodes to represent the dominating nodes

(or dominators), gray nodes the neighbors of dom-

inators. Initially, every node is a white node; upon the

termination of the algorithm, every node is either

black or gray.

3.1. A Polynomial Time Algorithm for MDS

We define the white degree as the number of white

nodes within its one-hop neighborhood including

itself. In every step, we color a node to black, so the

number of white nodes in its one-hop neighborhood is

reduced to zero. We define the effective reduction as

(white degree, color), where color is the color of the

node itself. Let white¼ 0, and gray¼ 1, so the effec-

tive reduction can be compared in a lexicographical

order. For example, (white degree¼ 3, color¼
gray)> (white degree¼ 3, color¼white).

Greedy Algorithm: Initially, all nodes are white

nodes. At each step, choose the node with the max-

imum effective reduction, color this node to black,

and color its white neighbors to gray. Repeat until

there is no white node left.

In case of a tie, it is broken in the following order:

(1) In favor of the node with a larger degree

(2) In favor of the node with a lower node ID

Remark: At the end of this algorithm, for each black

node, there must be another black node within its

three-hop distance unless there is only one black node

in the same connected domain, and three kinds of link

topologies are possible: black–black, black–gray–

black, and black–gray–gray–black.

To compute a minimum dominating set is an NP-

complete problem [4]. The performance ratio of this

greedy algorithm is ln�þ 1, where � is the max-

imum number of nodes in a one-hop neighborhood.

The proof of this performance ratio is presented in the

appendix.

3.2. Distributed Implementation of MDS

We propose a distributed implementation of the above

greedy algorithm, which produces the same set of

dominators as the centralized algorithm does, but

does not need any global effort. In addition, the time

complexity under the worst case is bounded because it

is localized and independent of the network topology.

distributedMDS
initialize color¼white

while color 6¼BLACK do

exchange state info within one-hop neighbor-

hood, and compute effective reduction

if there is no white node within one-hop neigh-

borhood then

break

else

send and receive state packet within two-hop

neighborhood

if it has the maximum effective reduction then

color itself to black

set dominator to itself

send out BLACK message to one-hop

neighbors

else if receives BLACK message from one-

hop neighbor then

if color¼ ¼WHITE then

color itself to gray

set dominator to the sender

end if

end if

end if

end while

while color¼ ¼BLACK do

send and receive state packet within two-hop

neighborhood

if there is no white node within two-hop neigh-

borhood then

break

end if

end while

END of distributedMDS

A gray node terminates the MDS algorithm and

stops exchanging information with its neighbors once

it finds out that it cannot be selected as a dominator. A

black node terminates the MDS algorithm once it

finds out that there is no white node in its two-hop

neighborhood. Because the gray nodes it dominates

cannot become black later, therefore, the dominator–

dominatee relationship will not be changed. The

advantage of this algorithm is that it is localized,

and it does not need global effort to decide when to

stop. Once the MDS construction is finished, the

selected black nodes can go on to start quorum

construction by sending out a SCAN message. The

time lines of this localized algorithm and the centra-

lized algorithm are shown in Figure 1.

796 M. X. CHENG, D. H.-C. DU AND D.-Z. DU
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The distributedMDS produces the same set of

dominators as the centralized algorithm does. Recall

that if a node v has the maximum effective reduction

within its two-hop neighborhood, it will be selected as

a dominator according to distributedMDS. If

another node u three (or more) hops away from v is

selected as a dominator, it would not change the

effective reduction of v for all possible timings.

Therefore, v is selected as a dominator in both the

centralized and the distributed implementations.

3.3. Performance Analysis

Minimum connected dominating sets (MCDS) have

been used in Reference [8] for location servers, in

which a set of dominating nodes are selected first

using a different scheme, then non-dominating nodes

are used to connect them to form a connected dom-

inating set, called virtual backbone in Reference [8].

Quorums are then built from this virtual backbone.

We propose to use the MDS instead of the MCDS as

the first step to select location servers based on the

following reasons:

(1) MCDS requires more time and message complex-

ity for selecting server nodes. The MCDS con-

struction usually consists of two phases: to select

dominating nodes in the first phase and then

connect the dominating nodes to form a MCDS

in the second phase. The second phase in a

distributed environment needs a lot of global

collaboration, which increases the time and mes-

sage complexity.

(2) MCDS uses more server nodes. The number of

nodes in a MDS and a MCDS are illustrated in

Table I. Figure 2 shows that increasing the net-

work size will increase the number of nodes in a

MDS. However, the number of nodes in a MCDS

increases much faster than that of a MDS, as

shown in the table. When more server nodes are

involved, the quorum size will increase, yet the

server nodes in a quorum may still be interleaved

by the non-server nodes. Thus increase the loca-

tion update cost, and possibly increase the loca-

tion query cost too. So a MCDS approach would

not fit in a large network.

...

...
send the first 
SCAN message

1     2      3                   n

...

1     2

send the first
SCAN message

(a) Centralized (b) Localized

Fig. 1. Time-lines in the centralized implementation and the localized implementation of the minimum dominating set.

Table I. Performance comparison of MDS versus MCDS [2,5]
experiments were done for upto 1000� 1000 square with node
transmission range 200 (Dimensionless), the average size of each
was taken oven 500 instances of networks.

Performance measurements MDS MCDS

Centralized algorithm
Performance ratio ln�þ 1 ln�þ 3

Distributed algorithm
Performance ratio ln�þ 1 7

Normalized average size from experiments: increasing density at
constant area
For 50 nodes 19 27
For 100 nodes 22 36
For 200 nodes 23 61
For 400 nodes 24 127
For 600 nodes 24 187
For 800 nodes 26 254
For 1000 nodes 28 306

Normalized average size from experiments: increasing area at
constant density 10 node per 100� 100
For 40 nodes, 400� 100 1.4 1.4
For 40 nodes, 200� 200 1 1
For 80 nodes, 400� 200 2.5 2.5
For 80 nodes, 300� 267 1.2 1.2
For 160 nodes, 800� 200 4.45 37
For 160 nodes, 400� 400 4.27 4.27
For 250 nodes, 1250� 200 5.54 70.9
For 250 nodes, 500� 500 6.24 6.98
For 300 nodes, 1500� 200 7.10 80
For 300 nodes, 500� 600 8 39.6
For 400 nodes, 2000� 200 9.61 112
For 400 nodes, 600� 667 12 86
For 500 nodes, 2500� 200 11 153
For 500 nodes, 700� 714 12.28 101.56
For 600 nodes, 3000� 200 13 180
For 600 nodes, 800� 750 14 148
For 700 nodes, 3500� 200 15.86 217.56
For 700 nodes, 875� 800 16.65 199.3
For 800 nodes, 4000� 200 18 248
For 800 nodes, 889� 900 19 242
For 900 nodes, 4500� 200 19.85 283.47
For 900 nodes, 1000� 900 23.78 273.4
For 1000 nodes, 5000� 200 22.24 317.53
For 1000 nodes, 1000� 1000 28 306
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4. Position-Based Quorum
System Construction

Input: n server nodes.

Output: A grid of M � N or N �M so that there is no

empty cell.

M and N can be selected based on the distribution

of server nodes. For example, when nodes are uni-

formly distributed on a square region, let N ¼ b ffiffiffi
n

p c,
M ¼ bn

N
c. Since M � N, intuitively if the n points are

more sparsely spanned in y-coordinates, then we want

a grid ofM � N, otherwise, we want a grid of N �M.

We allow some cell to contain more than one point

such that each cell has at least one point. In the

following, we will show how to construct a grid of

M � N, we call it row-first construction. An alterna-

tive way is called column-first construction, which can

be done similarly. Instead of allocating the dominating

nodes to the logic grid using node IDs, we use their

physical locations to map points into cells. The

advantage of using a location-based approach is that

the number of hops between a pair of quorum nodes is

decreased significantly.

Procedure:

(1) Order the n points according to their y-coordinates

and x-coordinates, put a point in cell ði; jÞ if its x-

coordinate has the ith rank, and y-coordinate has the jth

rank. Finally, n points are put in a grid of n� n and

there is exactly one point in each row, and one point in

each column. Figure 3(a) shows the result from this

step.

(2) Combine every N rows into one single row, and

then we spread the N points in each row into N

columns in the increasing order of x-coordinates.

Some cell can have more than one point in it.

Figure 3(b) and (c) show the procedure in this step.

Next, we build a quorum system from this grid. For

intersection¼ 1, each query quorum consists of one

row, and each update quorum consists of one column

(or vice versa for the column-first construction). There

are M query quorums and N update quorums, and

0

5

10

15

20

25

30

35

40

100 200 300 400 500 600 700 800 900 1000

S
iz

e 
of

 M
D

S

Number of nodes in the network

increasing area at constant density
increasing density on the same area

Fig. 2. The size of the minimum dominating set (MDS) increases as the network size increases.
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Fig. 3. Construct quorums from server nodes.
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each query quorum intersects with exactly one update

quorum. For intersection¼ 2, each quorum consists of

an entire row and column, and there are a total of NM

quorums. For better performance, we can calculate the

average span of all quorums for both row-first and

column-first methods, then choose the one with a

smaller average span.

As n increases, to construct quorums that have

pairwise intersection requires large quorum size,

which is not desired in location service. Ideally, the

number of nodes that store the location information

for a mobile node should not increase significantly as

the network size increases. In the following section,

we describe a hierarchical clustering method that

maintains a desired quorum size that does not increase

with the network size.

5. Location Management for
Large Networks

For large networks, to maintain one largely-spanned

quorum system that guarantees the pairwise intersec-

tion of quorums is expensive. The solution for scal-

ability is to add levels of hierarchy. We propose to

group mobile nodes into clusters, and in each cluster,

quorums are formed that intersect with each other.

Each cluster has a single cluster head, which can be

selected during the clustering procedure. Once a

cluster head is selected, it computes the quorum

system within its own cluster, communicates with

other cluster heads, and dynamically maintains the

routes to other cluster heads.

Location updates are only limited to quorums in the

same cluster, so the location update cost does not

increase with the network size. However, it is possible

to have query failures, i.e., the read (query) set does

not have intersection with the write (update) set. In

case of a query failure, the cluster head is responsible

for communicating with other cluster heads. Since

each cluster head must belong to the quorum system

of its own cluster, it can query any read set, which

always has an intersection with the write set in the

same cluster.

Next, we describe how the clusters are formed.

5.1. Forest Algorithm

Input: Maximum cluster size N1, and minimum cluster

size N2.

Output: Clusters of size n1 with ð1� �2ÞN2 � n1 �
ð1þ �1ÞN1.

After the MDS algorithm is terminated, each black

node must be able to find another black node within

three hops as long as there are more than one black

nodes in the connected network.z All black nodes thus
form a virtual graph: an edge exists between two black

nodes if and only if they are within three hops of each

other, and the weight of the edge is the number of gray

nodes in between (Figure 4). The clustering algorithm

will run on top of this virtual graph. The construction

of this virtual graph is presented in Subsection 5.2.

Before the clustering begins, each black node has

the complete list of one-hop neighbors. During the

clustering procedure, each node also maintains a cache

of the list of nodes that are already in the same cluster.

This cache may not contain all the nodes in the same

cluster, but it helps to reduce the unnecessary traffic.

The cluster head, on the other hand, always maintains

the complete list of nodes in its cluster.

Our clustering scheme is a modification of the

distributed minimum spanning tree algorithm ([3]).

Initially, all black nodes are in a cluster of itself, and

the level of the cluster is zero. At each step, the nodes

in each cluster collaboratively select an outgoing edge

and merge with the cluster at the other end of the edge.

This procedure is repeated until there is only one

cluster left or the size of the cluster has reached the

zIn a connected network, every node has a path to reach
every other node in the network.

01

2

2
2

Fig. 4. The virtual graph on the dominating nodes.
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limit. It is essentially a distributed implementation of

the Kruskal algorithm.

We first describe the simple case in which two

nomadic nodes combine into a cluster. Initially, every

black node is a nomadic node in a cluster of itself. The

cluster ID is its own node ID, and the cluster level is

zero. It sends out a CONNECTmessage directly to the

nearest neighbor (in case of a tie, a node with a lower

node ID is favored). If a node sends and receives

CONNECT message over the same edge, two noma-

dic nodes merge into one cluster of level one, and the

cluster ID is the ordered (i.e., ascending order) com-

bination of the two node IDs, the cluster head is one of

the ends of the merging edge with a lower node ID.

Next, we describe how two clusters merge into one

bigger cluster. First, each black node send a REPORT

message to its cluster head including a list of possible

outgoing edges and their weights. If a node has no

outgoing edge, it will not report. The cluster head first

eliminates the non-outgoing edges, decides a best

outgoing edge to merge over, and then sends the

reporting node the permission to merge. The decision

is based on the weight of the edges. In our virtual

graph, the edge weight 2 f0; 1; 2g. The edge with the

lowest weight is selected, and ties are broken in favor

of lower node IDs. The black node then sends out a

CONNECT message including its cluster ID, cluster

size, and level over this edge. Upon receiving the

CONNECT message, the node at the other side will

respond differently based on the level and size of its

cluster. The other cluster will not agree to merge if its

level is lower than the requesting cluster. Our strategy

is never to let low level clusters wait.

Let’s say node a in cluster A sends a CONNECT

message over link ða; bÞ to node b in cluster B. Next,

five different scenarios are possible.

(1) If LevelB is higher, b will send an UPDATE

message directly to node a and the message is

forwarded to the other nodes of cluster A. In this

case, cluster B absorbs cluster A. All nodes in

cluster A will update its cluster head, cluster ID,

cluster size, and level upon receiving the

UPDATE message.

(2) If LevelB is the same as LevelA, and edge ðb; aÞ is
also the best outgoing edge selected by cluster B,

then b will send a CONNECT message to node a

(b may have already done so). In this case, two

clusters of level L merge into one cluster of level

Lþ 1. Both a and b send UPDATE message to its

original cluster member to update the level, clus-

ter head, cluster size, and cluster ID. Link ða; bÞ

becomes the root edge. Node a or b, whichever

has a lower node ID, will become the new cluster

head, and the new cluster ID is the ordered (i.e.,

ascending order) combination of the two node IDs.

(3) If LevelB is the same as LevelA, and edge ðb; aÞ is
not selected as the best outgoing edge, node bwill

not respond.

(4) If LevelB is lower, node b will not respond to the

CONNECT message. So the connection is de-

layed until cluster B has a sufficient level.

(5) If cluster B has stopped clustering due to its size,

node bwill send a REJECT message back to a, so

cluster A can eliminate this outgoing edge and try

the second best edge.

In all possible cases, if a merge happens, the

previous cluster head(s) will update the new cluster

head with the list of members so the cluster head

always has the most recent information.

This implementation is different from Reference

[3]. First, we have less number of message exchanges.

Reference [3] uses message exchanges with the other

cluster to find out if an edge is outgoing. In Forest

approach, a cluster can find the best outgoing edge

without the participation of the other cluster. Second,

we do not require distinct edge weights, but we do

require distinct node IDs.

Finally, we discuss when the clustering algorithm

should be terminated. If all nodes in a cluster have no

outgoing edge, the algorithm is terminated. Another

signal to terminate clustering is the cluster size. Once

the cluster size n1 has hit the thresholds such that

ð1� �2ÞN2 � n1 � ð1þ �1ÞN1, then the next merge

operation is to be examined. If further merge gener-

ates an oversized cluster, then stop.

Upon the termination of the clustering algorithm, it

is possible that a small number of clusters are under-

sized: i.e., n1 � ð1� �2ÞN2. One remedy for this is to

split the cluster from the most recent merging edge

and re-cluster each fragment with other clusters in the

neighborhood. Re-clustering can be done recursively

until there is no fragment left.

5.2. Virtual Graph

So far, we have assumed that the links in the virtual

graph are already established before clustering. Next

we describe how these virtual links are build to form a

virtual graph. Each black node remains inactive in-

itially when it is colored to black. It keeps exchanging

state information with the nodes within its two-hop

neighborhood periodically. Once it finds out that there
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is no white node in its two-hop neighborhood, it

becomes active and broadcasts a SCAN message.

Since there is no white node in its two-hop neighbor-

hood, there must be some other black node within

three-hop distance. The SCAN message contains the

node ID and TTL. The initial TTL is set to 3. Any non-

black node will forward the message with TTL > 0 to

all its one-hop neighbors except the one it receives

from; at the same time, it decreases the TTL by one,

and appends its ID to the head of the message. So

when a black node wants to reply this message, it will

just reverse the path for its REPLY message. After the

SCAN period, each node in the neighborhood includ-

ing the gray node learned the paths between these

black nodes. Note a black node does not forward the

SCAN message. An REPLY message contains the

receiver’s node ID only. No TTL is necessary in

REPLY messages.

Once a black node receives a SCAN message

originated from another black node, it assumes there

is a direct link between itself and the sender. It

computes the weight of this link as the number of

non-black node in between and replies to the sender.

All the edge weights are in the set {0,1,2}. After a

certain time period, all black nodes have a complete

view of its neighboring black nodes.

5.3. Location Service with Clusters

With the clustering scheme, location queries and

location updates are implemented differently: A loca-

tion update is just the same as in a flat structure

without clusters. Each moving node contacts the

nearest black node, and the black node randomly

chooses a quorum that it associates with to store the

location information. Location updates are only lim-

ited to the cluster in which the node presents. A

location query can be more complicated than that in

the flat structure. It first queries a randomly chosen

quorum within its cluster, if the query fails, the cluster

head is responsible for broadcasting to all the other

cluster heads, then each cluster head queries a quorum

in its cluster. The result is guaranteed to be found and

forwarded back to the cluster head sending out the

request, and forwarded to the querying node.

6. Dynamic Dominating Set and Quorum
Maintenance in Mobile Environment

We assume the mobility pattern is pause and move,

and the node pauses for longer time than it moves. A

movement can be simplified as disappearing from one

site and appearing at another site, so we only deal with

the join and leave activities.

Clusters do not change as nodes leave and join

unless the cluster size hit the thresholds, or the

remaining nodes in a cluster is disconnected. If the

cluster size drops below the lower threshold, it will

resume clustering as described before; if it is over-

sized, it will split into two clusters; if it is discon-

nected, each disconnected part will form a separate

cluster and then resume clustering with neighboring

clusters if necessary.

Next we describe how to maintain the dominating

set and quorum systems when a black node drops out

and joins in later.

(1) When a black node drops out of a quorum, some

other node in the same quorum first finds out its

absence, and then it recruits another node (black

or gray) to take its place. If a gray node first finds

out that the black node it associated with is out, it

will try to connect itself to another black node; if it

fails, it will elect itself as a black node and anno-

unce its join to the nodes in the same quorum.

(2) If the black node happens to be a cluster head,

another black node in the same cluster bearing the

same cluster ID is randomly chosen to take its

place.

(3) When a node joins in, it simply connects to a

nearest black node as a gray node. Packet loss on

the fly is possible.

7. Conclusion and Future Work

Routing in a mobile ad hoc network is a challenging

task. The position-based routing takes advantage of the

location information of mobile nodes and effectively

reduce the routing discover overhead and reduce the

network-wide flooding. However to maintain the

location information of mobile nodes is another chal-

lenging task that needs to be implemented efficiently

in order to be useful in practical systems.

In this paper, a quorum-based location management

scheme is introduced. The location servers are se-

lected from mobile nodes first, and are further orga-

nized into quorums that intersect with each other. For

large ad hoc networks, clusters are used to prevent the

quorum size from growing with network size. Pre-

liminary experiments showed the performance gain of

using the proposed system.

Future work along this line would be to implement

the position-based routing in a distributed simulation
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environment using this location management scheme

as part of it, and to observe the performance gains and

overheads in the routing process. Another work that

needs to be done is to provide the optimal quorum size

for a given network through analytical study and

simulation, especially when it is pertinent to different

mobility patterns.
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Appendix: Performance Ratio of the
MDS Greedy Algorithm

In this appendix, we will show that the MDS greedy

algorithm has a performance ratio of ln�þ 1. Recall

the centralized greedy algorithm works as follows.

At each iteration, pick the non-black node with the

maximum number of white nodes in its one-hop

neighborhood (including itself) and color it to black,

and color the white neighbors to gray. Repeat until

there is no white node left.

This algorithm has a performance ratio of ln�þ 1,

where � is the maximum number of nodes in a one-

hop neighborhood.

Proof: Assume there are n nodes in the network. Let

ai be the number of remaining white nodes after the

ith iteration, and bi be the number of white nodes to be

covered in the ðiþ 1Þth iteration. Therefore, a0 ¼ n,

and b0 ¼ �. Let K be the size of the dominating set by

the greedy algorithm, so bi � ðai=K � iÞ according to

the greedy algorithm.

We have jOPT j �� � a0, so jOPT j � a0
�

aiþ1 ¼ ai � bi

� ai � ai

K � i

� ai 1� 1

K � i

� �

� ai�1 1� 1

K � iþ 1

� �
1� 1

K � i

� �

� . . .

� a0 1� 1

K

� �
. . . 1� 1

K � i

� �

� a0 1� 1

K

� �iþ1

Let m ¼ iþ 1 ¼ jOPT j � ln a0
jOPTj. Since K �

jOPTj, thus

aiþ1 � a0 1� 1

K

� �jOPTj�ln
a0

jOPTj

� a0ð1� 1

K
ÞK�ln

a0
jOPTj

� a0 � e
� ln

a0
jOPTj

� a0 � jOPTj
a0

¼ jOPTj

So after m steps, there are at most jOPTj white
nodes uncovered, it takes at most jOPTj more steps to

cover them. The total steps to cover all nodes are

therefore

K � mþ jOPTj ¼ jOPTj ln
a0

jOPTj þ 1

� �

� jOPTjðln�þ 1Þ
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At each step, we choose one node into the dominat-

ing set, so the performance ratio is ln�þ 1.
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