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ABSTRACT

In 2010, the British Petroleum (BP) Deepwater Horizon accident leaked oil into the
Gulf of Mexico for 87 days. A fast response method that can seal an oil pipe and stop the
release of oil is needed in order to prevent future oil leaks from turning into ecological and
financial disasters. Explosives can serve this need.

This research examined how a circular implosive discontinuous explosive lens
interacts with a cylindrical surface. The following research was designed to study the
applicability of the Method this author developed to predict the peak pressure from multiple
shockwaves converging on a centrally located cylinder. This research also examined if
multiple charges can impart a higher peak pressure or impulse on the centrally located
cylindrical surface than a single charge of equal net weight. The experiments examined
single charges in line with the signature sensor with various charge weights (0.2, 0.4, and
0.6 Ib) and multiple 0.2 Ib charges varying the number of charges (1-5) at different angular
spacings (180, 120, 90, 60, and 40-degrees).

The Method developed throughout this research can be used to predict the pressure
along the symmetry plane when 180 > 6 > 60 degrees, for two and three 0.2 Ib charges.
The Peak Pressure Predictive Method is accurate to + 4 percent. The techniques developed
to predict the peak reflected pressure and impulse generated from multiple shockwaves
converging on a cylindrical surface will aid in generating a rapid response system to help

prevent underwater disasters similar to the Deepwater Horizon event.
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1. INTRODUCTION TO MODELING EXPLOSIVE LENSING
INTERACTION WITH A CYLINDRICAL SURFACE

This research examined how a circular implosive discontinuous explosive lens
interacts with a cylindrical surface. The following research was designed to study the
applicability of a symmetry plane peak pressure predictive method formulated throughout
this research to predict the pressure associated with shockwaves from multiple charges
converging on a centrally located cylinder. This research also examined if multiple charges
can impart a higher peak pressure or impulse on the centrally located cylindrical surface
than a single charge of equal net weight at the same standoff distance.

The models generated in this research will aid in predicting the peak pressure and
total impulse associated with the shockwave wrapping around a cylindrical surface.
Understanding the peak pressure and total impulse that multiple charges can impart on a
cylindrical surface is a first step in developing a fast response system for accidents such as
the Deepwater Horizon detailed below. This research serves as a platform for developing
an underwater explosive lensing system that can be rapidly deployed in the event of future

accidents, similar to Deepwater Horizon.

1.1. RESEARCH MOTIVATION TOWARD SEALING AN OFFSHORE
UNDERWATER OIL SPILL

In 2010, the British Petroleum (BP) Deepwater Horizon accident released oil into
the Gulf of Mexico for 87 days. Over the 87 days, 130 million gallons of oil were spilled
into the Gulf of Mexico (Smithsonian Ocean Protal, 2015). In addition to the lost profits,
BP incurred $44 billion in legal and cleanup costs (Wall Street Journal, 2015). The volume
of oil released into the Gulf of Mexico is a result of the time it took to seal the leaking well.

A fast response method that can seal an oil pipe and stop the release of oil is needed in



order to prevent future accidents from turning into ecological and financial disasters.
Properly applied explosive charges can serve this requirement.

Using explosives as a method of sealing a leaking oil pipe is plausible; explosives
have been utilized in the petroleum industry in the past to put out oil fires and perforate
wells. Explosives are also used to conduct seismic exploration, rock blasting, and platform
demolition. Additionally, researchers have shown cylinders can be collapsed by close

proximity energetic events, but this research had not examined completely sealing a pipe.

1.2. EXPLOSIVELY DRIVEN PIPE COLLAPSE

Explosively driven pipe collapse is not a new concept. A number of researchers have
examined the collapse of submerged cylinders in close proximity to an energetic event, but
this research has primarily used the submerged cylinder to represent the hull of a ship.
Sealing the pipe was not the focus of this type of research. An example of a submerged
cylinder subjected to an energetic event can be seen in Figure 1.1; the collapse was the

result of a 1-ounce explosive charge positioned 6 inches from the cylinder.

Figure 1.1. A collapsed aluminum cylinder subjected to 1-ounce of explosives at a
standoff off 6 inches (Silva L. L. & Netto T. , 2010).



The resultant collapse is evident. In this experiment, Silvia and Netto were using
the cylinder response to improve their modeling simulations. Sealing the cylinder was not
the focus of the research. However, Figure 1.1 indicated that strategically placed charges
might collapse the cylinder in a manner that would seal it.

In addition to cylinders in close proximity to an energetic event, cylinders
surrounded by a contact charge have also been examined. A contact charge refers to a
charge that is touching the cylinder, and the specific study referring to cylinders surrounded
by contact charges is “The Collapse of Hollow Steel Cylinders by High Explosives,”
Neddermeyer (1943). This study examined different diameter cylinders surrounded by
explosives. The cylinder thickness and explosive thicknesses were varied, and the results

from one such experiment can be seen in Figure 1.2.
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Figure 1.2. Results from three-inch diameter cylinders with 0.25-inch wall thicknesses

surrounded by TNT 0.75 inches thick, three initiation points (S. Neddermeyer, H.
Bradner, & J. F. Streib, 1943).



Typically, the cylinders in Neddermeyer’s report suffered substantial damage. A
petaling effect can be seen in Figure 1.2 A, B, D, and E. The damage observed in
Neddermeyer’s work indicates a standoff distance will be needed to seal the cylinder
without damaging it. Therefore, this research examined a circular implosive discontinuous
explosive lens focusing on a centrally located cylinder. The following section briefly
explains what is explosive lensing. A more in depth description can be found in Section

24.2.

1.3. WHAT IS EXPLOSIVE LENSING?

An explosive lens changes the detonation wave produced by an explosive by
changing the geometric conditions of the explosive (W. P. Walters, J. A. Zukas, 1989). An
explosive lens can consist of air, an explosive of a different detonation velocity, and/or a
metallic object imbedded into the explosive as a “wave shaper.” Explosive lenses have
been used in devices such as conical shaped charges (CSCs), linear shaped charges (LSCs),
explosively formed projectiles (EFPs), and, most notably, the atomic bomb (Worsey,

Explosive Lenses, 2012).

1.4. INFORMATION REQUIRED FOR DEVELOPING A RAPID RESPONSE
SYSTEM TO SEAL AN UNDERWATER OFFSHORE OIL SPILL WITH
EXPLOSIVE LENSING

Due to the complexity of sealing a cylinder underwater with explosive lensing, the
process must be divided into logical steps. The steps listing in Table 1.1 were identified
through the literature review process and deductive reasoning. While more steps are likely
to exist, the steps listed in Table 1.1 provide insight into what is necessary to seal a cylinder
underwater. The research presented herein focuses on Steps 1 and 2 in Table 1.1

(highlighted in green).



The first part of developing an explosive lensing configuration to seal a cylinder
underwater is developing a configuration that will seal a cylinder in air. Developing an
explosive lensing configuration to seal a cylinder in air will further define the shockwave
interactions on the cylinder surface without confounding the data with the effects from the
bubble dynamics or the Bjerknes force. The Bjerknes force is the force that attracts the
bubble to an object (Microsystems, 2016).

Developing an explosive lensing configuration to seal a cylinder in air requires an
understanding of how single and multiple shockwave interact with a cylindrical body with
respect to peak pressure and impulse. Additionally, the cylinder’s effect on the pressure
and impulse associated with the shockwave traversing the cylinder surface must also be
examined.

Future testing is needed to generate Pressure-lImpulse (P-1) diagrams similar to
Figure 1.3. These P-1 diagrams should aim to identify the pressure and impulse
combinations that induce different forms of cylinder damage. With a P-I diagram specific
for the cylinder of interest the multiple shockwave and cylinder diameter information,
previously discussed, can be used to develop an explosive lens to seal a cylinder in air.

After an explosive lens configuration to seal a cylinder in air has been identified,
the process needs to be repeated underwater. This will allow for a comparison of the two
media (air and water). The underwater testing will also enable the explosive lens to account

for the bubble dynamics and Bjerknes force.
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Figure 1.3. Generic P-I diagram demonstrating how the pressure and impulse imparted on

an object correlate to damage (MBI, 2016).

Table 1.1. Required Research to Seal an Underwater Cylinder via Explosive Lensing.

Step Specific Focus of Each Step Explosive Media
1 | Single Shockwave interaction with a cylindrical body. Air
2 | Multiple shockwave interactions with a cylindrical surface. Air
Cylinder diameter’s effect on peak pressure from the .

3 . Lo Air
shockwave traversing the cylindrical surface.

4 Dynamic loading required to collapse a centrally located Air
cylinder.

5 | Single Shockwave interaction with a cylindrical surface. Water

6 | Multiple shockwave interactions with a cylindrical surface. Water
Cylinder diameter’s effect on peak pressure from the

7 . o Water
shockwave traversing the cylindrical surface.

8 B_ubble dynamics from multiple charges detonated Water
simultaneously.
Bjerknes force from multiple charges acting on a centrally

9 . Water
located cylinder.

10 Dynamic loading required to collapse a centrally located Water

cylinder.




The shockwave interaction with a cylinder surface (Step 1) is discussed in Section
2.3. This research used the techniques described in Section 2.3.4, to obtain a curve fit
equation to predict the pressure from a single shockwave interacting with a cylindrical
body. Due to time and budget constraints, this research focused on Step 2: Multiple
shockwave interactions with a cylindrical surface, in Air. As a result, the objectives,

theories, and tests detailed herein focus on Steps 1 and 2 in Table 1.1.

1.5. RESEARCH OBJECTIVES

The primary objective (Objective 1) of this research is to identify applicability and
accuracy of the “Multiple Shockwave, Cylindrical Surface Peak Pressure Predictive
Method: Along a symmetry plane.” The Peak Pressure Predictive Method is the process
developed, by this author, to predict the peak pressure from multiple shockwaves
converging on a cylindrical surface along the symmetry plane. The Peak Pressure
Predictive Method uses calculations based on a single shockwave interaction with flat
reflective surfaces and Equations 7 and 8, to predict the peak pressure on a cylindrical
surface from multiple shockwaves. This was accomplished with two steps. The first step
was predicting the pressure from multiple shockwaves converging on the cylindrical
surface using the Peak Pressure Predictive Method (Section 3). The second step was
empirical testing to examine the accuracy of the predictions.

The Conventional Weapons Effects Program (CONWEP) is a widely used blast
pressure predictive program. Depending on the charge size, CONWEP can have a mean
model error ranging from + 50 percent for smaller charges and + 3 percent for larger
charges. The typical mean model error from a CONWEP prediction is = 6 percent. The

research presented herein used small charges and therefore will likely have a higher mean



model error (£ 25), the mean model error was calculated using Equation 1 (M. D. Netherton

& M. G. Stewart, 2009).

Blast loading model error (ME blast) = Test result/ CONWEP Prediction 1)

Objective 2 of this research was to determine if “Multiple charges focusing on a
cylindrical surface do produce a higher peak pressure or impulse, than does a single
charge of equal net charge weight.” This objective was examined by comparing the
experimental results of Objective 1 (via the Bravo and Charlie tests as defined later in
Section 5.3) to the peak pressure and impulse from 0.4 and 0.6 Ib charges (Echo tests also
defined later). An understanding of how multiple charges can impart more peak pressure
or impulse on a cylindrical surface will aid future researchers in determining the

appropriate charge configuration for a desired performance.

1.6. CONTRIBUTION TO SCIENCE

Accidents like BP Deepwater Horizon have a substantial economic and
environmental impact. Cleanup efforts from the 2010 oil spill are still underway six years
later. The Peak Pressure Predictive Method in this research serves as a first step toward
developing a rapid response solution for events similar to the Deepwater Horizon accident.
This research can be expanded to include different cylinder diameters.

The objectives of this dissertation provide a significant contribution to the
explosives engineering industry. The Peak Pressure Method will aid in generating a

controlled, explosively induced seal of a leaking oil pipe. The research presented in the



following sections provides a means of predicting the pressure and impulse associated with
the shockwaves from multiple charges converging on a cylindrical surface.

Through further research, the Peak Pressure Method will be able to predict the
pressures from shockwaves generated by multiple charges underwater converging on a
centrally located cylinder. This can be accomplished through the 10 steps listed in Table
1.1. The Peak Pressure Method can be used to identify the explosive charge configuration
required to produce the necessary peak pressure and impulse combination from the P-I

diagrams, to seal a leaking pipe.

1.7. ORGANIZATION OF THIS DOCUMENT

This dissertation examines the literature (Section 2) necessary to understand the
fundamental aspects of the Peak Pressure Predictive Method. Once the fundamental aspects
are explained, the Peak Pressure Predictive Method (Section 3) will be described and
empirical tests used to analyze its validity (Section 4). The results and accuracy of the Peak
Pressure Predictive Method (Objective 1) will be discussed (Section 5). Section 5 will also
review if “Multiple charges focusing on a cylindrical surface do produce a higher peak
pressure or impulse, than a single charge of equal net charge weight” (Objective 2).
Finally, the conclusions from the empirical tests will be presented (Section 5), along with
the recommended future work (Section 6.2).

A number of experiments were conducted to identify equipment limitations and the
experimental parameters necessary to validate the Peak Pressure Predictive Method. The
results from these tests will be discussed in the body of this text, but the details of the
experiments are in the corresponding appendices. Several appendices are also included that

provide the necessary information for repeating the experiments described in this research.
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2. LITERATURE REVIEW

2.1. ROAD MAP FOR THIS SECTION

The literature review presented in this section is important to understand how this
current research was used to formulate the Peak Pressure Method discussed in Section 3.
The literature review will discuss the dynamics of a shockwave generated from an
explosive detonated in a free air configuration (Section 2.2). The shockwave discussion
will continue through a single shockwave interaction with a cylinder surface (Section 2.3)
and then the dynamics of two shockwave interactions (Section 2.4). Finally, the literature
review ends with sources of blast pressure variances that can exist while attempting to

record the pressure from the detonation of a free air burst explosive configuration.

2.2. SHOCKWAVE DYNAMICS FROM THE DETONATION OF AN
EXPLOSIVE IN A FREE AIR CONFIGURATION

An explosion is a sudden physical or chemical change of the state of a mass,
accompanied by a release of energy and by motion (Henrych, 1979). An explosion can take
one of the following forms: chemical, nuclear, electrical, the burst of a steam vessel, or
volcanic (Henrych, 1979). This study will focus on a chemical explosion generated shock
wave. The explosion generates a shockwave when the chemical reaction propagates from
a deflagration to a detonation (Cooper, 1996). A detonation is supersonic burning of
material, while a deflagration is subsonic burning of material. The supersonic burn of
explosive materials results in the rapid expansion of gaseous bi-products. This expansion,
in turn, rapidly compresses the surrounding atmosphere (Rinehart J. S., & Pearson J.,
1963). This effect is evident in Figure 2.1. Figure 2.1 was taken from the high-speed video

of the experiments detailed in Appendix A.
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Figure 2.1. Demonstration of the shockwave expansion observed in the high-speed video.

A shockwave is a pressure wave of a finite amplitude that arises when matter is
subjected to rapid compression (Ben-Dor, 1950). The media in which the shockwave
traverses consists of two states: shocked and un-shocked, see Figure 2.2. These two states
are due to the medium being compressed by passage of the shockwave. The ambient

atmosphere in Rolla, Missouri (1,165ft) was the media of interest in this study.

Direction of Shockwave

U-y, UNSHOCKED
MATERIAL MATERIAL
uy s
=]
P, ; b,
By e Ly —Lg—— Ee

Figure 2.2. Shock parameters in front of and behind the shockwave (Cooper, 1996).
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If the shockwave were to be viewed as a bubble similar to step 11 in Figure 2.3, then
upon complete detonation of the explosive the bubble would contain all gaseous by-
products at a given density. As a result, when the shockwave expands an increased volume
of gas at a lower density is produced. The shockwave’s expansion rate is symmetrically
equal to the decay rate. The increase in the specific volume reduces the pressure increase

caused by the shockwave (Cooper, 1996).

Incident
Shockwave
Reflected
Shockwave
Explosive
Charge I3

Surface

ey

Figure 2.3. Radial expansion of the shockwave (Department of the Army, 1974).

The reflected shockwave’s strength is dependent upon the impedance of the
medium through which it traverses and the impedance of the medium at the boundary. The
breakdown of the energy transition ratio is dependent on the impedance mismatch. When

the shockwave encounters a material of different impedance, a certain fraction of the
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energy is transmitted into the new material as a shockwave. The remaining fraction of the
energy is reflected back into the explosive’s gaseous by-product (Cooper, 1996). The
shockwave both transmits and reflects in compression when going from a low impedance
material into a high impedance material. The shockwave transmits in compression and
reflects in tension (as a rarefaction in gases) when going from a high impedance material
into a low impedance material (Cooper, 1996). Equation 2 can be used to calculate the

shock impedance (Zi) of a material where po is the material’s density (which remains

constant for our purposes) and U is the shock velocity (Cooper, 1996).

The incident pressure is the pressure difference between the ambient pressure and
the pressure generated by the shockwave (Department of the Army, 1974). A new pressure
(known as the reflected pressure) is generated when the initial shockwave interacts with a
different material and a shockwave is transmitted back into the original medium (Cooper,
1996). The strength of the reflected shockwave is a result of the strength of the initial
shockwave, the impedance mismatch of the material the shockwave is interacting with, and
the angle in which the initial shockwave interacts with the media. The pressure behind a
reflected shockwave can be as high as eight times the incident pressure (Michael M
Swisdak, 1975).

A 90-degree interaction of the initial shockwave (an interaction normal to the
reflected surface) will typically result in reflected pressures similar to those listed in Figure

2.4. The characteristics at the shock front corresponding to incident pressure are illustrated
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in Figure 2.4. Here, the left-most column is an initial incident pressure (overpressure), and
the right-most column is the estimated reflected pressure of an interaction normal to the
medium’s surface. For example, in Figure 2.4 a 15-psi incident pressure (highlighted with
a red box) measured from a shockwave will generate approximately 42-psi of reflected
pressure. In addition, the shockwave associated with the 15-psi incident pressure will have

a shockwave velocity of approximately 1,493 ft/sec.
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Figure 2.4. ldeal blast characteristics at the shock front (Swisdak, 1975).
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An initial shockwave from the detonation of an explosive can multiply an indefinite
number of times, depending on the environment in which the explosive detonates. For
example, an explosive detonated in an urban environment will generate a reflected
shockwave every time the initial shockwave (and each reflected shockwave) interacts with
surrounding objects such as buildings, lampposts, fire hydrants, and stop signs. An
explosive charge detonated in the open will not generate nearly as many reflected
shockwaves as an urban explosion.

How the shockwave interacts with an object and the shape of the object affects the
reflected pressure. For example, a flat plate should produce a different reflected pressure
than a pipe’s apex. Additionally, a shockwave that interacts with a plate at 45-degrees will
have a different reflected pressure than a shockwave that collides normal to the reflective
surface. The incident overpressure ratio vs the angle of interaction of the incident
shockwave is illustrated in Figure 2.5. In Figure 2.5 an angle of zero degrees, positions the
reflective surface perpendicular to the shockwave and 90-degrees (red box) allows the
shockwave to traverse the surface relatively unimpeded. The reflected pressure equals the
incident pressure as the angle of the reflective surface is increased to 90-degrees.

The reflected shockwave has a higher velocity than the incident shockwave. This
is due to the reflected shock’s travel through material with increased density generated
from the incident shockwave. The reflected shockwave eventually overtakes the incident
shockwave. When the reflected shockwave overtakes the incident shockwave a new
shockwave (known as the Mach stem) occurs, see Figure 2.6. The point at which the three

shockwaves (incident, reflected, and Mach stem) meet is known as the triple point.
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Figure 2.5. Angular incident reflection vs reflection pressure (Swisdak, 1975).
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Figure 2.6. Propagation of a shockwave indicating the development of a Mach stem and

triple point (Swisdak, 1975).

Theoretically, a given pressure will occur at a distance from an explosion that is

proportional to the cube root of the charge weight (Michael M Swisdak, 1975). This is

known as the scaled distance. When two charges differ in either the amount of explosive

(charge weight) or distance to the point of interest the shockwaves produce similar
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pressures at the same-scaled distance (Baird, Shockwaves, 2016). This holds true for
explosives of the same material and geometry detonated in the same atmosphere.

The scaled distance is used to correlate a given charge weight and standoff distance
to a 1 Ib charge. For example: a 0.25 Ib charge of C-4 with a 6 ft standoff will produce the
same pressure as a 1 Ib charge at a 9.5 ft standoff. The cube root scaling law has been
shown to hold true over a wide range of explosive charge weights, from microtons to

megatons, (Michael M Swisdak, 1975). Equation 3 details the scaled distance calculation.

Distance

Zp = (3)

1
Charge weight3

The scaled distance classification used in the research herein is as follows (S. J.
Smith, D. M. McCann, M. E. Kamara, 2009):
e Close-in: Zp<3
e Near-Field: 3<Zp<10
e Far-Field: Zp > 10
The distance between the charge and ground (An) affects the time it takes the
reflected wave to overtake the initial shockwave. Figure 2.7 uses the scaled charge height
and the scaled distance (Ax) to predict the scaled height of the triple point (A1). This author
used Figure 2.7 to design the experiments of this research (see Appendix B) to insure that
the initial pressure interacting with the pipe is the incident pressure and not the reflected
ground pressure or the corresponding Mach stem.
Using Figure 2.7 to obtain the standoff distance (scaled horizontal distance) and
charge height (charge height > scaled height of triple point) ensured that the pressure

measured in this research was from the most basic shockwave interactions possible.

Allowing the triple point to interact with the pressure sensors would significantly increase
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the level of complexity of this research. The added complexity is beyond the scope of this

project.

My, SCALED HEIGHT OF TRIPLE POINT )

Ay, SCALED HORIZONTAL DISTANCE TO TRISLE POINT w3

Figure 2.7. Height of triple point relative to height of burst (Michael M Swisdak, 1975).

The formation of a shockwave and its interaction with the surrounding media is an
important aspect of this research. The blast pressure associated with a shockwave will be
discussed further in Section 3.3 (How to Use the Peak Pressure Predictive Method). The

following section explains the interaction of a shockwave with a cylindrical structure.
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2.3. SHOCKWAVE INTERACTION WITH A CYLINDRICAL SURFACE

The angular interaction discussion thus far has pertained to a shockwave colliding
with a flat surface at a given angle. The reflected pressure amplification (see Figure 2.5,
Section 2.2) can be higher at an angle of interaction other than normal to the reflected
surface. The shockwave interaction with a cylindrical surface differs from the interaction
with a flat plate in that the reflected surface is continuously changing in the cylindrical
case. The rate of change, relative to the angle ©w, is dependent upon the cylinder’s radius.
The angle ©w is measured from the plane parallel the x-axis and the line tangent to the
cylinder surface at the point of interest (see Figure 2.8). For example in Figure 2.8 O at
point “b” is measured from the horizontal plane b to the line b’. The line b’ is tangent to
the cylinder surface, relative to the center of the cylinder. The rate of change for ©, relative
to four points along a cylinder’s radius is illustrated in Figure 2.8.

According to Ben-Dor’s work (1950), the pressure decays as the shockwave
traverses the cylindrical surface. The pressure decay is due to the decreasing angle ©w. The
rate ©w decreases affects the rate at which the pressure decays. As with a flat reflective
surface, the incident shockwave traverses the cylindrical surface and forms a reflected
shockwave. As the shockwave interacts with the cylindrical surface, a Mach stem can be
formed even though Oy, is constantly changing. The angle at which a Mach stem is formed
is an important part of the Peak Pressure Predictive Method described in Section 3.

The estimated angle at which the Mach stem begins to form (based on empirical
testing) is 40-degrees (Needham, 2010). The Mach stem continues to grow and propagate

about the cylinder’s surface (Needham, 2010). However, Needham’s (2010) work does not
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detail the Mach stem’s propagation beyond 90-degrees nor does it detail the shockwave’s

initial condition.
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Figure 2.8. The changing angular reflection about a cylinder (Ben-Dor, 1950).

The shockwave velocity and cylinder diameter have a substantial influence on when

or if a Mach stem is formed. Needham’s work confirms that a Mach stem can be formed.

However, the lack of setup information in Needham’s (book) limits the applicability to the

research described herein of the Mach stem forming when 6y equals 40-degrees. The

following section presents a study conducted by the Department of the Army, which

examined the shockwave interaction with a cylindrical surface using shadowgraphs.
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2.3.1. Department of Army Shadow Graph Analysis of a Shockwave
Wrapping Around a Cylindrical Body. The Department of the Army produced a
document (1974) detailing their work on explosions in air: “Engineering Design
Handbook: Explosions in Air, Part One.” One area of their study specific to this research
concerned the interactions of a shockwave with a cylindrical surface using shadowgraphs
(see Figure 2.9). The specific points of Figure 2.9 relevant to this research are the formation
of a Mach stem, the time duration the shockwave remains in contact with the cylindrical
surface, and the formation of vortices. “Explosions in Air, Part One” does not discuss the
pressure associated with a shockwave wrapping around a cylindrical body.

Figure 2.9B (top right) highlights the formation of a Mach stem on each side (top
and bottom) of the cylindrical body. The angle (6 in Section 2.3 and Figure 2.9) when a
Mach stem forms is not discussed. However, this further illustrates that Mach stems can
form on cylindrical surfaces. Figure 2.9C (bottom left) demonstrates that the shockwave
remains in contact with all 360-degrees of the cylindrical surface. This differs from what
will be discussed in the following section (Section 2.3.2). However, if the shockwave does
remain in contact with the entire cylindrical surface it would explain the pressure spike this
author observed on the back of the cylinder (see Section5).

The final point of interest in Figure 2.9 is the formation of vortices on the backside
of the cylinder. The vortices are highlighted with red ovals in Figure 2.9D. The vortices
will have an adverse effect on the impulse in the regions where the vortices exist (see
Section 2.3.2). The following section correlates the formation of vortices to the shockwave

velocity.
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Figure 2.9. Traces of shadowgraphs that reveal the interaction of a shock front with a
cylinder (Department of the Army, 1974).

2.3.2. Turbulent Flow Around a Cylindrical Body. The shockwave’s
interaction with a cylinder as it wraps around the cylinder is a fundamental aspect of this
research. The formation of vortices and the approximate angular position (8) where they
form is needed to analyze the impulse information presented in Section 5. The works
reviewed in this section addressed the vortices and wake generated by the shockwave-
cylinder interaction at a high Reynolds number (Re). The Re is a dimensionless number
that gives a measure of the ratio of inertial forces to viscous forces for given flow conditions
(Anderson & Emeritus, 2012). The velocity of the shockwave, in this research, resulted in
a high Re value. This is important to note, as the shockwave interaction with the cylindrical

surface changes as the Re value increases.
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If the shockwave is moving from left to right, meets a cylindrical body, and does
not interact with the right side (back) of the cylinder, then a positive pressure exists on the
left. The pressure decreases as the shockwave moves around the cylinder’s surface. If the
drag force is neglected a negative pressure exists on the right side of the cylinder. This
condition exists for Re equal to or greater than 10e5 (see Figure 2.10). In Figure 2.10, the
positive pressure is illustrated by an inward dip at the stagnation point, and negative
pressure is illustrated by an outward expansion of the plot. Note that Figure 2.10 is of
subsonic flow (i.e. no shockwave exists). Supersonic flow acts different from subsonic
flow because of air compressibility and the presence of a shockwave (Shahriar, 2015).
However, the pressure conditions highlighted also exist when a shockwave is present and

understanding the pressure distribution around the cylinder is important to this research.

Positive Pressure Negative Pressure

Figure 2.10. Pressure distribution on a circular cylinder, Re = 10° (C. T. Crowe, D. F.
Elger, and J.A. Roberson, 2005).



24

The Re for a fluid flowing over a cylinder can be calculated using Equation 4
(Sunden, 2016). The calculated Re based on theoretical shockwave velocity fora 0.2 Ib C-
4 charge (U = 1,493 ft/sec) across a cylinder (D = 0.55 ft) in air, which has a kinematic
viscosity of 1.46e* (v) is 5.65e6. This Re classifies the fluid flow as turbulent flow,

Re>4000 (Engineering Toolbox, 2015).

(4)

Anderson and Emeritus (2012) stated that the flow at the surface adheres to the
surface because of friction between the gas and the solid material. The flow velocity is
theoretically zero at the contact surface between the gas and solid, and as one moves away
from that surface there is a thin region of retarded flow known as the boundary layer
(Anderson & Emeritus, 2012). Therefore, the velocity changes from zero to the free-stream
velocity across the boundary layer (C. T. Crowe, D. F. Elger, and J.A. Roberson, 2005).
The boundary layer thickness grows as the flow moves over the body (i.e. the flow is more
affected by friction between the gas and the solid the further the flow travels along the solid

body (Anderson & Emeritus, 2012) see Figure 2.11).

LU i u”

Figure 2.11. Boundary layer growth (Anderson & Emeritus, 2012).
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With the low velocity in the boundary layer, the fluid particles can only travel so
far against the adverse pressure gradient until they are forced to detour away from the
surface (C. T. Crowe, D. F. Elger, and J.A. Roberson, 2005). This is known as the
separation point. The separation point is dependent upon the fluid, its free-stream velocity,
the diameter of the solid object, the Re number, and the object’s surface roughness (C. T.
Crowe, D. F. Elger, and J.A. Roberson, 2005). Figure 2.12 shows the fluid flow past a
cylinder with the separation point and the wake.

Keeping the cylinder diameter and surface roughness constant and changing the
free-stream velocity (shockwave velocity) causes the angular position of the separation
point to change (C. T. Crowe, D. F. Elger, and J.A. Roberson, 2005). The wake zone leads
to drag or flow resistance. Crowe (2005) stated that the process of vortex generation and
decay is typical of all turbulent flows and is one of the most significant aspects of fluid
mechanics.

As with subsonic flow (previously discussed), supersonic flow around a cylindrical
body has flow seperation and wake turbulance similar to Figure 2.12. Additionally,
supersonic flow generates a standing bow shockwave (see Figure 2.13). A standing bow
shockwave is a curved stationary shockwave that forms at the front of a cylindrical body
in supersonic flow (Shahriar, 2015). Note the separation points proximity similarity to the
vortices presented in the Department of Army’s work shown in Figure 2.9

From the fluid mechanics discussed in this section, the pressure associated with the
backside of the cylinder appears to be the drag force acting on the cylinder. Based on the
theories and literature discussed in this section, the shockwave does not remain in contact

with the cylinder’s surface, and the separation point is dependent upon the shock velocity.



26

 Irrotational flow

ER R

Figure 2.12. Fluid flow around a cylinder (C. T. Crowe, D. F. Elger, and J.A. Roberson,
2005).

Understanding how the shockwave wraps around the cylinder is only part of a
shockwave interaction with a cylindrical body. The pressure associated with the shockwave
is an important part of the Peak Pressure Predictive Method discussed in Section 3. The
following section is one of the two discussions on the peak pressure associated with the

shockwave interaction with a cylindrical body.

2.3.3. Haxton and Haywood Examination of a Shockwave Wrapping around
a Cylindrical Body. Haxton and Haywood investigated the interaction of shockwaves with
submerged cylindrical surfaces (Haxton & Haywood, 1986). Their research re-affirms that
the pressure decays as it wraps around the pipe (Haxton & Haywood, 1986). The initial
reflected pressure (6=0) is approximately that measured with a flat plate at an equal
distance. The reflected pressure decays to the incident pressure as the shockwave traverses

the cylindrical surface. The measured pressure on the cylindrical surface is equal to the
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incident pressure when 0 equals 0; (Haxton & Haywood, 1986) see Figure 2.14. The angle
0t exists when the line from the center for the initial charge location is tangent to the

cylinder surface (R¢), see Figure 2.14.

Bow Shockwave

Separation Point

Turbulent Wake

Figure 2.13. Shadowgraph image of a sphere where a bow shockwave, separation point,
and a turbulent wake are present in the flow (Shahriar, 2015).

The wave continues to decay as the angular position increases from 6 to 6 = 90
degrees (Haxton & Haywood, 1986). Any point beyond 90-degrees is considered to be in
the shadow region of the cylinder (Haxton & Haywood, 1986). The shadow region is the

area behind an object in which there is a significant pressure drop due to the deflection of
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the shockwave by the object (Department of the Army, 1974). Haxton and Haywood’s

equations do not predict the pressure on the cylindrical surface beyond 90-degrees.

Wave path

Infinite fluid field

Shadow

O
Incident wave
origin
Cylinder

Figure 2.14. The underwater shockwave interaction with a cylinder (Haxton & Haywood,
1986).

The equations presented by Haxton and Haywood are also only applicable for
charges within one cylinder diameter (Close-in scaled distance). The experiments detailed
in Appendix B place the charge for this research in the near-field scaled distance. As a
result, Haxton and Haywood’s equations were not used in this research to predict the

pressure associated with a shockwave wrapping around the cylindrical surface.

2.3.4. Glasstone’s Examination of a Shockwave from a Nuclear Explosion
Interacting with a Cylindrical Body. Glasstone’s work (1962) “The Effects of Nuclear

Weapons” includes the examination of a shockwave from a nuclear blast interacting with
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a cylindrical body. Some examples of cylindrical bodies studied are telephone poles, smoke
stacks, Quonset huts, and spherical huts (Glasstone, 1962). Glasstone’s work, shown in
Figure 2.15, is the result of charges in the “Near-Field” and “Far-Field.” The peak pressure
predictions from a shockwave wrapping around a cylindrical body presented in Glasstone’s
work were re-drawn, for the work presented herein, and are presented in Figure 2.15. The
pressure is presented as a ratio of the reflected pressure (P1) at 6 divided by the initial
reflected pressure at 6 = 0 degrees (Pr).

To predict the peak pressure at an angle on the cylindrical surface (0<6<180
degrees) using Figure 2.15, multiply the pressure at the apex of the cylinder by the ratio
corresponding to the angle of interest. For example if the angles of interest are 40 and 180-
degrees. Then the corresponding ratios are 0.8 and 0.3, respectively. If the peak pressure
at the apex of the cylinder is 50 psi. Then the predicted peak pressures at the angles of
interest are 40 and 15 psi, respectively.

Understanding the pressure associated with the shockwave traversing a cylindrical
surface is only part of the problem. Using the ratio of P1/P; to represent the peak pressure
associated with a shockwave wrapping around the cylindrical surface is a fundamental part
of the Peak Pressure Predictive Method described in Section 3. The following section

details two shockwave interactions with respect to angular influence and explosive lenses.

24. TWO SHOCKWAVE INTERACTIONS

This section discusses the angular influence on pressure amplification. This section
also describes explosive lenses formed by multiple shockwaves. A shockwave generates a
front-boundary condition with an increased density from the ambient media it is traversing.

This increased density changes the impedance of the media at the shock front and creates
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an impedance mismatch when two shockwaves collide. The shockwaves will interact with
this impedance mismatch similar to how a shockwave interacts with a reflective surface,

see Section 2.2.
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Figure 2.15. The ratio for P1/P; at angular positions from a shockwave traversing an
arched structure (Glasstone, 1962).

The nature of the interactions is dependent on the number of shockwaves, the
strength of the shockwaves, the direction of the shockwaves, and the angle of interaction.
The measured pressure at the point of collision will be greater than the summation of the
two incident shockwaves. A pressure amplification of two shockwaves of unequal
amplitude colliding head on is illustrated in Figure 2.16. The strength of the shockwaves
involved in the interaction determines the reflected pressure’s amplification.

In Figure 2.16 U, u, rho, and P denote the shockwave velocity, particle velocity,

density, and pressure, respectively. The subscript correlates to the shockwave. In Figure
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2.16 the pressure from the right moving shockwave (Py) is less than the pressure from the
shockwave traveling to the right (P2). When the two shockwaves collide the resultant

pressure (P3), is higher than the summation of P1 and P».
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Figure 2.16. The pressure amplification of two shockwaves of unequal amplitude
colliding (Cooper, 1996).

The shockwave in Figure 2.16 are colliding “head-on.” Understanding this point is
important when the shockwaves collide on the cylindrical surface. However, with multiple
charges converging on a cylindrical body the shockwaves may interact prior to the
cylindrical surface. Therefore, it is important to understand how the angle the shockwaves
interact affects peak pressure. The following section examines how peak pressure can be

influenced by two shockwaves colliding at different angles.

2.4.1. Angular Influence on Pressure Amplification of Two Shockwaves
Interacting. The angle of interaction significantly affects the reflected pressure
amplification. Figure 2.5 in Section 2.2 illustrates the angular influence on amplification

from a single shockwave colliding with a flat surface. This same principle governs the
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angle of interaction between two shockwaves. Shanes (1947) examined the effects of the
angle of interaction between two shockwaves and the resulting peak pressure. He was
particularly interested in the incident shockwaves generated from two charges underwater.
Shanes (1947) examined two 3.75 Ibs charges placed 4 ft from the sensor. The angle
between the charge and the sensor varied with each test, see Figure 2.17.

The pressure measured from a single 3.75 Ib charge was 8,360 psi. A single 7.5 Ib
charge was 11,000 psi. Two 3.75 Ib charges that were separated by 12-degrees (84-degrees
in Figure 2.18) generated a peak pressure of 11,700 psi. At 46-degree (66-degrees in Figure

2.18) spacing, the peak pressure increased to 2.9 times the pressure of a single 3.75 Ib

charge.
3.75 Ib Explosive Charge | Ya° / _Arllgle Alghla8
W s e in Figure 2. A
L saimp =1 > RS y b
| @2 o pam B e = 2
?jg\ = X o : }:;:\9:._
e T~ | T
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: plosive Charge | = ¢ 18 e

Figure 2.17. Set-up for Shane’s (1947) underwater multiple shockwave tests.

The peak pressure amplification began to diminish once o exceeded 64-degree. He
also noticed that the impulse increased to two times that of a single charge when o was 64-

degree. Shanes’ (1947) findings on angular influence on pressure amplification of two
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shockwaves interacting are illustrated in Figure 2.18. Shanes (1947) did not measure the
shockwave’s interaction beyond 90-degrees.

From Shanes’ work, it is clear that two 3.75 b charges can impart a higher peak
pressure and impulse on a flat surface than a charge of equal net weight (7.5 1bs). Shanes’
work does not address more than two charges interacting on a centrally located sensor. In
addition, Shanes’ work does not address multiple shockwaves interacting on a cylindrical
surface. However, using a charge configuration to improve a desired performance parallels
the technique of explosive lensing. The following section details explosive lensing and the

models of importance to this research.
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Figure 2.18. Results gathered from underwater multiple shockwave tests (Shanes, 1950).
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2.4.2. Explosive Lenses Formed by Multiple Shockwaves. An explosive lens
can be summarized as the use of charge geometry, additional explosives, inert material,
and/or multiple initiations points to achieve a desired performance from shockwave
interactions in a system. The use of explosive lenses allows researchers to obtain a
detonation wave of virtually any shape by either changing the shape of the explosive or
making the explosive non-homogeneous (D. B. Moore & T. C. Poulter, 1956). An
explosive can be made non-homogeneous by inserting an additional explosive with a
different detonation velocity and/or inserting an inert material of a specific shape and
thickness (Busco, 1970). An example of a non-homogeneous explosive lens is shockwave
refractive tape invented by Sir Sydney Alford (Kenward, 1986).

Modifying the geometric conditions of an explosive is a commonly practiced
lensing technique. Melvin A. Cook (1958) demonstrated that a traditional conical shaped
charges (CSCs) could be improved by modifying an explosive’s geometric conditions. The
modified geometric shape drastically reduced the amount of explosive used in the CSC. A
CSC with a modified geometric shape then exhibited a similar performance to the initial
design (see Figure 2.19). As a result, many explosive devices have since modified the
explosive’s geometric conditions as a means of reducing the amount of explosives required
to accomplish a desired performance. In some cases, a detonation wave generator (DWG)
has been utilized as an explosive lens to reduce the amount of explosive.

Busco (1970) examined the optical properties of detonation waves (i.e., optics of
explosives) as they traveled through various explosive lenses. He determined that the optics

of explosives could be modeled similarly to optics in other fields (e.g., in optics of light,
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sound waves, microwaves). Busco also provided the classification for different explosive

lenses.

HIGH EXPLOSIVE

BOOSTER

(b) .
Figure 2.19. A CSC with modified geometric conditions (Cook, 1958).

Busco’s (1970) two classifications for explosive lenses are pure DWGs and hybrid
DWGs (Busco, 1970). Pure DWGs consist of only explosive media. Either the explosive’s
shape is modified or an additional explosive of a different detonation velocity is used to
shape the detonation wave (Busco, 1970). Hybrid DWGs consist of both explosive media
and inert material. In a hybrid DWG, an inert material is inserted into the explosive to
modify the detonation wave (Busco, 1970). Figure 2.20 illustrates the explosive lenses
listed in Busco’s work. This research was focused on a circular implosive discontinuous
DWG. The circular implosive discontinuous lens is highlighted in Figure 2.20.

A circular implosive discontinuous DWG consists of “n” charges with the same
explosive weight that implode on a central point. An explosive lens can consist of different
conditions. No general equation can calculate both a shockwave’s pressure and shape at a
given time. Rather, an analysis of the explosive detonation process is performed as it

interacts with the lens to determine the geometric shape of the detonation. The density of
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the explosive(s) and the media in which it transfers into are used to calculate the detonation

pressure.
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Figure 2.20. Optical properties of explosive lenses (Busco, 1970).

Explosive lenses can reduce the amount of explosives needed to achieve a desired
performance. The Busco Model of a circular, implosive, discontinuous explosive lens
predicts neither the peak pressure at the center point of the lens nor the effects of the lens
interacting with a curved surface. This research focused on the resultant peak pressure and

impulse from a circular, implosive, discontinuous explosive lens as it interacted with a
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cylindrical surface. The objectives of this research will contribute to the modeling of
explosive lenses.

Explosions have a number of phenomena that can make collecting empirical data
challenging. These challenges can be a result of equipment limitations, test site, weather
(e.g. rain, temperature, humidity, and air pressure), and charge configuration that induce
pressure variances. The following section details how the charge configuration can

contribute to variances in pressure.

2.5. BLAST PRESSURE MEASUREMENT VARIANCES

The charges used throughout this research were hand packed C-4 charges. Hand
packed charges have an increased potential to induce variances when measuring peak
pressure. For this research, variance in peak pressure refers to a difference in the recorded
pressure, measured radially, from a centrally located charge. Figure 2.21 shows four
pressure sensors that were used to measure the radially expanding peak pressure from a
centrally located explosive charge. The methods used to suspend the charges and how the
charge is confined can induce variances when measuring peak pressure. This section details
how changes in the charge density and charge confinement can induce variances in peak
pressure.

The charge’s density directly affects its detonation velocity (Cooper, 1996). A
series of hand-packed charges can vary in density from charge to charge. Thus, they also
affect both the rate at which the explosive detonates and the rate at which the shockwave
expands. The detonation velocity relationship between two charges of similar explosives
with varying densities can be approximated with Equation 5, where Dy and D> are the

detonation velocities of the two explosives and p1 and p. are the densities of the two
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explosives (Cooper, 1996). When the density change is small, within a 10-15% range,

can be assumed to be f =3 (Cooper, 1996).
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Figure 2.21. Radial pressure measurement from a centrally located explosive charge.

D; =D, + B(p1 — p2) )

The charge density directly affects the velocity of the shockwave (Cooper, 1996).
The pressure associated with a shockwave is affected by the shockwave’s velocity.
Therefore, variations in the charge density can induce variations in the pressure

measurements. This principle is important to the empirical tests described in this research.
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The tests conducted in Appendix C were confounded with pressure variances and
consequently the test results were inconclusive. The tests in Appendix C lead to a second
test series (Appendix A) that examined the charge geometry and pack ability on shockwave
radial expansion.

The nature of how the hand packed spherical charge in Figure 2.21 was suspended
resulted in a non-uniform radial expansion (see Appendix A). Needham (2010) discussed
a similar suspension method for a spherical charge in which a 100 Ib cast TNT charge was
suspended by seatbelt straps. The straps impeded the shockwave expansion and resulted in

a non-uniform radial expansion (see Figure 2.22).

TNT Charge

Figure 2.22. The initial charge prior to detonation (A) and the blast wave expfon to
four times the initial diameter highlighting the impeded shockwave expansion (B)
(Needham, 2010).
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The work the shockwave is imparting on the seatbelt straps diminishes the available
explosive energy for the shockwave. Cooper (1996) stated that the amount of energy
available for the explosive might be partitioned between the air shock and other work that
the explosive is doing at the same time. This explanation summarizes the point Needham
iIs making with the seatbelt straps suspending the 100 Ib TNT charge. The work the
shockwave imparts on the straps reduces the potential near-field pressure measurements
that align with the original seatbelt strap radial position. While Needham’s work does not
specify any pressure measurement variances, Dr. Grulke’s work on blast pressure discusses
the pressure variances from small charges with a near field scaled distance.

Dr. Grulke (2006) discusses blast pressure variances from small charges close to
the pressure sensor. Dr. Grulke examined 10 gram charges positioned 17 inches from the
sensor. The fireball expansion was not perfectly spherical, as one would expect from a
spherical charge, see Figure 2.23.

The non-uniformity of the fireball correlates to asymmetrical radial pressure
measurements. The four free field pressure sensors, in Figure 2.23, have an average
pressure variance of 7.6 psi. The average pressure variance was obtained from the
maximum and minimum pressure from each of the six repetitions. Dr. Grulke reaffirms
Cooper and Needham’s point that the work the shockwave imparts on the confining
material directly affects the shockwave expansion. Dr. Grulke also states that the detonator
orientation and charge shape can contribute to variances in pressure measurements.

The explosive charges used in this research were 1.5-inch diameter cylinders. The
C-4 was hand packed in a cardboard shipping tube with uniform confinement. The uniform

confinement reduced the likelihood of a non-uniform pressure distribution similar to what
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has been shown in this section. The radial expansion of this charge configuration was
compared to hand packed spheres and a 1-inch diameter cylinder in Appendix A.
Understanding how confinement affects the shockwave expansion is an important part of

the experimental design (Section 4).

Figure 2.23. Asymmetrical 10 gram explosive event captured with high-speed camera
(Grulke E. A., Lusk B. T., Perry K. A. Hoffman J. M., and Saito K., 2006).
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2.6. SUMMARY

The concepts and theories discussed in this section examine a shockwave generated
from a chemical explosion. How the pressures associated with a shockwave can be
amplified and the shockwave interaction with a cylindrical surface and are important
concepts to this research. The current research investigated shockwaves from multiple
charges interacting with a centrally located cylinder, which had not been previously
examined (to this author’s knowledge). This research opens significant opportunities to
advance the use of explosives lensing through a number of disciplines.

The following section will detail this authors Peak Pressure Predictive Method for
multiple shockwaves converging on a centrally located cylinder. The sources of pressure
measurement variances were considered during the experimental design process to

minimize the pressure variances recorded during the empirical testing.
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3. MULTIPLE SHOCKWAVE, CYLINDRICAL SURFACE PEAK
PRESSURE PREDICTIVE METHOD FOR PRESSURE ALONG THE
SYMMETRY PLANE (OBJECTIVE 1)

3.1. ROAD MAP TO THIS SECTION

The literature review in the previous section has laid the foundation to explain the
Peak Pressure Predictive Method. This section guides the reader through the theory of the
Peak Pressure Predictive Method (Section 3.2). Once the theory of the Peak Pressure
Predictive Method is explained, Section 3.3 describes the process for predicting the
pressure associated with shockwaves from multiple charges converging on a centrally
located cylinder - at the symmetry plane. Section 3.3 provides the predicted pressures for
the angular spacings of interest. These predicted pressures will be compared to the

empirical results presented in Section 5.

3.2. THEORY OF THE MULTIPLE SHOCKWAVE, CYLINDRICAL SURFACE
PEAK PRESSURE PREDICTIVE METHOD FOR PRESSURE ALONG THE
SYMMETRY PLANE (OBJECTIVE 1)

To elaborate on the Peak Pressure Predictive Method, the inefficiency of a single
charge acting on a centrally located cylinder needs to be discussed. Shanes’ (1947) work
reviewed in Section 2.4.1, indicates that multiple charges are more effective at imparting a
higher peak pressure on a flat reflective surface than a single charge of equal net weight.
This research presented herein clarifies the inefficiency of a single charge acting on a
centrally located cylinder with respect to pressure amplification and total impulse.

The percentage of the explosive pressure acting on the pipe is relative to the
cylinder size and the charge standoff (i.e. a bigger cylinder will result in a larger percentage

of explosive pressure acting on the cylinder surface than a smaller cylinder each with the
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same standoffs). Similarly, a smaller standoff will result in a larger percentage of explosive
pressure acting on the cylinder surface than larger standoff (see Figure 3.1).

For a charge that is not in contact with the cylindrical surface the percentage of the
explosive pressure, relative to the radial expansion, cannot be greater than fifty percent of
the total available energy. The black dashed line in Figure 3.1 illustrates this. None of the
gas expanding to the right of the dashed line will interact with the cylindrical surface. This

is true regardless of the standoff distance, charge size and pipe diameter.

Radial gas expansion Pressure acting on

m cylinder Surface

Pressure acting on
cylinder Surface

Explosive charge X v '.
Explosive charge

Figure 3.1. Comparison of explosive pressure acting on a cylinder for different standoffs.

The scaled distance of the scenario depicted in the left-hand schematic in Figure
3.1 puts the charge in the “far-field” range, whereas the right-hand schematic shows the
charge in the “close-in” scaled distance range. The radial expansion between the blue lines

depicts the difference in the explosive pressure acting on the pipe.
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Only a fraction of the explosive gas from an individual charge is acting on the
cylinder. There is no means of amplifying the pressure of a free airburst explosion beyond
introducing boundary reflections or reducing the scaled distance. Once, the charge is fully
detonated the peak pressure cannot be increased without a reflective boundary.

The use of multiple charges allows for an amplification of the pressure field over
the cylindrical target surface. Therefore, to create the desired pressure amplification on the
cylinder surface, interactions with reflective boundary conditions need to be generated.
Multiple charges enable the shockwave expansion of a single charge to serve as a reflective
boundary for each neighboring charge.

The shockwaves from the two charges interact along a plane that is equidistant from
each charge and passes through the center of the cylinder. This plane serves as a symmetry
plane and therefore it serves as a reflecting plane similar to a free airburst interacting with
the ground (Baird, Symmetry Plane, 2012). Not only does the shockwave act as a reflecting
boundary, increasing the associated pressure from each charge acting on the cylindrical
surface. The increase in pressure can be attributed to the reflected shockwave from the
symmetry plane and possibly the formation of a Mach stem. In Figure 3.2, Ix represents
the incident shockwave and Rx represents the reflected shockwave from the symmetry
plane, where “X” corresponds to the charge.

The symmetry planes essentially “focus” the explosive gasses for charges that have
two or more neighbors (see Figure 3.3). The red segment, highlighted in Figure 3.3,
represents the portion of Charge 1's radial expansion “trapped” between its neighboring
charges. The green segment, highlighted in Figure 3.3, illustrates the path the “trapped”

explosive gasses will follow as it is focused on the cylinders surface.
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Charge 1

Charge 2

Cylinder

Symmetry Plane

Figure 3.2. Shockwaves from two charges forming reflected shockwaves along the
symmetry plane.
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Figure 3.3. Focusing of explosive energy on cylinder surface.
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The Peak Pressure Predictive Method assumes the shockwave interactions at the
symmetry plane parallel how a shockwave interacts with a solid reflective surface (see
Figure 3.4). This means the shockwave interaction will generate two reflected shockwaves
traveling away from the line of interaction, see Figure 3.2. This also means the reflected

shockwaves can form a Mach stem and a triple point.

INCIDEM T WAVE INCIDENT WAVE
REFLECTED WAVE .
CHARGE H,.—"‘"\.PAI‘H OF

1 .’ TRIPLE POINT - TRIPLE POINT
l : REFLECTED WAVE ¥ == _ MACH STEM T

I - / l

1

YA Y N\ NN\ AV \

A"
1"— 13 “!

Symmetry Plane

Figure 3.4. Figure 2.6 edited to illustrate the aspects of a shockwave interaction with a
symmetry plane (Swisdak, 1975).

This assumption enables using conventional pressure predictive techniques for
multiple shockwave interactions with a centrally located cylinder. The question then
becomes, “does the shockwave interact with the cylinder surface before the Mach stem
overtakes the incident shockwave?” If the incident shockwaves interact with the cylinder
before the Mach stem overtakes it, then the multiple shockwaves will collide on the
cylindrical surface at the symmetry plane.

This collision is assumed to be a head-on collision. The incident shockwave

interacts with the cylindrical surface and generates a reflected shockwave prior to the head-
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on collision. Therefore, the two shockwaves colliding head-on, on the cylinder surface, are
the two reflected shockwaves from the initial incident shockwaves. For this case, the
pressure (Pc) can be predicted using the amplification factors from a head on collision
(Figure 3.5). In Figure 3.5, a ratio of Pi/Po was used to predict the amplification of P;.
However, the research presented herein uses the ratio of P1/Po to predict the amplification
of Pc. Where Py is the pressure associated with the shockwave reflecting off the cylindrical

surface.

INCIDEMNT
ONVERFRESSURE
RATIO

P1/Po

ANGLE
{degrees)

Head-on Collisions | 2.0¢ 2.08 2.7 2.25 2.40 275 3.33 3.80 4.50 553 4.44

0.05 0.0 0,20 0.30 0.5 .00 200 300 500 100 20.0

Figure 3.5. Figure 2.5 edited to illustrate pressure amplification associated with various
P1/P, ratios (Swisdak, 1975), modified.

The reflected pressure (P1) used in the P1/Pq ratio is the pressure associated with the
angular position of the symmetry plane. For example if two charges have an angular
spacing of 90-degrees, then Py is the pressure associated with 45-degrees. Glasstone’s work
reviewed in Section 2.3.4 presents Py as a ratio of the reflected pressure at the apex of the
cylinder surface (Pr). This research uses the same technique for predicting the pressure of
the colliding shockwaves along the symmetry plane, but the ratios are specific for a 6.65-
inch diameter cylinder.

When the Mach stem overtakes the incident shockwave, the Mach stem imparts a

pressure on the cylindrical surface, along the symmetry plane. The pressure along the
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symmetry plane (Pc) is the reflected pressure from the Mach stem (Pwm) and the Mach stem
is the pressure reflection from the incident shockwave (Pi). The incident pressure is
assumed to be the pressure at the cylinder apex, prior to generating a reflection. For
example, if a cylinder is 52 inches from a charge, then Pi is the incident pressure 52 inches
from the charge. The reflected pressure (Pm) from the incident shockwave can be calculated
using the amplification factor in Figure 3.5 for the corresponding Pi/P, ratio. The pressure
along the symmetry plane (P¢) from the Mach stem reflection can be calculated using the
amplification factor in Figure 3.5 for the corresponding Pwm/P, ratio.

By assuming the shockwave reflection along the symmetry plane is similar to the
shockwave from a free airburst interacting with the ground, Figure 2.7 can be used to
determine if a Mach stem is present for different angular spacings and standoff
configurations. For example, consider two charges with an angular spacing of 40-degrees
and each charge is 4.33 ft from the cylindrical surface. Then the distance between charges
is 1.5 ft. and the distance from the charge plane to the cylindrical surface is 4 ft. Using a
0.2 Ib charge An and Ax are 2.5 and 6.9, respectively. Knowing A+ and Ax the length of the
Mach stem can be obtained using Figure 2.7. From Figure 2.7 At is 1.2, which translates to
a Mach stem length of 8.4 inches on one side of the symmetry plane.

The amplification of the reflected shockwave (Rx in Figure 3.2) is dependent upon
the boundary conditions that generated the reflected shockwave (see Section 2.2).
Therefore, the boundary conditions associated with a “solid” reflective surface will likely
produce a higher amplification than two shockwaves of equal amplitude colliding head on.
The pressure amplification used in the Peak Pressure Predictive Method uses the

amplification from a shockwave colliding with a “solid” reflective surface (see Figure 3.5).
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As a result, the Peak Pressure Predictive Method may need to be adjusted to account for
this lower amplification.

Additionally, the length of the Mach stem predictions is for a shockwave interaction
with a “solid” reflective surface. As a result, the length of the Mach stem may be over
predicted. Without empirical testing, the extent of the potential Mach stem length over
prediction is unknown. The Peak Pressure Predictive Method does not account for the
Mach stem and assumes the shockwave interactions will occur on the cylindrical surface.
The following section details how to use the Peak Pressure Predictive Method to estimate

the pressure from two charges acting on a cylindrical surface along a symmetry plane.

3.3. HOW TO USE THE PEAK PRESSURE PREDICTIVE METHOD

This research identified the following steps to predict the peak pressure along the
symmetry plane from two shockwaves colliding on a cylindrical surface. Each step is
explained and calculated in this section for the angular spacings of interest. The angular
spacings of interest are 40, 60, 90, 120, and 180-degrees. Section 4 discusses why these
angular spacings were selected. The steps of the Peak Pressure Predictive Method are as
follows:

Step 1: Calculate the TNT equivalent charge weight (if applicable).

Step 2: Estimate the peak overpressure using Figure 3.7.

Step 3: Calculate the Charge Geometry’s Effect on Estimated Peak over

Pressure (if applicable).

Step 4: Calculate the reflected pressure.

Step 5: Identify the angular position of symmetry plane.
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Step 6: Calculate the pressure wrapping around the cylindrical surface (P1)

using Equations 7 and 8.

Step 7: Calculate the P1/Pg ratio.

Step 8: Use Equation 9 to calculate the pressure amplification (Pamp).

Step 9: Calculate the pressure for the colliding shockwaves at the

symmetry plane using Equation 10.

The following sections present the techniques for predicting the pressure froma 0.2
Ib cylindrical charge acting on a cylindrical surface. The pressure acting on the cylindrical
surface is then used to predict the pressure along the symmetry plane for two shockwaves

colliding head-on.

3.3.1. Step 1: Calculate the TNT Equivalent Charge Weight. There are a
number of explosive predictive calculators that can be used to estimate the pressure from
a 0.2 Ib spherical charge. These pressure calculators typically use curve fit equations
developed from empirical tests. The tests used to produce the curve fit equations often used
TNT as the explosive of interest. This section describes the process of predicting the
pressure from a 0.2 Ib C-4 spherical charge using Figure 3.6.

TNT has a lower detonation pressure than C-4 (Michael M Swisdak, 1975). Not
accounting for this lower detonation pressure can result in an under prediction of the peak
pressure. The TNT pressure equivalent of C-4, for a pressure range of 10-100 psi, is 1.37
(EW=1.37) (Michael M Swisdak, 1975). Calculating the equivalent TNT charge weight

fora 0.2 Ib C-4 charge is demonstrated in Equation 6 (Michael M Swisdak, 1975).



52

TNT Equivalent = CW¢y * EW ca (6)

TNT

3.3.2. Step 2: Estimate the Peak Overpressure. The TNT equivalent of the 0.2
Ib C4 charge is 0.274 Ibs. Using the equivalent charge weight and a standoff distance of
4.33 ft the scaled distance can be calculated using Equation 3 (Section 2.2). The calculated
scaled distance is 6.67. This scaled distance can be used with Figure 3.6 to estimate the
peak overpressure (Step 2).

The 6.67 scaled distance was plotted in Figure 3.7. Where the scaled distance plot
and the peak pressure curve intersect (blue circle in Figure 3.7) is the estimated peak
pressure (Right Y axis), so the estimated peak incident pressure for a 0.2 Ib C4 sphere is
15 psi.

The charge’s shape significantly affects the shockwave’s propagation and can
therefore generate a focusing effect of the associated pressure. A spherically-shaped charge
has a different shockwave expansion than a cylindrically-shaped charge or a cubic charge
(Swisdak, 1975). This research uses a cylindrically shaped charge to use smaller charges,
yet have an amplified pressure along the plane of interest. This was important to
accommodate Missouri University of Science and Technology’s (Missouri S&T’s)
recently imposed air blast limits. Using a cylinder also helped reduce the pressure variance
associated with hand packed charges.

3.3.3. Step 3: Calculate the Charge Geometry’s Effect on Estimated Peak
Over Pressure. Understanding how the charge’s shape affects the shockwave expansion

IS an important aspect of this research. The discussion thus far has included the assumption
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that the shockwave propagation is a spherical shockwave. The assumption includes the rate

of expansion is equal in all directions for a spherical shockwave.
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Figure 3.6. Shockwave parameters for a 1 Ib. sphere of TNT (Michael M Swisdak, 1975)
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Figure 3.7 shows the difference between the shockwave expansion of a spherical
charge (left) and that of a cylindrical charge (right). Note the semi-uniformity of the
spherical charge vs. the non-uniformity of the cylindrical charge. The non-uniformity of
the cylindrical charge correlates to the center XY -plane of the cylinder (Blue dotted line)

and the Z-axis (Green dashed line).

Center of Cylinder

| Spherical Charge

Figure 3.7. Shockwave expansion ofa spherical charge compared to the shockwave
expansion of a cylindrical charge.

An increase in peak pressure from a cylindrical charge, compared to a spherical

charge, exists on the XY-plane in the center of the cylinder charge (Swisdak, 1975). The
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increase in pressure can be attributed to the detonation propagating through the cylinder.
A center-initiated spherical charge’s detonation wave propagates radially with minimal
effects from the geometry. However, with a cylindrical geometry detonated at one end, the
detonation wave interacts with the edges of the cylinder and quickly generates a planar
detonation wave. The charges used for these experiments were end initiated cylindrical
shaped charges. Once the planar detonation wave has been established, the expansion of
the shockwave is traveling faster along the X-Y axis of the charge (Walters W. P. & Zukas
J. A, 1989).

Figure 3.8 illustrates using the cylinder length to diameter ratio with the scaled
distance to obtain the estimated pressure amplification associated with the cylinder
geometry (Step 3). When the charge length to diameter ratio is 1:1.16 at a scaled distance

of 6.67, the resulting pressure is 1.1 times that of a spherical charge of equal charge weight.

3.3.4. Step 4: Calculate the Reflected Pressure. Multiplying the amplification
factor times the peak incident pressure from a sphere (15 psi) results in a pressure of 16.5
psi. The 16.5-psi incident pressure (Pi) will impact the cylindrical surface of the target and
the pressure sensors will theoretically record the reflected pressure at the apex of the target
cylinder. Using Figure 3.9 and interpolation the predicted reflected pressure (Py) is
approximately 46.4 psi (Step 4).

The 46.4 psi represents the predicted reflected pressure at the apex of the cylinder.
Knowing the pressure at the apex of the cylinder enables the prediction of the pressure
associated with the shockwave wrapping around the cylindrical surface. The following

section uses a technique similar to P1/P; ratios presented in Section 2.3.4.
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Figure 3.8. Pressure relationship between cylindrical charges and spherical charges of
equal charge weight (Swisdak, 1975)

CVER . SHOCK PARTICLE | DENSITY DYNAMIC REFLECYTED
PRESSURE| VELOCITY | VELOOITY RATIO FPRESSURE PRESSURE
(P35I} (FT/E8EC) (FT/SEC) (PSI) [PEI)

10 1371.1 424.23 1.448 2,21 25.31
15 1493.1 584.53 1.643 4.77 41.45
I 20 1605.8 724.85 1.823 8.14 59.53

Figure 3.9. Figure 2.5 edited to view 15-20 psi overpressure in order to estimate the
reflected pressure from 16.5 psi overpressure
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3.3.5. Step 5: ldentify the Angular Positions of Symmetry Plane. The
symmetry planes of interest are dependent upon the angular spacing between charges. The
angular spacings of interests to this research are 180, 120, 90, 60, and 40-degrees. Section
4.4.14 elaborates on how and why these angular spacings were selected. The angular
position of the symmetry plane is the half angle of the angular spacing, so in this research

the angular position of the symmetry planes are 90, 60, 45, 30, and 20-degrees (Step 5).

3.3.6. Step 6: Calculate the Pressure Wrapping Around the Cylindrical
Surface. The work presented in Section 2.3.4 relates the peak pressure acting on the
cylindrical surface as a percentage of Pr, where Py is the pressure at the apex of the cylinder.
The P41/P; ratios presented in Figure 2.15 can be used to estimate the pressure associated
with a shockwave wrapping around the cylindrical surface. The cylinder diameter and
charge weight (nuclear explosion) likely influence the rate the pressure decays as the
shockwave traverses the cylindrical surface. Therefore, the P1/P; ratios (Py) for a 0.2 Ib
charge interacting with a 6.65 inch diameter are required for the Peak Pressure Predictive
Method.

The data from a single 0.2 Ib C-4 charge was used to generate two predictive
equations for Py associated with a shockwave traversing a cylindrical surface. The equation
was broken into two parts to improve the accuracy of the predicted ratio. The two parts are

divided into 0 <6 <90 and 90 < 6 < 180, Equations 7 and 8 respectively.

Py, = (4e77 x03) — (8.5 5% 63) — (0.0028 x9) +1 for0<6 <90 (7)

Py, = (3e77 x03) — (6.6e7> % 63) — (0.0013 = §) +0.805 for90<0<180  (8)
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The predicted Py is plotted for 0 < 0 < 180 degrees in Figure 3.10 using Equations
7 and 8. The Predicted Py is compared to the empirical Py for a single 0.2 Ib C-4 charge.
Note that the empirical data has a spike in the Py at 30-degrees. From the discussion in
Section 2.3, this is likely a Mach Stem overtaking the incident shockwave.

When compared to the validation tests Equations 7 and 8 have an average error of
10.5%. Equation 1 (Section 1.5) was used to calculate the error for each test. The model
error for each angular position on the cylinder surface is shown in Figure 3.11. The
accepted error for CONWERP is 6 percent. However, the error can be up to 25 percent for

small charges similar to the ones used in this research.

1
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Figure 3.10. Predicted Py, compared to the empirical Py, for a single 0.2 Ib c-4 charge
illustrating the accuracy of the Py equations.
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Figure 3.11. Average error and standard deviation for angular position 6 compared to
accepted CONWERP error.

The accuracy of Equations 7 and 8 for predicting P, indicates these equations can
be used in the Peak Pressure Predictive Method. The pressures at given angular spacings
(0<6<180) are shown in Table 3.1, using ratios from Equations 7 and 8 (Step 6). However,
Py at 30-degrees was adjusted to account for the Mach stem overtaking the incident
shockwave. In the previous section, the pressure acting on the apex of the cylinder was
estimated to be 46.9 psi (Pr).

Having P: for different angular positions (6) on the cylindrical surface is an
essential part of the Peak Pressure Predictive Method. The estimated pressure acting on the
cylindrical surface can now be used to identify the pressure associated with the two
shockwaves that will collide along the symmetry plane on the cylindrical surface (Pc). The

following section details the process for using P to predict Pe.
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Table 3.1. Predicted peak pressure at a specified angular spacings using ratios Po.

Angular Position | Percentage of P From Predicted Peak
(Degrees) (P) Pressure (Psi)
0 100.00% 46.4
20 87.20% 40.5
30 94.41% 43.8
40 79.59% 36.9
45 77.96% 36.2
60 63.94% 29.7
80 43.90% 20.4
90 37.92% 17.6
100 32.30% 15.0
120 22.34% 10.4
135 17.29% 8.0
180 19.12% 8.9

3.3.7. Step 7: Calculate the P1/Po Ratio. Knowing Py, the P1/Po Ratio can be
calculated. The ambient over pressure (P0) in Rolla, Missouri at the time these tests were
conducted was 14.75 psi. Using the Py values in Table 3.1, for the angular position of the
symmetry planes of interest, the P1/Po ratios were calculated and are listed in Table 3.2
(Step 7). The angular spacings tested are 40, 60, 90, 120, and 180-degrees. Section 4
discusses why these angular spacings were selected. The symmetry plane’s angular

position is half the angular spacing.

3.3.8. Step 8: Calculate the Pressure Amplification (Pamp). The ratios and
amplification factors from Figure 3.5 were plotted in excel. Equation 9 was obtained from
a third-order polynomial curve fit of the data. Using the P1/Po ratios from Table 3.2,

Equation 9 can calculate the pressure amplification factor (Pamp).
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Table 3.2. P1/PO ratios for the angular position of the symmetry planes of interest.

Angular Position Predicted Peak
(Degrees) Pressure (Psi) P,/Po Ratio
0 46.4 3.1
20 40.5 2.7
30 43.8 3.0
45 36.2 2.5
60 29.7 2.0
90 17.6 1.2

— i 3 _ Py 2 Py
Pimp = <0.0064 x [POJ ) (0.1003 x [POJ ) + (0.8419 « [POJ) +2.0016  (9)
The pressure amplifications calculated using Equation 9 is listed in Table 3.3 (Step 8).

Table 3.3. Pressure amplification calculated using Equation 9 for the angular position of
the symmetry planes of interest.

Angular Position . Pressure Amplification
g(Degrees) P1/Po Ratio Factor (gAmp)
0 3.1 3.9
20 2.7 3.7
30 3.0 3.8
45 2.5 3.6
60 2.0 3.3
90 1.2 2.9

3.3.9. Step 9: Calculate the Pressure for the Colliding Shockwaves at the

Symmetry Plane. The pressure along the symmetry plane (Pc) can be calculated by
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multiplying the pressure of the symmetry plane of interests (P1) by the pressure

amplification factor (Pamp). Equation 10 shows this calculation.

PC:Pl*PAmp (10)

The pressure for the angular positions of interests was calculated. The calculated
pressure is plotted in Figure 3.12 (Step 9). The predicted pressures shown in Figure 3.12
are for two charges colliding on the cylindrical surface. The predicted reflected pressure
from a single 0.4 Ib charge (Pr) is also plotted in Figure 3.12. Note the predicted pressure
from multiple charges using Peak Pressure Predictive Method generates an estimated peak

pressure higher than then the single 0.4 Ib charge when the angular spacing is reduced.
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Figure 3.12. Pressure obtained using the peak pressure predictive method for the
symmetry planes of interest.
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3.4. SUMMARY

This section has presented the theory of the Peak Pressure Predictive Method
(Section 3.2). The dynamics of shockwave interactions is the foundation of the Peak
Pressure Predictive Method. The pressure amplification used in the Peak Pressure
Predictive Method uses the amplification from a shockwave colliding with a solid
reflective surface. As a result, the Peak Pressure Predictive Method may need to be adjusted
to accommodate this lower amplification.

The predicted pressures calculated in this section need to be validated with
empirical testing. The experiments outlined in Section 4 will be used to validate the
pressures calculated in this section. The pressures calculated in Section 3.3 will be
compared to the data presented in Section 5 to determine the validity of the Peak Pressure
Predictive Method. If the data collected and presented in Section 5 matches the predicted
pressures presented in this section, within +6 percent, then the Peak Pressure Predictive

Method has been validated.
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4. EXPERIMENTAL DESIGN TO EVALUATE THE OBJECTIVES OF THIS
RESEARCH
4.3. ROAD MAP TO THIS SECTION
This section provides the factors (variables) and levels (value) identified for the
experimental design to test the objectives of this research (Section 4.4). The factors and
levels were used to generate the five test series of this research (Section 4.3).
This section then discusses the test site and the physical orientation of the test site
used to test these experiments (Section 4.6). The results from the experimental design
discussed in this section will be compared to the predicted pressures shown in Figure 3.12

to determine the validity of the Peak Pressure Predictive Method in Section 5.

4.4. EXPERIMENTAL FACTORS TO TEST THE VALIDITY OF THE PEAK
PRESSURE PREDICTIVE METHOD

The factors and levels used to test the validity of the Peak Pressure Predictive
Method (Objective 1) are listed in Table 4.1. The factors and levels listed in Table 4.1 were
used to design the four experiments listed in Section 4.3. The factors and levels were also
used to design an experiment to examine the “Multiple Charges Focusing on a Cylindrical
Surface Hypothesis” (Objective 2) in Section 4.3.

The factors that were varied to test the validity of the Peak Pressure Predictive
Method are the number of charges and the angular spacing between charges. The “Multiple
Charges Focusing on a Cylindrical Surface Hypothesis” compares the effects of multiple
charges to a charge of equal net weight (e.g. two 0.2 Ib charges compared to a 0.4 Ib

charge).
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Table 4.1. Experimental factors to test the research objectives.

Experimental Type of
IOFactor Fﬁ?:tor Value
Standoff Distance Controlled 52 inches
Charge Height Controlled 39.5 inches
Sensor Height Controlled 39.5 inches
6.65 inch diameter
Cylinder Dimensions | Controlled 0.63 inch thickness
4 ftin length
Charge Mount Controlled 2 inch diameter cardboard tube
System
Initiation System Controlled Detonation cord
Test Site Controlled Missouri S&T Blast Site
1.5 inch diameter cylinder
Charge Geometry Controlled 1.65 inches in length
Cardboard confinement
Weather Noise Go / No-Go on Testing
“Charge Weight Variable 0.2, 0.4, 0.6 Ibs
“Angular Spacing Variable 180, 120, 90, 60, and 40
Degrees
Numbe_r of Sensors Variable 8,10 and 14
per cylinder
“Number of Charges Variable 1,2,3,4,5

* Value specific to test series: Alpha, Bravo, Charlie, Delta, or Echo
** Value determined by cylinder required to test the angular spacing: Pipe 1,
Pipe 2, or Pipe 3.

The angular spacing required for a test determined which cylinder was used to
measure the pressure from the shockwave interacting with its surface. The remaining
factors were held constant throughout this research. The techniques used to identify and
justify the levels of each factor are discussed in the following sections. The factors that

were held constant are discussed as well.

4.4.4. Standoff Distance. Section 2.5 highlighted some issues associated with
measuring the pressure from an explosion. Therefore, an experiment was conducted (see

Appendix B) that examined the effects standoff distance and charge size have on pressure
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measurement variances. These experiments measured the pressure uniformity from a
shockwave as it expands radially. This was done by measuring the pressure with four
pressure sensors oriented in 90-degree intervals around a single charge (see Figure 4.1).
Inadvertently, the experiments in Appendix B identified the limitations of the data
acquisition system’s max sample rate (2 MHz/sec) when measuring peak pressure. The
sample rate is not fast enough to record the peak pressure for charges in the “close-in”

scaled distance.

Representative plan view of sensor
array around a suspended charge

wires suspending
explosive charge

Y 7~ ! é"" Sensor on post

"
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d
Explosive charge s> .i 90°
‘ \
Figure 4.1. Test site orientation for measuring the pressure with four pressure sensors
oriented in 90-degree intervals around a single charge.

The results from these experiments indicate the pressure variances reduce with
charge weight and standoff. Two charge weights were tested (0.5 and 0.25 Ibs) at three
standoffs. Both charges were tested at a scaled distance of 2.5 (Close-in scaled distance).

The second scaled distance was just beyond the initial fireball expansion. These scaled



67

distances were 6.3 and 5.9 for the 0.5 Ib and 0.25 Ib charges, respectively. The third scaled
distance was greater than the second scaled distance, but randomly selected. These scaled
distances were 9.2 and 15.6 for the 0.5 Ib and 0.25 Ib charges, respectively. The results

from these tests are shown in Figure 4.2.
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Figure 4.2. Pressure variance associated with 0.5 and 0.25 Ib charges at different scaled
distances.

From Figure 4.2 it is clear that the charge weight and standoff distance influence
the pressure variances from an explosion. The 0.25 Ib charge weight has a smaller pressure

variance than the 0.5 Ib charge at a scaled distance of 2.5. Additionally, as the scaled
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distance increased the pressure variance decreased. With this understanding, a standoff
distance between the charge and the cylindrical surface was 52 inches. This standoff

distance places the cylindrical surface outside the fireball radius.

4.45. Charge Height. The Peak Pressure Predictive Method assumes the
shockwaves interacting with the cylindrical surface (single charge) or along the symmetry
plane (two or more charges) is the incident shockwave (i.e. has not reflected off any rigid
bodies). In order to reduce the likelihood of measuring any reflected shockwaves from the
ground. Ground conditions affect the shockwave’s reflection. Each surface of each stone
creates a non-normal reflection. This reflection can significantly complicate and confound
the data collected should the reflected shockwave be relative to the analysis. Therefore,
Figure 2.7 (Section 2.2) was used with the standoff distance for a 0.2 Ib charge to determine
the charge height. The charge height needed to be higher than the triple point in order to
prevent measuring any reflected shockwaves from rigid bodies. The determined charge

height to the center of the cylinder was 39.5 inches.

4.4.6. Sensor Height. Inorder to utilize the pressure amplification of the cylinder
geometry, the sensors needed to be at the same height as the center of the explosive charge.
Therefore, the sensor height was 39.5 inches. All three cylinders positioned the sensors on

the same plane as the center of the charge.

4.4.7. Cylinder Dimensions. The cylinder’s diameter significantly affects how
the shockwave wraps around the cylinder (as referenced in Section 2.3; Ben-Dor, 1950). A

smaller cylinder diameter, relative to the shockwave expansion, allows for a greater angular
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displacement per distance the shockwave traverses. The angular displacement correlates to
the reduction in pressure (also noted in Section 2.3).

Experiments were conducted to examine how the curvature of the cylinder affects
the peak pressure at the apex of the cylinder. Three cylinder diameters were tested and the
pressure was compared to the peak pressure from a flat reflective surface. The three
cylinder diameters were 2, 4, and 6.63 inches. The results were inconclusive, due to large
variances in the pressure reading from test to test. Therefore, this research used the same
cylinder diameter as the cylinder in the Deepwater Horizon accident, to test the objectives
of this research. The cylinder in the Deepwater Horizon accident had a diameter of 6.63
inches and a thickness 0.63 inches (LP, 2014). The results are given in Appendix C.

Note: If the cylinder’s surface is not smooth, the shockwaves cannot maintain
contact with the cylinder’s surface. This can create irregularities in the data collected.
Therefore, after the sensor mounts were secured in the cylinder wall. The cylinders were

resurfaced to minimize any surface roughness.

4.4.8. Charge Mount System. The mount used to suspend the charge in the
appropriate location could have an influence on the data (see Section 2.5). Therefore,
suspending the charge with a wire does not work for this research. The wires impede the
expansion of the shockwave and confound the data. In addition, the wire mount system
allows the charges to swing making their exact positions at the time of detonation
unknowable. The wire mount system also tilted the charge and evidence could be seen in
the high-speed camera where the wires impeded the shockwave expansions (see Figure

2.23, Section 2.5).
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A new charge mount system was developed to place the cylindrical charges in the
appropriate location. This system consisted of a 1.75-inch outer diameter tube mounted to
a 6-inch steel plate. A 2-inch shipping tube was used to obtain the correct charge height.
This new system allowed the charges to be easily positioned radially. The new system also
enabled a consistent vertical charge height for all of the charges in the test. The charge

mounting system is pictured in Figure 4.3.
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4.4.9. Initiation System. The simultaneous initiation of the charges is important
for the shockwave interactions to occur on the cylinder surface. Several initiation options
exist that can detonate C-4. These options are listed in Table 4.2. The associated initiation
scatter (cap scatter or low function time simultaneity standard deviation) is also listed in
Table 4.2. Cap scatter is the timing deviation associated with a detonator (blasting cap).
Some of the scatter associated with the initiation options was readily available from the

manufacturer. For the initiation options that were the scatter associated with the initiation
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option was not readily available, a series of experiments were conducted to determine the

associated scatter. These experiments are discussed in Appendix D.

Table 4.2. Available initiation options and their associated initiation scatter

Initiation Option Initiation Scatter Source
Electric Blasting Cap | % 26 Percent of Delay Time | (Hoffman J., 2013)
Non-Electric Blasting | + 26 percent of Delay Time | (Hoffman J., 2013)

Cap (NonEL)
Electronic Blasting 218.5 Microseconds ]
Cap Appendix D
(Zero delay)
Exploding Bridge 0.125 Microseconds (Teledyne, 2015)
Wire (EBW)
Non-El without delay _ (Farnfield et. al.
fuse 6 Microseconds
2009)
Detonation Cord 12 Microseconds Appendix D

Based on the cap scatter presented in Table 4.2, Missouri S&T’s initiation
equipment and accessibility of the initiation options, detonation cord was the initiation
option chosen for this research. Appendix D provides details the experiments conducted to

identify the cap scatter and why detonation cord was chosen for this research.

4.4.10. TestSite. The test site used for the objectives of this research was Missouri
S&T’s outdoor test site. The site is equipped with a research bunker that allowed the
equipment to be close to the tests. The open-air configuration reduced any reflections that

might occur if the tests were done in the underground test facility at Missouri S&T.
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4.4.11. Charge Geometry. The shape of an explosive has an effect on how the
shockwave expands (see Section 3.3.3). A hand packed C-4 sphere, unless perfectly
spherical and symmetrically initiated at its exact center will produce asymmetric radial
shock waves and pressure contours. Therefore, this author conducted experiments to
determine the appropriate charge geometry for this research.

The experiments used three charge shapes and examined the uniformity of the
shockwave expansion from each:

1. 0.2 Ib sphere: neoprene glove confinement
2. 0.2 Ib cylinder with a 1.5 inch diameter: cardboard confinement
3. 0.2 Ib cylinder with 1 inch diameter: cardboard confinement

From these experiments, detailed in Appendix B, it was determined that the
cylindrical charges had the more uniform shockwave expansion along the sensor plane. Of
the two cylinder designs, the 1.5-inch cylinder better accommodated the detonation cord
triple role knot selected for charge initiation. Therefore, a 1.5-inch diameter cylinder with
a 1.1 length-to-diameter ratio and 0.125-inch thick cardboard confinement was selected for

testing the validity of the Peak Pressure Method.

4.4.12. Weather. Weather conditions can significantly influence the outcome of
this research. These factors were identified in an attempt to either control them evenly
within the data or avoid them entirely throughout the study.

e Rain
e Wind
e Temperature

¢ Frontal system/low ceilings
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The weather factors could not be controlled. Tests could not be performed in the
rain because to the rain reduced the high-speed video clarity. High wind can blow the
charge either toward or away from the sensors when the original charge mounting
technique was used. The mounting technique removed the possibility that wind could move
the charge. Temperature affects the density of C-4 and, therefore, both detonation velocity
and pressure. All of the tests were conducted within a four-week period (December 2013)
in consistent weather in an effort to control the effect of temperature on the data.

A weather front directly affects the ceiling height. The ceiling height is the measure
of cloud base height relative to the Earth’s surface. A low ceiling traps the explosive energy
and reflects it down creating a higher reflected pressure at greater distances away from the
charge than the pressure from an identical charge detonated with a higher ceiling. A low
ceiling means the charge weights have to be lowered to accommodate the amplified air
blast. Unfortunately, this author had no choice other than to conduct many of the tests under

low ceilings.

4.4.13. Charge Weight. The charge weight was highly influenced by the test
site’s charge weight restrictions. At the time this experimental design was created, the total
charge weight could not exceed two pounds. Due to the simultaneous detonation of the
charges, the total charge weight encompasses the weight of each individual charge and the
explosive weight of the detonation cord used to initiate it.

The combination of charge weight restrictions and the finding that smaller charges
at larger standoff distances have low pressure variances from test to test and sensor and
sensor, led to the decision to use 0.2 Ib charges detonated simultaneously to test the

objectives of this research. A single 0.2 Ib charge was also used to examine how the
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shockwave wraps around a 6.63-inch diameter cylinder, simulating the pipe in the
Deepwater Horizon accident.

Objective 2 of this research is to prove the hypothesis that multiple charges can
impart a higher peak pressure or impulse on a cylindrical surface than a charge of equal net
weight. Therefore, two charges at the angular spacings of interest will be compared to a

single 0.4 Ib charge. Additionally, three charges will be compared to a 0.6 Ib charge.

4.4.14. Angular Spacing. Of course, this factor was only considered when two or
more charges were required in the experimental design (Bravo, Charlie, Delta tests).
Angular spacing refers to the angle between charges, measured from the center of the
cylinder. The angular spacing between the multiple-charge configurations used in this
research was based on both of the following:

e Total number of charges that can be evenly spaced within a 360-degree
domain.
e The minimum allowable spacing between sensors in the cylinder body.

The green highlighted cells in Table 4.3 represent the angular spacings selected to
examine how multiple shockwaves from multiple explosions interact and affect a centrally
located cylinder. If the angular spacing were less than 40-degrees, there would not be
enough material to secure the sensor mounts in the wall of the cylinder. Closer positioning
also prevented the cables from being connected to the sensors due to the lack of spacing;
therefore, the minimum angular spacing between charges was limited to 40-degrees and
sensors are needed in 20-degree increments. The process for developing and securing the

sensor mounts is detailed in Appendix E.
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Table 4.3. Integer number of charges with angular spacing
Angle Number of Charges
40 9
45
60
72
90
120
180
360 (Zero)

PRI W S| O10)| 0

To examine how multiple shockwaves converge on a cylindrical surface, the
sensors are positioned at the half angle of the charges’ angular spacing. This positioning
should capture the pressure amplification along the symmetry plane. Figure 4.4 shows the
five charge angular positions (Blue) that are highlighted in Table 4.3 and the corresponding
half angles (Black).

The number of cylinders with sensor mounts was limited to three due to the
complexity of mounting the sensors in the cylinder wall. The cylinders, the angular position
of the sensors, and the charge angular spacing tested on the cylinder are as follows:

e Pipe1-45degrees — 180 and 90 degree angular
spacings

e Pipe 2 -30 degrees - 120 and 60 degree angular
spacings

e Pipe 3 -20degrees - 40 degree angular spacing



Explosive Charge 1

Explosive Charge 2
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Figure 4.4. Demonstration of angular spacing with respect to the charge positioning and
the symmetry plane for the two charge tests.

4.4.15. Number of Sensors per Cylinder. The number of sensors per cylinder

was determined by the following and discussed below:

e The required angular position of the sensors.

e Number of sensors to cover 240-degrees of the cylinder

surface (+ 120 degrees from signature sensor).

e A sensor was always positioned at 180 degrees (opposite the

signature sensor).

The signature sensor was the sensor in line with the single charge in the Alpha and

Echo tests. The position of this sensor never changed throughout the testing, regardless of

the cylinder or number of charges used. The two-charge tests (Bravo) were oriented so the

signature sensor would record the two shockwave colliding along the symmetry plane. For

example, the two charges with 40 degree angular spacing were positioned at +20 degrees

and -20 degrees from the signature sensor. The three-charge tests (Charlie) were oriented
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so the center charge was in line with the signature sensor. For example, the three charges
with 40 degree angular spacing were positioned at +20, 0 (signature sensor), and -20
degrees.

The decision was made to only cover + 120 degrees of the cylindrical surface,
measured from the signature sensor, with sensors. This was due to how the experimental
design oriented the shockwave interactions; all of the shockwave interactions from 1-5
charges would occur in this region or at 180-degrees. Thus, the last sensor was positioned
at 180-degrees.

The number of sensors per cylinder is as follows:

e Pipe 1 — 8 sensors

e Pipe 2 —10 sensors

e Pipe 3 —14 sensors

The sensors used varied depending on the predicted pressure for a given angular
position. This reduced the likelihood of damaging the sensors. The pressure sensors used
throughout this research were PCB Piezotronic’s 102B, 102B06, and 102B15. These
sensors have a measurement range of 5,000, 500, and 100 psi, respectively. The Data sheets
are listed in Appendix F.

4.4.16. Number of Charges. The Peak Pressure Predictive Method is for
predicting the pressure along a symmetry plane, which exists when two or more charges
are positioned around the cylinder surface. Therefore, in order to examine the validity of
the Peak Pressure Predictive Method, multiple charges were used. Table 4.4 shows the

number of charges used in each test series and the individual charge weights.
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Table 4.4. Number of charges in each test series and the individual charge weight per test

Number | Individual
Test Series of Charge
Charges | Weight (lbs)
Alpha 1 1 0.2
Alpha 2 1 0.2
Alpha 3 1 0.2
Bravo 1 2 0.2
Bravo 2 2 0.2
Bravo 3 2 0.2
Bravo 4 2 0.2
Bravo 5 2 0.2
Charlie 1 3 0.2
Delta 1 4 0.2
Delta 2 5 0.2
Echo 1 1 0.4

The first test series (Alpha) used a single 0.2 Ib charge. This test examined how the
shockwave from a 0.2 Ib charge interacted with a cylinder that has a diameter of 6.63
inches. The results from this test were used as a baseline for the pressure amplification
calculations and to generate Equations 7 and 8 (see Section 3.3.6).

The second test series (Bravo) examined the validity of the Peak Pressure Predictive
Method for two charges (0.2 Ibs each) at different angular spacings. The results from this
test were compared to the predicted pressures shown in Figure 3.13. If the predicted
pressure was within = 6 percent of the empirical data, then the Peak Pressure Predictive
Method was validated for the angular spacings tested in this research.

Assuming the shockwaves interact on the cylinder surface, then the number of

charges should not influence the peak pressure along the symmetry plane. However,



79

depending on the angular spacing it is possible that the shockwaves will form a Mach stem
that will overtake the incident wave and interact with the cylindrical surface. To determine
if the number of charges influences the peak pressure along the symmetry plane, the third
test series (Charlie) has three charges (0.2 Ibs each) at specified angular spacings.

The fourth test series (Delta) maintains the assumption that the number of charges
should not influence the peak pressure along the symmetry plane, so long as the Mach stem
has not overtaken the incident shockwave. Keeping the charge weight restrictions in mind
the Delta tests were designed to cover the front half of the cylindrical surface (6>180
degrees) with charges at a given angular spacing. When the angular spacing was 180-
degrees, two charges (in the Bravo test series) covered the entire cylindrical surface so the
180-degree angular spacing with two charges was not repeated for this test series.
Additionally, when the angular spacing was 120-degrees, three charges (in the Charlie test
series) covered the entire cylindrical surface, so the 120-degree angular spacing with three
charges was not repeated for this test series. The number of charges required to cover the
front half of the cylindrical surface, when the angular spacing was 40-degrees, exceeded
the charge weight limit when the Detonation cord was added to the total charge weight.
Therefore, the 40-degree angular spacing was not tested in this series. Subsequently, only
90- and 60-degree spacings were tested during the Delta test series. The number of charges
for each test were four and five (0.2 Ibs each), respectively.

The final test series (Echo) was used to examine the “Multiple Charges Focusing
on a Cylindrical Surface Hypothesis” (Objective 2). This test series uses a single, but larger
charge in each test. Test 1 uses a 0.4 Ib charge, and the results from this test were compared

to the results from the Bravo tests. Test 2 uses a 0.6 Ib charge, the results from which were
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compared to the results from the Charlie tests. Larger charge weights (0.8 and 1.0 Ibs) were
not tested due to time constraints. The following section provides the test matrices for each
test series (Alpha, Bravo, Charlie, Delta, and Echo) using the factors and levels presented

in this section.

4.3. TEST MATRICES TO TEST THE VALIDITY OF THE PEAK PRESSURE
PREDICTIVE METHOD

The factors previously discussed were used to design the test matrices to examine
the objectives of this research. The experiments were broken into five test series. These
test series are Alpha, Bravo, Charlie, Delta and Echo. These experiments examined single
charges in line with the signature sensor with various charge weights (0.2, 0.4, and 0.6 Ib).
These experiments also examined multiple 0.2 Ib charges varying the number of charges
(1-5) and the angular spacing between charges (180, 120, 90, 60, and 40-degrees).

A “one-factor at a time” approach was used to evaluate the factors of this research.
This approach has a baseline and only changes one factor-level at a time (Montgomery,
2009). A single charge 0.2 Ib charge was used as the baseline in the study reported herein.

The data collected from the experiments detailed in this section is presented in Section 5.

4.3.1. Alpha Experimental Design: Single 0.2 Ib Charge Positioned in Line
With the Signature Sensor. The Alpha test examined the pressure associated with a
shockwave, from a single 0.2 Ib charge, traversing a cylinder with a diameter of 6.63
inches. The recorded pressure was used to generate Equations 7 and 8. The peak pressure
at the signature sensor and the impulse were used to examine “Multiple Charges Focusing
on a Cylindrical Surface Hypothesis.” The Alpha test series was composed of three

experiments (Alpha 1, 2, and 3) with three test repetitions (A, B, and C) per experiment,
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and each repetition used a 0.2 Ib charge. For Alpha 1, there was a 45 degree angle between

the sensors; for 2, there was a 30 degree angle, and for 3 there was a 20 degree angle.

4.3.2. Bravo Experimental Design: Two 0.2 Ib Charges Tested at Specified
Angular Spacings. The Bravo test series examines the peak pressure from two 0.2 Ib
charges interacting with a cylindrical surface. The peak pressure from the Bravo test series
will be compared to the predicted peak pressures shown in Figure 3.12. If the predicted
pressure is within = 6 percent of the empirical data, then the Peak Pressure Predictive
Method has been validated for the angular spacings tested in this research. The Bravo test
series was composed of five experiments (Bravo 1, 2, 3, 4, and 5) with three test repetitions
(A, B, and C) per experiment, and each repetition used a 0.2 Ib charge. For Bravo 1 and 3,
there was a 45 degree angle between the sensors; for 2 and 4, there was a 30 degree angle,

and for 5 there was a 20 degree angle.

4.3.3. Charlie Experimental Design: Three 0.2 Ib Charges Tested at Specified
Angular Spacings. The Charlie test series is designed to identify if the Peak Pressure
Predictive Method is applicable when the shockwave from more than two charges are
converging on a centrally located cylindrical surface. Assuming the shockwaves interact
on the cylinder surface, before the Mach stem overtakes the incident shockwave, then the
number of charges should not influence the peak pressure along the symmetry plane.
Therefore, the Charlie test series examined the effects three charges (0.2 Ibs each) have on
the peak pressure along the symmetry plane. The Charlie test series was composed of four
experiments (Charlie 1, 2, 3, and 4) with three test repetitions (A, B, and C) per experiment,

and each repetition used a 0.2 Ib charge. For Charlie 1 and 3, there was a 30 degree angle
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between the sensors; for 2, there was a 45 degree angle, and for 4 there was a 20 degree

angle.

4.3.4. Delta Experimental Design: Charges Positioned at Specified Angular
Spacings to Cover 180-Degrees of the Cylindrical Surface. The Delta test series
expands on the experiments in the Charlie test series and examines the peak pressure when
charges are positioned to cover front half of the cylindrical surface (6>180 degrees) at a
given angular spacing. Only 90 and 60 degrees were tested during the Delta test series due
to explosive charge weight limitations. The number of charges for each test were four and
five (0.2 Ibs each), respectively. The Delta test series was composed of two experiments
(Delta 1 and 2) with three test repetitions (A, B, and C) per experiment, and each repetition
used a 0.2 Ib charge. For Delta 1, there was a 45 degree angle between the sensors and for

2 there was a 30 degree angle.

45.8. Echo Experimental Design: Baseline for the “Multiple Charges
Focusing on a Cylindrical Surface Hypothesis” (Objective 2). The Echo test series
served as the baseline for the analysis of the “Multiple Charges Focusing on a Cylindrical
Surface Hypothesis” (Objective 2). This test series uses a single charge. The Delta test
series was composed of two experiments (Echo 1 and 2) with three test repetitions (A, B,
and C) per experiment. Test 1 used a 0.4 Ib charge. The results from this test were compared
to the results from the Bravo tests. Test 2 uses a 0.6 Ib charge. The results from this test

were compared to the results from the Charlie tests.
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4.6. TEST SITE PHYSICAL ORIENTATION
A majority of the test materials, stands, and mounting systems were designed and
constructed specifically for the tests described in this research. Some of the techniques
developed for this research are detailed in Appendices D-J. The techniques discussed in
these appendices are as follows:
e Appendix D: Cylinder sensor mount construction
e Appendix E: Explosive charge construction
e Appendix F: Charge stand construction
e Appendix G: Explosive charge positioning technique
e Appendix H: Charge stand construction required to
tests the objectives of this research
e Appendix I: Explosive charge positioning technique
used to position the charges throughout this research
e Appendix J: Triggering system
Per the mine supervisor’s recent enacted procedures, all of the tests were monitored
via a blast seismograph’s microphone. The permanent seismograph, located at the Missouri
S&T test facility, monitored each blast. If the air blast became too high (in excess of 134
Db, per the new procedure), the tests were shut down for the day. Several weather fronts
interrupted the tests, forcing them to be postponed due to the air blast.
The pipe stand was positioned such that the signature sensor either pointed away
from the test bunker or was parallel to the bunker’s front surface. The signature sensor was
pointing parallel to the bunker’s surface for the single charge tests. When multiple charges

were used, the stands were turned so the signature sensor was pointed away from the
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bunker. These different positions oriented the setup so the Phantom camera was in the best
position to observe the shockwave interactions with a cylinder. The pipe stand’s

orientations relative to the camera view are pictured in Figure 4.5 and 4.6.

Figure 4.5. Single charge (Pipe 2) pipe stand setup for phantom side view, signature
sensor pointed parallel to the bunker.

Figure 4.6. Pipe stand setup of phantom view with the signature sensor pointing away
from the bunker.
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In order to trigger the data acquisition system at the proper time to capture the
relevant data from each test, the author used a so-called make trigger. A make trigger works
by using plasma generated from the explosion to bridge two contacts, thereby causing
current to flow through the contacts’ circuit. The number of make triggers depended on the
number of charges per test and the cylinder used. The data acquisition system has 16
channels. When possible all 16 channels were used to record data from the pressure sensors
and trigger timing (See Appendix J).

Di-electric grease was placed on each sensor to minimize the effects of thermal
shock on the pressure readings. Thermal shock is when the heat associated with the
shockwave causes the piezo crystal to expand and generate a false pressure reading (PCB
Piezotronics, 2011). Pre and post-test pictures were taken for each test. These pictures were
used to document any damage or test-to-test variances. An overview of Delta 2 prior to

initiation is in Figure 4.7.
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Figure 4.7. Overview of the final setup for test 17, immediately prior to initiation.



86

4.7. SUMMARY

The experiments discussed in this section were used to achieve the objectives of
this research. The Alpha test series was used to generate Equations 7 and 8, in addition to
serving as a baseline for examining the “Multiple Charges Focusing on a Cylindrical
Surface Hypothesis.” The Bravo tests were used to validate the Peak Pressure Predictive
Method for two charges interacting with a cylindrical surface. The Charlie and Delta test
continued the validation of the Peak Pressure Predictive Method by examining the peak
pressure from three charges, and when half the cylinder is surround by charges. The final
test series (Echo) was used, in addition to the Alpha tests, as a baseline for the “Multiple
Charges Focusing on a Cylindrical Surface Hypothesis.” The following section discusses

the data extraction and results from these tests.
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5. RESULTS

5.3. ROAD MAP TO THIS SECTION

This section presents how the data from the experiments discussed in Section 4
were analyzed to extract the peak pressure and impulse (Section 5.2) for comparison to the
two objectives of this research. The peak pressure results from Alpha, Bravo, Charlie, and
Delta tests were used to assess the validity of the Peak Pressure Predictive Method (Section
5.3), which was the first objective. The second objective of this research was to examine if
multiple charges can generate a higher peak pressure or impulse on the cylindrical surface
than a charge of equal net weight. Therefore, Section 5.4 compares the results from Bravo
and Charlie tests to the Echo 1 and Echo 2 tests. Section 5.4 also examines the total impulse
acting on the cylindrical surface from all five test series. This information will serve as a

first step towards understanding how to seal an underwater oil pipeline using explosives.

5.4. DATA ANALYSIS OF ALPHA, BRAVO, CHARLIE, DELTA AND ECHO
TESTS

The data from the experiments detailed in Section 4 were collected using a Hi-
Techniques Synergy P data acquisition system with PCB Piezotronic sensors. The data
were analyzed for the following information:

e Peak Pressure (psi)
e Arrival Time of the Shockwave (microseconds)
e Positive Pressure Duration (microseconds)

e Impulse (psi*microseconds)
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This section briefly describes how the data was extracted. Additionally, this section
details the process of generating the polar plots that were used to illustrate the peak pressure

and impulse acting on the cylindrical surface.

5.4.4. Data Extraction Data Acquisition System Files. The five test series each
had 16 tests. Each test was repeated three times, so a total of 48 tests were used to examine
the objectives of this research. The 48 tests produced data from 525 sensors that needed to
be analyzed for the peak pressure, arrival time of the shockwave, positive pressure
duration, and impulse. Each sensor recorded at a sample rate of 2 MHz/sec for a total of
two seconds. This resulted in a large number of data points that were analyzed to extract
the necessary information.

The sensor this section will use to demonstrate how the data was extracted was
located in the flat plate reflective surface in Alpha test 1. The flat plate reflective surface
was placed in the Alpha and Echo tests to compare the peak pressure at the apex of the
cylindrical surface to a flat reflective surface. Figure 5.1 shows the location of the flat plate
reflective surface relative to the charge and pipe locations.

Using the data from the flat plate reflective surface, the data of interest was
narrowed to 1,001 independent discrete data points collected every 0.5 microseconds. This
data has been plotted in Figure 5.2. The peak pressure, arrival time of the shockwave,
positive pressure duration, and impulse are also highlighted in Figure 5.2.

The extraction of the peak pressure, arrival time of the shockwave, positive pressure
duration, and impulse was broken down into five steps. These five steps are:

1. Establish when the data acquisition system was triggered

2. Ascertain the peak pressure (47.8 psi)
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3. Identify when the shockwave arrived at the sensor (1,448 microseconds)
4. Determine the positive pressure duration (351.5 microseconds)

5. Calculate the positive impulse for sensor (7.07 psi*microseconds)

Flat Plate Reflective
Surface

L Charge Stand

£ 2 ?,ﬂ',-':‘;‘f'f',' {A

Figure 5.1. The test S|te setup |IIustrat|ng he Iocatlon of the flat plate reflecitve surface
relative to the explosive charge and pipe locations.

The arrival time is determined to be when the pressure on the sensor rose above 5%
of the peak pressure. The data in Figure 5.2 was examined for when the pressure rose above
2.39 psi. The arrival time of the shockwave for Figure 5.2 is 1,448 microseconds.

For this research the positive pressure duration is defined as the duration of time
between the arrival time and the point in time when the pressure drops below “zero” psi.
The standard technique for identifying the positive pressure duration states that the pressure
returns to “zero” when the pressure returns to within 1% of the peak pressure (Kinney &

Graham, 1985). This technique was not used to analyze this data due to the uncertainty that



90

the lingering pressure was not associated with the multiple shockwave interactions rather
than the sensor’s sensitivity. It is understood that there is potentially an error associated
with how this author identified the arrival time and duration of pressure for each sensor.

Although it is small, this technique does have an impact on the recorded impulse data.

Alpha Test: Single 0.2 Ib Charge - Flat Plate Sensor

>>.00 Peak pressure
—
45.00 Positive pressure duration =
= 35.00
E;
]
£ 25.00
a
o
a 15.00 Impulse
5.00 Shockwave
arrival time
-5.00

1400.0 1500.0 1600.0 1700.0 1800.0 1900.0
Arrival Time (Microseconds)

Figure 5.2. Alpha tests Run 1 of 3, sensor data from flat plate.

The impulse calculations in this research used the Midpoint Riemann Sum (MRS)
technique. The MRS technique divides the area under a curve into columns of equal width,
where the center of the column intersects the curve of interest. Figure 5.3 shows the first
190 half microsecond samples, of the 1,001 samples shown in Figure 5.2. These half
microseconds samples shown in Figure 5.3 illustrate how the pressure curve was divided

into columns for the MRS technique.



91

Alpha Test: Single 0.2 Ib Charge, Flat Plate Sensor
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Figure 5.3. MRS technique showing the pressure of the first 190 half -microsecond
samples for Figure 5.2.

Using the MRS technique, the impulse for the data plotted in Figure 5.2 is 7.07
psi*microseconds. These five steps were repeated for each of the 525-pressure sensor. A
data summary from each test is listed in Appendices K-O.

The data presented in Sections 5.5 focuses on the peak pressure. The data presented
in Section 5.4 examines both peak pressure and the impulse associated with single and
multiple charges focusing on the cylindrical surface. The shockwave arrival time and
positive pressure duration were required to calculate the positive impulse for each sensor.

The data for each sensor has been summarized according to the corresponding tests.

5.4.5. Population of Polar Plots. The traditional technique for plotting the peak
pressure associated with a shockwave wrapping around a cylindrical surface has been to
use an XY plot of the data, where the X-axis represents the angular position of the sensor

and Y represents either peak pressure or a percentage of the peak pressure, see Figure 5.4.
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Figure 5.4. Traditional method for plotting pressure interactions with a cylinder, replotted
from Figure 2.16 (Glasstone, 1962).

Plots similar to Figure 5.4 suffice to represent the pressure acting on the cylindrical
surface for a single charge. However, when multiple charges interact with the cylindrical
surface, plots similar to Figure 5.4 quickly become confusing. Therefore, polar plots are
used herein to illustrate the peak pressure and impulse acting on the cylindrical surfaces
during testing.

Polar plots represent the data as a radius at a given angular coordinate. For this
research, the radius represents the pressure recorded on the cylindrical surface. The angular
coordinate corresponds to the angular position of the sensor. An example of the data used
to generate a peak pressure polar plot is listed in Table 5.1. The data corresponding to
Sensor 1 was repeated at 360 degrees to close the pressure contour for plotting.

The macro used in this research was constructed specifically to generate these polar

plots and is not standard in Excel (Pope, 2013). The polar plot generated using the



93

tabularized data from Table 5.1 is shown in Figure 5.5. The blue “Xs” are not part of the

polar plot, but rather were added to illustrate the data points in Table 5.1.

Table 5.1. Tabularized peak pressure data and corresponding angular position for peak
pressure polar plot.

Corresponding | Angular Position | Peak Pressure - Radius
Sensor (Degrees) (PSI)
Sensor 1 0 46.9
Sensor 2 30 42.2
Sensor 3 60 22.5
Sensor 4 90 94
Sensor 5 120 9.4
Sensor 6 150 11.7
Sensor 7 180 14.1
Sensor 8 210 11.7
Sensor 9 240 9.4
Sensor 10 270 9.4
Sensor 11 300 22.5
Sensor 12 330 42.2
Sensor 1 360 46.9

In Figure 5.5, the green line represents the pressure acting on the cylinder’s surface

(over 360-degrees) from a single 0.2 Ib charge located along the 0-degree angular spoke.

The pressure is plotted in 10-psi increments along the 0-degree angular spoke starting at

zero psi in the center of the plot. The pressure increments are represented by rings

expanding from the center of the plot (Origin). The 40-psi increment has been called out

in Figure 5.5 with a dashed red line. Note the cylinder’s position is not present in the polar

plots.
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Figure 5.5. Peak pressure polar plot of predicted pressure (psi) from a single 0.2 Ib
charge.

The number of data points used to make each polar plot was dependent on the
number of sensors in each pipe. When the polar plots required data from multiple pipes, a
plot was generated for each pipe and the plots were laid over one-another. The process of
generating a polar plot was repeated for the impulse acting on the cylindrical surface. Polar
plots are used in addition to XY plots to present the peak pressure and impulse in the

following sections.

55. PEAK PRESSURE PREDICTIVE METHOD VERIFICATION RESULTS
(OBJECTIVE 1)

The results presented in this section are from the Alpha, Bravo, Charlie, and Delta
tests specifically analyzing the validity of the Peak Pressure Predictive Method. The results
from the Alpha tests were used to generate Equations 7 and 8 (Section 3.3), and to analyze

the peak pressure at the apex of the pipe compared to the peak pressure on flat reflective
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surface. The Alpha tests were also used to find the pressure wrapping around the cylindrical
surface for all three pipes.

The Bravo test results will be used to explore the validity of the Peak Pressure
Predictive Method for estimating the peak pressure along the symmetry plane for two
charges. If the error from the predicted pressure using Equation 1 is = 6 percent, the Peak
Pressure Predictive Method has been validated for the angular spacings tested in this
research. The Charlie and Delta tests results will be used to examine how well the Peak
Pressure Predictive Method works for predicting the pressure along the symmetry plane,

when more than two charges are used.

5.5.4. Alpha Test Results with Respect to Multiple Shockwave Pressure
Predictive Method. How the curvature affects the reflected pressure at the signature sensor
significantly affects this research. How the curvature impacts the reflected pressure is
important, because the data used to estimate Pr in Steps 1-4 in Section 3.3 was obtained
from a flat reflective surface. If the curvature does not affect Pr, than Steps 1-4 are an
acceptable means of predicting the peak pressure at the apex of the cylindrical surface.

The recorded pressure at the signature sensor in the pipe was compared to the
recorded pressure for a sensor mounted in a flat plate. The two sensors were an equal
distance (4.33 ft) from the center of the charge. The recorded peak pressure at the apex of
the cylindrical surface and the flat reflective surface were 42.68 and 43.94 psi, respectively.
The two surfaces differ in the peak pressure by three percent. This small difference
indicates the pipe’s curvature does not appear to impact the reflect pressure at the apex of

the cylinder for this charge weight. As the charge weight increases, the curvature’s effect
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on the peak pressure may become more predominant. Further testing is needed to examine
if the curvature has an effect on the peak pressure from larger charges.

The pressure associated with the shockwave wrapping around the three pipes was
compared to determine if the pipe surfaces induced any anomalies in the data. The recorded
reflected pressure, for each pipe is shown in Figure 5.6. The three pipes have similar
pressure traces associated with the shockwave traversing the cylindrical surface. There is
a rise in pressure when the angular position is 30-degrees. As discussed in Section 2.3, this

rise in pressure can be attributed to the Mach stem forming on the cylindrical surface.
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Figure 5.6. Estimated pressure decay from a shockwave wrapping around the pipe’s
surface.

The incident pressure shown in Figure 5.6 (red dashed line) is the estimated incident
pressure required to generate the reflected pressure at the apex of the pipe (42.68 psi) using
Figure 2.5 (see Section 2.2). As expected, the reflected pressure decayed as the shockwave

traversed the cylindrical surface, in a manner similar to Glasstone’s work (1962) presented
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in Section 2.3.4. The initial estimate of 46.4 psi at the apex of the pipe’s surface was higher
than the recorded reflected pressure of 42.7 psi. As the pressure decayed around the pipe’s
surface, the pressure reduced to the predicted incident pressure of 18-psi at approximately
90-degrees.

No anomalies were identified that would indicate one of the pipe’s surfaces needed
further resurfacing. Therefore, the data collected on each pipe could be compared to one
another. This is important, as each pipe was used to test specific angular spacings. Knowing
the pipes are comparable, the results from the Bravo test can be used to validate the Peak

Pressure Predictive Method.

5.3.2. Bravo Test Results with Respect to Multiple Shockwave Pressure
Predictive Method. The Bravo tests were designed to examine the shockwaves from two
charges converging on a cylindrical surface. The point of convergence was designed to be
at the signature sensor. The results from the Bravo tests were compared to the estimated
pressures from the Peak Pressure Predictive Method to identify the model error.

The first step in examining the validity of the Peak Pressure Predictive Method was
to examine if the shockwaves are colliding on the cylindrical surface or if the Mach stem
has over taken the incident shockwave. To do this the data acquisition system’s data viewer
was used to determine the shockwave’s path, from each charge, along the cylindrical
surface. Figure 5.7 demonstrates how the data acquisition system’s data viewer was used
to analyze how the two shockwaves interact with the cylindrical surface. The shockwaves

from two charges with 180-degree angular spacing are illustrated in Figure 5.7.
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Figure 5.7. Shockwave propagation on a cylindrical surface from two charges with 180-
degree angular spacing.

The channel (sensor) in which the two charges are in line with are highlighted on
the left (Channels 2 and 6). There are two distinct shockwaves wrapping around the
cylindrical surface and colliding at the signature sensor. Interestingly, as the angular
spacing reduces to 40-degrees there are no longer two distinct shockwaves interacting with
the cylindrical surface (see Figure 5.8). The pressure traces indicate that only one
shockwave is interacting with the cylindrical surface. This indicates that the Mach stem
has over taken the incident shockwave prior to the incident shockwaves interacting with
the cylindrical surface.

Understanding that when the angular spacing is 40-degrees the two shockwaves
have formed a Mach stem is important to the Peak Pressure Predictive Method. In this case,
the Mach stem is formed from two shockwaves colliding, rather than a shockwave
interacting with a rigid reflecting surface. Therefore, the Mach stem pressure

amplifications may be different from predicted.
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Figure 5.8. Shockwave propagation on a cylindrical surface from two charges with 40-
degree angular spacing.

When comparing the estimated pressure from the Peak Pressure Predictive Method
to the empirical data, note that Mach stem amplification for a 40-degree angular spacing is
80 percent of the estimated pressure, see Figure 5.9. This can be attributed to the lower
Mach stem amplification produced from two shockwaves colliding rather than a
shockwave interacting with a rigid reflecting surface. Figure 5.9 compares the estimated
pressure for the angular spacings of interest to the pressure amplification recorded in this
testing along the symmetry plane.

. The empirical (test) data is consistently 80 percent of the estimated peak pressure.
Again, this can be attributed to the lower amplification of two shockwaves colliding, rather
than a shockwave colliding with a rigid reflecting surface. Therefore, the Peak Pressure
Predicted Method was adjusted to account for the lower pressure amplification. Figure 5.10
compares the adjusted estimated pressure using the Peak Pressure Predictive Method to the

empirical pressure amplification along the symmetry plane.
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Figure 5.10. Adjusted pressure from the peak pressure predictive method compare to the
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The adjusted estimated pressure and the empirical pressure amplification along the
symmetry plane appear to validate the Peak Pressure Predictive Method. However, the
model error needs to be calculated using Equation 1 (see Section 1.5) for the predicted
pressure. The calculated percent error for each angular spacing is compared to the accepted

CONWERP error (see Section 1.5) in Figure 5.11.
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Figure 5.11. Peak pressure predictive method error compared to the accepted CONWEP
error.

The model errors calculated using Equation 1 validate the Peak Pressure Predictive
Method. Further research is needed to account for the reduced amplification from two
shockwaves colliding head on. However, for this research the amplification was 80 percent
of that for a shockwave colliding with a rigid reflecting surface. The following section

examines how three charges influence the peak pressure on the cylindrical surface.
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5.3.3. Charlie Test Results with Respect to Multiple Shockwave Pressure
Predictive Method. For the Charlie tests, this author examined the effects three charges
(0.2 Ibs each) have on the peak pressure along the symmetry plane. With three charges, the
center charge was always positioned in line with the signature sensor. The two remaining
charges were positioned in accordance with the angular spacing from the center charge.
Ideally, by setting up the tests this way, the signature sensor would represent and collect
the peak pressure associated with the focused explosive pressure discussed in Section 3.2.

As with the Bravo test, the first step in examining the peak pressure from three
charges interacting with the cylindrical surface was to examine how the shockwaves
propagate around the pipe. The technique for examining three shockwave was the same as
described for the Bravo tests. The shockwaves from three charges with 120-degree angular

spacing are illustrated in Figure 5.12.
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Figure 5.12. Shockwave propagation on a cylindrical surface from three charges with
120-degree angular spacing.

The channel (sensor) in which the three charges are in line with are highlighted on

the left (Channel 1, 5 and 9). As with the Bravo tests, the shockwave from each charge can
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be seen traversing the pipe’s surface. Additionally, as the angular spacing reduced to 40-
degree there is again one distinct shockwave interacting with the cylindrical surface; Figure
5.13 illustrates the single shockwave, from three charges with 40-degree angular spacing,

interacting with the cylindrical surface.
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Figure 5.13. Shockwave propagation on a cylindrical surface from three charges with 40-
degree angular spacing.

The signature sensor no longer represents the symmetry plane. With three charges
two symmetry planes exist and the signature sensor will represent the pressure associated
with any trapped pressure or the formation of a Mach stem. Therefore, to grasp the full
impact of three charges acting on a cylindrical surface, polar plots were used to represent
the peak reflected pressure of each angular spacing; see Figure 5.14.

In Figure 5.14, the @ represents the center charge position for all of the angular
spacings. The circles represent the remaining two charge positions, for the respective
angular spacing. The circles are colored to match the data plotted in Figure 5.14. For

example, the two red circles represent the remaining two charges for the 90-degree angular
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spacing test (Charlie 2). The stars represent spikes in the peak pressure. Again, the stars
are color coded to correspond to the pressure data. The dashed lines represent the symmetry
plane. The dashed lines are also color coded to match the pressure data. Note the 120 and
90-degree angular spacings have a higher reflected pressure along the symmetry plane than
at the signature sensor.

In the Bravo tests, the 60-degree angular spacing had the highest peak reflected
pressure at the symmetry plane. In the Charlie tests, the 40-degree angular spacing had the
highest peak pressure at the signature sensor (not the symmetry plane). This indicates that,
for three charges, there was an increased pressure amplification for angular spacings less
than 60-degrees.

Figure 5.15 illustrates the pressure amplification for the angular spacings tested for
three charges at the signature sensor, along the symmetry plane, and two charges along the
symmetry plane. The signature sensor data shows an increase in the peak pressure as the
angular spacing decreases. However, when the angular spacing is greater than 60-degrees
the peak pressure is lower at the signature sensor than along the symmetry plane. This
lower pressure is highlighted in Figure 5.15 with a red oval.

The peak pressure is the same when the angular spacing is greater than 60-degrees
for two and three charges along the symmetry plane. This indicates the Peak Pressure
Predictive Method can be used to estimate the peak pressure for three charges acting on a
cylindrical surface, when 6>60 degrees. The three charges with 40-degree angular spacings
deviated from this predictive technique. This is due to the generation of a Mach stem prior

to the pipe surface.
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Figure 5.14. Pressure polar plot of three shockwave interactions with pipe surface (psi).

If the incident pressure from the shockwaves interacts prior to reaching the pipe’s
surface and generates a Mach stem, assuming an 18-psi incident pressure, then the pressure
associated with the Mach stem is 52-psi. The reflection associated with the Mach stem
interacting with the pipe would be approximately 209-psi. The measured peak reflected
pressure at the signature sensor was 203-psi. The model error associated with this technique
is 3 percent. By accounting for the Mach stem’s reflected pressure the shockwave

interaction from three charges on a cylinder’s surface can be reasonably predicted.
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Figure 5.15. Peak pressure amplification associated with one, two, and three charges. Red
oval highlights lower pressure at the signature sensor vs the symmetry plane.

5.3.4. Delta Test Results with Respect to Multiple Shockwave Pressure
Predictive Method. The Delta tests were designed to examine the peak pressure when
charges, at a given angular spacing, are positioned to cover the front half of the cylindrical
surface (07>180 degrees). The 180-degree angular spacing with two charges was not
repeated for this test series (see Bravo tests, Section 5.3.2). Additionally, the 120-degree
angular spacing with three charges was not repeated for this test series (see Charlie tests,
Section 5.3.4).

As represented before in Figure 5.14, in Figure 5.16 and each following polar plot,
the circles are color coded to correspond to the pressure data. The stars represent a spike in
the peak pressure. Again, the stars are color coded to correspond to the pressure data. The
dashed lines represent the symmetry plane. The dashed lines are also color coded to match
the pressure data. The following circles represent the positions where single charges from

two tests occupy the same angular spacings in Figure 5.16:
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Figure 5.16. Peak pressure associated with the 180-degree tests (psi).

From Figure 5.16 it is clear that the pressure acting on the cylindrical surface also
becomes uniform as the number of charges increases to cover more of the cylindrical
surface. As with the Charlie tests the pressure along the symmetry plane is higher than the
pressure in line with the charge, when the angular spacing is greater than 60-degrees. The
pressure acting on the pipe’s surface is more uniform for five charges with 60-degree

angular spacing than three charges with 120-degree angular spacing. This is an important
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aspect to understand when trying to seal a leaking oil pipe, as a uniform loading may not
be the ideal configuration to seal the pipe. Future testing will need to examine the
appropriate loading conditions required to seal a leaking oil pipe.

When comparing the peak pressure along the symmetry plane, the Charlie tests do
not show an increase over the Bravo tests when 0> 60-degrees. When the front half of the
pipe was covered with charges the peak pressure acting on the cylindrical surface begins
to rise exponentially as the angular spacing decreased and the number of charges increased.
This indicates the increase in the number of charges confines and focuses the pressure from

each individual charge (see Figure 5.17).
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Figure 5.17. Peak pressure amplification from Bravo, Charlie, and Delta test.

The 90 and 60-degree angular spacings in the Delta test have higher peak pressures
than the estimated peak pressure using the Peak Pressure Predictive Method. From the data

plotted in Figure 5.17 it is clear that the Peak Pressure Predictive Method will need to be
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adjusted in order to account for the increased number of charges. Further research is needed
to identify the modifications that will be needed to expand the Peak Pressure Predictive
Method to include multiple (more than three) charges converging on the cylindrical

surface.

5.3.5. Summary of Multiple Shockwave Peak Pressure Predictive Method
Verification Results. Several key conclusions were identified through the Peak Pressure
Predictive Method verification results. The first and most significant was the Bravo tests
(two 0.2 Ib charges) validate the Peak Pressure Predictive Method for estimating the peak
pressure along the symmetry plane for two charges. The peak pressure in the Bravo test
was consistently 80 percent of the estimated value. When this was accounted for, the
maximum model error was + 4 percent. The Peak Pressure Predictive Method could,
therefore, be used as a first step towards sealing an underwater offshore oil spill.

The Alpha tests (single 0.2 Ib charge) indicated the pipe’s curvature did not affect
the reflected pressure at the apex of the cylinder for a 0.2 Ib charge. In addition, no
anomalies were identified that indicated one of the pipe surfaces needed further
resurfacing. This is important, as surface anomalies could have significantly affected the
peak pressure data.

The three charge interactions (Charlie tests: three 0.2 Ib charges) for angular
spacings greater than 60-degrees can also be predicted with Peak Pressure Predictive
Method. The three charges with 40-degree angular spacings deviated from the estimated
pressure. When the Mach stem was accounted for, the model error for three charges with

40-degree angular spacing dropped to three percent.
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The Delta tests (four and five 0.2 Ib charges) highlighted the limitation of the
current Peak Pressure Predictive Method. Further testing is needed to expand the method
to include a higher number of charges with lower angular spacings. This will likely include
examining the pressure from two Mach stems forming a new Mach stem along the plane

of shockwave interaction.

54. MULTIPLE CHARGES FOCUSING ON A CYLINDRICAL SURFACE
HYPOTHESIS (OBJECTIVE 2)

The results presented in this section compare the pressure and impulse acting on
the cylindrical surface data from Bravo and Charlie tests to the results from the Echo tests.
Understanding how multiple charges compare to a single charge is important for
development of a rapid response system to seal a leaking oil pipe. Determining the
appropriate charge weight and the number of charges at a given angular spacing to generate
the appropriate Pressure-Impulse response is a fundamental part of developing a rapid
response system to seal a leaking oil pipe. The analysis presented in this section is intended
to aid in the understanding of how the pressure and impulse will act on the cylindrical
surface, for different charge configurations. This section will also look at the total impulse
acting on the cylindrical surface, in addition to the impulse recorded at each sensor (Section

5.4.3).

5.4.1. Two Charges Compared To Echo 1. The following sections will compare
the results to determine if two charges can impart a higher peak pressure or impulse on the
cylindrical surface than a 0.4 Ib charge. The two charge data was obtained from the Bravo

tests. The Echo 1 tests provided the data for the 0.4 Ib charge.
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5.4.1.1. Peak pressure comparison. The peak pressure from two charges with 90,
60, and 40-degree angular spacing can produce a higher peak pressure along the symmetry
plane than a single charge of equal net weight. The 120 and 90-degree angular spacings
generated a spike at the signature sensor. However, the 60 and 40-degree angular spacings
produced a pressure trace similar to a single 0.4 Ib charge, but of greater magnitude. Figure
5.18 is a polar plot of the Alpha, Bravo, and Echo 1 tests. It is clear that two 0.2 Ib charges
with angular spacings of 60 or 40-degrees can produce a pressure on the cylindrical surface

greater than a single 0.4 Ib charge.
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Figure 5.18. Comparison of pressure acting on a cylindrical surface from two 0.2 Ib
charges, a single 0.2 Ib charge, and a single 0.4 Ib charge.
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5.4.1.2. Impulse comparison. The impulse associated with an angular spacing of
less than 90-degrees generates an impulse at the signature sensor that is greater than the
impulse from a single 0.4 Ib charge. As with the peak pressure, the 180-degree angular
spacing had a uniform impulse around the pipe surface than the other angular spacings or
the single charges. The impulse associated with each sensor at the various angular spacings

IS presented in Figure 5.19.
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Figure 5.19. Polar plot of the impulse analysis of the shockwaves from two 0.2 Ib
charges, a single 0.2 Ib charge, and a single 0.4 Ib charge wrapping around the pipe’s
surface (units are psi-microseconds).

In the document, “Engineering Design Handbook: Explosions in Air, Part One”

(Department of the Army, 1974), the authors discussed the shockwave interaction with a
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cylindrical surface and the vortices generated beyond 90-degrees. Figure 2.9 (Section
2.3.1) illustrates the vortices associated with cylinder-shockwave interaction as a
shadowgraph. Figure 5.20 shows Figure 2.9 compared to the impulse data from Figure
5.19. The locations of vortices 1 and 2 in Figure 5.20 correlate with the region where the

impulse shows a significant dip.
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Figure 5.20. Department of the Army’s shadowgraph research (1974) compared to the
impulse data from multiple charges simultaneously detonated.

The discussion of turbulent flow around a cylindrical body (Section 2.3.2)
illustrated that the shockwave separates from the cylinder’s surface. The velocity of the
shockwave and the cylinder surface roughness determines the angular position where the
shockwave separates from the cylinder surface. This separation results in a drop in the
pressure acting on the cylinder and, consequently, the impulse. Although the in

“Engineering Design Handbook: Explosions in Air, Part One” (Department of the Army,
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1974) the authors did not discuss the impulse associated with the shockwave wrapping
around a cylinder, it is clear from Figure 5.20 that the vortices correlate well with the 150
and 210-degree angular positions.

Based on the information presented in this section, the impulse from the three single
charge weights and from the 40-degree angular spacing tests are similar at 150 and 210-
degrees because the shockwave has separated from the pipe surface at these points. The
shockwave’s interaction with the cylinder creates a drag force that acts on the backside of
the cylinder (see Section 2.3.2). This drag force is the reason for the pressure and impulse
changes on the back of the cylinder (150<6<210-degrees) as compared to the remainder of

the cylinder.

5.4.2. Three Charges Compared To Echo 2. The following sections will present
the results that led to determination if three charges can impart a higher peak pressure or
impulse on the cylindrical surface than a 0.6 Ib charge. The three charge (0.2 Ib each) data
was obtained from the Charlie tests. Echo 2 tests provided the data for the 0.6 Ib charge.

5.4.2.1. Peak pressure comparison. As discussed in the Charlie tests (Section
5.3.3), the larger angular spacings (120 and 90-degrees) produce an amplification of the
peak pressure along the symmetry plane. The 60- and 40-degree angular spacings generated
a uniform pressure acting on the cylindrical surface at the apex of the pipe. Figure 5.21 is
a polar plot of the Charlie and Echo 2 tests.

Unlike the two-charge comparison, only three charges with 40-degree angular
spacing can produce a higher peak pressure on the cylindrical surface greater than a single
charge of equal net weight. This indicates that as the net charge weight increases the

pressure amplification from multiple charges might no longer produce a higher peak
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pressure, even though the peak pressure from a single charge decays as the shockwave
traverses the cylindrical surface. Therefore, because of this pressure decay, multiple
charges can provide a uniform pressure of greater magnitude, relative to the angular
positions, than a charge of equal net weight. Further testing with additional charges is

needed to confirm this result.
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Figure 5.21. Comparison of pressure acting on a cylindrical surface from three 0.2 Ib
charges, a single 0.2 Ib charge, a single 0.4 Ib charge, and a single 0.6 Ib charge.

5.4.2.2. Impulse comparison. The impulse amplification associated with the
Charlie tests resulted in less of a “spike” at the signature sensor and a uniform distribution
between the reflecting planes, than Bravo tests. Three charges at 120-degree angular
spacings cover the 360-degree domain around the pipe’s surface, as a result the impulse

imparted on the pipe was relatively uniform. The 60 and 40-degree angular spacings
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resulted in an impulse at the signature sensor greater than from a single 0.6 Ib charge.

Figure 5.22 is a polar plot of the impulse data collected during the three-charge tests.
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Figure 5.22. Polar plot of the impulse analysis of the shockwaves from three 0.2 Ib
charges wrapping around the pipe, compared to single 0.2, 0.4, and 0.6 Ib charges (units
are psi-microseconds).

The smaller angular spacings (60 and 40-degrees) and single charges exhibited a
substantial dip in the impulse at the 120 and 240-degree angular position. All of the tests
showed an increase in the impulse at 180-degrees; the impulse on the back of the pipe
showed a spike that appeared to increase as the angular spacing was reduced. When

compared to the impulse from a single charge, the multi-charge impulse amplification was
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higher at 180-degrees. An interesting point to note is the impulse from the 40-degree
angular spacing (green line) of 0.2 Ib charges was equal to the impulse associated with a
0.6 Ib charge at 150 and 210-degree angular positions. The similarity in impulse can be
attributed to the single-charge shockwave separation from the cylindrical surface, as
discussed in Section 5.4.1.2, above. Figure 5.23 is a zoomed view of Figure 5.22 for the

impulse opposite the signature sensor.
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Figure 5.23. Zoomed view of Figure 5.22 at 180-degree angular position.

The impulse amplification associated with 40-degree angular spacing of three 0.2
Ib charges can be seen in Figure 5.23. At the 180-degrees, the 40-degree angular spacing
had an impulse that was 1.5 times greater than the 0.6 Ib charge. The impulse traces for

three charges with 40-degree angular spacing and the single charges are similar. This
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indicated that the three 0.2 Ib charges with 40-degree angular spacing were able to act as a

single charge larger than 0.6 b, with respect to impulse.

5.4.3. Total Impulse Analysis. The analysis of impulse at each sensor does not
provide a full picture of how much impulse is imparted on the cylindrical surface.
Therefore, the total impulse was calculated using the MRS. By analyzing the total impulse
with the MRS technique using the measured impulse and the angular spacing between
sensors, a bigger picture of the impulse imparted on the cylindrical surface begins to
emerge.

The MRS technique was chosen over simply summing the impulse calculated on
each pipe, because the pipes had a different number of sensors. For example, Pipe 3 would
measure a higher “total impulse” than Pipe 1, for the same charge weight. Figure 5.24

shows the total impulse calculated for each of the tests.
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Figure 5.24. Total impulse associated with all of the tests.
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In Figure 5.24, it is clear that multiple charges can generate a total impulse greater
than a single charge of equal net weight. All of the angular positions in the Bravo tests
generated a total impulse greater than a single 0.4 Ib charge. However, the Charlie tests did
not generate a total impulse greater than a single 0.6 Ib charge until the angular spacing
was greater than 90-degrees. Determining the exact angular spacing between 60 and 90-
degrees required to exceed the total impulse from a 0.6 Ib requires further testing.

For the Bravo and Charlie tests, as the angular spacing was reduced, the total
impulse amplification was reduced. As the angular spacing decreases, the shockwaves
begin to act as one shockwave and the total impulse decreases. For the Charlie tests the
total impulse acting on the pipe from three charges decreases with the angular spacing to
less than the impulse from a single charge of equal net weight; an angular spacing below

70-degrees results in a lower total impulse, see Figure 5.25.
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Figure 5.25. Total impulse associated with the three charge tests.
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The Bravo and Charlie tests (recall that the Bravo tests had two, 0.2 Ib charges each
while the Charlie tests had three, 0.2 Ib charges) indicate that as the angular spacing
decreases the total impulse decreases. However, the Delta tests (4 x 0.2 Ib and 5 x 0.2 Ib
charges) show that as the angular spacing decreases and more of the cylinder is surrounded
with charges, the total impulse increases significantly. For example, the total impulse from
the five 0.2 Ib charges at a 60-degree angular spacing is 9.75 times greater than a single 0.2
Ib charge.

When examining the total impulse amplification response associated with the
increasing charge weight the response was linear, see Figure 5.26. Figure 5.26 is a plot of
the total impulse amplification associated with the 0.2, 0.4, and 0.6-1b charge weights. The
charge weights are listed as the multiplier of a 0.2 Ib charge weight. For example, the 0.4

Ib charge is listed as 2 because it is two times the 0.2 Ib charge.
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Figure 5.26. Total impulse amplification associated with the single charge weights tested.
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Equation 11 was generated from the data plotted in Figure 5.26. From Equation 11,
a charge fifteen times the 0.2 Ib charge would be required to equal the total impulse
imparted on a cylinder surface from five 0.2 Ib charges spaced at 60 degrees (7.1

psi*millisecond*degree).

Total Impulse Amplification Percentage = 0.614 (Net Charge Weight Multiplier) + 0.373  (11)

The three charge weights tested (0.2, 0.4, and 0.6 Ibs) indicated that, as the charge
weight increases, the peak pressure diminishment rate increases and subsequently, so does
the impulse. If this prediction is validated with further testing, then five 0.2 Ib charges with
60-degree angular spacings can impart more energy on a centrally located cylinder than a
3 Ib charge (15 times a 0.2 Ib charge). It should be noted that the pressure response from a
charge fifteen times greater than the 0.2 Ib charge acting on a cylinder would need to be
tested to confirm this prediction.

This amplification demonstrates how the energy from the surrounding charges
interact to amplify the effect of each charge. The impulse from each individual charge acts
on the cylinder, and each shockwave collision further amplifies the total impulse. This
illustrates that surrounding the cylinder with a circular implosive discontinuous explosive
lens would result in the highest impulse amplification on the cylinder. The results in this
section (Section 5.4), present strong evidence to support the hypothesis that “Multiple
charges focusing on a cylindrical surface can produce a higher peak pressure or impulse

than does a single charge of equal net charge weight.”
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5.4.4. Summary of Multiple Charges Focusing on a Cylindrical Surface
Hypothesis. Comparing the pressure and impulse from multiple charges acting on a
cylindrical surface to a single charge of equal net weight provided an understanding of
possible methods of sealing an underwater offshore oil spill using explosive charges. The
tests results presented in Section 5.4 demonstrate multiple charges can produce a higher
peak pressure and impulse on a cylindrical surface than a charge of equal net weight.

Multiple charges with a 40-degree angular spacing around a pipe can produce a
higher peak pressure and impulse than a single charge of equal net weight. As the angular
spacing of the charges increases (Delta and Charlie tests), the peak pressure amplification
decreases. In addition to the peak pressure amplification decreasing, as the angular spacing
increases the total impulse acting on the cylindrical surface increases. The Delta tests
indicate the total impulse acting on the cylindrical surface increases significantly, when the
number of charges around the cylinder increases. This indicates a more of the explosive
energy is acting on the cylinder surface when multiple charges are used.

The three charge weights tested (0.2, 0.4, and 0.6 Ibs) indicated that, as the charge
weight increases, the peak pressure diminishment rate increases and subsequently, so does
the impulse. If this prediction is validated with further testing, then five 0.2 Ib charges with
60-degree angular spacings can impart more energy on a centrally located cylinder than a
3 Ib charge (15 times a 0.2 Ib charge). As the number of charges increase to surround the
cylinder and the angular spacing decreases, the number of shockwave interactions increase.
Each shockwave interaction creates a reflected shockwave and subsequently a higher peak

pressure and impulse.
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6. CONCLUSIONS

This research was intended to serve as first step towards finding a method of sealing
an underwater offshore oil pipe using explosive charges. Two objectives were identified to
achieve this goal. The first objective was to identify the validity of a technique for
determining the cylindrical surface peak pressure from multiple shockwave colliding along
a symmetry plane; this author calls the Peak Pressure Predictive Method. The second
objective was to examine the theory that multiple charges distributed around a cylinder or
pipe can impart a higher peak pressure or impulse on a cylindrical surface than a single
charge of equal net weight. Five experimental test series were developed to achieve these
objectives, and the test results allowed for the identification of several key conclusions.

The following sections summarize these conclusions.

6.1. PEAK PRESSURE PREDICTIVE METHOD VALIDATION
The primary objective (Objective 1) of this research is to identify applicability and
accuracy of the Peak Pressure Predictive Method. The applicability and accuracy of the
Peak Pressure Predictive Method have been identified for the tests presented throughout
this research. The following conclusions were drawn from the test results presented in
Section 5.3.
1. The Bravo tests (two 0.2 Ib charges) identified that the Peak Pressure
Predictive Method is accurate to + 4 percent, when the angular position is 180
> 0 > 40 degrees (see Section 5.3.2).
2. The Charlie tests (three 0.2 Ib charges) indicate when the angular position is

0<60 degrees a Mach stem forms prior to the shockwave interacting with the

cylinder surface (see Section 5.3.3).
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3. The Charlie tests (three single 0.2 Ib charges) indicate that accounting for the
Mach stem enables the Peak Pressure Predictive Method to predict the
pressure at the signature sensor, when 0 = 40 (see Section 5.3.3).

4.  The Delta tests demonstrated further testing is needed to expand the method
to include a higher number of charges with lower angular spacings (see
Section 5.3.4).

Therefore, this author has concluded the Peak Pressure Predicted Method can used
to predict the pressure along the symmetry plane when 180 > 6 > 60 degrees for two and
three charges in a circular implosive discontinuous lens orientation. The present Peak
Pressure Predictive Method needs further testing to expand its applicability beyond the

experimental setups tested in this research.

6.2. MULTIPLE CHARGES FOCUSING ON A CYLINDRICAL SURFACE
HYPOTHESIS

Objective 2 of this research was to determine if “Multiple charges focusing on a
cylindrical surface do produce a higher peak pressure or impulse, than does a single
charge of equal net charge weight.” This objective was examined by comparing the
experimental results from the Bravo and Charlie tests (two and three 0.2 Ib charges) to the
peak pressure and impulse from the Echo tests (0.4 and 0.6 Ib charges). The following
conclusions were drawn from the test results presented in Section 5.4.

1.  Multiple charges can produce a higher peak pressure and impulse on a

cylindrical surface than a charge of equal net weight (0.4 and 0.6 Ibs) (see
Sections 5.4.1 and 5.4.2).
2. Increasing charge weight results in a lower attenuation of peak pressure as the

shock wave traverses around the cylinder (see Section 5.4.1 and 5.4.2).
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3. As the charge weight increases, the velocity of the shockwave traversing the
cylinder surface increases; assuming a constant standoff distance (see Section
5.4.1 and 5.4.2).

4. The duration of time the shockwave is acting on the cylinder surface is
inversely proportional to the velocity of the shockwave (see Section 5.4.3).

5. Areduction in the duration of time the shockwave is acting on the cylinder
surface results in a lower total impulse acting on the cylinder surface. (see
Section 5.4.3).

6. As the number of charges increase to surround the cylinder and the angular
spacing decreases, the number of shockwave interactions increase (see
Section 5.4.3).

7. Each shockwave interaction creates a reflected shockwave and subsequently
a higher peak pressure and impulse (see Section 5.4.3).

Therefore, this author has concluded that multiple charges in a circular implosive
discontinuous lens can impart a higher peak pressure and impulse on a centrally located
cylinder. Comparing the pressure and impulse from multiple charges acting on a cylindrical
surface to a single charge of equal net weight provided an understanding of possible
methods of sealing an underwater offshore oil spill using explosive charges. Further testing

is needed to examine this principle beyond what was presented in this research.

6.3. OVERALL RESULT
Achieving these two objectives advances the state of the art in the possible use of

distributed explosive charges to seal leaking underwater pipes. This may prove to be an aid
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in generating a rapid response system to help prevent underwater disasters similar to the

Deepwater Horizon event.

6.4. CLOSING REMARKS

Recall the accident of the Deepwater Horizon oil spill, detailed in Section 1, which
motivated this research. The research presented herein is paving the way to possible
solutions that may prevent ecological devastation of the same magnitude. As the
knowledge of Explosive Engineering and explosive lensing continues to expand, the Peak
Pressure Predictive Method can be used in a number of applications to generate a higher
peak pressure or impulse than a single charge of equal net weight, on a centrally located
target.

The Peak Pressure Predictive Method presented here provides an effective means
of estimating the peak pressure on a centrally located target. As implied by the future work
section, there still several steps required to generate a rapid response system to seal an
underwater offshore oil spill. However, the results presented in this research have shown a
multiple charge configuration can impart a higher impulse and peak pressure when acting

on a centrally located cylinder than a single charge of equal net weight.
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Further research is needed to develop a readily available explosively generated

solution for future events similar to the Deepwater Horizon accident. The research

presented in this section is the first step towards technology that may be useful for sealing

an offshore underwater oil spill. This research focused on Steps 1 and 2 in Table 1.1,

reproduced for convenience here as Table 7.1. The remaining eight steps need to be

addressed before a solution can developed. These steps will need to include examining the

objectives of this research underwater.

Table 7.1. Required research to seal an underwater cylinder via explosive lensing.

Step Specific Focus of Each Step Explosive Media
1 | Single Shockwave interaction with a cylindrical surface. Air
2 | Multiple shockwave interactions with a cylindrical surface. Air

Cylinder diameter’s effect on peak pressure from the .

3 . o Air
shockwave traversing the cylindrical surface.

4 Dynamic loading required to collapse a centrally located Air
cylinder. —

5 | Single Shockwave interaction with a cylindrical surface. Water

6 | Multiple shockwave interactions with a cylindrical surface. Water
Cylinder diameter’s effect on peak pressure from the

7 . L Water
shockwave traversing the cylindrical surface.

3 B_ubble dynamics from multiple charges detonated Water
simultaneously. -
Bjerknes force from multiple charges acting on a centrally

9 : Water
located cylinder.

10 Dy_namlc loading required to collapse a centrally located Water
cylinder. -

Additional future research should examine the reflection amplification associated

with colliding shockwaves of equal amplitude. This research should aim at making a
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correlation between the amplitude of the initial shockwave and the measured reflected
pressure. This correlation can be compared to the predicted pressures shown in Figure 2.4
to determine how colliding shockwaves of equal amplitude differ from a single shockwave
colliding with a reflective surface.

An additional aspect identified that requires further research, is the total impulse
amplification from multiple charges when compared to the total impulse from a single
charge of equal net weight. The total impulse amplification response associated with the
increasing charge weight was linear, see Figure 5.26. The three charge weights tested (0.2,
0.4, and 0.6 Ibs) indicated that, as the charge weight increases, the peak pressure
diminishment rate increases and subsequently, so does the impulse. More single charges of
a larger charge weights need to be examined to validate the prediction. If this prediction is
validated with further testing, then five 0.2 Ib charges with 60-degree angular spacings can
impart more energy on a centrally located cylinder than a 3 Ib charge (15 times a 0.2 Ib

charge).



APPENDIX A
CHARGE GEOMETRY EXPERIMENT TO IDENTIFY THE GEOMETRY

REQUIRED TO TESTS THE OBJECTIVES OF THIS RESEARCH
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Both the explosive material used and the geometry applied significantly affect how
the shockwave expands (as discussed in Section 2). This appendix presents the small-scale
experiment conducted to determine the charge geometry design. The results from the tests
presented in this appendix are summarized in Section 4.2.8.

The experiment presented in this section examined three explosive charge shapes.
The configurations listed below were based on the available materials and “common-
practice” techniques used at Missouri S&T. Each configuration was tested three times. The
shape and confinement configurations tested were as follows:

1. 0.2 Ib sphere: neoprene glove confinement
2. 0.2 Ib cylinder with a 1.5 inch diameter: cardboard confinement
3. 0.2 Ib cylinder with 1 inch diameter: cardboard confinement

The half-pound sphere in the neoprene glove were often used to suspend explosive
charges at Missouri S&T. The explosive charge used in this technique were weighed out
and placed in a neoprene glove. The detonator was placed inside the charge. The
detonator’s wires were then wrapped around the glove to prevent the detonator from pulling
out. An effort was made to ensure the charge had a spherical shape. It was then suspended
from a stand and raised to the appropriate height. A wire suspended beneath the charge was
attached to an anchor to minimize how much the charge swung.

The two remaining designs (1”” and 1.5” cylinders) were used in an attempt to utilize
the cylindrical shape’s ability to amplify the radial incident pressure. Using a standard
casing ensures a uniform and repeatable shape. The two diameters used were based on
available cardboard shipping tube cylinder diameters. Shipping tubes were chosen due to

their low confining strength and material density. Each diameter provided a different
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charge to diameter length ratio, which translates into different amplification factors. The
1-inch diameter had a 1:4.6 ratio, and the 1.5-inch diameter charge had a 1:1.36 ratio. The
diameter to length ratios translate to a 1.35 and a 1.1 reflective factor, respectively.

The cylinders were cut slightly longer than needed to accommodate the volume of
explosive. This length also allowed holes to be drilled into the cylinder for mounting
purposes. A wire was run to the top mounting holes and a second wire was run though the
bottom mounting holes. These wires were used to suspend the charge and minimize how
much the charge swung. C-4 was the only explosive used throughout this research. It is
easy to pack and handle, easily accessible to this author, and has a high explosive energy.

Two high-speed CASIO EX-FH25 HD cameras were placed 30 ft. from the center
of the charge. These cameras were positioned 90 degrees from each other (see Figure A.1).
The images collected were used to analyze how the shockwaves and fireballs expand as a
result of the charge’s geometry. A third high-speed camera (Phantom v10) was also used
to observe the shockwave expansion at a higher frame rate.

The CASIO high-speed cameras’ images revealed a uniform radial expansion of
the fireballs. The Phantom high-speed camera, however, provided the clearest insight into
the shockwaves early in time. The camera setup cannot capture the front of the shockwave,
but rather the distortion of the images of objects behind the shockwave due to its passing.
This distortion and the fireball were used to analyze the performance of the geometry.

The Phantom video analysis revealed that the cylindrical charges had a more
uniform radial expansion than the sphere in the neoprene glove. Examples of the Phantom
high-speed video of the three designs at the same point in time, relative to detonation are

presented in Figure A.2.
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Figure A.1. Fireball and shockwave expansion experiment setup.

Using the Phantom Viewer software each video was analyzed to determine the
uniformity of the shockwave expansion. This was done by measuring distance the
shockwave travels between frames along the X and Y-axis from the origin. The cylinder
designs had a more uniform shockwave expansion than the hand packed sphere. The 1.5-
inch cylinder was used to examine the effects of single and multiple shockwaves
converging on a cylindrical surface. The decision to use the 1.5-inch cylinder over the 1-
inch cylinder was due to the ease of construction. Appendix G details the construction of

the explosive charges.
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Figure A. 2. Radial expansion of spherical charge, 1.5” cylinder, and 1” cylinder.



APPENDIX B
STANDOFF DISTANCE EXPERIMENT TO IDENTIFY THE DISTANCE

REQUIRED TO TESTS THE OBJECTIVES OF THIS RESEARCH
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The information presented in this appendix is a small-scale experiment designed to
identify the scaled distance range that the data acquisition system can consistently record
the peak reflected pressure. The initial experimental design required the charges to have a
scaled distance in the “close-in” range. However, the inconsistency in the peak reflected
pressure measured with the four curved surfaces detailed in Appendix C and the literature
presented in Section 2.5 a small-scale experiment was conducted to identify the scaled
distance presented in Section 4.2.1.

Three distances were used to analyze the shockwave expansion. These distances
included the original point of interest, the outer edge of the fireball, and a point beyond the
fireball. Understanding the shockwave expansion assisted in selecting the appropriate
standoff distance of the charge to the cylinder surface.

The initial distance of interest was a 0.5 Ib charge 2 ft from the cylinder surface.
This charge weight and distance combination had a scaled distance of 2.51. This scaled
distance was used to identify a standoff distance for a 0.25 Ib charge. The resultant standoff
distance was 1.59 ft. The smaller charge was tested to examine how the shockwave
expansion rate, relative to the fireball, differed between the two charges.

The C-4 detonation produced two fireball stages. The first was a result of the C-4
detonation. The second was the ignition (“afterburn”) of the unburned fuels, generated
during the detonation, once they reached the right fuel-air mixture (Cooper, 1996).
Therefore, the diameters of the initial fireballs for both the 0.25 and 0.5 Ib charges were
obtained from the high-speed video. The resulting standoff distances were 5 ft. for the 0.5

Ib charge and 3.75 ft for the 0.25 Ib. charge.
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Walter (2012) stated that a researcher measuring pressure from a free airburst
should not expect equal pressure at sensors equal distant from the charge until the pressure
sensors are below the triple point. The assumption is that the shockwave will be more
radially stable because of the Mach stem. Placing the cylinder so the sensors will measure
the Mach stem adds additional complexity to this research. The additional complexity is
due to the environmental factors that can interact with the shockwave as the triple point
reaches the sensor height. Additionally, distances required for the triple point to be 39.5
inches high for single 0.5 and 0.25 Ib charges are 15.59 ft. and 20 ft respectively. Due to
the large distance and added complexity the third distance was placed beyond the fireball
separation and before the triple point interacting with the sensor height. The third distance
was 7.3 and 9.9 ft. for the 0.5 and 0.25 Ib charges.

Four pressure sensor stands were positioned at 0, 90, 180, and 270-degree angular
intervals when observed from above similar to Figure B.1; the 0-degree reference was
consistent in all tests. The charge-to-sensor standoff distance was from the center of the
charge to the front of the reflective surface.

The Blast Effects Computer (BEC) predicts a reflected pressure of 1,483.6 psi. The
BEC used was developed by the Department of Defense’s Explosive Safety Board from
curve fit equations of data collected from explosive tests. The data used to generate these
equations was obtained from tests conducted in both the far and near field. It was
extrapolated for the close-in range.

Each distance and charge weight combination was repeated three times. Sensor
selection was based on the predicted pressure associated with each distance, as calculated

with the BEC, so that the best performance could be achieved from each sensor without
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damaging it. The sensors selected were 102B, 102B06, and 102B15. These sensors have a
measurement range of 5,000, 500, and 100 psi respectively. The Data sheets are listed in
Appendix F. The distances are listed in Table B.1 with the predicted BEC pressure and

scaled distance.

Table B.1. Test distances, predicted pressures, and associated sensors.

Half Pound charge Quarter Pound charge
Distance| BEC Scaled |Distance| BEC Scaled
Pressure |Distance Pressure | Distance
Feet PSI Feet PSI
Initial
. 2.00 1,424.4 251 1.59 1,477.4 2.51
Distance
Fireball 5.00 101.9 6.29 3.75 120.6 5.93
Th'rd 7.31 36.1 9.19 9.88 125 15.62
Distance

The peak pressures from each sensor were recorded for each experiment. Table B.2
is a compilation of the recorded pressures. The average pressure from each test was
substantially higher than that calculated by the BEC (shown in Table B.2); the BEC did
not account for either the HOB or the shape of the charge, both of which affected the
pressure.

The variance in the measurements taken beyond the initial fireball were
significantly better than those taken within the initial fireball. The charge weight also
appears to have affected the variance. The initial fireball distances for both the 0.5 Ib and

0.25 Ib charges had the same scaled distance (2.51). Although the scaled distance is the
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same for both charge weights, the variance for the 0.25 Ib charge is less than the 0.5 Ib

charge.
Table B.2. Data collected from pressure variance tests.
Half Pound Charge
Reflected | Average
Distance | Scaled | Pressure | Pressure
ft Distance | psi psi
Initial
Interest 2.0 2.5 1,424.4 | 2,416.1
Flame Ball 5.0 6.3 101.9 201.0
Triple Point 7.3 9.2 36.1 64.5
Quarter Pound Charge
Reflected | Average
Distance | Scaled | Pressure | Pressure
ft Distance | psi psi
Initial
Interest 1.6 2.5 1,477.4 | 2,242.8
Flame Ball 3.8 5.9 120.6 215.1
Triple Point 9.9 15.6 125 8.1

The results indicate that with the instrumentation and set-up used, there is a
significant reduction in pressure variance associated with measurements taken from
beyond the initial fireball. The proximity of the charge to the sensor significantly
influenced the variance of the reflected pressure measurement at a sample rate of 2MHz.
The shockwave’s rise time becomes slower over time (Cooper, 1996). Therefore, sensors
placed at a greater scaled distance from the charge have a better chance to catch the peak

pressure pulse than do those placed closer to the charge.
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The significant increase in variance for the pressures measured within the initial
fireball could have been produced by thermal shock. Di-electric grease was placed on each
sensor to minimize the effects of thermal shock on the pressure readings. Additional causes
of the pressure variance could be unreacted particulates and pieces of the cardboard

shipping tubes hitting the sensor. The peak pressures vs scaled distance are plotted in

Figure B.2.
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Figure B.1. Plot of the pressure data vs distance.

Based on the data plotted in Figure B.2, a charge weight of 0.2 Ibs. at a scaled

distance of 7.4 will have a reduced pressure variance when measured radially. Having a
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uniform pressure distribution is necessary to reduce the possibility of generating highly
skewed data. The 0.2 Ib charge weight was used rather than either the 0.25 or the 0.5 Ib
charges tested to allow more charges to be simultaneously detonated while remaining under
the charge weight restrictions. A scaled distance of 7.4 for a 0.2 Ib charge produced a 52-
inch standoff. This scaled distance will position the sensors beyond the fireball and before

a Mach stem is formed.



APPENDIX C

CYLINDER DIAMETER EXPERIMENT TO IDENTIFY THE PIPE DIAMETER TO

TEST THE OBJECTIVES OF THIS RESEARCH
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The cylinder’s diameter significantly affects how the shockwave wraps around the
cylinder (as referenced in Section 2.3; Ben-Dor, 1950). A smaller cylinder diameter pipe,
relative to the shockwave expansion, allows for a greater angular displacement per distance
the shockwave traverses. The angular displacement correlates to the reduction in pressure
(also noted in Section 2.3). As a result, a small-scale experiment was conducted to examine
the effects of the cylinder’s diameter relative to a 0.5 b charge with a 2ft standoff. Note
the experiments presented in this appendix were conducted prior (chronologically) to the
experiments in Appendix B.

The three cylinder diameters tested to examine the reflected pressure variance at
the cylinder apex were 2, 4, and 6.63 inches. Each cylinder had a PCB Piezotronics sensor
placed at the pipe’s apex. The three cylinders and a flat plate were placed with 90 degree
angular spacing similar to Figure 4.1. The sensors were oriented inward toward a single
charge (see Figure C.1). Placing the charge at the center of the four sensors allowed each
surface to be compared without a shot-to-shot bias (assuming the explosive charges were
packed uniformly). This placement also reduced the number of charges needed to run the
tests. A laser level was used to ensure each sensor was at the center height of the explosive
charge.

Two different blast pressure prediction sources were used to estimate the flat plate’s
reflected pressure. The blast pressure prediction sources were the BEC and BlastCalc.
BlastCalc is an app used on smartphones and tablets. It uses the methods described in
UFC3-340-02, Structures to Resist the Effects of Accidental Explosions as published by
the US Department of Defense. Here, the curve fit equations are based on a different series

of tests than those used by the BEC (CMV Technologies, 2011). The predicted BEC
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reflected pressure was 1,483.6 psi (10.22 Mpa). The BlastCalc predicted reflected pressure

was 1,804.5 psi (12.4 Mpa). Both predicted pressures are charted in Figure C.2.

r
’ .
PR Flat Plate

o

B N
Figure C.1. Cylinder diameter test setup illustrating the three cylinder diameters pointed

inward at a centrally located charge.

The recorded peak reflected pressure was highly inconsistent; it had an average
spread in the data of 750 psi for each sensor. The total range for the reflected pressure data
was over 1,000 psi for the four sensors over all of the tests. Sensors, cables, and data
acquisition system channels were rotated and replaced. Tests were conducted both

underground and above ground at sample rates ranging from 200,000 and 2,000,000
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samples per second. The adjustments in the setup did not improve the data variance. It was
concluded, through a series of discussions with Dr. Patrick Walters, that samples per
second were not high enough to accurately capture the reflected pressure wave’s peak

pressure (Walters, 2012). The results were inconclusive.
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Figure C.2. Test results taken from cylinder reflections tests illustrating the high pressure
vairances.

Further testing will however, be needed; testing multiple cylinder diameters was
beyond the scope of this research. Only the 6-inch diameter pipe was used for the remainder
of this research due to the inconclusiveness of the experiments and the setup limitations of

both the 2-inch and the 4-inch diameter pipes



APPENDIX D

TIMING EXPERIMENT TO IDENTIFY THE TIMING VARIANCE ASSOCIATED

WITH DETONATION CORD INITIATION OF SEVEN CHARGES
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Understanding the timing variance of the available initiation options is imperative
to ensuring the shockwaves interact on a mid-plane (a half angle off the angular spacing).
Therefore, this appendix presents the small-scale experiment designed to examine the
timing variances associated with several available initiation devices. The following,
however, were the only methods examined. Not all of the following options required testing
as the cap scatter data is readily available from the manufacturer.

e Blasting Caps
o Electric
o Non-Electric (NonEL)
o Electronic
e Exploding Bridge Wire (EBW)
e Non-El without delay fuse
e Detonation Cord
The sensor’s diameter was 5/16 inches. The shock velocity of an 18 psi
overpressure can be estimated using Figure 2.4. The estimated shock velocity is 0.0187
inch/microsecond. Therefore with the sensor diameter, a cap scatter greater than 16
microseconds will likely result in the shockwaves interacting on a point other than the
sensor’s surface. Cap scatter is the timing deviation associated with a detonator (blasting
cap). Variance in the shockwave interaction either along or not along the mid-plane was
likely due to the charge’s packing density at a cap scatter less than 16 microseconds.
Both electric and NonEL blasting caps have well-documented cap scatter. The
measured cap scatter for a 9 millisecond, for new caps, NonEL is £ 26 percent (Hoffman
J., 2013). The percentage of the delay produces a cap scatter of +2,340 microseconds.

Electric blasting caps exhibit similar cap scatter. This cap scatter was unacceptable to use

for the research herein. Therefore, these blasting caps were not used.
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The EBW detonators have a very low function time simultaneity standard
deviation; for example, an RP-80 EBW has a 0.125-microsecond simultaneity standard
deviation (Teledyne, 2015). Missouri S&T is not equipped to simultaneously initiate seven
EBW detonators. As a result, these detonators were not used.

Farnfield et al. (2009) explored the accuracy of NonEL initiators without a fuse
delay. Their findings are summarized in Figure D.1. The NonEL detonators without the
delay fuse had a cap scatter of 6 microseconds. Therefore, this technique had promise, as
it would not add to the total charge weight. It also had the lowest cap scatter. Detonators
without a fuse delay, however, are not readily available. Therefore, this technique was not

used either.

' Maximum l Minimum

Mean Delay | Standard
Delay Delay Delay Range Deviation
(millisec) (millisec) {millisec) (millisec) (millisec) |
| Plain detonator )
0.059 0.071 0.050 : 2
l with Shock Tube e e
| Commercial ‘Zero’
22.2 23.4 20.9 2.5 0.9
delay detonator ‘ J

Figure D.1. NonEL cap scatter comparison with and without a fuse delay (R. Farnfield,
W. J. Birch and G.D Rangel-Sharp, 2009).

The remaining two detonator options (electronic blasting caps and Detonation
Cord) were tested to measure the corresponding cap scatter. A make trigger was placed
around each detonator. The electronic detonators were programmed to a zero millisecond

delay. Five repetitions of four detonators per test were recorded. The total cap scatter was
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218.5 microseconds. The measured cap scatter for the electronic detonators was above the
acceptable range and, therefore, electronic detonators were not used.

The Detonation Cord was the last initiation option examined. Detonation Cord can
initiate C-4 when tied in a “Triple Roll Knot,” see Figure D.2. Timing is relative to the
length of Detonation Cord, and the scatter is linked to a variance in the Detonation Cord
length, explosive quality, and explosive packing density consistency through the length of
cord used. Detonation Cord has a typical detonation velocity of 26,000 ft/sec. The distance
the shockwave can travel at this detonation velocity can vary by + 2.4 inches and meet the
minimum timing requirements. Theoretically, at the maximum Detonation Cord velocity
variation one blasting cap can initiate seven charges without exceeding the minimum
timing variation requirements for this set of experiments, as long as the detonation wave

traverses the same distance from the blasting cap to the charge.

TRIPLE ROLL KNOT

= Y

Figure D.2. Triple roll knot (Stiehr, 2011).

A single blasting cap set off seven Triple Roll Knots. However, the Detonation
Cord has to be the same length in order for the seven charges to simultaneously detonate.
With the charge positioning around the cylinder, seven strands of equal length Detonation

Cord could not be positioned so they would not cross each other, move in front of the
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charge and generate fall positive pressures, or cross over themselves. As a result a “tree”
layout was developed that used short strands of Detonation Cord tied together to ensure the
detonation of the seven Triple Roll Knots was simultaneous. The required layout for the

Detonation Cord technique is depicted in Figure D.3.

Detonator

Junction

Junction

Junction Junction Junction

Knotl Knot2 Knot3 Knotd Knot5 Knot6 Knot7
Figure D.3. Simultaneous initiation achieved by using identical detonating cord path
length to each charge which were commonly initiated using a single detonator.

Each color represents a different level in time. The green rectangle represents the
detonator. The red ovals represent the Triple Roll Knots. The triangles represent junction
points where a single strand of Detonation Cord splits into two strands. This was done with
a Y-inch diameter tube that was cut to 3-inches. The branch-off lines were run through the
tube (similar to that shown in Figure D.4), and the main line was run through the subsequent

loop. This technique allowed the branch lines to be placed 6-inches from the end of the



150

main line. These lines were placed on opposite sides of the mark. The 6-inch spacing from
the end of the line was done to ensure that the branch lines were not blown off. Placing the

branch lines on opposite sides of the mark kept the initiation timing as close as possible.

Figure D.4. Detonation Cord tie in technique (Stiehr, 2011)

These tests were conducted to examine the scatter of the Detonation Cord
technique. A make trigger attached to the initial blasting cap triggered the data acquisition
system. A break trigger was placed at each junction of the Detonation Cord and on each
Triple Roll Knot. The total scatter among the 21 knots was 12 microseconds, plenty
accurate for the proposed research herein.

Although the Detonation Cord technique is the most complicated to setup, it also
has the least amount of scatter. Unfortunately, it also adds to the total charge weight
detonated for each test limiting the amount of C-4 that can be used. The accuracy of the
detonation timing is more critical than the size of the charge given that a distance can be
adjusted to accommodate a desired reflected pressure. Therefore, the Detonation Cord

technique was used for the duration of this research.



APPENDIX E
CYLINDER SENSOR MOUNT CONSTRUCTION REQUIRED TO OBTAIN A

FLUSH MOUNT SENSOR CONFIGURATION
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The information presented in this appendix details how the PCB sensors were
mounted in the 6.63-inch diameter cylinder. The 6.63-inch diameter cylinder used in this
study had a wall thickness of 0.43 inches. The PCB 102B series piezoelectric pressure
sensors used in these tests had a thread length of 0.34 inches (see Figure E.1).
Consequently, the sensor would not thread all the way through the cylinder wall. The

sensors used in a study such as this need to be flush with the cylinder’s surface.
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Figure E.L The PCB piezotronic’s 102b pressure sensor design (PCB Piezotronics,
2011).
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A system was developed to accommodate the cylinder’s wall thickness and the
sensor’s thread length. A hex nut 0.34 inches thick was placed in the cylinder wall to

address this issue. The Missouri S&T water-jet system was used to cut out the through-
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dimensions. This technique was also used for the larger mounting hex nuts that secured the
pipe to the pipe stand. The nuts were inserted and positioned flush with the outer cylinder’s
surface after the hex nut hole had been cut.

The angular position for each nut was marked on the cylinder’s surface before the
hex nuts were inserted in the cylinder wall. A series of CAD drawings were taped together
on the cylinder’s surface, at the appropriate position to mark the hex nut’s position. These
drawings were printed at a 1:1 scale. The sensor’s paper was positioned on the pipe so that
the sensor’s height would be 39.5 inches off the ground. This distance translates into 29.5
inches from the bottom of the pipe, as the stand the pipe sat on was 10 inches high. The
drawings had intersections positioned at the appropriate arc lengths necessary for the

desired angular position. This technique is illustrated in Figure E.2.

SensorLocation

Oy

PRODUCED BY AN A\"‘)Otu

SensorLocation
.. -A\\‘{ ——— ._, i

Figure E.2 CAD drawing positioned on the cylinder surface to mark the center of each
sensor location.
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Three pipes were used, each with a different sensor angular position. Angular
position refers to the angle between sensors measured from the center of the cylinder. The

hex nuts in place immediately after water jetting in Pipe 1 can be seen in Figure E.3.

e Lo |

Figure E.3. The hex nuts inserted into the cylinder wall of Pipe 1 to serve as the sensor
mounts.

Welding the nuts from inside the cylinder, however, was not possible with the
available equipment. The hex nuts were, instead, welded in place from the outside. The
welds had to be ground down flush with the original cylinder’s outer diameter. However,
simply grinding down the welds can still leave irregularities on the cylinder surface. As a
result, the surfaces were polished and resurfaced after grinding. Pipe 1 after resurfacing is

pictured in Figure E.4.
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s
Sensors o

Figure E.4. Pipe 1 with the pressure sensors inserted afterAresurfacing was complete.

Eight hex nuts were welded into the bottom of the pipe, similar to the nuts inserted
for the sensors. They were grouped in sets of two with 8-inches of spacing between the
nuts in a group. Each group was positioned at 90 degree intervals. These hex nuts hosted
5/8-inch bolts that were used to secure the pipe to the mounting posts.

A stand was built to support the pipes. This stand consisted of two steel 1-beams
welded in an “X” shape that laid flush with the ground. Two steel tubes were welded to the
center of the “X.” These tubes served as mounting posts for each pipe (see Figure E.5). The

mounting posts were welded in the center of the I-beam “X.” This mounting technique
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allowed the pipes to be fastened securely to the stand while also allowing them to be

positioned easily as needed. This maneuverability was found to be vital to the pipe’s setup.

SR s - 3 Lm0
[ e w0 T R g

Figure E.5. Pibé stand required to suppdrt and secure 't.h'évp'i”pe's during testing.



APPENDIX F
PCB PIEZOTRONIC PRESSURE SENSOR SPECIFICATION FOR THE SENSORS

USED (102B, 102B06, 102B15)
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The three sensors used in this research were PCB’s 102B, 102B06 and 102B15.
The data presented in this section details the pressure sensor specifications provided on
PCB Piezotronic’s website. This information includes the sensors measurement range, max
pressure, sensitivity, resonant frequency, and rise time of each sensor. This information

was used to determine the appropriate sensor for the test setup detailed in Section 4.
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102B
ENGLISH Sl
Performance
Measurement Range 5000 psi 34500 kPa
Useful Overrange 10000 psi 69000 kPa [2]
Sensitivity (£10 %) 1.0 mV/psi 0.15 mv/kPa
Maximum Pressure 15000 psi 103000 kPa
Resolution 20 mpsi 0.14 kPa [3]
Resonant Frequency =500 kHz =500 kHz
Rise Time £1.0 p sec =1.0 p sec
Low Fregquency Response (-5 %) 0.001 Hz 0.001 Hz
MNon-Linearity =1.0%F5 =1.0%FS [l
Environmental
Acceleration Sensitivity <0.002 psi/g <0.0014 kPa/(m/s2)
Temperature Range (Operating) -100 to +275 °F -73to +135°C
Temperature Coefficient of Sensitivity =0.03 %/°F =0.054 %/°C [3]
Maximum Flash Temperature 3000 °F 1650 °C
Maximum Shock 20000 g pk 196000 m/s* pk
Electrical
Output Polarity Positive Positive
Discharge Time Constant =500 sec =300 sec
Excitation Voltage 20 to 30 VDC 20 to 30 VDC
Constant Current Excitation 210 20 mA 2 to 20 mA
Qutput Impedance <100 Ohm =100 Ohm
Output Bias Voltage 210 14 VDC 810 14 VDC

Electrical Isolation

100000000 Chm

100000000 Ohm

Physical

Sensing Geometry

Compression

Compression

Sensing Element

Quartz

Quartz

Housing Material

Stainless Steel

Stainless Steel

Diaphragm

Invar

Invar

Sealing

Welded Hermetic

Welded Hermetic

Electrical Connector

10-32 Coaxial Jack

10-32 Coaxial Jack

Weight

0.44 0z

12.5 gm

(PCB Piezotronics, 2011)
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102B06
ENGLISH Sl
Performance
Measurement Range 500 psi 3450 kPa
Useful Overrange 1000 psi 6895 kPa 2]
Sensitivity (10 %) 10 mv/psi 1.45 mV/kPa
Maximum Pressure 10000 psi 68950 kPa
Resolution 2 mpsi 0.014 kPa [3]
Resonant Frequency =500 kHz =500 kHz
Rise Time <£1.0 p sec <1.0 g sec
Low Frequency Response (-3 %) 0.01 Hz 0.01 Hz
MNon-Linearity =1.0%F5S =1.0%FS [l
Environmental
Acceleration Sensitivity =0.002 psifg =0.0014 kPa/(m/s2)
Temperature Range (Operating) -100 to +275 °F -73to +135°C
Temperature Coefficient of Sensitivity =0.03 %/°F =0.054 %,/°C [3]
Maximum Flash Temperature 3000 °F 1650 °C
Maximum Shock 20000 g pk 196000 m/s? pk
Electrical
Qutput Polarity Positive Positive
Discharge Time Constant =50 sec =50 sec
Excitation Voltage 20to 30VDC 20 to 30 VDC
Constant Current Excitation 210 20 mA 210 20 mA
Output Impedance <100 Ohm <100 Ohm
Output Bias Voltage 810 14 VDC 8to 14VDC

Electrical I1solation

100000000 Ohm

100000000 Chm

Physical

Sensing Geometry

Compression

Compression

Sensing Element

Quartz

Quartz

Housing Material

Stainless Steel

Stainless Steel

Diaphragm

Invar

Invar

Sealing

Welded Hermetic

Welded Hermetic

Electrical Connector

10-32 Coaxial Jack

10-32 Coaxial Jack

Weight

0.41 oz

11.6 gm

(PCB Piezotronics, 2011)
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102B15
ENGLISH Sl
Performance
Measurement Range 200 psi 1379 kPa
Useful Overrange 400 psi 2758 kPa [2]
Sensitivity (5 mV/psi) 25 mV/psi 3.6 mV/kPa
Maximum Pressure 1000 psi 6895 kPa
Resolution 0.001 psi 0.007 kPa [3]
Resonant Frequency =500 kHz =500 kHz
Rise Time =1.0 p sec =1.0 g sec
Low Frequency Response (-3 %) 0.5 Hz 0.5 Hz
MNon-Linearity =1.0%FS =1.0%FS [l
Environmental
Acceleration Sensitivity =0.002 psifg <0.0014 kPa/(m/s2)
Temperature Range (Operating) -100 to +275 °F -73to +135°C
Temperature Coefficient of Sensitivity =0.03 %/°F =0.054 %,/°C [3]
Maximum Flash Temperature 3000 °F 1650 °C
Maximum Shock 20000 g pk 196000 m/s? pk
Electrical
Output Polarity Positive Positive
Discharge Time Constant =1.0 sec =1.0 sec
Excitation Voltage 20to 30VDC 20 to 30 VDC
Constant Current Excitation 210 20 mA 210 20 mA
Output Impedance <100 Ohm <100 Ohm
Output Bias Voltage 210 14 VDC 8to 14VDC

Electrical Isolation

100000000 Ohm

100000000 Ohm

Physical

Sensing Geometry

Compression

Compression

Sensing Element

Quartz

Quartz

Housing Material

Stainless Steel

Stainless Steel

Diaphragm

Invar

Invar

Sealing

Welded Hermetic

Welded Hermetic

Electrical Connector

10-32 Coaxial Jack

10-32 Coaxial Jack

Weight

0.41 oz

11.6 gm

(PCB Piezotronics, 2011)
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EXPLOSIVE CHARGE CONSTRUCTION REQUIRED TO TEST THE OBJECTIVES

OF THIS RESEARCH
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The explosive charges used throughout this research were detonated with
detonation cord tied in a Triple Roll Knot. As a result, the cylinders needed to be
constructed and packed in a specific format. This appendix presents how the cylinders were
constructed and packed for the 0.2, 0.4 and 0.6 Ib charges.

It is important to keep the amplification factor similar for each charge weight, as a
change in the amplification factor could inadvertently lead to evidence that would support
the false hypothesis. The length to diameter ratio of the 0.2 Ib charge (1:1.1) was used in
conjunction with available shipping tube diameters to obtain the geometry of the larger
charges (0.4 and 0.6 Ib).

The Triple Roll Knot presented a difficult packing requirement. The cylinder’s
diameter made it difficult to pack C-4 around the Triple Roll Knot. As a result, a 5/16-inch
diameter hole was drilled into one of the cylinder’s end caps. Detonation Cord was run
through the hole such that the knot was inside the tube when the end cap was placed on the
cylinder. The knot was positioned at the end of the Detonation Cord with as little
Detonation Cord extruding beyond the knot as possible. The cylinder was secured to this
end cap and the knot pulled all the way through the cylinder. This process allowed the
bottom of the cylinder to be packed with approximately ¥a-inch of explosives.

Approximately 0.011 Ibs of C-4 was packed around the knot filling any external
voids present. The knot was pulled back down into the cylinder “squishing” the explosives
around the sides of the knot. The remaining explosives were packed around the knot, filling
the remainder of the cylinder. This technique positioned the knot in the diametric center at
the bottom of the cylinder (see Figure G.1). Each cylinder end cap was secured with

approximately three complete wraps of electrical tape. Special care was taken to ensure the
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electrical tape was applied within a minimal, uniform surface area of the cylinder to

minimize the effects the tape had on the shockwave’s expansion.

C-4

Cylindrical
Confinement \

Detonation Cord

Figure G.1. Detonation cord position within the cylinder.

The cylinders were marked at the centers of their respective lengths. These
markings allowed for easier inspection of the charge’s vertical positioning relative to the
sensor heights with the laser level. They also provided a reference plane, sensor position

to the center of the charges, for the standoff measurements.



APPENDIX H
CHARGE STAND CONSTRUCTION REQUIRED TO TEST THE OBJECTIVES OF

THIS RESEARCH
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Suspending the charge did not provide a consistent, reliable mounting system. The
suspension system proved difficult when attempting to ensure consistency in charge height;
the wind consistently blew the charge out of position. The suspension mounting system
also proved difficult when attempting to keep the charge oriented vertically. Therefore, a
new support mounting system was designed and used to position the charges. This
appendix presents the new support mounting system.

The charge stand consisted of a 2-inch diameter shipping tube 3 ft in height. The
shipping tube was placed over a 1.75-inch outer diameter pipe mounted to a 6-inch steel
plate. A series of cardboard wedges were used to raise the tubes and position the charges
at the desired height. These wedges were placed between the inner diameter of the shipping
tube and the outer diameter of the mounting pipe. A 0.4 Ib charge on the shipping tube
stands prior to final inspection and hookup is pictured in Figure H.1. Each charge was
positioned such that the center of the charge was 39.5-inches from the ground and aligned
vertically relative to the sensor. A laser level was used to confirm the charges were level
with the sensors.

Two holes were drilled into the shipping tubes stands approximately 1-inch from
the top of the tube. One hole was used to run the Detonation Cord. The second hole enabled
the make triggers to be away from the charge without placing any rotational forces on the
charge. The Detonation Cord was pulled taunt, and electrical tape was used to tape it into
position. The charge tended to tilt away from the side on which the Detonation Cord was
run if the tape was not used. The Detonation Cord mounting technique for a 0.4 Ib charge

is illustrated in Figure H.2. This technique was used for all of the charge weights.
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0.4 Ib charge

T
O b A R NE
Figure H.2. Charge mounting system illustrating how the Detonation Cord runs through
the mounting system and the charge is positioned on top.
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The center of the charge cylinder was aligned with the sensor height. The high-
speed video did not indicate that this mounting technique inhibited the shockwave
formation. While the shipping tube and cap provide impedance barriers, the Detonation
Cord will destroy the shipping tube and cap and thereby eliminating any strength/resistance
that this technique would generate for the primary C-4 charge. Also, the direction of
potential impedance is below the charge. This would impede the shockwaves ground
interaction and the formation of the Mach stem on the ground. The repeatability and
standardization associated with this technique outweigh the potential impedance of the

shockwave formation.



APPENDIX |
EXPLOSIVE CHARGE POSITIONING TECHNIQUE USED TO POSITION THE

CHARGES THROUGHOUT THIS RESEARCH
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The information presented in this appendix details how each charge was positioned

to improve the accuracy of the charge placement. The success or failure of this research

was highly dependent on charge placement accuracy. Therefore, a series of checks was

followed each time a charge was placed. The steps for this process were as follows:

1.

10.

11.

12.

13.

Place the pipe stand on a flat, level
surface.

Level the charge stand.

Insert the custom laser in the appropriate
sensor location.

Check the mock charge’s height.

Check the charge-to-pipe distance.
Check the charge-to-charge distance.
Obtain the charge stand’s coordinates
relative to the pipe stand.

Re-setup the pipe stand at the blast site.
Ensure the stand is level and stable.

Use the charge stand’s coordinates to
place the base.

Level the charge stand’s base.

Place the shipping tube (with the charge)
on the charge stand’s base.

Tie in the Detonation Cord and make

triggers.
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14. Position the charge to the correct height.

15. Check the distance from the charge to the
pipe.

16. Check the distance between charges.

17. Double-check the charge stand base’s
coordinates.

The pipe stand was setup on a level surface to obtain the coordinates was
imperative; an un-level site would have created an inaccurate coordinate location for the
charge stand base. The level surface used was inside, allowing the setup to be conducted
in all types of weather.

A custom laser mount was threaded into the sensor mount locations at the desired
charge’s angular spacing in order to position the charges at the correct angular spacing. For
example, the setup for Delta 2 required the laser to be placed in the 0, 60, 120, 240, and
300-degree sensor locations on Pipe 2 to accommodate the 5 charges with 60-degree
angular spacing. The laser mount and laser combination was accurate to + 0.181-inches at
52-inches.

A shipping tube with a mock charge was placed on the charge stand’s base to
represent the actual charges. The base was examined to ensure the shipping tubes were
perpendicular to the stands base without any radial deviations. The charge stands were
moved away from the pipe until the center was at 52-inches, and the laser was pointing at
the charge’s center. The charge’s position was re-examined once the charge stands were

positioned at the appropriate distance relative to the pipe.
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Points were selected on the pipe stand to represent the reference points for the
charge stand’s coordinates (see Figure 1.1). These points were identified as the corners of
the I-beams. The distances to the closest two reference points on the pipe stand were used
to determine the charge stands coordinates. A third distance was obtained as a “check-
distance” for the final setup. This “check-distance” was used as a backup measurement in
the event that a reference point on the pipe stand became damaged during testing. The
coordinate system ensured the charge stands were setup in the correct locations. The
coordinate system also allowed the charge stands to be examined and repositioned (when

needed) after each test.

\
\ | Reference Point
\

Figure I1.1. Charge stands reference points for generating the charge positioning
coordinate system.
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The pipe stand was moved to the test site after the charge stand’s coordinates had
been obtained. The pipe stand was leveled and weighted down. The pipe was aligned
relative to the positioning marks on the pipe and pipe stand. It was secured via the mounting
bolts previously discussed. The appropriate sensors and cabling were hooked up after the
pipe was secured.

The charge stands required for the desired test were setup with their previously
obtained coordinates. The shipping tube and charge assembly were placed on the charge
stand’s base. The charges were positioned for their height relative to the sensor’s height,
the distance from the center of the charges to the pipe, levelness, and the distances from
the center of one charge to the center of the next charge. The Detonation Cord and make
triggers were connected prior to the charge’s final positioning to prevent the potential for
incidental (deviation of the charges) during the setup process.

Finally, the charge stand’s coordinates relative to the pipe stand were re-examined,
via the charge stand coordinates and the third “check-distance.” If either the charge stand
or charge was off in any of the distance checks, this process was repeated until the charges
were in the appropriate positions. All three repetitions of the test number were conducted

once the charge stands were in place.



APPENDIX ]
TRIGGERING SYSTEM USED TO INITIATE THE DATA ACQUISITION SYSTEM

TO RECORD THE DATA FOR EACH TEST
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This appendix presents the make trigger used to record the initiation time for the
multiple charges used throughout this research. In order to trigger the data acquisition
system at the proper time to capture the relevant data from each test, the author used a so-
called make trigger. A make trigger works by using plasma generated from the explosion
to bridge two contacts, thereby causing current to flow through the contacts’ circuit. The
make trigger that was used to trigger the data acquisition system was set to record at a 2
MHz sample rate.

A make trigger was placed on every charge when the data acquisition system had
the available channels (16 total channels). For example, Pipe 3 had 14 channels and
therefore not every charge could be monitored when more than two charges were used. The
make trigger used to analyze when the charges detonated consisted of piano wire tied
around the Detonation Cord 1-inch from the bottom of the charge. The piano wire was too
fragile to run the 25 ft to the trigger box. As a result, 14-gauge wire was run 10-ft away
from the charge. The 14-gauge wire was then connected into a cat5 cable, which connected
into a custom tiger box. The piano wire passing through the through hole and connecting
into the 14-gauge wire is pictured in Figure J.3.

All of the make triggers were run back into the custom trigger box. This box was
vital to ensuring no data was lost during the duration of this research. If the data acquisition
system did not trigger or the triggers shorted out prior to detonation, no pressure data was
recorded. A trigger check was done prior to initiation of the blasting cap. LED lights were
built into the box, which indicated whether or not the circuit was made or broken. If the
trigger test failed (LED was not lit up), the lines were diagnosed to determine the source

of the trigger failure. The make trigger box and its connections are illustrated in Figure J.2.
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Positive Voltage Input

Figure J.1. Make wire connection between the piano wire and the 14-gauge wire.

The make trigger box consisted of four CAT5 inputs. Each CATS5 input could carry
the signal from four make triggers. Thus, the trigger box had 16 BNC output connections.
Each output had an indicator signal that illuminated when a closed circuit is present (make
trigger) and is not illuminated when an open circuit was present (break trigger). Both the
inputs and the outputs were broken into the four groups generated by the CAT5 inputs.

Each group had an on/off switch to conserve battery life.
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Circuit Make/Break Indicator

Figure J.2. Make trigger box used to trigger the data acquisition system.

A backup pressure-based trigger was set for the signature sensor as a precaution to
the make trigger failing. The sensor at the apex of the cylinder, relative to a single charge
position, has been identified as the signature sensor. The pressure trigger triggered the data
acquisition system if the pressure rose above a set threshold (20 percent of the sensors
measurement range). The data acquisition system was set to trigger if either the make

trigger or the pressure trigger were recognized.



APPENDIX K

ALPHA TEST DATA SUMMARY
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The data presented in this appendix is the summarized data from Alpha tests
detailed in Section 5.3.1. Each file highlights the signature sensor with the cells filled blue.
The data presented in this appendix was extracted in accordance with the technique
described in Section 5.2. The max pressure, arrival time, positive pressure duration, and

impulse data was extracted from each test.
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le 90-Gram Charge

ing

S

Alpha 1 - Repetition A - Pipe 1

CH 1 [PSI]
7.32634
Initial Pressure Arival = 0.0018825
Time in micrasec 1882.5
Min time 1448
Max time 2066.5
arival spread 618.5
max time duration 843.00
0.0023035
me in microsec 2303.5
Duration 421
Impulse (sec*psi) 1.61E-03
Impulse {millisec*psi) 1.61
Time
Signature Sensor
Dif
Channel 3 54.5
Channel 2 180.5
Channel 1 343
Channel 8

Flat Plate

cH2[psi] cH3[psl)  [GHEEBSIMlcH s [PsI] (CHE[PSIT CH7[PSI] CcHg[psI] [CHI[PSI]
16.0383 30.7256/0 886502  29.633  15.8185 7.68605  8.98478  47.8113
0.00172 0.001594 0.0015395 0.001598 0.001729 0.0018875 0.0020665 0.001448
1720 1554 1539.5 1598 1723 1887.5 2066.5 1448
841.00 1,109.00 1,060.00 1,056.00 832.00 820.00 1,736.00 704.00
0.00214 0.002148 0.002069 0.0021255 0.0021445 0.002297 0.002934 0.0017995
2140 2148 2069 2125.5 2144.5 2297 2934 1799.5
420 554 529.5 527.5 415.5 409.5 867.5 351.5
2.66E-03 5.39e-03  7.12E-03 5.05E-03  2.35E-03 1.57E-03  3.74E-03  7.07E-03
2.66 5.39 7.12 5.05 2.55 1.57 3.74 7.07

Pressure
1539.5 Microseconds Signature Sensor 38.6502
Average Dif Dif Average

174 58.5 Channel 3 73.50% 78.09%
185 189.5 Channel & Channel 2 41.50% 41.21%
345.5 348 Channel 7 Channel 1 18.96% 19.42%
527 Microseconds Channel 8 23.25%
-91.5 Microseconds Flat Plate 123.70%

CH12[V]
5.00

Dif
76.69% Channel 5
40.93% Channel 6
19.89% Channel 7
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Single 90-Gram Charge

Alpha 1 - Repetition B - Pipe 1

CH1[PSI] CH2[PSI] CH3[PSI] CHS[PSI] CHG6[PSI] CH7Z[PSI] CH3[PSI] CH9[PSI] CH12[V]
6.97915 17.0484 35.9997 35.9963 16.1014 7.69234 8.34695 41.018 5.00

Initial Pressure Arival 0.001793 0.001635 0.001508 0.001455 0.0015145 0.0016385 0.001746 0.0019765 0.001505
Time in microsec 1793 1635 1508 1455 1514.5 1638.5 1746 1976.5 1505
Min time 1455
Max time 1976.5
arival spread 521.5
max time duration 1,964.00 1,023.00 1,259.00 1,210.00 1,316.00 1,036.00 2,402.00 1,733.00 853.00

0.0027745 0.002146 0.002137 0.0020595 0.002172 0.002156 0.0025465 0.0028425 0.001931
Time in microsec 27745 2146 2137 2059.5 2172 2156 2946.5 2842.5 1931
Duration 981.5 511 629 604.5 657.5 517.5 1200.5 866 426
Impulse (sec*psi) 2.83E-03 2.76E-03 5.54E-03 7.77E-03 5.67E-03  2.85E-03 3.08E-03  3.91E-03 6.59E-03
Impulse (millisec*psi) 2.83 2.76 5.54 7.97 5.67 2.85 3.08 3.91 6.59
Time Pressure
Signature Sensor 1455 Microseconds Signature Sensor 46.7767

Dif Average Dif Dif Average
Channel 3 53 145.5 59.5 Channel 3 76.96%  76.96% 76.95% Channel 5
Channel 2 180 181.75 183.5 Channel 6 Channel 2 36.45%  35.43% 34.42% Channel 6
Channel 1 338 314.5 291 Channel 7 Channel 1 14.92%  15.68% 16.44% Channel 7
Channel 8 521.5 Microseconds Channel 8 17.84%
Flat Plate 50 Microseconds Flat Plate 87.69%
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le 90-Gram Charge

ing

S

Alpha 1 — Repetition C - Pipe 1

7.3713 10.0458 47.7191

0.0018065 0.0020165 0.001516
1806.5 2016.5 1516

1,991.00 1,603.00 781.00
0.0028015 0.0028175 0.001906

2801.5 2817.5 1906

995 801 390

2.86E-03  3.66E-03 6.80E-03

CH1[PSI] CH2[PsI] cH3[psi]  |CHMMIBSEM CH 5 [PSI] CH 6 [PSI] CH 7 [PSI] CHB[PSI] [CH3[PSI]
7.23218 153149 32.0274 0433608  35.2764 16.0952
Initial Pressure Arival |~ 0.001833 0.001676 0.001551 0.0014945 0.0015435 0.001671
Time in microsec 1839 1676 1551 14945  1543.5 1671
Min time 1494.5
Max time 2016.5
arival spread 522
max time duration 1,882.00  863.00 1,064.00  991.00 1,054.00 1,029.00
0.0027825 0.002107  0.0020825 0.0019895  0.00207 0.002185
Time in microsec 2782.5 2107 2082.5  1989.5 2070 2185
Duration 943.5 a31 5315 495 526.5 514
Impulse {sec*psi) 2.77E-03  2.55E-03 5.146-03 7.11E-03 5.29E-03 2.77E-03
Impulse (millisec*psi) 2.77 2.55 5.14 7.11 5.29 277
Time
Signature Sensor 1494.5 Microseconds
Dif Average Dif
Channel 3 56.5 156 49
Channel 2 181.5 179 176.5 Channel 6
Channel 1 344.5 328.25 312 Channel 7
Channel 8 522

Flat Plate 21.5 0.01

2.86 3.66 6.80
Pressure
Signature Sensor 43.3619

Dif Average

Channel 3 73.86%  77.61%
Channel 2 35.32%  36.22%
Channel 1 16.68%  16.84%
Channel 8 23.17%
Flat Plate 110.05%

CH12[V]
4.99725

Dif
81.35% Channel 5
37.12% Channel b
17.00% Channel 7

0.03
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Alpha 2 - Repetition A - Pipe 2: Single 90-Gram Charge

CH 1[PSI] CH 2 [PSI] CH 3 [PSI] CH 4 [PEI] CH & [PSI] CH 7 [PSI] CHE[PSI] CHS[PSI] CH10[PSI] CH 11 [PSI] CH 13 [V]
B.97403  16.1817 27.3907 38.6132 41,1514 27.2443 15.9334 10.2115 7.46464 44,3047 5.00
Initial Pressure Arival | 0.0016955| 0.001553 0.0015145 0.0014755 0.0014555 0.001483 0.0015245 0.001629 0.0017345 0.001961 0.001516
Time in microsec 1695.5 1553 15145 14755 14555 1483 15245 1629 17345 1961 1516
Min time 1455.5
Max time 1961
arival spread 5055
max time duration 1,193.00 1,087.00 1164000 145400 1,22100 1,253.00 1,296.00 08400 933.00 2,697.00 B61.00
0.0022915 0.002096 0.002096 0.002202| 0.0020655| 0.002109 0.002172 0.0021205| 0.0022005 0.00330% 0.001946
Time in microsec 22915 2096 2006 2202 2065.5 2109 2172 2120.5 2200.5 3309 1946
Duration 596 543 5815 726.5 B10 B26 B47.5 4315 466 1348 430
Impulse [sec*psi) 2.06E-03| 2.90E-03 4 38E-03 6.31E-03 7.1BE-03 6.37E-03 4 35E-03 2.71E-03| 191E-D3 4 32E-03 6.61E-03
Impulse (millisec*psi) 2.06 2.90 438 6.31 7.18 6.37 435 271 191 432 £.61
Time Pressure
Signature Sensor 1455.5 Microseconds Signature Sensor 42454
Dif Average Dif Dif Average | Dif
Channel 4 20 B6.75 27.5 Channel & Channel 4 O0.87% 93.85% 96.84% Channel &
Channel 3 59 64 6% Channel 7 Channel 3 B4 453 64 29% 64.11% Channel 7
Channel 2 975 135.5 173.5 Channel 8 Channel 2 38.08% 37.79%% 37.50% Channel 8

Channel 1 240 2585 279 Channel 9 Channel 1 21.12% 22.57% 24.03% Channel 9
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Alpha 2 - Repetition B - Pipe 2: Single 90-Gram Charqge

CHL1[PSI] CHZ2[PsSI] CH3[PSI] CH4 [PsI] CHG6[PSI] CH7[PSI] CHS&[PSI] CH9[PSI] CHI10[PSI] CH11[PsI]
8.17961 15.3835 26.6056 39.4036 39.6384 27.9996 16.4915 9.87948 7.489599 42,8331
Initial Pressure Arival 0.001808 0.001701 0.001586 0.0015515 0.0015225 0.0015405 0.0015795 0.001683 0.001789 0.002026  0.001457
Time in microsec 1208 1701 1586 1551.5 1522.5 1540.5 1579.5 1683 1789 2026 1457
Min time 1457
Max time 2026
arival spread 529
max time duration 1,099.00 919.00 1,195.00 1,141.00 1,134.00 1,189.00 1,203.00 986.00 720.00 4,492,000 901.00
0.002357 0.00216 0.002183 0.0021215 0.002089 0.0021345 0.0021805 0.0021755 0.0021485 0.0042715 0.001947
Time in microsec 2357 2160 2183 2121.5 20839 2134.5 2180.5 2175.5 2148.5 4271.3 1947
Duration 2439 459 297 270 566.5 594 601 492.5 359.5 2245.5 450
Impulse (sec*psi) 2.04E-03 2.71E-03 4.21E-03 6.20E-03 7.16E-03 6.38E-03 4.4B8E-03 2.84E-03  1.88E-03 5.49E-03 6.44E-03
Impulse (millisec*psi) 2.04 2.71 4,21 6.20 7.16 6.28 4,48 2.84 1.88 5.49 6.44
Time Pressure
Signature Sensor 1522.5 Microseconds Signature Sensor 41.2616
Dif Average Dif Average  Dif
Channel 4 29 23.5 18 Channel &6 Channel 4 95.50% 95.78% 96.07% Channel 6
Channel 3 63.5 60.25 57 Channel 7 Channel 3 64.48% 66.17% 67.86% Channel 7
Channel 2 178.5 169.5 160.5 Channel 8 Channel 2 37.28% 38.63% 39.97% Channel 8
Channel 1 285.5 276 266.5 Channel 9 Channel 1 19.82% 21.88% 23.94% Channel 9
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Alpha 2 - Repetition C - Pipe 2: Single 90-Gram Charge

CH 1[PSI] CH 2[PSI] CH 3 [PSI] CH 4 [P5I]

7.64993  15.83574

28.9603 40,756

Initial Pressure Arival  0.001779 0.001613 0.001565 0.00153

Time in microsec 1773 1612.5
Min time 1501.5
Max time 2003.5
arival spread 502
max time duration 1,104.00 1,036.00

0.002331 0.00213

Time in microsec 2330.5 2130
Duration 351.5 317.5
Impulse (sec*psi) 2.00E-03 2.75E-03
Impulse (millisec*psi) 2.00 2.75
Time

Signature Sensor 1501.5

Dif Average

Channel 4 28 79.25
Channel 3 63.5 59.5
Channel 2 111 13475

Channel 1 277.5 270

1565 1529.5

1,211.00 1,276.00
0.00217 0.002167

2170 2167

605 637.5

4,29E-03 6.40E-03

4,29 6.40

Microseconds

Dif

19 Channel 6
55.5 Channel 7
158.5 Channel 8
262.5 Channel 9

0.001502
1501.5

1,225.00
0.002114

2113.5

612

7A4E-03
7.44

CH & [PSI] CH 7[PSI] CH & [PSI] CHS[PSI] CH 10 [PSI CH 11 [PSI] CH 13 [V]

42,2277

0.001521
1520.5

1,379.00
0.00221

2209.5

639

6.04E-03
6.04

30.9142

0.001557
1557

1,232.00
0.002173

2172.5

6153.5

4.43E-03

4.49
Pressure

17.945

10.5004

7.34 45.36

0.00166 0.001764 0.002004 0.001336

1660

974.00

1764

945.00

2003.5 1536

7.34 859.00

0.002147 0.002236 0.002833 0.0015645

2146.5

486.5

2236

472

2852.5 1964.5

349 428.5

2.78E-02 1.93E-03 3.70E-03  6.87E-03

2.78

Signature Sensor

Channel 4
Channel 3
Channel 2
Channel 1

Dif

90.33%
84.19%
35.15%
16.96%

1.93 3.70 6.87
45,1175
Average Dif
91.96%  93.59% Channel 6
66.35%  68.92% Channel 7
37.46%  39.77% Channel 8
20.11%  23.27% Channel 9

1.16
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le 90-Gram Charge

ing

S

Alpha 3 - Repetition A - Pipe 3

Initial Pressure Arival
Time in microsec

Min time
Max time

arival spread

max time duration

Time in microsec

Duration

Impulse (sec*psi)
Impulse (millisec*psi)
Time

Signature Sensor

Channel 6
Channel 5
Channel 4
Channel 3
Channel 2
Channel 1

Channel 14
Flat Plate

CH1[PSI] CH2[PSI] CH 3 [PSI] CH 4 [PSI] CH 5 [PSI] CH 6 [PSI]

9.22118

0.001835
1835

1578.5
2111.5

533

1,187.00
0.002428

2428

393

2.09E-03

2.09

Dif

148.5
218
252

12,8393 19.6204 28,2822

0.001801 0.001732 0.001673

1801 1731.5 1673
1,207.00 1,117.00 1,199.00
0.002404 0.00229 0.002272

2404 2289.5 2272

603 558 599
2, 70E-03 3.56E-03 4.833E-03
2.7 3.56 4.83
1583 Microseconds
Average Dif
4.25 13 Channel 8
45.25 47.5 Channel 9
94 98 Channel 10
152.5 156.5 Channel 11
218.5 219 Channel 12
274 296 Channel 13

528.5 Microseconds
471 Microseconds

36.4473 38.4131

0.001626 0.001579

1626 1578.5
1,305.00 1,483.00
0.002278  0.00232
22738 2319.5
652 741
6.10E-03 7.33E-03
6.1 7.33
Pressure

CH 8 [PSI] CH 9 [PSI] CH 10 [PSI CH 11 [PSI CH 12 [PSI CH 13 [PSI CH 14 [PSI CH 15 [PSI]

37.3617

34.7493 25.9739

0.001583 0.001596 0.001631 0.001681

1583

1,301.00
0.002233

2233

650

7.52E-03
7.52

Signature Sensor

Dif

Channel 6  85.99%
Channel5  81.59%
Channel4 63.31%
Channel 3 43.92%
Channel 2 28.74%
Channell 20.64%
Channel 14

Flat Plate

1596

1,196.00
0.002194

2193.5

597.5

6.93E-03
6.93

44,6693
1
84.82%
79.69%
60.74%
42.38%
30.03%
20.68%

17.19%
85.76%

1630.5 1681

1,129.00
0.002195

1,058.00
0.00221
21945  2209.5
564 5285

5.86E-03
5.86

4.48E-03
4.48

Dif
83.64% Channel 8
77.79% Channel 9
58.16% Channel 10
40.84% Channel 11
31.31% Channel 12
20.72% Channel 13

18.2417 13.9862

9.2538

7.68009

38.31

0.00174 0.001802 0.001873 0.002112 0.002054

1739.5 1802 1879
976 1,043.00 1,001.00
0.002227 0.002323 0.002379
2227 2323 2379
487.5 521 500
3.28E-03 2.53E-03 2.09E-03
3.28 2.53 2.09
Impulse
Signature Sensor
Dif
Channel6 97.48%
Channel5 81.14%
Channel4 64.19%
Channel 3  47.31%
Channel 2 35.86%
Channell 27.74%
Channel 14
Flat Plate

2111.5

2,996.00
0.003609

3609

1497.5

4,59E-03
4.59

7.52
Average

94.79%
79.54%
61.87%
45.43%
34.75%
27.74%

61.00%
88.52%

2054

1,799.00
0.002418

2418

364

6.66E-03
6.66

Dif
92.10% Channel 8
77.95% Channel 9
59.55% Channel 10
43.54% Channel 11
33.65% Channel 12
27.73% Channel 13
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(]
O] J—
m CH1[PSI] CH2[PSI] CH3I[PSI] CH4[PSI] CHS5[PSI] CH&I[PSI] CH8[PSI] CHYI[PSI] CH 10 [PSI] CH11[PSI] CH12[PSI] CH13[PSI] CH 14[PSI] CH 15 [PSI] CH 16[V]
e _ 8.05014 12.4402 17.5 254231 31.8964  35.9495 35.4174 32.658 248774 17.6697 12.8857 9.00437 7.61672 43.0541 5.00626
m ial Pressure Arival 0.001853 0.001784 0.0017125 0.0016505 0.001598 0.001564 0.0015525 0.0015645 0.0015985 0.0016485 0.0017075 0.001719 0.001347 0.0020815 0.00157
< Time in microsec 1853 1784 1712.5 1650.5 1557.5 1564 1552.5 1564.5 1558.5 1648.5 1707.5 1719 1847 2081.5 1570
|-
O] min time 1552.5
0_ Max time 2081.5
(o))
D] arival spread 529
O]
c
| max time duration 1,127.00 1,245.00 1,07L.00  1,310.00 1,416.00 1,452.00 1,456.00  1,224.00 1,142.00  1,054.00 989.00 1,168.00  1,099.00 2,934.00 965.00
n.{v. 0.002416 0.002406 0.0022475 0.002305 0.002305 0.00229 0.00228 0.002176 0.002169  0.002175 0.0022015 0.0023025 0.002396 0.003548  0.002052
(B}
O Time in microsec 2416 2406 2247.5 2305 2305 2289.5 2280 2176 2169 2175 22015 2302.5 2396 3548 2052
o
1 | Duration 563 622 535 654.5 707.5 725.5 727.5 611.5 570.5 526.5 494 583.5 549 1466.5 482
m
c Impulse (sec*psi) 2.03E-03 2.73E-03 3.45E-03 4.74E-03 5.97E-03 7.19E-03 7.55E-03  6.90E-03 5.92E-03 4.52E-03 3.30E-03 2.59E-03 2.16E-03 4.55E-03 6.95E-03
O] impulse (millisec*psi} 2.03 2.73 3.45 4.74 5.97 7.19 7.55 6.90 5.92 4,52 3.30 2.39 2.16 4.55 6.95
| Time Pressure Impulse
ﬂ Signature Sensor 1552.5 Microseconds Signature Sensor 40.8405 Signature Sensor 7.55
(@] Dif Average Dif Dif 1 Dif Dif Average Dif
Dnn» Channel & 11.5 11.75 12 Channel 8 Channel 6 B88.02% 87.37% 86.72% Channel 8 Channel & 95.22% 93.33% 91.44% Channel 8
Channel 5 45 45.5 46 Channel 9 Channel 5 78.10% 79.03% 79.96% Channel 9 Channel 5 79.12% 78.80% 78.47% Channel 9
1
™ Channel 4 98 97 96 Channel 10 Channel 4 62.25% 61.58% 60.91% Channel 10 Channel4 62.85% 61.39% 59.92% Channel 10
o Channel 3 160 157.5 155 Channel 11 Channel 3 42.85% 43.06% 43.27% Channel 11 Channel 3 45.70% 44.71% 43.73% Channel 11
| Channel 2 231.5 199 166.5 Channel 12 Channel 2 30.46% 31.01% 31.55% Channel 12 Channel 2 36.19% 35.28% 34.36% Channel 12
Ol channel 1 300.5 297.5 294.5 Channel 13 Channel 1 19.71% 20.88% 22.05% Channel 13 Channel 1 26.96% 27.76% 28.56% Channel 13
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le 90-Gram Charge

ing

S

Alpha 3 - Repetition C - Pipe 3

Initial Pressure Arival
Time in microsec

Min time
Max time

arival spread

max time duration

Time in microsec
Duration

Impulse (sec*psi)
Impulse (millisec*psi)

Signature Sensor

Channel 6
Channel 5
Channel 4
Channel 3
Channel 2
Channel 1

Channel 14
Flat Plate

CH1[PSI] CH2[PSI] CH3[PSI] CHA4[PSI] CH5[PSI] CH6 [Psi] [CHIZIPSIN CH 8 [PSI]

10.8748

0.001368
1868

1516
2124

608

511.00

0.002145

2144.5

276.5

1.46E-03
146

14.1738

0.001799 0.001731 0.0016659 0.001621 0.001587 0.001576

1799

638.00

0.002106 0.002145

2106

307

2.18E-03
218

19.1507  28.4242

1730.5 1668.5
829.00 572.00
0.001954

2144.5 1954
414 285.5
3.13E-03  3.59E-03
3.13 3.59

1576 Microseconds

Dif Average
1 10.5
45 46.75
92.5 95.5
154.5 156
223 223.75
292 296

Dif

10 Channel 8
48.5 Channel 3
98.5 Channel 10
157.5 Channel 11
224.5 Channel 12
300 Channel 13

548 Microseconds
-60 Microseconds

32.8177

1621

978.00
0.00211

2109.5

488.5

5.45E-03
5.45

38.0177 | 40,9889  38.1594
0.001586
1587 1576 1586
1,039.00 1,030.00 924.00
0.002106 0.002091 0.0020475
2106 2090.5 2047.5
519 514.5 461.5
6.36E-03  6.86E-03 6.30E-03
6.36 6.86 6.30
Pressure
Signature Sensor 40.9889
Dif Average
Channel6  92.75% 92.94%
Channel 5 80.06% 83.05%
Channel4  69.35% 65.68%
Channel 3  46.72% 48.05%
Channel2  34.58% 37.31%
Channell  26.53% 28.67%
Channel 14 20.64%
Flat Plate 109.97%

CHO9[PSI] CH10[PSI] CH11[PSI] CH12[PSI] CH13[PSI] CH 14 [PSI] CH 15[PSI] CH 16 [V]

35.2645 254187 20.2405 16.4084 12.6273 8.4595 45.0751  5.00626
0.001625 0.0016745 0.0017335 0.0018005 0.001876 0.002124 0.001516
1624.5 1674.5 17335 1800.5 1876 2124 1516
882.00 713.00 740.00 613.00 A88.00 1,638.00 954.00
0.002065 0.0020305 0.002103 0.0021065 0.0021155 0.0029425 0.0019925
2065 2030.5 2103 21068.5 2119.5 2942.5 1992.5
440.5 356 369.5 306 243.5 818.5 476.5
5.34E-03 3.97E-03 3.01E-03 2.07E-03 1.53E-03 3.56E-03 6.79E-03
5.34 3.97 3.01 2.07 1.53 3.56 6.79
Impulse
Signature Sensor 6.86
Dif Dif Average  Dif
93.12% Channel 8 Channel 6 92.66% 92.21% 91.76% Channel 8
86.03% Channel 9 Channel 5 79.36% 78.57% 77.78% Channel 9
62.01% Channel 10 Channel 4 52.38% 55.12% 57.85% Channel 10
48.38% Channel 11 Channel 3 45.67% 44.77% 43.87% Channel 11
40.03% Channel 12 Channel 2 31.70% 30.95% 30.20% Channel 12
30.81% Channel 13 Channel 1 21.30% 21.81% 22.32% Channel 13
Channel 14 51.93%
Flat Plate 98.96%



APPENDIX L

BRAVO TEST DATA SUMMARY
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The data presented in this appendix is the summarized data from Bravo tests
detailed in Section 5.3.2. Each file highlights the signature sensor with the cells filled blue.
The data presented in this appendix was extracted in accordance with the technique
described in Section 5.2. The max pressure, arrival time, positive pressure duration, and

impulse data was extracted from each test.
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Bravo 1 - Repetition A - Pipe 1: Two 90-Gram Charges at 180-Deqgrees

CH1[PSI] CHZ2[PSI] CH3[PSI] CHS5[PSI] CH&[PSI] CHT7[PSI] CHS8[PSI] CH14[V]
30,4352 40.4635 34.5436 30.9141 36.9876 31.0463 33.167 5.00015

Initial Pressure Arival | 0.0015305 0.001486 0.001534 0.0016745 0.0015635 0.0015155 0.0015605 0.0016515
Time in microsec 1530.5 1486 1534 1674.5 1563.5 1515.5 1560.5 1651.5
Min time 1486
Max time 1674.5
arival spread 188.5
max time duration 3,019.00  3,076.00 3,061.00 2,956.00 3,450.00 3,643.00 3,685.00 1,791.00

0.0030395 0.0030235 0.003064 0.003152 0.003288 0.0033365 0.0034025 0.0025465
Time in microsec 3039.5 3023.5 3064 3152 3288 3336.5 3402.5 2546.5
Duration 1509 1537.5 1530 1477.5 1724.5 1821 1842 895
Impulse (sec*psi) 1.03E-02  1.22E-02 1.14E-02 1.28E-02 1.07E-02 1.14E-02 1.03E-02  1.01E-02
Impulse (millisec*psi) 10.32 12.22 11.44 12.78 10.71 11.44 10.33 10.12
Time Pressure
Signature Sensor 1674.5 Microseconds Signature Sensor 35.9826

Dif Average Dif Dif Average Dif
Channel 3 -140.5 -125.75 -111 Channel 3 96.00%  90.96% B85.91% Channel 5
Channel 2 -188.5 -173.75 -159 Channel 6 Channel 2 112.45% 107.62% 102.79% Channel 6
Channel 1 -144 -129 -114 Channel 7 Channel 1 84.58%  85.43% 86.28% Channel 7
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17}
m CHL1[PSI] CH2[PSI] CH3[PSI] CHS5[PSI] CH&[PSI] CH7I[PSI] CHE[PSI] CH14[V]

m 32.2594  38.08604 27.4376 33.562 40.5179 26.0356 33.4185 3

i

m Initial Pressure Arival = 0.0015255 0.001472 0.0015195  0.00167 0.0015665 0.0015065 0.0015405  0.00165

= Time in microsec 1525.5 1472 1515.5 1670 1566.5 1506.5 1540.5 1650

D3

m Min time 1472

hnna Max time 1670

o

&| arival spread 198

o

Q

S| max time duration 2,366.00 1,255.00 3,365.00 3,314.00 3,623.00 3,575.00 2,204.00 1,570.00

an 0.002708 0.002099 0.0032015 0.0033265 0.0033775 0.0032935 0.002642 0.0024345

~

| Time in microsec 2708 2099 3201.5 3326.5 3377.5 3293.5 2642 2434.5

gl

| Duration 1182.5 627 1682 1656.5 1811 1787 1101.5 784.5

1

w Impulse {sec*psi) 9.12E-03 7.56E-03 L.14E-02 1.33E-02 1.12E-02 1.15E-02 8.76E-03  9.99E-03

9| Impulse [millisec*psi) 9.12 7.56 11.38 13.30 11.20 11.49 8.76 9.99

m Time Pressure

.%. Signature Sensor 1670 Microseconds Signature Sensor 36.5939

Mnu Dif Average Dif Dif Average Dif

1__ Channel 3 -150.5 -64.75 -103.5 Channel 3 74.98%  B83.35% 91.71% Channel 5
ol Channel 2 -198  -180.75 -163.5 Channel 6 Channel 2 105.72% 108.22% 110.72% Channel 6
W Channel 1 -144.5 -137 -129.5 Channel 7 Channel 1 88.16%  79.65% 71.15% Channel 7
a8)]
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Bravo 1 - Repetition C - Pipe 1: Two 90-Gram Charges at 180-Deqgrees

Initial Pressure Arival
Time in microsec

Min time
Max time

arival spread

max time duration

Time in microsec

Dwration

Impulse (sec*psi)
Impulse (millisec*psi)
Time

Signature Sensor

Channel 3
Channel 2
Channel 1

CH1[PsI]

33.3187

0.0015635

1563.5

1503.5
1686

132.5

2,736.00
0.002921

2931

1367.5

9.78E-03

Dif

9.78

-118
-171
-120

CH2[PSI] CH3[PSI]
38.3683
0.0015125
1512.5 1565.5
2,796.00 2,894.00
0.00291 0.003012
2910 3012
1397.5 1446.5
1.12E-02 1.05E-02
11.18 10.48

1683.5 Microseconds

Average  Dif

-63 -130
-175.5
-123

1683.5

2,286.00
0.002826

2826

1142.5

1.19E-02
11.88

-180 Channel &
-126 Channel 7

31.6097

1553.5

2,476.00
0.002791

2791

1237.5

9.64E-03
9.64

[GRANBSIN 1 5 [Psi) cH6[PSI) CHT[PSI]

39.2263

0.0015655 0.0016835 0.0015535 0.0015035

1503.5

2,310.00
0.002658

2658

1154.5

1.08E-02
10.75

CHE8[PSI] CH13[V] CH14[V]
34.754  41.9739 499969 4.99969
0.0015575 0.001686
1557.5 1686
2,121.00 1,634.00
0.0026175 0.0025025
2617.5 2502.5
1060 816.5
9.54E-03  1.09E-02
9.54 10.88
Pressure
Signature Sensor 38.6255
Dif Average Dif
Channel 3 74.09% 77.96%  81.84% Channel 5
Channel 2 99.33% 100.44% 101.56% Channel 6
Channel 1 86.26%  88.12%  89.98% Channel 7
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CH1[PSI] CH2[PSI] CH3[PSI] CHB[PSI] CH14[V]

[CHBSIN c 5 (Ps) cH6[PSIT CH 7 [PSI]

Two 90-Gram Charges at 90-Degrees

Bravo 2 - Repetition A - Pipe 1

16.7594  32.6502 43.099) B9.I558 455262  36.3542 16.7696  19.374 5.00137

Initial Pressure Arival =~ 0.001696  0.001576 0.0015285 0.0015455 0.0014% 0.001341 0.001665 0.001823
Time in microsec 1696 1576 1528.5 1545.5 1490 1541 1665 1823
Min time 1490
Max time 1823
arival spread 333
max time duration 3,207.00 1,120.00 1,518.00 1,420.00 1,506.00 1,203.00 2,971.00 3,020.00

0.003299 0.0021355 0.002287 0.002255 0.0022425 0.002142 0.00315 0.0033325
Time in microsec 3299 2135.5 2287 2255 2242.5 2142 3150 3332.5
Duration 1603 559.5 758.5 709.5 752.5 601 1485 1509.5
Impulse (sec*psi) 7.29E-03  B.59E-03 1.17E-02 1.53E-02 1.09e-02 6.51E-03 7.67E-03 1.12E-02
Impulse (millisec*psi) 7.29 6.59 11.70 15.27 10.54 6.51 7.67 11.20
Time Pressure
Signature Sensor 1545.5 Microseconds Signature Sensor 89.7558

Dif Average  Dif Dif Average Dif

Channel 3 -17 59.75 -55.5 Channel 3 48.02%  49.37% 50.72% Channel 5
Channel 2 30.5 13 -4.5 Channel 6 Channel 2 36.38%  38.44% 40.50% Channel 6
Channel 1 150.5 135 119.5 Channel 7 Channel 1 18.67%  18.68% 18.68% Channel 7
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Bravo 2 - Repetition B - Pipe 1: Two 90-Gram Charges at 90-Deqgrees

Initial Pressure Arival
Time in microsec

Min time
Max time

arival spread

max time duration

Time in microsec

Duration

Impulse (sec*psi)
Impulse (millisec*psi)
Time

Signature Sensor

Channel 3
Channel 2
Channel 1

CH1[PSI] CH2Z2[PSI] CH 3 [PSsI] CHS5[PSI] CHe[PSI] CH7[PSI] CH8[PSI] CH14[V]
15,5942 32.1576 41.9113 36.8993 28.937 15.4602 18.2149 5.00137
0.001723 0.001606 0.0015555 0.001606 0.001543 0.0015845 0.00172 0.001875
1729 1606 1555.5 1606 1543 1584.5 1720 1875
1543
1875
332
3,373.00 1,135.00 1,474.00 1,347.00 1,430.00 1,237.00 2,827.00 2,543.00
0.003415 0.002173 0.002292 0.002279 0.0022575 0.0022025 0.003133 0.003146
3415 2173 2292 2279 2257.5 2202.5 3133 3146
1686 567 736.5 673 714.5 618 1413 1271
7.95E-03 6.88E-03 1.24E-02 1.67E-02 1.13E-02 6.59E-03 8.07E-03 1.07E-02
7.95 6.88 12.42 16.68 11.28 6.59 8.07 10.69
Pressure
1606 Microseconds Signature Sensor 98.2713
Dif Average Dif Average Dif
-50.5 57 -63 Channel 3 42.65%  40.10% 37.55% Channel 5
o -10.73 -21.5 Channel 6 Channel 2 32.72%  31.08% 29.45% Channel &
123 118.5 114 Channel 7 Channel 1 15.87%  15.80% 15.73% Channel 7
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Two 90-Gram Charges at 90-Degrees

Bravo 2 - Repetition C - Pipe 1

Initial Pressure Arival
Time in microsec

Min time
Max time

arival spread

max time duration

Time in microsec
Duration

Impulse (sec*psi)
Impulse (millisec*psi)
Time

Signature Sensor

Channel 3
Channel 2
Channel 1

CH 1[PsI)
16.5946

0.0017015
1701.5

1491
1824

333

2,343.00

0.0028725

2872.5

1171

6.14E-03

6.14

Dif
-26
25.5
148

CH 2 [P51]
32.1638

0.001573
1579

1,254.00
0.0022255

2225.5

646.5

7.07E-03
7.07

1553.5
Average

55.75

5

129.75

CH3[PsI] CH4[PSI] CH5[PSI] CHE[PSI]

43.4920 [NGANEES| 425439 31.3356

0.0015275 0.0013535 0.001431 0.001533

1527.5 1553.5 1451 1538
1,498.00 1,560.00 1,831.00 1,294.00
0.002276 0.002333 0.002406 0.0021845

2276 2333 2406 2184.5
748.5 779.5 915 B646.5
1.27E-02  1.65E-02 1.16E-02 6.60E-03
12.67 16.52 11.59 6.60
Microseconds
Dif
-62.5
-15.5 Channel 6

111.5 Channel 7

CH 7 [P5I] CHS[PSI] CH13[V] CH14[V]
15.9575 18.313 499969 5.00015
0.001665 0.001824
1665 1824
2,679.00 2,561.00
0.003004 0.003104
3004 3104
13359 1280
6.72E-03 9.67E-03
6.72 9.67
Pressure
Signature Sensor 94.7515
Dif Average Dif
Channel 3 45.90%  45.40% 44.91% Channel 5
Channel 2 33.95% 33.51%  33.07% Channel 6
Channel 1 17.51% 17.18%  16.84% Channel 7
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CH 1[PSI] CH 2 [PSI] CH 3 [PSI] CH4 [P5I] CH G [PSI] CH 7 [PSI] CH 8 [PSI] CHS[PSI] CH 10 [PS]1 CH 14 [V]

Bravo 3 - Repetition A - Pipe 2: Two 90-Gram Charges at 60-Deqrees

20.3902 36.7533 65.5376 99.9324 80.224  40.4257 26.2245 17.2814 17.2929 4.99802

Initial Pressure Arival =~ 0.001783 0.001664 0.001619 0.001582 0.001562 0.001573 0.001603 0.001671 0.00172 0.00198

Time in microsec 1783 1664 1619 1581.5 1561.5 1573 1602.5 1671 17139.5 1979.5
Min time 1561.5
Max time 1379.5
arival spread 418
max time duration 613.00 968.00 1,067.00 1,262.00 1,245.00 1,224.00 1,263.00 969.00 849,00 2,004.00

0.00208% 0.002145 0.002152 0.002212 0.002184 0.002135 0.002234 0.002155 0.002144 0.002931

Time in microsec 2089 2147.5 2152 2212 2183.5 2184.5 2233.5 2155 2143.5 2981
Duration 306 483.5 233 630.5 622 611.5 631 434 424 1001.5
Impulse (sec*psi) 2.76E-03 5.45E-03 9.20E-03 1.50E-02 1.77E-02 1.41E-02 9.11E-03 5.19E-03 3.30E-03 8.09E-03
Impulse (millisec*psi) 2.76 345 9.20 14.98 17.69 14,12 9.11 319 3.30 8.09
Time Pressure
Signature Sensor 1561.5 Microseconds Signature Sensor 112.656
Dif Average Dif Dif Average Dif
Channel 4 20 54.75 11.5 Channel 6 Channeld4 88.71%  79.96%  71.21% Channel 6
Channel 3 57.5 49.25 41 Channel 7 Channel3 58.17%  47.03%  35.88% Channel 7
Channel 2 102.5 106 109.5 Channel 8 Channel2 32.62%  27.95%  23.28% Channel 8

Channel 1 221.5 189.75 158 Channel 9 Channel1l 18.10%  16.72%  15.34% Channel 9
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Two 90-Gram Charqges at 60-Degrees

Bravo 3 - Repetition B - Pipe 2

CH1[PSI] CH2[PSI] CH 3 [PSI] cH4 [psi] [EHSIBSI CH 6 [PSI] CH 7 [PSI] CH 8 [PSI] CH 9 [PSI] CH 10 [PSI CH 14 [V]
49.326 10231 118485 90.2489 44.0642 25.8565 17.3921 19.1178 4.99771

15.8002 29.8873

Initial Pressure Arival |~ 0.001785 0.001675

Time in microsec 1734.5 1674.5
Min time 1586.5
Max time 2000.5
arival spread 414
max time duration 877.00 984.00

0.002223 0.002166

Time in microsec 22225 2166
Duration 438 491.5
Impulse (sec*psi) 3.16E-03 5.71E-03
Impulse (millisec*psi) 3.16 5.71
Time

Signature Sensor 1586.5

Dif Average

Channel 4 13 48.75
Channel 3 43 37.25
Channel 2 28 92.75

Channel 1 193 176.25

0.00163 0.0016

1,

1629.5 1599.5

111.00 1,402.00

0.002185 0.0023
2184.5 2300
555 700.5

9.45E-03 1.52E-02

9.45 15.21

Microseconds

Dif

13 Channel 6
31.5 Channel 7
97.5 Channel 8

154.5 Channel 9

0.001587
1536.5

1,236.00
0.002204

2204

617.5

1.81E-02
18.07

0.0016 0.001613 0.001634 0.001741 0.002001

1599.5

1,255.00
0.002227

2226.5

627

1.45E-02
14.43

1618

1,141.00
0.002158

2188

570

9.29E-03

9.29
Pressure

1684

994.00

0.002181

2180.5

496.5

5.47E-03

547

Signature Sensor

Channel 4
Channel 3
Channel 2
Channel 1

Dif

86.34%
41.63%
25.22%
13.33%

1741

868.00

0.002175

2174.5

433.5

3.56E-03

3.56

118.495
Average

81.25%
39.41%
23.52%
14.01%

2000.5

1,647.00
0.002824

2823.5

823

7.79E-03

7.79

Dif

76.16% Channel 6
37.19% Channel 7
21.82% Channel 8
14.68% Channel 9
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Two 90-Gram Charqges at 60-Degrees

Bravo 3 - Repetition C - Pipe 2

Initial Pressure Arival
Time in microsec

Min time
Max time

arival spread

max time duration

Time in microsec
Duration

Impulse (sec*psi)
Impulse (millisec*®psi)
Time

Signature Sensor

Channel 4
Channel 3
Channel 2
Channel 1

CH1[PSI] CH2[PSI] CH 3 [PSI] CH 4 [psi] BRSPS CH 6 [PS1) CH 7 [PSI] CH 8 [PSI] CH 9 [PSI] CH 10 [PSI CH 13 [V]
22.1144 39.4035 68.6444 105953 119.395| 69.7439 43.9446 29.8675

0.001621 0.00164c 0.001602 0.001563
1620.5 1645.5 1601.5 1563

1529.5
1944

414.5

993.00 965.00 1,077.00 1,377.00

0.002117 0.002128 0.00214 0.002251

2116.5 2127.5 2139.5 2251

496 452 538 683

2.98E-03 5.24E-02 9.91E-03 1.e4E-02
2.98 5.24 9.91 16.39

1543.5 Microseconds

Dif Average Dif
19.5 41.25 -14 Channel 6
58 37.5 17 Channel 7
102 92.25 82.5 Channel 8

77 116.25 155.5 Channel 3

0.001544
1543.5

1,397.00
0.002242

2241.5

693

1.86E-02
18.85

18.0683

18.5095 4.99985

0.00153 0.001561 0.001626 0.001699 0.001944

1529.5

1,491.00
0.002275

2274.5

745

1.51E-02
15.10

1560.5

1,355.00
0.002238

2237.5

677

9.86E-03

9.86
Pressure

1626

870.00
0.002064

2063.5

437.5

5.38E-03
5.38

Signature Sensor

Channel 4
Channel 3
Channel 2
Channel 1

Dif

88.79%
57.53%
33.02%
18.53%

1693

870.00
0.002137

2136.5

437.5

3.43E-03

3.43

119.325
Average

73.62%
47.18%
29.03%
16.84%

1944

2,242.00
0.0032065

3064.5

1120.5

8.27E-03

8.27

Dif

58.45% Channel 6
36.83% Channel 7
25.03% Channel 8
15.14% Channel 9
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Two 90-Gram Charges at 120-Degrees

Bravo 4 - Repetition A - Pipe 2

Initial Pressure Arival
Time in microsec

Min time
Max time

arival spread

max time duration

Time in microsec

Duration

Impulse (sec*psi)

Impulse (millisec*psi)

Time
Signature Sensor

Channel 4
Channel 3
Channel 2
Channel 1

CH1[PSI] CH2[PSI]
24,0563 35.3565
0.0020235 0.0019535
2023.5 1953.5
1915.5
2214.5
299
2,529.00  1,500.00
0.0032875 0.002703
3287.5 2703
1264 749.5
6.69E-03  7.15E-03
6.69 7.15
2005.5
Dif Average
-66 -24
-90 -81.25
-52 -50
18 2.5

CH 3 [PSI]
33.8361

0.0019155
1915.5

1,576.00
0.002703

2703

787.5

1.01E-02
10.12

Microseconds
Dif
-50.5
-72.5
-48
-13

36.2358 [66:0357

0.0019395 0.0020055

1939.5 2005.5
1,605.00 1,479.00
0.0027415 0.0027345
2741.5 2744.5
802 739
1.12E-02 1.32E-02
11.15 13.24
Channel 6
Channel 7
Channel 8
Channel 9

36.9077

0.001955
1955

1,566.00
0.0027375

2737.5

782.5

1.11E-02
11.13

40.1991

36.4543

27.1486

cHa[psI) [CHISPSIIN CH 6 [PSI] CH7[PSI] CHB[PSI] CH9[PSI] CH10[PSI] CH13[V]

20,1571 5.00

0.001932 0.0019575 0.0019925 0.0022145

1933

1,563.00
0.002714

2714

781

9.15E-03

9.15
Pressure

1957.5

1,457.00
0.0026855

2685.5

728

6.98E-03
8.98

Signature Sensor

Channel 4
Channel 3
Channel 2
Channel 1

Dif
54.79%
51.24%
53.46%
36.37%

1392.5

2,614.00
0.003299

3299

1306.5

6.66E-03
6.66

66.1357
Average
55.30%
56.01%
54.29%
38.71%

0.

2214.5

2,635.00
0035315

3531.5

1317

8.78E-03

Dif

8.78

55.81% Channel &6
60.78% Channel 7
55.12% Channel 8
41.05% Channel 9
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Bravo 4 - Repetition B - Pipe 2: Two 90-Gram Charges at 120-Degrees

CH1[PSI] CH2[PsI] CH3 [PsI] cH4 [psi] [EHISEPSI CH 6 [PSI] CH 7[PSI] CH & [PSI] CH 9 [PSI] CH 10 [PSI CH 14 [V]
43.401 38.5453| @5.0551 38.8143 445552 41.3177 32.0791 21.0759  4.9971

25.6392

Initial Pressure Arival  0.001615

Time in microsec 1615
Min time 1516
Max time 1785
arival spread 269
max time duration 2,530.00

0.00288
Time in microsec 2879.5
Duration 1264.5
Impulse (sec*psi) 7.08E-03
Impulse (millisec*psi) 7.08
Time
Signature Sensor

Dif

Channel 4 -63.5
Channel 3 -83.5
Channel 2 -60
Channel 1 6

39.8275

0.001549 0.001524 0.001546 0.001609 0.001345 0.001516

1549

1,390.00
0.002244

2243.5

694.5

7.39E-03
7.39

1609

Average

-34.5
-89.25
-64.5
-13.25

1523.5 1545.5

1,483.00 1,461.00
0.002265 0.002276

2264.5 2275.5

741 730

9.59E-03 1.15E-02
9.59 11.51

Microseconds
Dif

-84 Channel 6
-93 Channel 7
-69 Channel 8
-32.5 Channel 9

1609

1,363.00
0.00229

2290

Bal

1.44E-02
14.37

1545

1,417.00
0.002253

2253

708

1.15E-02
11.55

1516

1,509.00
n.00227

2270

724

9.60E-03

9.60
Pressure

0.00154 0.001577 0.001785

1540

1,453.00
0.002266

2266

726

7.38E-03

7.38

Signature Sensor

Channel 4
Channel 3
Channel 2
Channel 1

Dif

45.32%
51.03%
46.83%
30.14%

1576.5

2,929.00
0.003041

3040.5

1464

7.14E-03

7.14

#5.0551
Average

45.48%
51.71%
A7.70%
33.93%

1785

2,804.00
0.003187

3186.5

1401.5

8.97E-03
8.97

Dif
45.63% Channel 6
52.38% Channel 7
48.58% Channel 8
37.72% Channel 9
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Bravo 4 - Repetition C - Pipe 2: Two 90-Gram Charges at 120-Deqgrees

Initial Pressure Arival
Time in microsec

Min time
Max time

arival spread

max time duration

Time in microsec

Duration

Impulse (sec*psi)
Impulse (millisec*psi)
Time

Signature Sensor

Channel 4
Channel 3
Channel 2
Channel 1

CH1[PSI] CH2[PsI] CH3[Psi] cH4 [psi] [EHISHBSIN CH 6 [PSI] CH 7 [PSI] CH 8 [PSI] CH 9 [PSI] CH 10 [PSI CH 13 [V]
28.9287 40.4885 43.9512 43.8065[NGSI2044| 33.7465 43.3591 43.2005 33.2472 22.9896 5.00015

0.0016285
1628.5

14590.5
1771.5

281

2,462.00

0.002859

2859

1230.5

7.05E-03

7.05

Dif
-8
-33.5
-4.5
58.5

0.001566 0.001537 0.001562
1565.5 1536.5 1562
1,317.00 1,362.00 1,316.00
0.002224 0.002217 0.00222
2223.5 2217 2219.5
658 680.5 657.5
7A0E-03 9.73E-03 1.18E-02
7.40 9.75 11.83
1570 Microseconds
Average Dif
-25 -70 Channel 6
-56.5 -79.5 Channel 7
-27.25 -50 Channel 8
18.5 -21.5 Channel 9

0.00157
1570

1,355.00
0.002247

2247

677

1.32E-02
13.25

0.0015
1500

1,463.00
0.002231

2231

731

1.12E-02
11.19

0.001491
1490.5

1,384.00
0.002182

2182

691.5

9.35E-03

9.35
Pressure

1,290.00
0.002165

2164.5

644.5

7.31E-03
7.31

Signature Sensor

Channel 4
Channel 3
Channel 2
Channel 1

Dif

67.17%
67.39%
62.09%
44.36%

1548.5

21335

585

0.00152 0.001549 0.001772
1520

1771.5

1,171.00 2,179.00
0.002134 0.002861

2860.5

1083

4.80E-03 B.43E-03

4,80 8.43
65.2144
Average Dif
59.46%  51.75% Channel 6
66.94%  66.49% Channel 7
64.16%  66.24% Channel 8
47.67%  50.98% Channel 9
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Two 90-Gram Charqges at 40-Degrees

Bravo 5 - Repetition A - Pipe 3

CH1[PSI| CH2[PSI] CH3[PS]  CH4[PSI] CH5[PsI] CH6 [psi] [CHRIPSIICH 8 [PSI] CHS[PSI] CHI10[PSI] CH11[PSI] CH12[PSI] CH13[PSI] CH14[PSI] CH15[V] CH16[V]
18.3776  23.8329 375296 587812  78.4232 92915300806  54.8043  68.3886  43.9886 20,0477  23.3185  17.3789 165388  5.00122  5.00641
Initial Pressure Arival | 0.001666 0.0015175 0.001524 0.0015125 (0.001473 0.001444 0.001435 0.001422 0.0014735 0.0015165 0.001566 0.0016055 0.0016895 0.001908
Time in microsec 1666 17.5 1524 15125 1473 1444 14345 1422 14735 15165 1566 16055  1689.5 1908
Min time 1422
Max time 1308
arival spread 486
max time duration 807.00  627.00 952.00 1,203.00 1,324.00 1336.00 128400 1450.00 117500 104100  541.00  836.00  743.00  1,748.00

0.002069 0.0019305 0.0019995 0.0021135 0.0021345 0.002112 0.002076 0.0021465 0.0020605 0.0020365 0.002036  0.002023 0.0020605 0.0027815

Time in microsec 2069 1930.5 1999.5 2113.5 2134.5 2111.5 2076 2146.5 2060.5 2036.5 2036 2023 2060.5 2781.5
Duration 403 313 475.5 601 661.5 667.5 641.5 724.5 587 520 470 417.5 37 873.5
Impulse (sec*psi) 2.54E-03  2.54E-03 3.44E-03 8.73E-03 1.20E-02 1.50E-02 1.60E-02 1.45E-02 1.17E-02 8.24E-03 5.27E-03 3.53E-03 2.66E-03 7.48E-03
Impulse (millisec*psi) 2.54 2.54 3.44 8.73 11.99 15.01 15.96 14.48 11.72 8.24 5.27 3.53 2.66 7.48

Time Pressure Impulse
Signature Sensor 1434.5 Microseconds signature Sensor 108.067 Signature Sensor 15.96

Average Dif Dif Average  Dif Dif Average  Dif
Channel 6 9.5 -1.5 -12.5 Channel 8 Channelé  85.98% 82.23% 78.47% Channel 8 Channel 6 94.04% 92.36% 90.68% Channel 8
Channel 5 38.5 38.75 39 Channel 3 Channels  72.57% 67.93% 63.28% Channel 9 Channel 5 75.11% 74.28% 73.44% Channel 9
Channel 4 78 80 82 Channel 10 Channel4 54.39% 47.55% 40.70% Channel 10 Channel 4 54.69% 53.16% 51.62% Channel 10
Channel 3 89.5 110.5 131.5 Channel 11 Channel 3 34.73% 30.80% 26.88% Channel 11 Channel 3 21.54% 27.28% 33.02% Channel 11
Channel 2 183 177 171 Channel 12 Channel2  22.05% 21.82% 21.58% Channel 12 Channel 2 15.93% 19.01% 22.08% Channel 12
Channel 1 231.5 243.325 255 Channel 13 Channell 17.01% 16.54% 16.08% Channel 13 Channel 1 15.93% 16.29% 16.65% Channel 13
Channel 14 473.5 Microseconds Channel 14 15.30% Channel 14 46.88%
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Two 90-Gram Charges at 40-Degrees

Bravo 5 - Repetition B - Pipe 3

CH1[PSI] CH2[PSI] CH3[PSI] CH4[PSI] CHS5[PSI] CHG&I[PSI] IOI 8[PSI] CHS[PSI] CH10[PSIJCHI11[PSIJCH12[PSI]CH 13 [PSIJCH14[PSIJCH15[V] CH16[V]

23,3207  32.0765 54.7478 87.4833
al Pressure Arival 0.001597 0.001544 0.001464 0.0014515
Time in microsec 1597 1544 1463.5 1451.5
Min time 1373
Max time 1781.5
arival spread 408.5
max time duration 786.00 694.00 954.00 1,071.00
0.00198595 0.0018505  0.001%94 0.0019865
Time in microsec 1989.5 1890.5 1940 1986.5
Duration 392.5 346.5 476.5 535
Impulse (sec*psi) 2.60E-03 2.60E-03 3.71E-03 9.27E-03
Impulse (millisec*psi) 2.60 2.60 3.71 9.27
Time
Signature Sensor 1373 Microseconds
Dif Average
Channel 6 12.5 9.5 6.5 Channel 8
Channel 5 11 36.5 32 Channel 9
Channel 4 78.5 75 71.5 Channel 10
Channel 3 90.5 104.5 118.5 Channel 11
Channel 2 171 153 135 Channel 12
Channel 1 224 230.25 236.5 Channel 13
Channel 14 408.5 Microseconds

89.515

101.827(0/300.478|  26.6589

78.6551 51.3473

34.1462

25,8084 17.7655 16.6148  5.00031 5.0061

0.001414 0.001386 0.001373 0.0013735 0.001405 0.0014445 0.0014515 0.001508 0.0016095 0.0017815

1414

1,128.00

0.0019775

1977.5

563.5

1.27E-02

12.65

1385.5 1373 1379.5 1405 1444.5
1,369.00 1,386.00 1,504.00 1,136.00 1,062.00
0.00207 0.002066 0.002131 0.0019725 0.001975

2069.5 2065.5 2131 1972.5 1975

684 692.5 751.5 567.5 530.5
1.59E-02 1.69E-02 1.57E-02 1.25E-02 B.73E-03

15.91 16.94 15.71 12.55 8.78
Pressure
Signature Sensor 101.478

Dif Average

Channel 6 100.34% 92.87% 85.40% Channel 8
Channels  88.21% 82.86% 77.51% Channel 9
Channel4  86.21% 68.40% 50.60% Channel 10
Channel3  53.95%  43.80% 33.85% Channel 11
Channel2  31.61% 28.52% 25.43% Channel 12
Channell  22.98% 20.24% 17.51% Channel 13
Channel 14 16.37%

1491.5

925.00

0.0019555

1955.5

464

5.45E-03
5.45

1508 1609.5 1781.5
892.00 625.00 1,876.00
0.0019535 0.0019215 0.002719
1953.5 1921.5 2719
445.5 312 937.5
3.54E-03 2.58E-03 7.71E-03
3.54 2.58 7.71
Impulse
Signature Sensor 16.94
Dif Average
Channel 6 93.94% 93.33% 92.73% Channel 8
Channel 5 74.70% 74.38% 74.06% Channel 9
Channel 4 54.74% 53.29% 51.84% Channel 10
Channel 3 21.91% 27.05% 32.20% Channel 11
Channel 2 15.32% 18.11% 20.90% Channel 12
Channel 1 15.32% 15.27% 15.23% Channel 13
Channel 14 45.53%
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Two 90-Gram Charges at 40-Degrees

Bravo 5 - Repetition C - Pipe 3

CH1[PSI] CH2[PSI] CH3[PSI] CHA[PSI] CH5[PSI] CH&[PSI] CHEB[PSI] CH9[PSI] CH10[PSI]CH 11 [PSI] CH 12 [PSI] CH 13 [PSI] CH 14 [PSI] CH 16 [V]

0.0015725 0.001514 0.001466 0.0014265 0.0013975 0.001387 0.0013935 0.0014185

17.8598  22.7292

Initial Pressure Arival | 0.0016155
Time in microsec 1615.5 1572.5
Min time 1387
Max time 1845.5
arival spread 458.5
max time duration 611.00 619.00

0.0015205 0.0018815
Time in microsec 1520.5 1881.5
Duration 305 309
Impulse (sec*psi) 2.39E-03  3.41E-03
Impulse (millisec*psi) 2.39 3.41
Time
Signature Sensar 1387

Dif Average
Channel 6 10.5 8.5
Channel 5 39.5 35.5
Channel 4 79 75
Channel 3 127 122.25
Channel 2 185.5 151.75
Channel 1 228.5 231.75
Channel 14

374223 58.2008

1514 1466
967.00 1,063.00
0.001957
1997 1997
483 531
5.44E-03  8.70E-03
5.44 8.70
Microseconds
Dif
6.5 Channel 8

31.5 Channel 9
71 Channel 10
117.5 Channel 11
118 Channel 12
235 Channel 13

458.5 Microseconds

81.9435

1426.5

1,177.00
0.001997 0.0020145

2014.5

588

1.21E-02

12.12

96.8387) 115,665 100.987

1397.5 1387 1393.5
1,322.00 1,343.00 1,257.00
0.002058 0.002058 0.0020215
2058 2058 2021.5
660.5 671 628
1.55E-02 1.66E-02 1.54E-02
15.49 16.62 15.36
Pressure
Signature Sensor 115.665
Dif Average
Channel 6 83.72% 85.52%
Channel 5 70.85% 71.59%
Channel 4 50.32% 47.89%
Channel 3 32.35% 31.54%
Channel 2 159.65% 21.52%
Channel 1 15.44% 15.79%
Channel 14 14.58%

83.6719  52.5937

1418.5 1458
1,163.00 1,063.00
0.0019935 0.001989
1999.5 1989
581 531
1.23E-02 B.49E-03
12.32 8.49

Dif

87.31% Channel 8
72.34% Channel 9
45.47% Channel 10
30.73% Channel 11
23.39% Channel 12
16.14% Channel 13

35.5423

1504.5

930.00
0.001969

1969

464.5

5.27E-03
5.27

27.0564  18.6635  16.8683

0.001458 0.0015045 0.001505 0.001622 0.0018455

1505 1622 1845.5
929.00 580.00 1,779.00
0.001969 0.0019115 0.0027345
1969 1911.5 2734.5
464 289.5 889
3.48E-03 5.07E-03 7.48E-03
3.48 5.07 7.48
Impulse
Signature Sensor 16.62
Dif Average Dif
Channel & 93.22% 92.83%
Channel 5 72.91% 73.51%
Channel 4 52.36% 51.71%
Channel 3 32.75% 32.23%
Channel 2 20.53% 20.74%
Channel 1 14.39% 22.45%
Channel 14 45.01%

35.0061

92.44% Channel 8
74.10% Channel 9
51.07% Channel 10
31.71% Channel 11
20.94% Channel 12
30.50% Channel 13
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The data presented in this appendix is the summarized data from Charlie tests
detailed in Section 5.3.2. Each file highlights the signature sensor with the cells filled blue.
The data presented in this appendix was extracted in accordance with the technique
described in Section 5.2. The max pressure, arrival time, positive pressure duration, and
impulse data was extracted from each test. However, the data for three charges at 40 degree

angular spacing files were corrupted and the summary data is no longer available.
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Charlie 1 - Repetition A - Pipe 1: Three 90-Gram Charges at 90-Degrees

CH1[PSI] CHZ2[PSI] CH3[PSI]
35.3488 42,7084 97.0215
Initial Pressure Arival = 0.0015175 0.001473 0.001529 0.001481
Time in microsec 1517.5 1473 1529 1481
Min time 1473
Max time 1640
arival spread 167
max time duration 2,754.00 1,495.00 1,605.00 1,681.00
0.002894  0.00222 0.002331 0.002321
Time in microsec 2854 2220 2331 2321
Duration 1376.5 747 802 840
Impulse (sec*psi) 1.20E-02 1.16E-02 1.75E-02 1.76E-02
Impulse (millisec*psi) 12.00 11.56 17.54 17.60
Time
Signature Sensor 1481 Microseconds
Dif Average Dif
Channel 3 48 46.75 58.5
Channel 2 -8 18.5 45 Channel 8
Channel 1 36.5 65 93.5 Channel 7

CHS[PSI] CH&[PSI] CH7[PSI] CHS8[PSI] [CH14[V] CH 15 [V]
848171 42,3015 33.4384 35,1786 4,99908 5.00255
0.0015395 0.001526 0.0015745 0.00164
1539.5 1526 1574.5 1640
1,533.00 2,542.00 2,566.00  2,138.00
0.0023055 0.0027965 0.002857 0.0027085
2305.5 2796.5 2857 2708.5
7ob 1270.5 1282.5 1068.5
1.69E-02  1.34E-02 1.253E-02  1.34E-02
16.85 13.42 12.51 13.37
Pressure
Signature Sensor 60.5658
Dif Average Dif
Channel 3 160.19% 150.12% 140.04% Channel 5
Channel 2 70.52%  70.18%  ©9.84% Channel 6
Channel 1 58.36% 56.79%  55.21% Channel 7
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Charlie 1 - Repetition B - Pipe 1: Three 90-Gram Charges at 90-Deqrees

CH1[PSI] CH2[PsI]
33.3481 42,1347
Initial Pressure Arival  0.0014845 0.0014265
Time in microsec 1484.5 1426.5
Min time 1426.5
Max time 1578.5
arival spread 152
max time duration 2,903.00 2,753.00
0.0029355 0.0028025
Time in microsec 2935.5 2802.5
Duration 1451 1376
Impulse (sec*psi) 1.22E-02  1.33E-02
Impulse (millisec*psi) 12.24 13.26
Time
Signature Sensor 1480
Dif Average
Channel 3 -7 43.75
Channel 2 -53.5 -3.75
Channel 1 4.5 a6

CH 3 [PsI]

Microseconds

Dif

[GRANBSIN 1 s [psi) cH 6 [PsI]
80.2295[ 48,5617 95.6099  42.6705
0.001473  0.00148 0.001536 0.001526
1473 1480 1526 1526
1,781.00 1,938.00 1,548.00 2,214.00
0.002363 0.0024485 0.0023095 0.0026325
2363 24485  2309.5 26325
890 9685 7735 11065
1.64E-02 1.76E-02 171E-02 1.32E-02
1643 1765 1710  13.19
56
46 Channel 6

87.5 Channel 7

CH 7 [P5I]
34.1812

0.0015675
1567.5

2,225.00
0.0026795

2679.5

1112

1.26E-02
12.64

Pressure
Signature Sensor

Channel 3
Channel 2
Channel 1

CH8[PSI] CH13[V] CH14[V] CH15[V]
28.9537  4.99985 5.00015  5.00168
0.0015785
1578.5
2,424.00
0.00279
2790
1211.5
1.35E-02
13.54
49,5617
Dif Average Dif
161.90% 177.40% 192.91% Channel 5
85.01%  85.56%  86.10% Channel 6
67.29% 68.13%  68.97% Channel 7



210

CH1[PSI] CH 2[PSI]

Charlie 1 - Repetition C - Pipe 1: Three 90-Gram Charges at 90-Degrees

20.3042  43.2133

Initial Pressure Arival ~ 0.001535 0.0014935

Time in microsec 1535 1493.5

Min time 1471

Max time 1651

arival spread 180

max time duration 2,767.00  2,255.00
0.002918 0.0026205

Time in microsec 2918 2620.5

Duration 1383 1127

Impulse (sec*psi) 1.30E-02 1.31E-02

Impulse (millisec*psi) 12.97 13.07

Time

Signature Sensor 1500

Dif Average

Channel 3 50 12.25

Channel 2 -6.5 -17.75

Channel 1 35 29.75

CH 3 [PsI] CHS5[PSI] CHe[PSI] CH7[PSI] CHS[PSI] [CH14[V] CH15 [V]
120.171 100.814 44.4479 36.8062 36.3991 4.99985 5.00153
0.00155 0.0015  0.0015235 0.001471 0.0015245 0.001651
1550 1500 1523.5 1471 1524.5 1651
1,537.00 1,682.00 14598.00 1,363.00 2,461.00 2,372.00
0.002318 0.0023405 0.002272 0.002152 0.0027545 0.0028365
2318 2340.5 2272 2152 2754.5 2836.5
768 B840.5 748.5 681 1230 1185.5
1.85E-02 1.87E-02 1.72E-02 1.12E-02 1.14E-02  1.43E-02
18.46 18.67 17.20 11.16 11.42 14.29
Pressure
Microseconds Signature Sensor 70.0323
Dif Dif Average Dif
23.5 Channel 3 171.59% 157.77% 143.95% Channel 5
-29 Channel & Channel 2 61.85% 62.66%  63.47% Channel 6
24.5 Channel 7 Channel 1 37.56%  45.06%  52.56% Channel 7
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: Three 90-Gram Charges at 60-Degrees

Charlie 2 - Repetition A - Pipe 2

Initial Pressure Arival
Time in microsec

Min time
Max time

arival spread

max time duration

Time in microsec

Duration

Impulse (sec*psi)
Impulse (millisec*psi)
Time

Signature Sensor

Channel 4
Channel 3
Channel 2
Channel 1

CH1[PSI] CH2[PSI) CH 3 [PsI] cH 4 [psi] [GHISIBSI CH 6 [PSI] CH 7 [PSI] CH 8 [PSI] CH 9 [PSI] CH 10 [PSI CH 14 [V] CH 15 [V]

33.913
0.001611
1610.5 1532.5
1472.5
1806.5
334
1,009.00 892.00
0.002115 0.001978
2114.5 1978
304 445.5
5.32E-03 9.80E-03
5.32 9.80
1484
Dif Average
-11.5 30.75
10 24.25
48.5 55
126.5 140.25

1434 1472.5
1,403.00 1,663.00
0.002135 0.002304

2195 2303.5

701 831
1.65E-02 2.29E-02
16.49 22.86

Microseconds

Dif

23.5 Channel 6
38.5 Channel 7
61.5 Channel 8
154 Channel 9

63.5481 96.6122 115.562[[NINSSa8 127.864

1434 1507.5

1,685.00 1,602.00
0.002326 0.002308

2326

842

2308

800.5

2.534E-02 2.43E-02

25.43

24.34

90.747 48.8306 30.4807

1522.5 1545.5 1638
1,207.00 1,010.00 946.00
0.002126 0.00205 0.002111

21255 2050 2110.5

603 204.5 472.5
1.60E-02 9.81E-03 5.57E-03
16.57 9.81 5.57
Pressure
Signature Sensor 118.538
Dif Average
Channel4 97.49% 102.68%
Channel 3  81.50%  79.03%
Channel 2 53.61%  47.40%
Channel 1l 28.61%  27.16%

27.5267 4.99969

0.001533 0.001454 0.001473 0.001434 0.001508 0.001523 0.001546 0.001638 O0.001807

1306.5

2,320.00
0.002966

2966

1133.5

1.35E-02
13.55

Dif
107.87% Channel 6
76.56% Channel 7
41.19% Channel 8
25.71% Channel 9

5.00
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Charlie 2 - Repetition B - Pipe 2: Three 90-Gram Charges at 60-Deqrees

Initial Pressure Arival
Time in microsec

Min time
Max time

arival spread

max time duration

Time in microsec

Duration

Impulse (sec*psi)
Impulse (millisec*psi)
Time

Signature Sensor

Channel 4
Channel 3
Channel 2
Channel 1

CH1[PSI] CH 2 [PSI] CH 3 [PSI] CH 4 [Psi] [EHSIEPSH CH 6 [PSI) CH 7 [PSI] CH 8 [PSI] CH 9 [PSI] CH 10 [PSI CH 14 [V]

27.3222 57.593  8B.8955

92.831| 120934 121511 89.2929 455127 25.2858 27.7738 4.99771

0.001633 0.001561 0.001493 0.001487 0.001517 0.001532 0.001548 0.001564 0.001631 0.001833

1632.5 1560.5 1493 1486.5

1486.5
1832.5

346

941.00 1,203.00 1,429.00 1,552.00

0.002103 0.002162 0.002207 0.002262

2102.5 2161.5 2207 2262

470 a01 714 773.5

5.21E-03 1.06E-02 1.57E-02 2.15E-02
5.21 10.63 15.68 21.45

1516.5 Microseconds

Dif Average Dif
-30 23.75 15.5 Channel 6
-23.5 3.75 31 Channel 7
44 45.75 47.5 Channel 8
116 115 114 Channel 9

1516.5

1532

1,623.00 1,551.00
0.002328 0.002307

2327.5

811

2307

775

2.43E-02 2.38E-02

24.85

23.81

1547.5

1,426.00
0.00226

2260

712.5

1.61E-02

16.10
Pressure

1564

993.00
0.002063

2063

439

9.3BE-03
9.38

Signature Sensor

Channel 4
Channel 3
Channel 2
Channel 1

Dif

76.57%
73.33%
47.51%
22.54%

1630.5 1832.5

804.00 2,351.00
0.002032 0.003008
2032 3007.5
401.5 1175
5.42E-03 1.38E-02
5.42 13.84
121.234
Average Dif

88.40% 100.23% Channel 6
73.49%  73.65% Channel 7
42.52%  37.54% Channel 8
21.70%  20.86% Channel 9
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: Three 90-Gram Charges at 60-Degrees

Charlie 2 - Repetition C - Pipe 2

Initial Pressure Arival
Time in microsec

Min time
Max time

arival spread

max time duration

Time in microsec

Duration

Impulse (sec*psi)
Impulse [millisec*psi)
Time

Signature Sensor

Channel 4
Channel 3
Channel 2
Channel 1

CH 1[PSI] CH 2 [PSI] CH 3 [PSI] CH 4 [PsI] [ERISIBSH) CH 6 [PS1] CH 7 [PSI] CH 8 [PSI] CH 9 [PSI] CH 10 [PSI CH 13 [V]
349134  70.819 97.9609 120.774) 99484 132563 103.538

49,217

31.5934

0.0016 0.001518 0.001485 0.001471 0.001491 0.001525 0.001345 0.001556 0.001623

1599.5 1518

1470.5
1799.5

329

992.00 1,135.00

0.002095 0.002085

2095 2085

495.5 567

3.56E-03 1.25E-02

5.56 12.54
1491
Dif Average
-20.5 32.5
-6.5 23.75
27 46

108.5 120.25

1

1484.5 1470.5

381.00 1,573.00

0.002175 0.002257
2256.5
690 786

1.73E-02 2.29E-02

17.29 22.85

Microseconds

Dif

33.5 Channel 6
54 Channel 7
65 Channel 8

132 Channel 9

1451

1,604.00
0.002233

2292.5

801.5

2.43E-02
24.28

1524.5

1,448.00
0.002245

2248

723.5

2.43E-02
24.33

1545

1,2432.00
0.002166

2165.5

620.5

1.71E-02

17.07
Pressure

1556

942.00

0.002027

2026.5

470.5

9.90E-03

9.90

Signature Sensor

Channel 4
Channel 3
Channel 2
Channel 1

Dif

121.40%
98.47%
71.19%
35.09%

1623

696.00

0.001971

1970.5

347.5

3.48E-03

5.48

99.4841

Average

127.33%
101.27%
60.33%
33.43%

30,714  5.00015

0.0018
1799.5

2,351.00

0.002975

2974.5

1175

1.36E-02

13.56

Dif

133.25% Channel 6
104.07% Channel 7
49.47% Channel 8
31.76% Channel 9
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Three 90-Gram Charges at 120-Deqgrees

Charlie 3 - Repetition A - Pipe 2

CH1[PSI] CH2[PS]] CH3[PSI]  cHa[psi) [GHISIBSINCH 6 [PSI] CH7[PSI] CHS[PSI] CHOY[PSI] CH10[PSI] CH14[V] CH15[V]
41.816  36.9715 78.6358  38.7923[(NG0MSSOM  37.781  66.5558  33.7926 381531  67.4099 4.99817  5.00
Initial Pressure Arival = 0.001519 0.001546 0.001589 0.0015505 0.0015325 0.001563 0.0016155 0.0015545 0.001532 0.0016155
Time in microsec 1519 1546 1589 1550.5 1532.5 1563 1615.5 1554.5 1532 1615.5
Min time 1513
Max time 1615.5
arival spread 96.5
max time duration 2,492.00 2,418.00 3,275.00 1,934.00 2,656.00 2,306.00 2,024.00 2,049.00 2,330.00 1,953.00
0.0027645 0.0027545 0.003226 0.002517 0.00286 0.0027135 0.002627 0.00253785 0.0026965 0.0025915
Time in microsec 2764.5 2754.5 3226 2517 2860 2715.5 2627 2578.5 2696.5 2591.5
Duration 1245.5 1208.5 1837 966.5 1327.5 1152.5 1011.5 1024 1164.5 976
Impulse (sec*psi) 1.56E-02 1.57E-02 1.92E-02 1.45E-02 1.63E-02 1.53E-02 1.65E-02 1.45E-02 1.51E-02  1.60E-02
Impulse (millisec*psi) 15.55 15.65 19.21 14.45 16.33 15.30 16.52 14.53 15.09 15.99
Time Pressure
Signature Sensor 1532.5 Microseconds Signature Sensor 39.55594
Dif Average Dif Dif Average Dif
Channel 4 13 11 30.5 Channel & Channel 4 98.06% 96.78% 95.50% Channel &
Channel 3 56.5 69.75 83 Channel 7 Channel 3 198.78%  183.51%  168.24% Channel 7
Channel 2 13.5 17.75 22 Channel 8 Channel 2 93.46% 89.44% 85.42% Channel 8
Channel 1 -13.5 -7 -0.5 Channel 9 Channell  105.70%  101.07% 96.45% Channel 3
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Charlie 3 - Repetition B - Pipe 2: Three 90-Gram Charges at 120-Deqgrees

CH1[PSI] CH2[PSI] cH3[PSI]  cH4[psl] [CHSIBSIN CH 6 [PSI] CH7[PSI] CHB[PSI] CHO[PSI] CH10[PSI] CH14[V]
415865  41.0559 75.9786  38.6194[NAIO7ES|  36.6555 73.4235 39.0485 444239  67.5873  4.99756
Initial Pressure Arival  0.0015365 0.001562 0.001599  0.00155 0.0015275 0.0015515 0.001627 0.001577 0.0015535 0.001631
Time in microsec 1536.5 1562 1599 1550 15275 15515 1627 1577  1553.5 1631
Min time 1527.5
Max time 1631
arival spread 103.5
max time duration 2,655.00  2,600.00 3,690.00 3,183.00 2,366.00 2,401.00 2458.00 2,57.00 2,520.00  2,870.00

0.0028635 0.0028615 0.0034435 0.003141 0.00271 0.0027515 0.0028555 0.002862 0.002313 0.0030655

Time in microsec 2863.5 2861.5 3443.5 3141 2710 2751.5 2855.5 28062 2813 3065.5
Duration 1327 1299.5 1844.5 1591 1182.5 1200 1228.5 1285 1259.5 1434.5
Impulse {sec*psi) 1.55E-02  1.54E-02 1.84E-02 1.54E-02 1.51E-02 1.47E-02 1.67e-02 1.50E-02 1.52E-02 1.68E-02
Impulse (millisec*psi) 15.46 15.43 18.40 15.40 15.10 14.72 16.74 15.05 15.20 16.75
Time Pressure
Signature Sensor 1527.5 Microseconds Signature Sensor 41.0785
Dif Average  Dif Dif Average  Dif
Channel 4 22.5 24.75 24 Channel 6 Channel 4 94.01% 91.62% 89.23% Channel 6
Channel 3 71.5 85.5 99.5 Channel 7 Channel 3 184.96%  181.85%  178.74% Channel 7
Channel 2 34.5 42 49.5 Channel 8 Channel 2 99.94% 97.50% 95.06% Channel 8
Channel 1 9 17.5 26 Channel 9 Channel 1 101.24% 104.69%  108.14% Channel 9
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CHEB[PSI] CH 7 [PSI]

CH B [PSI] CH9[PSI] CH10[PSI] CH 14 [V]

Charlie 3 - Repetition C - Pipe 2: Three 90-Gram Charges at 120-Degrees

CH 1[PSI] CH2[PSI] CH 3 [PSI] CH 4 [P5I]
44 16559 402827 B6B.751B 35.9208

Initial Pressure Arival 0.0015275 0.0015565 0.0015925 0.0015295 0.0015135
Time in microsec 15275 1556.5 15825 15295 15155
Min time 15155
Max time 1622
arival spread 108.5
max time duration 281500 241900 287000 296000 3,623.00

0.0029345 0.0027655 0.003027 0.003009 0.0053245
Time in microsec 28345 2765.5 3027 3009 33245
Duration 1407 1209 14345 14785 1811
Impulse [sec*psi) 161E-02 1.60E-D02 175e-02 1.53E02 163E-02
Impulse (millisec*psi) 16.15 15.85 17.52 15.35 16.33
Time
Signature Sensor 1513.5| Microseconds

Dif Average  Dif
Channel &4 16 24 345 Channel &
Channel 3 79 93.25 107.5 Channel 7
Channel 2 43 455 48 Channel
Channel 1 14 19.75 25.5 Channel 9

34.8474

0.001548
1548

2,932.00
0.0030135

3013.5

14655

1.50E-02
15.02

728318

36.8529

39.41%6

0.001621 0.0015615 O0.001539

1621

2,555.00
0.002898

2898
1277
1.68E-02

16.83
Pressure

1561.5

2,751.00
0.0029365

2936.5

1375

1.50E-02
15.03

Signature Sensor

Channel 4
Channel 3
Channel 2
Channel 1

Dif
91.54%
175.86%
103.10%
113.05%

1539

2,535.00
0.002808

2808

1269

1.54E-02
15.43

39.0713
Average
90.56%
181.19%
88.71%
106.97%

69.8368| 4.99786

0.001622
1622

2,713.00
0.002978

2978

1356

1.72E-02
17.24

Dif
89.19% Channel &
186.41% Channel 7
94.32% Channel 8
100.89% Channel 8
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The data presented in this appendix is the summarized data from Delta tests detailed
in Section 5.3.2. Each file highlights the signature sensor with the cells filled blue. The
data presented in this appendix was extracted in accordance with the technique described
in Section 5.2. The max pressure, arrival time, positive pressure duration, and impulse data

was extracted from each test.
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Delta 1 - Repetition A - Pipe 1: Four 90-Gram Charges at 90-Degrees

CH1[PSI] CH 2 [PsI] CH 3 [PSI] JBRMIBSH) CH 5 [PSI] CH 6 [PSI] CH 7 [PSI] CH 8 [PSI]|CH 14 [V] CH15[V] CH16[V]
121505 63.6729 82.7357) GOS8 115.133 60.4632 107.875 57.0733 4.99924 5.00183 5.00641

Initial Pressure Arival = 0.001542 0.001475 0.001509 0.001508 0.001563 O0.001518 0.001575 0.001519

Time in microsec 1542 1475 1508.5 1507.5 1562.5 1517.5 1574.5 1518.5
Min time 1475
Max time 1574.5
arival spread 99.5
max time duration 1,992.00 1,803.00 2,693.00 1,976.00 2,015.00 2,277.00 2,080.00 1,704.00

0.002538 0.002376 0.002855 0.00249> 0.00257 0.002656 0.002614 0.00237

Time in microsec 2537.5 2376 2854.5 2495 2569.5 26855.5 2614 2370
Duration 995.5 901 1346 987.5 1007 1138 1039.5 851.5
Impulse (sec*psi) 2.15E-02 2.00E-02 2.35E-02 2.08E-02 2.19E-02 2.12E-02 2.21E-02 1.95E-02
Impulse {millisec*psi) 21.49 19.99 23.51 20.78 21.86 21.19 22,13 15.49
Time Pressure
Signature Sensor 1507.5 Microseconds Signature Sensor 60.7758
Dif Average Dif Dif Average Dif
Channel 3 1 33.5 55 Channel 3 136.13% 162.79% 189.44% Channel 5
Channel 2 -32.5 -11.25 10 Channel 6 Channel 2 104.77% 102.13%  99.49% Channel 6
Channel 1 34.5 50.75 67 Channel 7 Channell 199.92% 188.71% 177.50% Channel7
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CH1[PSI] CH2[PsI]

CH 3 [PsI]

CH & [PSI1]

CH 7 [PsI] CHE&[PSI] CH14[v] CH15[V] CH16[V]

Delta 1 - Repetition B - Pipe 1: Four 90-Gram Charges at 90-Deqgrees

129.044  49.6924
Initial Pressure Arival  0.001548 0.0014975
Time in microsec 1548 1457.5
Min time 1470
Max time 1548
arival spread 73
max time duration 2,733.00 2,511.00
0.002914 0.0027525
Time in microsec 2914 2752.5
Duration 1366 1255
Impulse (sec*psi) 2.37E-02  2.19E-02
Impulse (millisec*psi) 23.68 21.85
Time
Signature Sensor 1470
Dif Average
Channel 3 7 37
Channel 2 27.5 26.75
Channel 1 78 76

CH 5 [PsI]
82.7625 101.485

57.794

Microseconds

Dif

0.001477 0.00147 0.001535 0.001496
1477 1470 1535 1496
2,881.00 2,660.00 2,370.00 2,589.00
0.002917 0.0027995 0.0027195 0.00279
2917 2799.5 2719.5 2790
1440 1329.5 1184.5 1294
2.20E-02  2.15E-02  2.19E-02 2.18E-02
22.01 21.45 21.85 21.82
b5
26 Channel 6
74 Channel 7

96.2928  71.3508| 5.00031 5.00122 5.00626

0.001544 0.0015135

1544 1518.5
2,446.00 2,475.00
0.0027665 0.0027555
2766.5 2735.5
1222.5 1237
2.27E-02  2,24E-02
2271 22.45
Pressure
Signature Sensor 74.4105
Dif Average Dif
Channel 3 111.22% 123.80% 136.39% Channel 5
Channel 2 66.78% 72.23%  77.67% Channel 6
Channel 1 173.42% 151.41% 129.41% Channel 7
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Delta 1 - Repetition C - Pipe 1: Four 90-Gram Charges at 90-Degrees

Initial Pressure Arival
Time in microsec

Min time
Max time

arival spread

max time duration

Time in microsec

Duration

Impulse (sec*psi)
Impulse (millisec*psi)
Time

Signature Sensor

Channel 3
Channel 2
Channel 1

CH1[PSI] CH2[P5I]

115.733

0.001541
1541

1454.5
1550.5

56

2,879.00

0.00298

2980

1433

2.28E-02

22.78

Dif
a0
-10.5
36

55.3108

0.0014945
14594.5

2,996.00
0.002952

2992

1497.5

2.25E-02
22.51

1505

Average

22.25
-9.25
40.25

CH 3 [PSI]
106.302

0.001545
1545

2,925.00
0.003007

3007

1462

2.36E-02
23.56

Microseconds
Dif
45.5
-8
445

[EHBSIN i 5 [psi) cHe[PsI] CH7[PSI]

(693386 105208  s3.9871 95.3171
0.001505 0.0015505 0.001457 0.0015495
1505 1550.5 1497 1549.5
2,640.00  2,745.00 2,838.00 2,631.00
0.0028245 0.00295225 0.0029155 0.0028645
2824.5 2922.5 2915.5 2864.5
1319.5 1372 1418.5 1315
2.18E-02  2.26E-02 2.22E-02 2.21E-02
21.78 22.65 22,15 22,12
Pressure

Signature Sensor

Channel 3

Channel 6 Channel 2

Channel 7 Channel 1

CH&[PSI] CH13[V] CH14[V] CH15[Vv] CH16[V]
64,9725 4.99985 4.99939  5.00273 5.01

0.0015005
1500.5

2,725.00
0.0028625

2862.5

1362

2.15e-02
21.46

69.3346
Dif Average Dif
153.32% 152.59% 151.87% Channel 5
79.77%  82.42%  B5.08% Channeld
166.92% 152.20% 137.47% Channel 7
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Delta 2 - Repetition A - Pipe 2: Five 90-Gram Charges at 60-Degrees

CH1[PSI] CH2[PSI] CH3[PSI] CHA4[PSI] CH6[PSI] CH7[PSI] CH&[PSI] CH9[PSI] CH10[PSI]
85.927 135.851 131.283 107.256 135.041 171.699 125.342  93.9319 63.95

Initial Pressure Arival =~ 0.0015335 0.0015235 0.001486 0.0014805 0.0015115 0.001522 (0.001522 0.0015065 0.001515 0.0016065

Time in microsec 1533.5 1523.5 1486 1480.5 1511.5 1522 1522 1506.5 1515 1606.5
Min time 1480.5
Max time 1606.3
arival spread 126
max time duration 2,362.00 1,914.00  2,040.00  1,914.00 1,989.00 1,980.00 1,694.00 2,178.00 2,100.00 2,483.00

0.002714 0.00248 0.0025055 0.002437 0.0025055 0.0025115 0.0023685 0.002595 0.0025645 0.0028475

Time in microsec 2714 2480 2505.5 2437 2505.5 2511.5 2368.5 2595 2564.5 2847.5
Duration 1180.5 956.5 1019.5 956.5 994 989.5 846.5 1088.5 1049.5 1241
Impulse (sec*psi) 2.40E-02  2.74E-02  2.94E-02  3.08E-02  3.28E-02 3.40E-02 3.07E-02 2.72E-02 2.28E-02 2.75E-02
Impulse (millisec*psi) 24.05 27.42 29.43 30.80 32.80 33.98 30.67 27.21 22.83 27.48
Time Pressure
Signature Sensor 1511.5 Microseconds Signature Sensor 126.701
Dif Average  Dif Dif Average  Dif
Channel 4 -31 -2.5 10.5 Channel 6 Channel 4 B84.65% 95.62% 106.58% Channel 6
Channel 3 -25.5 -7.5 10.5 Channel 7 Channel 3 103.62%  119.57% 135.52% Channel 7
Channel 2 12 3.5 -5 Channel 8 Channel 2 107.22%  103.27% 99.32% Channel 8

Channel 1 22 12.75 3.5 Channel 9 Channel 1 67.82% 70.98% 74.14% Channel 9
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90-Gram Charges at 60-Deqgrees

ive

F

Delta 2 - Repetition B - Pipe 2

Initial Pressure Arival

Time in microsec

Min time
Max time

arival spread

max time duration

Time in microsec
Duration

Impulse (sec*psi)

Impulse (millisec*psi)

Time
Signature Sensor

Channel 4
Channel 3
Channel 2
Channel 1

CH 1 [PSI]
113.367

0.001542
1542

1468.5
1630.5

162
2,354.00
0.0027185
2718.5
1176.5
2.55E-02

25.48

Dif
-13
6.5
40
60.5

CH 2 [PSI] CH 3 [PSI]
100.605

159.104

0.00152
1521.5

1,823.00
0.00243

2432.5

911

2.86E-02
28.63

1481.5
Average

4

-1

24

43.75

cH4(psl] [EHSIPSIIY cH 6 [PSI]

125.342

CH 7 [PSI] CH 8 [PSI]

139.57

120.525

CH 9 [PSI]
106.449

CH10([PSI] CH13[V] CH14[V]

82.1301 4.99985

0.001488 0.0014685 0.0014815 0.0014715 0.00147 0.0014895 0.0015085 0.0016305

1488 1468.5
1,776.00  1,774.00
0.0023755 0.002355
2375.5 2355
887.5 886.5
3.00E-02  3.20E-02
29.99 32.02
Microseconds
Dif
-10 Channel 6
-8.5 Channel 7
& Channel 8
27 Channel 9

1481.5

1,844.00
0.002403

2403

921.5

3.49E-02
34.91

1471.5

1,803.00
0.0023725

23725

901

3.31E-02
33.10

1473

1,773.00
0.00236

2359

886

3.22E-02

32.22
Pressure

1489.5

2,148.00
0.002563

2563

1073.5

2.80E-02
27.98

Signature Sensor

Channel 4
Channel 3
Channel 2
Channel 1

Dif

62.04%
51.29%
81.27%
57.91%

1508.5

2,018.00
0.002517

2517

1008.5

2.41E-02
24.10

195.771
Average
63.03%
61.34%
71.42%
56.14%

1630.5

2,188.00

0.002724

Dif

2724

1093.5

2.92E-02
29.18

64.02% Channel 6
71.29% Channel 7
61.56% Channel 8
54.37% Channel 9

5.00
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90-Gram Charges at 60-Deqgrees

ive

F

Delta 2 - Repetition C - Pipe 2

CH1[PSI] CH2[PSI]
91.5322 131.567

Initial Pressure Arival = 0.0013815 0.0013775

Time in microsec 1381.5 1377.5

Min time 1377.5

Max time 1557

arival spread 179.5

max time duration 2,854.00 2,817.00
0.002808 0.0027355

Time in microsec 2808 2785.5

Duration 1426.5 1408

Impulse (sec*psi) 4.95E-02 5.45E-02

Impulse (millisec*psi) 49.50 54.53

Time

Signature Sensor 1522

Dif Average

Channel 4 -25 -8.25

Channel 3 -87 -64.75

Channel 2 -144.5 -80.5

Channel 1 -140.5 -89.75

CH 3 [PSI]

117273 156.855) 174296 159.156 149.302 144247 113.863

0.001435 0.001497 0.001522 0.0015205 0.0014795 0.0015055 0.001523

1435 1457

2,644.00 2,511.00

1522 1520.5 1479.5 1505.5 1523

2,125.00 2,195.00 2,618.00 2,473.00 2,466.00

0.0027565 0.002752 0.002584 0.0026195 0.002738 0.0027415 0.0027355

2756.5 2752

1321.5 1255

5.96E-02 6.94E-02
59.57 69.41

Microseconds

Dif

-1.5 Channel 6
-42.5 Channel 7
-16.5 Channel 8

1 Channel 9

2584 2619.5 2788 2741.5 2755.5

1062 1099 1308.5 1236 1232.5

7.25E-02  7.27E-02 6.32E-02 5.65E-02 5.23E-02

72.51 72.74 63.21 56.90 52.30
Pressure
Signature Sensor 174.296
Dif Average

Channel 4 89.99% 90.65%
Channel 3 67.28% 76.47%
Channel 2 75.48% 79.12%
Channel 1 52.54% 58.94%

cHa[psi] [GHSIBSI cH 6 [PSI] CH7[PSI] CHS[PSI] CHY[PSI] CHI0[PSI] CH13[V] CH15[V]

87.7 3 5.00

0.001557
1557

2,463.00
0.002788

2788

1231

5.80E-02
58.02

Dif
91.31% Channel 6
85.66% Channel 7
82.76% Channel 8
65.33% Channel 9
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The data presented in this appendix is the summarized data from Echo tests detailed
in Section 5.3.2. Each file highlights the signature sensor with the cells filled blue. The
data presented in this appendix was extracted in accordance with the technique described
in Section 5.2. The max pressure, arrival time, positive pressure duration, and impulse data

was extracted from each test.
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le 0.4 Ib Charge

ing

S

Echo 1 - Repetition A - Pipe 3

CH 1[PSI] CH2[PSI] CH3[PSI] CH4[PSI] CHS5[PSI] CHe6 [PSI] IO_._ & [PSI] CH9[PSI] CH 10 [PSI CH 11 [PSI CH 12 [PS1 CH 13 [PSI CH 14 [PSI CH 15 [PSI CH 16 [V]

14.8763

Initial Pressure Arival = 0.001455
Time in microsec 1454.5
Min time 1227.5
Max time 1686
arival spread 458.5
max time duration 855.00

0.001882
Time in microsec 1881.5
Duration 427
Impulse (sec*psi) 2.39E-03
Impulse {millisec*psi) 2.39
Time
Signature Sensor

Dif
Channel 6 11
Channel 5 43.5
Channel 4 83.5
Channel 3 133
Channel 2 193
Channel 1 227
Channel 14

Flat Plate

19.7298 31.618
1420.5 1360.5 1311 1271 1238.5 1227.5
686.00 925.00 1,023.00 1,127.00 1,196.00 1,226.00
0.001763 0.001823 0.001822 0.001834 0.001836 0.00184
1763 18225 1822 1834 1836 1840
342.5 462 511 563 597.5 612.5
3.08E-03 A4.84E-03 7.22E-03 9.72E-03 1.21E-02 1.30E-02
3.08 4.84 7.22 9.72 12.06 12.96
Pressure
1227.5 Microseconds Signature Sensor
Average Dif Dif
8.5 6 Channel 8 Channel6 94.55%
38.25 33 Channel 9 Channel5 83.25%
78.75 74 Channel 10 Channel4 58.18%
126.75 120.5 Channel 11 Channel3 39.59%
96.5 Channel 12 Channel2 24.70%
232.75 238.5 Channel 13 Channell 18.63%
458.5 Microseconds Channel 14
14.5 Microseconds Flat Plate

1233.5

1,153.00
0.00181

1309.5

376

1.20E-02
12.03

79.8705
1
93.38%
82.18%
59.12%
39.83%
12.35%
19.14%

17.53%
114.52%

0.001421 0.001361 0.001311 0.001271 0.00123%9 0.0012283 0.001234 0.001261 0.001302 0.001343

1260.5 1301.5

1,087.00
0.001804

1,051.00
0.001827
1803.5 1326.5
243 3235

1.00E-02
10.00

7.22E-03
7.22

Dif
92.21% Channel 8
81.10% Channel 9
60.06% Channel 10
40.07% Channel 11
Channel 12
19.65% Channel 13

46468 664956 75.5124[JON8708| 72.5466 64.7763 47.9733 32.0059 0.928315 15.6953 13.9978

0.001466 0.001636

1466 1686

723.00 1,804.00

0.001827 0.002588

1827 2587.5

361 90L.5

4.81E-03 0.00E+00 2.48E-03 6.05E-03

0.00 248 6.05
Impulse

Signature Sensor 12.96

Dif Average

Channel 6 93.07% 92.94%

Channel5 74.98%  76.08%

Channel4 55.71% 55.71%

Channel 3 37.33%  37.22%

Channel 2 23.80%  11.90%

Channell 18.41%  18.76%

Channel 14 46.66%

Flat Plate 95.43%

91.467 5.00595
0.001242
1242

897.00
0.00169

1690

443

1.24E-02
12.37

Dif
92.81% Channel 8
77.19% Channel 9
55.70% Channel 10
37.11% Channel 11
Channel 12
19.11% Channel 13
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le 0.4 Ib Charge

ing

S

Echo 1 - Repetition B - Pipe 3

CH1[PSI] CH2[PSI] CH3[PSI] CH4[PSI] CHS5[PSI] CH&I[PSI] IOI 8[PSI] CHS9[PSI] CH10[PSI]CH 11 [PSI]CH 12 [PSI]CH 13 [PSI]CH 14 [PSI] CH 15 [PSI] CH 16 [V]

1259 1793 2712 40.29 57.5  64.36[06od2 6925  59.39  40.41 273 1898 1299 127 8663 0.07

Initial Pressure Arival 0.001445 0.001425 0.001363 0.001312 0.00127 0.001231 0.001214 0.00122 0.001246 0.001286 0.001334 0.001333 0.001455 0.00166 0.0011B6
Time in microsec 1449 1425 1363 1312 1269.5 1230.5 1213.5 1220 1245.5 1285.5 1334 1332.5 1455 1659.5 1186
Min time 1186
Max time 1659.5
arival spread 473.5
max time duration 961.00 880.00 1,021.00 1,08L.00 1,380.00 1,520.00 1,566.00 1,591.00 1,437.00 1,115.00 931.00 846.00 670.00 1,922.00 904.00

0.0015250 0.0018645 0.0018730 0.0018520 0.0019550 0.00195900 0.0019960 0.0020150 0.0019935 0.0018425 0.0017950 0.0017550 0.0017895 0.0026200 0.0016375
Time in microsec 1929 1864.5 1873 1852 1959 1990 1996 2015 1993.5 1842.5 1799 1755 1789.5 2620 1637.5
Duration 480 439.5 510 540 689.5 759.5 782.5 795 748 557 465 422.5 334.5 960.5 451.5
Impulse (sec*psi) 2.37E-03 2.37E-03 3.08E-03 6.85E-03 9.53E-03 1.23E-02 1.37E-02 1.19E-02 9.90E-03 6.70E-03 4.27E-03 2.84E-03 2.27E-03 5.89E-03 1.20E-02
Impulse (millisec*psi) 2.37 2.37 3.08 6.85 9.53 12.25 13.66 11.90 9.90 6.70 4.27 2.84 2,27 5.89 12.03

Time Pressure Impulse
Signature Sensor 1213.5 Microseconds Signature Sensor 65.12 Signature Sensor 13.66
Average Dif Dif Average Dif Dif Average

Channel 6 17 11.75 6.5 Channel 8 Channel 6  98.83% 102.59% 106.34% Channel 8 Channel6  89.72%  88.43%  87.15% Channel 8
Channel 5 56 a4 32 Channel 9 Channel 5 88.30% 89.75% 91.20% Channel 9 Channel 5 69.77% 71.12% 72.46% Channel 9
Channel 4 98.5 85.25 72 Channel 10 Channel 4 61.87% 61.96% 62.05% Channel 10 Channel4  50.15%  49.61%  49.06% Channel 10
Channel 3 143.5 135 120.5 Channel 11 Channel 3  41.65%  41.78%  41.92% Channel 11 Channel 3 22.53%  26.90%  31.26% Channel 11
Channel 2 211.5 165.25 115 Channel 12 Channel 2 27.53% 28.34% 29.15% Channel 12 Channel 2 17.38% 19.09% 20.80% Channel 12
Channel 1 235.5 238.5 241.5 Channel 13 Channell  19.33%  19.64%  19.95% Channel 13 Channel1  17.38%  17.00%  16.63% Channel 13
Channel 14 446 Microseconds Channel 14 19.50% Channel 14 43.13%

Flat Plate -27.5 Microseconds Flat Plate 133.03% Flat Plate 88.11%
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le 0.4 Ib Charge

ing

S

Echo 1 - Repetition C - Pipe 3

CH1[PSI] CH2[PSI] CH3[PSI] CH4[PSI] CH5[PSI] CH 6 [PSI]

22,8794

Initial Pressure Arival =~ 0.001251
Time in microsec 1251
Min time 1034
Max time 1448.5
arival spread 414.5
max time duration 567.00

0.001534
Time in microsec 1534
Duration 283
Impulse (sec*psi) 2.54E-03
Impulse (millisec*psi) 2.54
Time
Signature Sensor

Dif

Channel 6 7.5
Channel 5 34
Channel 4 63.5
Channel 3 87.5
Channel 2 163.5
Channel 1 216.5
Channel 14

Flat Plate

307919 50.9297 78.8011 104.957 134.973| A54.784 128.388 111.362 69.8165 44.8415 35.0669

0.001198 0.001122 0.001098 0.001069 0.001042 0.001035

1198

621.00
0.001508

1508

310

3.75E-03
3.75

1034.5

Average

6.5
315
64
96.5
147.5
213.5

414
-0.5

1122 1098

813.00 873.00
0.001528 0.001558
1528 1558
A06 460

6.38E-03  1.03E-02
6.38 10.30

Microseconds
Dif

5.5 Channel 8
29 Channel 9
64.5 Channel 10
105.5 Channel 11
131.5 Channel 12
210.5 Channel 13

Microseconds
Microseconds

1068.5

1,042.00
0.001589

1589

520.5

1.42E-02
14.25

1042 1034.5
1,098.00 1,127.00
0.001591 0.001598

1590.5 1597.5
548.5 563
1.83E-02 1.99E-02

18.32 19.92

Pressure
Signature Sensor
Dif
Channel 8 87.20%
Channel5 67.81%
Channel4 50.91%
Channel 3 32.90%
Channel2  19.89%
Channell 14.78%
Channel 14
Flat Plate

CH&[PSI] CHS[PSI] CH 10 [PSICH 11 [PSI CH 12 [PSI CH 13 [PSI CH 14 [PSI CH 15 [PSI CH 16 [V]

0.00104 0.001064 0.001093

1040 1063.5 1099
1,103.00 1,054.00 993.00
0.001591 0.00159

1591 1590 1595

551 526.5 496
1.84E-02 1.50E-02

18.36 15.00 10.32
154.784

Average Dif

85.08%  82.95% Channel 8

69.88%  71.95% Channel 9

48.01%  45.11% Channel 10
30.94% 28.97% Channel 11
21.27% 22.66% Channel 12
14.97%  15.16% Channel 13
13.17%

98.03%

23.465 20.3915

151.73  5.00887

0.00114 0.001166 0.001245 0.001443 0.001034

1140

730.00
0.001595 0.001505

1504.5

364.5

1.03E-02 6.39E-02

6.39

1166 1245 1448.5
690.00 532.00 1,824.00
0.001511 0.001511 0.00236
1510.5 1510.5 2360
344.5 265.5 911.5
4.00E-02 2.82E-03 B8.1SE-03
4.00 2.82 2.19
Impulse
Signature Sensor 19.92
Dif Average
Channel 6 91.98%  92.08%
Channel 5 71.53%  73.43%
Channel4 51.70% 51.76%
Channel 3 32.01%  32.04%
Channel2  18.84%  19.46%
Channell 12.75%  13.46%
Channel 14 41.14%
Flat Plate 954.66%

1034

837.00
0.001452

1452

413

1.89E-02
18.85

Dif
92.18% Channel 8
75.33% Channel 9
51.81% Channel 10
32.06% Channel 11
20.09% Channel 12
14.17% Channel 13
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le 0.6 Ib Charge

ing

S

Echo 2 - Repetition A - Pipe 3

Initial Pressure Arival

me in microsec

Min time
Max time

arival spread

max time duration

me in microsec

Duration

Impulse (sec*psi)
Impulse (millisec*psi)

Signature Sensor

Channel 6
Channel 5
Channel 4
Channel 3
Channel 2
Channel 1

Channel 14
Flat Plate

CH1[PSI] CH2[PSI] CH3[PSI] CH4[PSI] CHS[PSI] CH 6 [Psi] [EHIAIPSI CH & [PSI]

2288 3079 5093 78.8 10496 134.98) 15478 128.29

0.001251 0.001198 0.001122 0.001098 0.001069 0.001042 0.001035 0.00104

1251 1198 1122 1098 1068.5 1042 1034.5 1040
1020.5
1448.5
428

567.00 621.00 813.00 921.00 1,042.00 1,098.00 1,127.00 1,061.00

0.001534 0.001508 0.001528 0.001558 0.001589 0.001591 O0.001598 0.00157

1534 1508 1528 1558 1589 1590.5 1597.5 1570

283 310 406 460 520.5 548.5 563 530

2.54E-03  2.54E-03 3.75E-03 1.03E-02 1.42E-02 1.83E-02 1.99E-02 1.83E-02

2.54 2.54 3.75 10.30 14.25 18.32 19.92 18.33

Time Pressure
1034.5 Microseconds Signature Sensor 154.78
Dif Average Dif Dif Average

7.5 6.5 5.5 Channel 8 Channele  87.21% 85.08%

34 3L.5 29 Channel 9 Channels  67.81% 69.88%

63.5 64 64.5 Channel 10 Channel4  50.91% 48.01%

87.5 96.5 105.5 Channel 11 Channel 3 32.90% 30.94%

163.5 147.5 131.5 Channel 12 Channel 2 15.89% 21.28%

216.5 213.5 210.5 Channel 13 Channel L 14.78% 14.97%

414 Microseconds Channel 14 13.17%

-14 Microseconds Flat Plate 98.03%

CH9[PSI] CH10[PSI] CHI11[PSI] CH12[PSI] CH13[PSI] CH14[PSI] CH 15[PSI] CH16[V]

111.36 69.82
0.001064  0.001099
1063.5 1099
1,054.00 993.00
0.00159  0.001535
1590 1595
526.5 496
1.50E-02  1.03E-02
15.00 10.32

Dif
82.95% Channel 8
71.95% Channel 9
45.11% Channel 10
28.97% Channel 11
22.66% Channel 12
15.16% Channel 13

44.84

0.00114
1140

730.00
0.0015045

1504.5

364.5

6.39E-03
6.39

35.07 23.47 20.39
0.001166  0.001245 0.0014485
1166 1245 1448.5
656.00 532.00 1,236.00
0.0014935 0.0015105 0.0023745
1493.5 1510.5 2374.5
327.5 265.5 926
3.99E-03 2.82E-03 8.21E-03
3.99 2.82 8.21
Impulse
Signature Sensor 19.92
Dif Average
Channel 6 91.98% 92.01%
Channel 5 71.53% 73.43%
Channel 4 51.70% 51.76%
Channel 3 18.84% 25.45%
Channel 2 12.75% 16.40%
Channel 1 12.75% 13.46%
Channel 14 41.21%
Flat Plate 101.77%

151.73 0.08
0.0010205
1020.5

864.00
0.001452

1452

431.5

2.03E-02
20.27

Dif
92.05% Channel 8
75.33% Channel 9
51.81% Channel 10
32.06% Channel 11
20.05% Channel 12
14.17% Channel 13
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le 0.6 Ib Charge

ing

S

Echo 2 - Repetition B - Pipe 3

CH1[PSI] CH2[PSI] CH3[PSI] CH4[PSI] CH5[PSI] CHBE __um:I_m_._ 8[PSI] CH3[PSI] CH 10 [PSI CH 11 [PSI CH 12 [PSI CH 13 [PSI CH 14 [PSI CH 15 [PSI CH 16 [V]

21979 29.7069 49.3663 79.7335 110.747 130.532) 144871 126.204 115827 84.1437 54.0608 415528 27.3561

Initial Pressure Arival = 0.001242 0.00118% 0.001117 0.001094
Time in microsec 1242 1189 1117 1093.5
Min time 927.5
Max time 1425.5
arival spread 498
max time duration 609.00 693.00 778.00 1,042.00

0.001546 0.001535 0.001506 0.001614
Time in micrasec 1546 1535 1505.5 1614
Duration 304 346 388.5 520.5
Impulse (sec*psi) 2.59E-03 2.59E-03 3.90E-03 1.01E-02
Impulse (millisec*psi} 2.59 2.59 3.90 10.15

Time

Signature Sensor 1028 Microseconds

Dif Average Dif
Channel 6 4 5.25 6.5 Channel &
Channel 5 35 31.75 28.5 Channel 9
Channel 4 65.5 63.5 61.5 Channel 10
Channel 3 89 94 99 Channel 11
Channel 2 161 146.5 132 Channel 12
Channel 1 214 205.75 197.5 Channel 13
Channel 14 397.5 Microseconds

Flat Plate

-100.5 Microseconds

0.001063 0.001022 0.001028 0.00103> 0.001057 0.00109
1062 1032 1028 1034.5 10356.5 1083.5
1,086.00 1,179.00 1,173.00 1,093.00 1,101.00 1.024.00
0.001606 0.001621 0.001614 0.001581 0.001607 0.001601
1605.5 1621 1614 1580.5 1606.5 1601
542.5 589 586 530 5115
1.41E-02 1.79E-02 1.92E-02 1.75E-02 1.45E-02 1.04E-02
14.08 17.92 19.16 17.47 14.54 10.39
Pressure
Signature Sensor 144,871
Dif Average Dif
Channels 90.11%  88.61%  87.11% Channel 8
Channels 76.45%  78.20%  79.95% Channel 9
Channeld 55.04%  56.56%  58.08% Channel 10
Channel3 34.08%  35.70%  37.32% Channel 11
Channel2 20.51%  24.59%  2B.68% Channel 12
Channell 15.17% 17.03%  1B.88% Channel 13
Channel 14 13.84%
Flat Plate 62.50%

0.001127
1127

753.00
0.001503

1503

376

6.69E-02
6.69

20.043

0.00116 0.001226 0.0014206

1160 1225.5 1425.5
655.00 519.00 1,780.00
0.001487 0.001485 0.002315
1487 1484.5 2315
327 259 889.5
A443E-03 2.91E-03 8.08BE-03
4.43 2.91 8.08
Impulse
Signature Sensor 19.16
Dif Average
Channels 93.54%  92.35%
Channels 73.51%  74.70%
Channeld 52.97% 53.59%
Channel 3 20.35%  27.63%
Channel2 13.53%  18.33%
Channell 13.53%  14.35%
Channel 14 42.19%
Flat Plate 72.55%

50.5433 5.00641
0.000928
927.5

1,041.00
0.001448

1447.5

520

1.39E-02
13.90

Dif
91.17% Channel 8
75.90% Channel 9
54.21% Channel 10
34.91% Channel 11
23.14% Channel 12
15.18% Channel 13
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le 0.6 Ib Charge

ing

S

Echo 2 - Repetition C - Pipe 3

CH1[PSI] CH2[PSI] CH3[PSI] CH4[PSI] CH5[PSI] CHe[PSI] CHE[PSI] CH9[PSI] CH10[PSI] CH11[PSI] CH12[PSI] CH13[PSI] CH14[PSI] CH15[PSI] CH 16[V]

117.562

140.574 ) 148.373|

0.001168 0.001099 0.001043 0.001027 0.001021 0.001012

21.267 29.6508 51.1445 82.1233
Initial Pressure Arival ~ 0.001221
Time in microsec 1220.5 1167.5 1098.5 1042.5
Min time 1012
Max time 1414.5
arival spread 402.5
max time duration 593.00 716.00 901.00 1,090.00
0.001517 0.001525 0.001549 0.001587
me in microsec 1516.5 1525 1548.5 1587
Duration 296 357.5 450 544.5
Impulse (sec*psi) 2,60E-03 2.60E-03 3.95E-03 1.02E-02
Impulse (millisec*psi) 2.60 2.60 3.95 10.16
Time
Signature Sensor 1012 Microseconds
Average Dif
Channel 6 8.5 7.25 6 Channel 8
Channel 5 14.5 14 13.5 Channel 9
Channel 4 30.5 49 67.5 Channel 10
Channel 3 86.5 96.75 107 Channel 11
Channel 2 155.5 143 130.5 Channel 12
Channel 1 208.5 211 213.5 Channel 13
Channel 14 402.5 Microseconds

Flat Plate

36 Microseconds

1026.5

1,125.00
0.001589

1588.5

562

1.42E-02
14.22

1020.5 1012
1,098.00 1,171.00
0.001569 0.001597
1569 1597
548.5 585
1.82E-02 1.95E-02
18.15 15.55
Pressure

Signature Sensor

Dif

Channel6  54.74%
Channel 5 79.23%
Channel4  55.35%
Channel 3 34.47%
Channel2  19.98%
Channell  14.33%
Channel 14

Flat Plate

126.414

0.001013
1018

1,096.00
0.0015655

1565.5

547.5

1.80E-02
18.05

148.373

Average

89.97%
76.47%
52.00%
32.32%
21.97%
15.05%

13.90%
83.71%

109.369 72,1771

0.001026 0.0010795
1025.5 1079.5

1,123.00
0.00159

1,033.00
0.0015955
1589.5 1595.5
564 516

1.48E-02
14.80

1.03E-02
10.20

Dif
85.20% Channel 8
73.71% Channel 9
48.65% Channel 10
30.16% Channel 11
23.95% Channel 12
15.76% Channel 13

44,7554

1119

923.00
0.00158

1580

461

6.34E-03
6.34

35.5342 23.3902

1142.5 1225.5
697.00 571.00
0.0014505 0.0015105
1430.5 1510.5
348 285
3.97E-03 2.71E-03
3.97 2,71
Impulse
Signature Sensor
Dif
Channel 6 92.86%
Channel 5 72.73%
Channel 4 51.95%
Channel 3 20.19%
Channel 2 13.30%
Channel 1 13.30%
Channel 14
Flat Plate

20.626

0.001119 0.0011425 0.0012255 0.0014145

1414.5

1,890.00

124.202 5.00626

0.001043

1048

350.00

0.002359 0.0015225

2359

944.5

8.27e-03
8.27

19.55

Average

92.59%
74.22%
52.33%
26.31%
16.80%
13.59%

42.32%
94.73%

1522.5

474.5

1.85E-02
13.52

92.33% Channel 8
75.70% Channel 9
52.70% Channel 10
32.43% Channel 11
20.30% Channel 12
13.87% Channel 13
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