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SOME RESULTS ON DIAGONAL-FREE

TWO-DIMENSIONAL CYLINDRIC

ALGEBRAS

A b s t r a c t. Formulas for computing the number of Df2-

algebra structures that can be defined over Bn, where Bn is the

Boolean algebra with n atoms, as well as the fine spectrum of

Df2 are obtained. Properties of the lattice of all subvarieties of

Df2, Λ(Df2), are exhibited. In particular, the poset Sifin(Df2)

is described.

.1 Introduction and Preliminaries

Cylindric algebras were first introduced by A. Tarski in the 1940’s. As a

general reference we mention the fundamental work by Henkin, Monk and
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Tarski [5]. Following the notation introduced in [5], we shall denote by Df2

the variety diagonal–free two–dimensional cylindric algebras, that is to say,

the variety of the Boolean algebras with two quantifiers which commute.

This variety has been widely studied, but little research has pursued to

investigate those problems inherent to finite algebras.

In [5, Part II Lemma 5.1.24 (p.188) and Theorem 5.1.7 (ii) (p.185)]

it is proved that Df2 is generated by its finite members and Df2 is not

locally finite. In [1], Bezhanishvili studied in depth the lattice Λ(Df2) of

all subvarieties of Df2 and, among other things, he proved that despite the

fact that Df2 is not locally finite, every proper subvariety is.

One well–known fact about Df2 is that it is a discriminator variety. In

consequence,

(I) the concepts of an algebra being simple, subdirectly irreducible or

directly indecomposable are equivalent in Df2,

(II) the finite algebras all have unique direct factorization into simple

algebras.

On the other hand, the fine spectrum fV of a variety V is the function

where fV(n) is the number of isomorphism types of algebras of power n in

V (see [8]). It is stated in [5, Part II p. 186] that fV(1) = 1 for V = Df2

In what follows, we shall recall some known results about Df2 which

are useful for the understanding of the present work (see [1], [3] and, [5]).

We shall denote by Bn the Boolean algebra with n atoms and with An

the set of its atoms. Recall that (B,∃1,∃2) is a Df2-algebra if and only if

for all x ∈ B it is verified

∃i0 = 0,

x ≤ ∃ix,

∃i(x ∧ ∃iy) = ∃ix ∧ ∃iy, for i = 1, 2; and

∃1∃2x = ∃2∃1x.

Every quantifier ∃ defined on the Boolean algebra Bn induces a partition

P∃ of the set An of its atoms. It will be called partition associated to ∃ and

it can be obtained in the following way: C ∈ P∃ if and only if ∃x = ∃y for

x, y ∈ C. The following results will be used
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Proposition 1.1. (See [1], [3] or [5]) Let P1 and P2 be two partitions

of Ak and ∃1, ∃2 their associated quantifiers. Then, the following conditions

are equivalent:

(i) (Bk,∃1,∃2) is a simple Df2-algebra,

(ii) C ∩D 6= ∅ for every C ∈ P1 and D ∈ P2.

This corresponds to the fact that a Df2-algebra is simple of and only if

∃1∃2x = 1 for all nonzero x.

Proposition 1.2. (See [3]) If a finite Df2-algebra (A,∃1,∃2) is simple

and Ki = ∃iBk for i = 1, 2, then |Π(K1)| · |Π(K2)| ≤ |Π(A)|. Where

∃iBk = {∃ix : x ∈ Bk} and Π(A) is the set of atoms of the Boolean algebra

A.

This paper is organised in two main sections. Section 2 is devoted to

some kind of problems related to finite algebras similar to the ones studied

in [3] and [7]. More precisely, we exhibit a formula to calculate the fine

spectrum of Df2. In Section 3, we describe de poset Sifin(Df2) which

generates the lattice Λ(Df2).

.2 Df2-algebra structures over a finite Boolean algebra; fine

spectrum

Given the Boolean algebra Bn, we are going to determine the number of

Df2-algebra structures that can be defined over Bn. We shall assume for

simplicity that if P = {C1, . . . , Cm} is a partition of Ak then |C1| ≤ · · · ≤

|Cm|. We shall denote by s(k) the number of all simple Df2-algebras with

k atoms. Then, from equation (3.3) of [3] we have that

s(k) =
k

∑

m=1

∑

P1 ∈ Part(Ak, m)
P1 = {C1, . . . , Cm}

Γ(|C1|, . . . , |Cm|). (1)

where
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Γ(s1, . . . , sm) =
∑

n ∈ N, n · m ≤ k

n ≤ s1

m
∏

i=1

n−1
∑

j=0

(−1)j
(

n

j

)

(n− j)si

n!
. (2)

Now, we shall denote by DF2(Bn) the set of all pairs of quantifiers

(∃1,∃2) defined on Bn which verifies that ∃1∃2 = ∃2∃1.

Suppose that (∃1,∃2) ∈ DF2(Bn) and let P1 and P2 be the partitions

of An associated to ∃1 and ∃2 respectively. We know that these parti-

tions determine, in turn, two new partitions which are {UC}C∈P1 and

{m2(C)}C∈P1 respectively (see Lemma 3.18 of [3]).

Let’s make some remarks.

Remark 2.1. The sets

(i) {W : W =
⋃

F∈UC

F, for some C ∈ P1} and

{W ′ : W ′ =
⋃

G∈m2(C)

G, for some C ∈ P1} are partitions of An.

(ii) The above two partitions are equal. Furthermore, that is the partition

of An associated to the quantifier ∃ = ∃1∃2 = ∃2∃1.

From Remarks 2.1 we can assert that each pair (∃1,∃2) ∈ DF2(Bn)

has associated one, and only one, partition of An which we shall denote

byP (∃1,∃2). Converselly, it is easy to verify that every partition of An has

associated at least one pair (∃1,∃2) ∈ DF2(Bn) and generally, more than

one.

We shall define an equivalence relation ≡ on the set DF2(Bn) as follows:

(∃1,∃2) ≡ (∃′1,∃
′
2) if and only if P (∃1,∃2) = P (∃′1,∃

′
2),

and let’s consider the quotient set of DF2 by ≡ written DF2(Bn)/ ≡. Then

Lemma 2.2. The sets DF2(Bn)/ ≡ and Part(An) have the same car-

dinality.

Proof. It is a direct consequence of the above discussion. 2

Now let’s compute the cardinal of each equivalence class in DF2(Bn)/ ≡.

Let (∃′1,∃
′
2) ∈ DF2(Bn) and suppose that P (∃′1,∃

′
2) = {U1, U2, . . . , Ur}

with |Ui| = ni, for every 1 ≤ i ≤ r. We shall denote by S(n) the set of all

finite simple Df2-algebra with n atoms. Then the following assertion holds.
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Lemma 2.3. The sets (∃′1,∃
′
2)≡ and

r
∏

i=1
S(ni) have the same cardi-

nality.

Proof. Let (∃1,∃2) ∈ (∃′1,∃
′
2)≡. Then, the function φ : (∃′1,∃

′
2)≡ →

r
∏

i=1
S(ni) which matches every pair (∃1,∃2) in (∃′1,∃

′
2)≡ with the Df2-

algebra (Bn,∃1,∃2) is well defined. Furthermore, it is easy to verify that φ

is one–to–one and onto. 2

Now, we can specify a formula which allows us to compute the cardinal

we are looking for. Taking into account Lemmas 2.2 and 2.3 we have that:

|DF2(Bn)| =
∑

(∃1,∃2)≡∈DF2(Bn)/≡

|(∃1,∃2)≡|

=
∑

P∈Part(An)

|
∏

C∈P

S(|C|)|

=
∑

P∈Part(An)

∏

C∈P

|S(|C|)|

And from equation (1), |S(|C|)| = s(|C|) holds. Then,

|DF2(Bn)| =
∑

P∈Part(An)

∏

C∈P

s(|C|). (3)

Example 2.4. (i) |DF2(B1)| = 1; |DF2(B2)| = 4

(ii) Let A3 = {a1, a2, a3} and P0 = A3, P1 = {{a1}, {a2, a3}}, P2 =

{{a2}, {a1, a3}}, P3 = {{a3}, {a1, a2}} and P4 = {{a1}, {a2}, {a3}}.

Then, |DF2(B3)| = 19.

Therefore, there are only nineteen Df2-algebra’s structures which can

be defined over the Boolean algebra B3 and it is possible to verify

that these algebras are: (B3,∃P0 ,∃Pi
), for 0 ≤ i ≤ 4; (B3,∃Pj

,∃P0),

for 1 ≤ j ≤ 4; (B3,∃Pi
,∃Pi

), (B3,∃Pi
,∃P4) and (B3,∃P4 ,∃Pi

), for

1 ≤ i ≤ 3 and (B3,∃P4 ,∃P4).

Now, we shall exhibit a formula for computing the fine spectrum of

Df2(n) for n ∈ N. Let A = (Bk,∃1,∃2) be a finite Df2-algebra and let

P1 = {C1, . . . , Cn} and P2 = {D1, . . . ,Dm} be the partitions associated
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to ∃1 and ∃2 respectively. With Sk we shall denote the symmetric group

of order k. Besides, we shall denote with F (A) the family of all matrixs

associated to A in the following way.

Definition 2.5. F (A) = {(aij)n×m : there are permutations σ ∈ Sn

and τ ∈ Sm such that aij = |Cσ(i) ∩Dτ(j)| for 1 ≤ i ≤ n, 1 ≤ i ≤ m}

Besides, we shall denote by F ((aij)n×m) the set

F ((aij)n×m) = {(aσ(i)τ(j))n×m : for all σ ∈ Sn and all τ ∈ Sm}

that is to say that F ((aij)n×m) is the set of all matrixs that are obtained

from (aij)n×m by interchanging rows and columns of it.

Remark 2.6. From Propositions 1.1 and 1.2 we know that, if A is

simple and (aij)n×m ∈ F (A) then, aij > 0 for all i, j and n·m ≤
n
∑

i=1

m
∑

j
aij =

k.

Proposition 2.7. There exist σ0 ∈ Sn, τ0 ∈ Sm and an unique matrix

(δij)n×m ∈ F (A) such that:

(i) δij = |Cσ0(i) ∩Dτ0(j)|,

(ii) If j < l then
∑n

i=1 δij ≤
∑n

i=1 δij ,

(iii) If
∑n

i=1 δij =
∑n

i=1 δij , then there is r ∈ {1, . . . , n} such that δrj < δrl
and for allo s, 1 ≤ s < r, δsj = δsl.

Proof. It is a routine. 2

Lemma 2.8. If A,B ∈ Df2 are finite algebras then the following con-

ditions are equivalent:

(i) A and B are isomorphic algebras,

(ii) F (A) = F (B).

Proof. (i) ⇒ (ii): Since A ≃ B we can assume that A = (Bk,∃1,∃2)

and B = (Bk,∃1,∃2) and if Pi and P ′
i the partitions of Ak associated

to ∃i and ∃′i, for i = 1, 2, respectively, then we can assume that P1 =

{C1, . . . , Cn}, P2 = {D1, . . . ,Dm}, P ′
1 = {C ′

1, . . . , C
′
n} and P2 = {D′

1, . . . ,

D′
m}. Let h : A → B an isomorphism, then for all C ′

i and D′
j there are Ci′
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and Dj′ such that fh : Ak → Ak verifies that fh(C
′
i) = Ci′ , fh(D

′
i) = Di′

and fh(C
′
i ∩D′

j) = Ci′ ∩Dj′ . Therefore, |C
′
i ∩D′

j | = |Ci′ ∩Dj′ |.

(ii) ⇒ (i): If A and B are two finite Df2-algebras such that F (A) =

F (B) then we can assume that P1 = {C1, . . . , Cn}, P2 = {D1, . . . ,Dm},

P ′
1 = {C ′

1, . . . , C
′
n} and P2 = {D′

1, . . . ,D
′
m} are the partitions of Ak asso-

ciated to the quantifiers. Then we, can find σ ∈ Sn and τ ∈ Sm such that

|Ci ∩Dj | = |Cσ(i) ∩Dτ(j)|. Therefore, we can define an one-to-one function

f from Ak onto Ak such that f can be extended to an isomorphism from A

to B. 2

Let

Mk = {(aij)n×m : n,m ∈ N;n ·m ≤ k; aij > 0 for all i, j;

and

n
∑

i=1

m
∑

j

aij = k}

and consider the equivalence relation ∼ defined over Mk as follows,

(aij)n×m ∼ (bij)r×s if and only if F ((aij)n×m) = F ((bij)r×s) (4)

That is to say that (aij)n×m ∼ (bij)r×s if and only if (bij)r×s is obtained

from (aij)n×m by interchaging a certain number of rows and columns.

Now, let us consider the quotient Mk/ ∼. It is clear, from what we have

seen so far, that the number of finite simple Df2-algebras with k atoms up

to isomorphism is precisesly |Mk/ ∼ |. We shall denote such number with

s⋆(k).

Then, taking into account (II) we have that the fine spectrum of Df2

for k finite is given by

fDf2(k) =
∑

k1 ≤ · · · ≤ km

k1 + · · · + km = k

m
∏

j=1

s⋆(kj). (5)

Example 2.9. s⋆(1) = 1, s⋆(2) = 3, s⋆(3) = 5, s⋆(4) = 10

(i) fDf2(1) = 1; fDf2(2) = s⋆(1) · s⋆(1) + s⋆(2) = 4

(ii) fDf2(3) = s⋆(1) · s⋆(1) · s⋆(1) + s⋆(1) · s⋆(2) + s⋆(3) = 8.

Note that the algebras (B3,∃P0 ,∃Pi
), (B3,∃Pi

,∃Pi
), (B3,∃Pi

,∃P4),

(B3,∃P4 ,∃Pi
) for 1 ≤ i ≤ 3 are isomorphic respectively.
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.3 The lattice Λ(Df2)

In this section, we give a description of the poset Sifin(Df2). The tools

that we shall use here are both the characterization of the finite subdirectly

irreducible Df2-algebras stated in [3] and the well-known results due to B.

Jónsson ([6]) and B. Davey ([2]).

Given a class K of algebras, let Si(K) and Sifin(K) consist of pre-

cisely one algebra from each of the isomorphism classes of the subdirectly

irreducible algebras and finite subdirectly irreducible algebras respectively.

Besides, we shall denote by O(P ) the lattice of down-sets (order-ideals) of

the poset P .

Let A = (Bk,∃1,∃2) be a (finite) Df2-algebra and let P1 = {C1, . . . , Cn}

and P2 = {D1, . . . ,Dm} be the partitions associated to ∃1 and ∃2 respec-

tively.

Lemma 3.1. The following conditions are equivalent:

(i) (Bq,∃) is isomorphic to some subalgebra of (Bk,∃
′),

(ii) there exists a partition {I1, . . . , Im} of {1, . . . , s} such that αl ≤ δt
whenever 1 ≤ l ≤ m and t ∈ Il where m, s, α′

ls, δ
′
ts ∈ N.

Proof. (i) ⇒ (ii): Let (Bq,∃), (Bk,∃
′) be two finite monadic algebras

and P = {C1, . . . , Cm} with |Ci| = αi for 1 ≤ i ≤ m and P ′ = {D1, . . . ,Ds}

with |Dj | = γj for 1 ≤ j ≤ s be the associated partitions of Aq and Ak to

∃ and ∃′, respectively.

By standard duality facts (Bq,∃) embeds into (Bk,∃
′) as a subalgebra

if and only if there exists a surjective map π : Ak → Aq such that for each

j = 1 . . . s there is some i, 1 ≤ i ≤ m with π(Dj) = Ci. Given π, let

Ii = {j : π(Dj) = Ci}. Then clearly, {Ii : 1 ≤ i ≤ m} is a partition of

{1, . . . , s} and δj = |Dj | ≥ |Ci| = αi whenever j ∈ Ii. Therefore, (ii) holds.

(ii) ⇒ (i): Take any j ∈ {1, . . . s} and suppose that j ∈ Ii for some

(unique) i with 1 ≤ i ≤ m. Since δj ≥ αi, we may choose a surjection

πj : Dj → Ci. Now, π =
⋃s

j=1 πj is a map with the required properties. 2

In what follows we denote with F(aij )n×m
the finite simple Df2-algebra

A such that (aij)n×m ∈ F (A).

Lemma 3.2. The following conditions are equivalent:

(i) F(aij )n×m
∈ S(F(bij )r×s

),
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(ii) there exists a partition {Iij : 1 ≤ i ≤ n, 1 ≤ j ≤ m} of {1, . . . , r} ×

{1, . . . , s} such that for all i (1 ≤ i ≤ m) and all j (1 ≤ j ≤ n),

aij ≤ buv whenever (u, v) ∈ Iij.

Proof. Let A = (Bq,∃1,∃2), B = (Bk,∃
′
1,∃

′
2) be two finite Df2-

algebras, P1 = {C1, . . . , Cn} and P2 = {D1, . . . ,Dm} the partitions of

Aq associated to ∃1 and ∃2 respectively, P ′
1 = {C ′

1, . . . , C
′
r} and P2 =

{D′
1, . . . ,D

′
s} the partitions of Ak associated to ∃′1 and ∃′2 respectively. Let

Hij = Ci ∩ Dj for 1 ≤ i ≤ n and 1 ≤ j ≤ m and let H ′
ij = C ′

i ∩ D′
j

for 1 ≤ i ≤ r and 1 ≤ j ≤ s. Suppose that N(A) = (aij)n×m and

N(B) = (bij)r×s

(i) ⇒ (ii): Let π : Ak → Aq be a surjection and let Iij = {(u, v) :

π(H ′
uv) = Hij}. It is clear that {Iij : 1 ≤ i ≤ n, 1 ≤ j ≤ m} is a partition

of {1, . . . , r} × {1, . . . , s}.

(ii) ⇒ (i): Let (u, v) ∈ {1, . . . , r} × {1, . . . , s} such that (u, v) ∈ Iij.

Since aij ≤ buv we can choose an onto map πij : H ′
uv → Hij. Then,

π =
n
⋃

i=1

m
⋃

j=1
πij is a function from Ak onto Aq. 2

Remark 3.3. {
⋃m

j=1 Iij : 1 ≤ i ≤ n} is a partition of {1, . . . , r},

{
⋃n

i=1 Iij : 1 ≤ j ≤ m} is a partition of {1, . . . , s}.

The following Lemma will be useful in what follows.

Lemma 3.4. Let A = (Bq,∃1,∃2), B = (Bk,∃
′
1,∃

′
2) be two finite Df2-

algebras, P1 = {C1, . . . , Cn} and P2 = {D1, . . . ,Dm} the partitions of

Aq associated to ∃1 and ∃2 respectively, P ′
1 = {C ′

1, . . . , C
′
r} and P ′

2 =

{D′
1, . . . ,D

′
s} the partitions of Ak associated to ∃′1 and ∃′2 respectively.

Then, if h : Bk → Bq is an arbitrary fucntion, the following conditions

are equivalent:

(i) h is a Df2-epimorphism,

(ii) fh : Aq → Ak defined by fh(a) = b iff h(b) = a, a ∈ Aq and b ∈ Ak

verifies that:

(a) fh is one-to-one,

(b) for all C ∈ P1 and all D ∈ P2 there are C ′ ∈ P ′
1 and D′ ∈ P ′

2

such that (b1) fh(C) = C ′, (b2) fh(D) = D′.
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Proof. Since h is a Df2-epimorphism, we have that, in particular, h

is a monadic epimorphism from (Bq,∃i) onto (Bk,∃
′
i) for i = 1, 2. So, for

Lemma 3.1, condition (ii) (b) is fulfilled. On the other hand, if fh : Aq → Ak

verifies conditions (ii) (a) and (ii) (b) then, taking into acount Lemma 3.1,

we have that h is monadic epimorphism from (Bq,∃i) onto (Bk,∃
′
i) for

i = 1, 2 and therefore a Df2-epimorphism. 2

Remark 3.5. (i) Let A = (Bq,∃1,∃2), B = (Bk,∃
′
1,∃

′
2) be two finite

Df2-algebras as in the lemma just above. If A is an homomorphic

image of B then, q ≤ k, n ≤ r and m ≤ s.

(ii) If fh : Aq → Ak fulfilling conditions (ii) (a) and (ii) (b) of Lemma

3.4, then for all C ∈ P1 and all D ∈ P2 we have that fh(C ∩D) =

fh(C) ∩ fh(D). Besides, |C| = |fh(C)|, |D| = |fh(D)| and |C ∩D| =

|fh(C) ∩ fh(D)|.

Lemma 3.6. The following conditions are equivalent:

(i) F(aij )n×m
∈ H(F(bij )r×s

),

(ii) n = r, m = s and F ((aij)n×m) = F ((bij)r×s)

Proof. Let A = (Bq,∃1,∃2), B = (Bk,∃
′
1,∃

′
2) be two simple finite

Df2-algebras, P1 = {C1, . . . , Cn} and P2 = {D1, . . . ,Dm} the partitions

of Aq associated to ∃1 and ∃2 respectively, P ′
1 = {C ′

1, . . . , C
′
r} and P2 =

{D′
1, . . . ,D

′
s} the partitions of Ak associated to ∃′1 and ∃′2 respectively. Let

Hij = Ci ∩ Dj for 1 ≤ i ≤ n and 1 ≤ j ≤ m and let H ′
ij = C ′

i ∩ D′
j

for 1 ≤ i ≤ r and 1 ≤ j ≤ s. Suppose that N(A) = (aij)n×m and

N(B) = (bij)r×s.

(i) ⇒ (ii): Let A be an homomorphic image of B and f : Aq → Ak

fulfilling conditions (ii) (a) and (ii) (b) of Lemma 3.4. We know by Remark

3.5 (i) that n ≤ r and suppose that n < r. Let σ ∈ Sr such that f(Ci) =

C ′

σ(i) for all 1 ≤ i ≤ n and that P1 = {C ′

σ(i) : 1 ≤ i ≤ r}. Let Dj ∈ P2

and D′
j ∈ P ′

2 such that f(Dj) = D′
j . Since P ′

1 is a partition Ak we can

assert that D′
j =

r
⋃

i=1
(C ′

σ(i) ∩ D′
j) and this is a disjoint union. Therefore,

|D′
j | =

r
∑

i=1
|C ′

σ(i) ∩D′
j |.
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On the other hand, Dj =
n
⋃

i=1
(Ci ∩ Dj) and |Dj | =

n
∑

i=1
|Ci ∩ Dj|. By

Remark 3.5 (ii),
n
∑

i=1
|Ci∩Dj| =

r
∑

i=1
|C ′

σ(i)∩D
′
j |. But

n
∑

i=1
|Ci∩Dj| =

n
∑

i=1
|f(Ci∩

Dj)| =
n
∑

i=1
|f(Ci)∩f(Dj)| =

n
∑

i=1
|C ′

σ(i)∩D
′
j| =

n
∑

i=1
|C ′

σ(i)∩D
′
j |+

r
∑

i=n+1
|C ′

σ(i)∩

D′
j |. Therefore,

r
∑

i=n+1
|C ′

σ(i)∩D
′
j| = 0. A contradiction since |C ′

σ(i)∩D
′
j| > 0.

Analogously it is shown that m = s and q = k.

(ii) ⇒ (i): If A and B are two simple finite Df2-algebras which verify

condition (ii) then is clear that A ≃ B. 2

Corollary 3.7. H(S(F(bij )r×s
) = S(F(bij )r×s

)

Now, we are going to characterise the poset Sifin(Df 2). Recall that

the order relation is given by A � B if and only if A ∈ H(S(B)) for all

A,B ∈ Sifin(Df2).

Let M =
∞
⋃

k=1

Mk and consider the equivalence relation ∼ over M

defined as in eq. (4).

Now, we define on M/ ∼ the order relation

(aij)n×m � (bij)r×s if and only if (aij)n×m and (bij)r×s

verify the condition Lemma 3.2 (ii)

Taking into account all what was stated above we can assert that:

Lemma 3.8. Sifin(Df2) and (M/ ∼,�) are isomorphic posets.

Let A be the finite simple Df2-algebra such that (aij)n×m ∈ F (A).

We shall represent the class of A in M/ ∼ by the only matrix (δij) ∈ F (A)

whose existence is guaranted by Proposition 2.7. The following is the Hasse

diagram of the lower part of (M/ ∼,�).
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Finally, taking into account both Davey’s well-known results, and the

fact that every proper subvariety of Df2 is locally finite, we may assert

that:

Theorem 3.9. Λ(Df2) is a completely distributive lattice and is iso-

morphic to O((M/ ∼,�)).
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agonales de dimensión dos, Ms. Dissertation. Universidad Nacional del Sur, 2005.



DIAGONAL-FREE TWO-DIMENSIONAL CYLINDRIC ALGEBRAS 15

[5] L. Henkin, D. Monk and A. Tarski, Cylindric Algebras, Parts I & II, North-Holland,

1971 & 1985.

[6] B. Jónsson, Algebras whose congruence lattices are distributive, Math. Scand., 21

(1967), pp. 110–121.

[7] L. Monteiro, M. Abad, S. Savini, J. Sewald and M. Zander, Subalgebras of a finite

monadic Boolean Algebra, Reports on Mathematical Logic, 40 (2006), pp. 199–206.

[8] W. Taylor, The fine spectrum of a variety. Algebra Universalis 5 no. 2 (1975), pp.

263–303.

Departamento de Matemática
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