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AN EIGHT-VALUED PRACONSISTENT

LOGIC

A b s t r a c t. It is known that many-valued paraconsistent log-

ics are useful for expressing uncertain and inconsistency-tolerant

reasoning in a wide range of Computer Science. Some four-valued

and sixteen-valued logics have especially been well-studied. Some

four-valued logics are not so fine-grained, and some sixteen-valued

logics are enough fine-grained, but rather complex. In this paper,

a natural eight-valued paraconsistent logic rather than four-valued

and sixteen-valued logics is introduced as a Gentzen-type sequent

calculus. This eight-valued logic is enough fine-grained and sim-

pler than sixteen-valued logic. A triplet valuation semantics is

introduced for this logic, and the completeness theorem for this

semantics is proved. The cut-elimination theorem for this logic is

proved, and this logic is shown to be decidable.
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.1 Introduction

Many-valued paraconsistent logics are of growing importance in Computer

Science since these are useful for expressing uncertain and inconsistency-

tolerant reasoning. Some 4-valued and 16-valued logics have especially

been well-studied [2, 3, 4, 5, 13, 15, 16, 18]. Some 4-valued logics are not so

fine-grained, and some 16-valued logics are enough fine-grained, but rather

complex. A many-valued paraconsistent logic rather than 4-valued and 16-

valued logics is required for developing a fine-grained and simple reasoning

system. In this paper, such a natural 8-valued paraconsistent logic, L8, is

introduced as a Gentzen-type sequent calculus. A triplet valuation seman-

tics, which has three kinds of valuations vn, vt and vf , is introduced for L8,

and the completeness theorem for this semantics is proved using some the-

orems for embedding L8 into positive classical logic. The cut-elimination

theorem for this logic is proved using such an embedding theorem. This

logic is also shown to be decidable and paraconsistent.

The proposed logic L8 adopts the following logical connectives: → (clas-

sical implication), ∼t (negation w.r.t. truth order), ∼f (negation w.r.t.

falsity-order), ∧t (classical conjunction or conjunction w.r.t. truth-order),

∨t (classical disjunction or disjunction w.r.t. truth-order), ∧f (conjunc-

tion w.r.t. falsity-order) and ∨f (disjunction w.r.t. falsity-order). The

logical connectives ∼f ,∧f and ∨f were originally introduced in Shramko-

Wansing’s 16-valued logics [15, 16] based on the trilattice SIXTEEN3.

Some Shramko-Wansing’s 16-valued logics with the full set of connectives

including the classical implication was axiomatized by Odintsov [13].

The {∧t,∨t,∼t}-fragment of L8 is a sequent calculus for Dunn’s and

Belnap’s 4-valued logic [4, 5] and is a classical extension of a sequent calcu-

lus for Nelson’s paraconsistent 4-valued logic [1]. Thus, L8 may be viewed

as a natural extension of Dunn’s and Belnap’s logic and Nelson’s logic. The

{∧t,∨t,∼t}-fragment of L8 is also a modified extension of a sequent calculus

for Arieli-Avron’s 4-valued bilattice logic [2, 3]. Moreover, L8 is regarded as

an 8-valued simplification of some Shramko-Wansing’s 16-valued trilattice

logics [15, 16].

The above mentioned 4-valued logics are known to be useful for a num-

ber of Computer Science applications, and then more expressive many-

valued logics have been required for representing more fine-grained situa-

tions. Shramko-Wansing’s 16-valued logics are an answer to this expressive-



AN EIGHT-VALUED PRACONSISTENT LOGIC 5

ness issue, i.e., more fine-grained situations can be expressed using these

16-valued logics. But, these 16-valued logics are rather complex, e.g., some

previously proposed sequent calculi [19, 10] and semantics [10] for these

logics need some complex definitions. The aim of this paper is thus to con-

struct an 8-valued logic which is a natural extension of the 4-valued logics

and is also a simplification of Shramko-Wansing’s 16-valued logics.

Suppose that an expression A ↔ B roughly means a bi-consequence

relation (i.e., A |= B and B |= A) or the classical bi-implication connective

(i.e., A→B and B→A). Then, Shramko-Wansing’s 16-valued logics have

the axiom: ∼t∼fα↔ ∼f∼tα which implies 16-valued logics based on a se-

mantics with quadruplet valuations vn (classical valuation), vt (concerning

∼t), v
f (concerning ∼f ) and vb (concerning ∼t∼f ) [10, 13]. Instead of this

axiom, the logic L8 adopts the axioms: ∼t∼fα↔ α and ∼f∼tα↔ α which

imply an 8-valued logic based on a semantics with triplet valuations vn, vt

and vf .

As far as we know, there is only one previously introduced “natural”

8-valued logic. An 8-valued logic based on the tetralattice EIGHT4 was

introduced by Zaitsev [20]. As a base for further generalization of the 4-

valued logics, a set 3 := {a, d, u} was chosen, where the initial values are a:

incoming data is asserted, d: incoming data is denied, and u: incoming data

is neither asserted nor denied, that corresponds to the answer “don’t know.”

In [20], an adequate Hilbert-style axiomatization for Zeitsev’s logic was

proposed. The following axioms for two negation connectives ∼a and ∼d are

included in this logic: ∼d∼a∼dα↔ ∼a∼d∼aα and ∼a∼d∼aα↔ ∼d∼a∼dα

instead of Shramko-Wansing’s axioms: ∼d∼aα ↔ ∼a∼dα. Zeitsev’s 8-

valued logic is philosophically plausible, but it has no Gentzen-type sequent

calculus or alternative simple triplet valuation semantics.

The structure of this paper is then summarized as follows. In Section

2, the logic L8 is introduced as a Gentzen-type sequent calculus, and the

cut-elimination theorem for L8 is shown using a theorem for syntactically

embedding L8 into a sequent calculus LK for positive classical logic. L8

is also shown to be decidable and paraconsistent. In Section 3, a triplet

valuation semantics for L8 is introduced, and the completeness theorem for

this semantics is shown using two theorems for syntactically and semanti-

cally embedding L8 into positive classical logic. In Section 4, this paper is

concluded, and some remarks are addressed.
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.2 Sequent calculus

The following list of symbols is adopted for the language used in this paper:

countably many propositional variables p0, p1, ..., logical connectives→, ∧t,
∨t, ∧f , ∨f , ∼t and ∼f . The connectives→, ∧t and ∨t are just the classical

implication, conjunction and disjunction, respectively. Greek lower-case

letters α, β, ... are used to denote formulas, and Greek capital letters Γ,∆, ...

are used to represent finite (possibly empty) sets of formulas. An expression

of the form Γ⇒ ∆ is called a sequent. An expression L ` S (or ` S) is

used to denote the fact that a sequent S is provable in a sequent calculus

L. A rule R of inference is said to be admissible in a sequent calculus L if

the following condition is satisfied: for any instance

S1 · · ·Sn
S

of R, if L ` Si for all i, then L ` S.

Definition 2.1 (L8). The initial sequents of L8 are of the form: for

any propositional variable p,

p⇒ p ∼tp⇒ ∼tp ∼fp⇒ ∼fp.

The structural inference rules of L8 are of the form:

Γ⇒ ∆, α α,Σ⇒ Π

Γ,Σ⇒ ∆,Π
(cut) Γ⇒ ∆

α,Γ⇒ ∆
(w-l) Γ⇒ ∆

Γ⇒ ∆, α
(w-r).

The normal logical inference rules of L8 are of the form:

Γ⇒ Σ, α β,∆⇒ Π

α→β,Γ,∆⇒ Σ,Π
(→l)

α,Γ⇒ ∆, β

Γ⇒ ∆, α→β (→r)

α, β,Γ⇒ ∆

α∧tβ,Γ⇒ ∆
(∧tl)

Γ⇒ ∆, α Γ⇒ ∆, β

Γ⇒ ∆, α∧tβ
(∧tr)

α,Γ⇒ ∆ β,Γ⇒ ∆

α∨tβ,Γ⇒ ∆
(∨tl)

Γ⇒ ∆, α, β

Γ⇒ ∆, α∨tβ
(∨tr)

α,Γ⇒ ∆ β,Γ⇒ ∆

α∧fβ,Γ⇒ ∆
(∧f l)

Γ⇒ ∆, α, β

Γ⇒ ∆, α∧fβ
(∧f r)

α, β,Γ⇒ ∆

α∨fβ,Γ⇒ ∆
(∨f l)

Γ⇒ ∆, α Γ⇒ ∆, β

Γ⇒ ∆, α∨fβ
(∨f r).
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The double-negation-elimination inference rules of L8 are of the form:

for any ∼d ∈ {∼t∼t,∼f∼f ,∼t∼f ,∼f∼t},

α,Γ⇒ ∆

∼dα,Γ⇒ ∆
(∼dl)

Γ⇒ ∆, α

Γ⇒ ∆,∼dα
(∼dr).

The ∼t-prefixed logical inference rules of L8 are of the form:

α,∼tβ,Γ⇒ ∆

∼t(α→β),Γ⇒ ∆
(∼t→l)

Γ⇒ ∆, α Γ⇒ ∆,∼tβ

Γ⇒ ∆,∼t(α→β)
(∼t→r)

∼tα,Γ⇒ ∆ ∼tβ,Γ⇒ ∆

∼t(α∧tβ),Γ⇒ ∆
(∼t∧tl)

Γ⇒ ∆,∼tα,∼tβ

Γ⇒ ∆,∼t(α∧tβ)
(∼t∧tr)

∼tα,∼tβ,Γ⇒ ∆

∼t(α∨tβ),Γ⇒ ∆
(∼t∨tl)

Γ⇒ ∆,∼tα Γ⇒ ∆,∼tβ

Γ⇒ ∆,∼t(α∨tβ)
(∼t∨tr)

∼tα,∼tβ,Γ⇒ ∆

∼t(α∧fβ),Γ⇒ ∆
(∼t∧f l)

Γ⇒ ∆,∼tα Γ⇒ ∆,∼tβ

Γ⇒ ∆,∼t(α∧fβ)
(∼t∧f r)

∼tα,Γ⇒ ∆ ∼tβ,Γ⇒ ∆

∼t(α∨fβ),Γ⇒ ∆
(∼t∨f l)

Γ⇒ ∆,∼tα,∼tβ

Γ⇒ ∆,∼t(α∨fβ)
(∼t∨f r).

The ∼f -prefixed logical inference rules of L8 are of the form:

Γ⇒ Σ,∼fα ∼fβ,∆⇒ Π

∼f (α→β),Γ,∆⇒ Σ,Π
(∼f→l)

∼fα,Γ⇒ ∆,∼fβ

Γ⇒ ∆,∼f (α→β)
(∼f→r)

∼fα,∼fβ,Γ⇒ ∆

∼f (α∧tβ),Γ⇒ ∆
(∼f∧tl)

Γ⇒ ∆,∼fα Γ⇒ ∆,∼fβ

Γ⇒ ∆,∼f (α∧tβ)
(∼f∧tr)

∼fα,Γ⇒ ∆ ∼fβ,Γ⇒ ∆

∼f (α∨tβ),Γ⇒ ∆
(∼f∨tl)

Γ⇒ ∆,∼fα,∼fβ

Γ⇒ ∆,∼f (α∨tβ)
(∼f∨tr)

∼fα,∼fβ,Γ⇒ ∆

∼f (α∧fβ),Γ⇒ ∆
(∼f∧f l)

Γ⇒ ∆,∼fα Γ⇒ ∆,∼fβ

Γ⇒ ∆,∼f (α∧fβ)
(∼f∧f r)

∼fα,Γ⇒ ∆ ∼fβ,Γ⇒ ∆

∼f (α∨fβ),Γ⇒ ∆
(∼f∨f l)

Γ⇒ ∆,∼fα,∼fβ

Γ⇒ ∆,∼f (α∨fβ)
(∼f∨f r).

The sequents of the form α⇒ α for any formula α are provable in cut-

free L8. This fact can be shown by induction on α.

An expression α⇔ β represents two sequents α⇒ β and β ⇒ α.

Proposition 2.2. The following sequents are provable in cut-free L8:

for any formulas α and β, and any ∼d ∈ {∼t∼t,∼f∼f ,∼t∼f ,∼f∼t},
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1. ∼dα⇔ α,

2. ∼t(α→β)⇔ α ∧ ∼tβ,

3. ∼t(α∧tβ)⇔ ∼tα∨t∼tβ,

4. ∼t(α∨tβ)⇔ ∼tα∧t∼tβ,

5. ∼t(α ◦ β)⇔ ∼tα ◦ ∼tβ where ◦ ∈ {∧f ,∨f},

6. ∼f (α ◦ β)⇔ ∼fα ◦ ∼fβ where ◦ ∈ {→,∧t,∨t},

7. ∼f (α∧fβ)⇔ ∼fα∨f∼fβ,

8. ∼f (α∨fβ)⇔ ∼fα∧f∼fβ.

Proof. We show some cases.

(1): L8 ` ∼dα⇔ α is shown as follows:

....
α⇒ α
∼dα⇒ α (∼dl)

....
α⇒ α
α⇒ ∼dα

(∼dr).

(7): L8 ` ∼f (α∧fβ)⇔ ∼fα∨f∼fβ is shown as follows:

....∼fα⇒ ∼fα

∼fα,∼fβ ⇒ ∼fα
(w-l)

....
∼fβ ⇒ ∼fβ

∼fα,∼fβ ⇒ ∼fβ
(w-l)

∼fα,∼fβ ⇒ ∼fα∨f∼fβ
(∨f r)

∼f (α∧fβ)⇒ ∼fα∨f∼fβ
(∼f∧f l)

....∼fα⇒ ∼fα

∼fα,∼fβ ⇒ ∼fα
(w-l)

....
∼fβ ⇒ ∼fβ

∼fα,∼fβ ⇒ ∼fβ
(w-l)

∼fα,∼fβ ⇒ ∼f (α∧fβ)
(∼f∧f r)

∼fα∨f∼fβ ⇒ ∼f (α∧fβ)
(∨f l).

�

In order to construct an embedding of L8 into the propositional positive

classical logic, a sequent calculus LK is introduced below.
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Definition 2.3 (LK). A sequent calculus LK for the propositional pos-

itive classical logic is the {→,∧t,∨t}-fragment of L8.

It is known that LK enjoys cut-elimination.

The following translation is regarded as an extension of the transla-

tion of Nelson’s logics [1, 12] into (positive) intuitionistic logic. For the

translation of Nelson’s logics, see [6, 14, 17, 18].

Definition 2.4. We fix a countable non-empty set Φ of propositional

variables, and define the sets Φx := {px | p ∈ Φ} (x ∈ {t, f}) of proposi-

tional variables. The language L8 of L8 is defined using Φ,→,∧t,∨t,∧f ,∨f ,

∼t and ∼f . The language L of LK is defined using Φ∪Φt ∪Φf , →, ∧t and

∨t.
A mapping f from L8 to L is defined inductively as follows.

1. for any p ∈ Φ, f(p) := p ∈ Φ and f(∼xp) := px ∈ Φx where x ∈ {t, f},

2. f(∼dα) := f(α) where d ∈ {tt, ff, tf, ft},

3. f(α ◦ β) := f(α) ◦ f(β) where ◦ ∈ {→,∧t,∨t},

4. f(α∧fβ) := f(α)∨tf(β),

5. f(α∨fβ) := f(α)∧tf(β),

6. f(∼t(α→β)) := f(α)∧tf(∼tβ),

7. f(∼t(α∧tβ)) := f(∼tα)∨tf(∼tβ),

8. f(∼t(α∨tβ)) := f(∼tα)∧tf(∼tβ),

9. f(∼t(α∧fβ)) := f(∼tα)∨tf(∼tβ),

10. f(∼t(α∨fβ)) := f(∼tα)∧tf(∼tβ),

11. f(∼f (α ◦ β)) := f(∼fα) ◦ f(∼fβ) where ◦ ∈ {→,∧t,∨t},

12. f(∼f (α∧fβ)) := f(∼fα)∧tf(∼fβ),

13. f(∼f (α∨fβ)) := f(∼fα)∨tf(∼fβ).

An expression f(Γ) denotes the result of replacing every occurrence of

a formula α in Γ by an occurrence of f(α).

We then obtain a weak theorem for syntactically embedding L8 into

LK.
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Theorem 2.5 (Weak syntactical embedding). Let Γ and ∆ be sets of

formulas in L8, and f be the mapping defined in Definition 2.4. Then:

1. If L8 ` Γ⇒ ∆, then LK ` f(Γ)⇒ f(∆).

2. If LK − (cut) ` f(Γ)⇒ f(∆), then L8 − (cut) ` Γ⇒ ∆.

Proof. • (1): By induction on the proofs P of Γ⇒ ∆ in L8. We

distinguish the cases according to the last inference of P , and show some

cases.

Case (∼xp⇒ ∼xp where x ∈ {t, f}): The last inference of P is of the

form: ∼xp⇒ ∼xp with x ∈ {t, f}. In this case, we obtain f(∼xp)⇒ f(∼xp),

i.e., px ⇒ px (px ∈ Φx), which is an initial sequent of LK.

Case (∼d→l): The last inference of P is of the form:

α,Γ′ ⇒ ∆

∼dα,Γ
′ ⇒ ∆

(∼dl).

By induction hypothesis, we have LK ` f(α), f(Γ′)⇒ f(∆). We then ob-

tain the required fact since f(α) coincides with f(∼dα) by the definition of

f .

Case (∼f→l): The last inference of P is of the form:

Γ1 ⇒ ∆1,∼fα ∼fβ,Γ2 ⇒ ∆2

∼f (α→β),Γ1,Γ2 ⇒ ∆1,∆2
(∼f→l).

By induction hypothesis, we have LK ` f(Γ1)⇒ f(∆1), f(∼fα) and LK `
f(∼fβ), f(Γ2) ⇒ f(∆2). Then, we obtain:

....
f(Γ1)⇒ f(∆1), f(∼fα)

....
f(∼fβ), f(Γ2)⇒ f(∆2)

f(∼fα)→f(∼fβ), f(Γ1), f(Γ2)⇒ f(∆1), f(∆2)
(→l)

where f(∼fα)→f(∼fβ) coincides with f(∼f (α→β)) by the definition of f .

Case (∼t→r): The last inference of P is of the form:

Γ⇒ ∆′, α Γ⇒ ∆′,∼tβ

Γ⇒ ∆′,∼t(α→β)
(∼t→r).
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By induction hypothesis, we have LK ` f(Γ)⇒ f(∆′), f(α) and LK ` f(Γ)

⇒ f(∆′), f(∼tβ). Then, we obtain:

....
f(Γ)⇒ f(∆′), f(α)

....
f(Γ)⇒ f(∆′), f(∼tβ)

f(Γ)⇒ f(∆′), f(α)∧tf(∼tβ)
(∧tr)

where f(α)∧tf(∼tβ) coincides with f(∼t(α→β)) by the definition of f .

• (2): By induction on the proofs Q of f(Γ)⇒ f(∆) in LK − (cut). We

distinguish the cases according to the last inference of Q, and show some

cases.

Case (∧tleft):

Subcase (1): The last inference of Q is of the form:

f(α), f(β), f(Γ′)⇒ f(∆)

f(α∧tβ), f(Γ′)⇒ f(∆)
(∧tl)

where f(α∧tβ) coincides with f(α)∧tf(β) by the definition of f . By induc-

tion hypothesis, we have L8 ` α, β,Γ′ ⇒ ∆, and hence obtain:

....
α, β,Γ′ ⇒ ∆

α∧tβ,Γ′ ⇒ ∆
(∧tl).

Subcase (2): The last inference of Q is of the form:

f(α), f(β), f(Γ′)⇒ f(∆)

f(α∨fβ), f(Γ′)⇒ f(∆)
(∧tl)

where f(α∨fβ) coincides with f(α)∧tf(β) by the definition of f . By in-

duction hypothesis, we have L8 ` α, β,Γ′ ⇒ ∆, and hence obtain:

....
α, β,Γ′ ⇒ ∆

α∨fβ,Γ′ ⇒ ∆
(∨f l).

Subcase (3): The last inference of Q is of the form:

f(α), f(∼tβ), f(Γ′)⇒ f(∆)

f(∼t(α→β)), f(Γ′)⇒ f(∆)
(∧tl)
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where f(∼t(α→β)) coincides with f(α)∧tf(∼tβ) by the definition of f . By

induction hypothesis, we have L8 ` α,∼tβ,Γ
′ ⇒ ∆, and hence obtain:

....
α,∼tβ,Γ

′ ⇒ ∆

∼t(α→β),Γ′ ⇒ ∆
(∼t→l).

Subcase (4): The last inference of Q is of the form:

f(∼tα), f(∼tβ), f(Γ′)⇒ f(∆)

f(∼t(α∨tβ)), f(Γ′)⇒ f(∆)
(∧tl)

where f(∼t(α∨tβ)) coincides with f(∼tα)∧tf(∼tβ) by the definition of f .

By induction hypothesis, we have L8 ` ∼tα,∼tβ,Γ
′ ⇒ ∆, and hence obtain:

....
∼tα,∼tβ,Γ

′ ⇒ ∆

∼t(α∨tβ),Γ′ ⇒ ∆
(∼t∨tl).

Subcase (5): The last inference of Q is of the form:

f(∼fα), f(∼fβ), f(Γ′)⇒ f(∆)

f(∼f (α∧tβ)), f(Γ′)⇒ f(∆)
(∧tl)

where f(∼f (α∧tβ)) coincides with f(∼fα)∧tf(∼fβ) by the definition of

f . By induction hypothesis, we have L8 ` ∼fα,∼fβ,Γ
′ ⇒ ∆, and hence

obtain: ....
∼fα,∼fβ,Γ

′ ⇒ ∆

∼f (α∧tβ),Γ′ ⇒ ∆
(∼f∧tl).

Subcase (6): The last inference of Q is of the form:

f(∼tα), f(∼tβ), f(Γ′)⇒ f(∆)

f(∼t(α∧fβ)), f(Γ′)⇒ f(∆)
(∧tl)

where f(∼t(α∧fβ)) coincides with f(∼tα)∧tf(∼tβ) by the definition of f .

By induction hypothesis, we have L8 ` ∼tα,∼tβ,Γ
′ ⇒ ∆, and hence obtain:

....
∼tα,∼tβ,Γ

′ ⇒ ∆

∼t(α∧fβ),Γ′ ⇒ ∆
(∼t∧f l).
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Subcase (7): The last inference of Q is of the form:

f(∼fα), f(∼fβ), f(Γ′)⇒ f(∆)

f(∼f (α∧tβ)), f(Γ′)⇒ f(∆)
(∧tl)

where f(∼f (α∧tβ)) coincides with f(∼fα)∧tf(∼fβ) by the definition of

f . By induction hypothesis, we have L8 ` ∼fα,∼fβ,Γ
′ ⇒ ∆, and hence

obtain:
....

∼fα,∼fβ,Γ
′ ⇒ ∆

∼f (α∧tβ),Γ′ ⇒ ∆
(∼f∧tl).

Subcase (8): The last inference of Q is of the form:

f(∼fα), f(∼fβ), f(Γ′)⇒ f(∆)

f(∼f (α∧fβ)), f(Γ′)⇒ f(∆)
(∧tl)

where f(∼f (α∧fβ)) coincides with f(∼fα)∧tf(∼fβ) by the definition of

f . By induction hypothesis, we have L8 ` ∼fα,∼fβ,Γ
′ ⇒ ∆, and hence

obtain:
....

∼fα,∼fβ,Γ
′ ⇒ ∆

∼f (α∧fβ),Γ′ ⇒ ∆
(∼f∧f l).

�

Using Theorem 2.5, we obtain the following cut-elimination theorem for

L8.

Theorem 2.6 (Cut-elimination). The rule (cut) is admissible in cut-

free L8.

Proof. Suppose L8 ` Γ⇒ ∆. Then, we have LK ` f(Γ)⇒ f(∆) by

Theorem 2.5 (1), and hence LK − (cut) ` f(Γ)⇒ f(∆) by the well-known

cut-elimination theorem for LK. By Theorem 2.5 (2), we obtain L8 − (cut)

` Γ⇒ ∆. �

Using Theorem 2.5 and the cut-elimination theorem for LK, we obtain

the following (strong) syntactical embedding theorem.
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Theorem 2.7 (Syntactical embedding). Let Γ and ∆ be sets of formu-

las in L8, and f be the mapping defined in Definition 2.4. Then:

1. L8 ` Γ⇒ ∆ iff LK ` f(Γ)⇒ f(∆).

2. L8 − (cut) ` Γ⇒ ∆ iff LK − (cut) ` f(Γ)⇒ f(∆).

Proof. • (1). (=⇒): By Theorem 2.5 (1). (⇐=): Suppose LK `
f(Γ)⇒ f(∆). Then we have LK − (cut) ` f(Γ)⇒ f(∆) by the well-known

cut-elimination theorem for LK. We thus obtain L8 − (cut) ` Γ⇒ ∆ by

Theorem 2.5 (2). Therefore we have L8 ` Γ⇒ ∆.

• (2). (=⇒): Suppose L8 − (cut) ` Γ⇒ ∆. Then we have L8 ` Γ⇒ ∆.

We then obtain LK ` f(Γ)⇒ f(∆) by Theorem 2.5 (1). Therefore we

obtain LK − (cut) ` f(Γ)⇒ f(∆) by the cut-elimination theorem for LK.

(⇐=): By Theorem 2.5 (2). �

Theorem 2.8 (Decidability). L8 is decidable.

Proof. By decidability of LK, for each α, it is possible to decide if

f(α) is provable in LK. Then, by Theorem 2.7, L8 is decidable. �

Definition 2.9. Let ] be a negation (-like) connective. A sequent cal-

culus L is called explosive with respect to ] if for any formulas α and β, the

sequent α, ]α⇒ β is provable in L. It is called paraconsistent with respect

to ] if it is not explosive with respect to ].

Theorem 2.10 (Paraconsistency). Let ] be ∼t or ∼f . Then, L8 is

paraconsistent with respect to ].

Proof. Consider a sequent p, ]p⇒ q where p and q are distinct propo-

sitional variables. Then, the unprovability of this sequent is guaranteed by

using Theorem 2.6. �

.3 Semantics

Definition 3.1 (Semantics for L8). Triplet valuations vn, vt and vf

are mappings from the set of all propositional variables to the set {t, f} of

truth values. The triplet valuations vn, vt and vf are extended to mappings

from the set of all formulas to {t, f} by the following clauses.
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1. vn(α→β) = t iff vn(α) = f or vn(β) = t,

2. vn(α∧tβ) = t iff vn(α) = t and vn(β) = t,

3. vn(α∨tβ) = t iff vn(α) = t or vn(β) = t,

4. vn(α∧fβ) = t iff vn(α) = t or vn(β) = t,

5. vn(α∨fβ) = t iff vn(α) = t and vn(β) = t,

6. vn(∼tα) = t iff vt(α) = t,

7. vn(∼fα) = t iff vf (α) = t,

8. vt(α→β) = t iff vn(α) = t and vt(β) = t,

9. vt(α∧tβ) = t iff vt(α) = t or vt(β) = t,

10. vt(α∨tβ) = t iff vt(α) = t and vt(β) = t,

11. vt(α∧fβ) = t iff vt(α) = t and vt(β) = t,

12. vt(α∨fβ) = t iff vt(α) = t or vt(β) = t,

13. vt(∼tα) = t iff vn(α) = t,

14. vt(∼fα) = t iff vn(α) = t,

15. vf (α→β) = t iff vf (α) = f or vf (β) = t,

16. vf (α∧tβ) = t iff vf (α) = t and vf (β) = t,

17. vf (α∨tβ) = t iff vf (α) = t or vf (β) = t,

18. vf (α∧fβ) = t iff vf (α) = t or vf (β) = t,

19. vf (α∨fβ) = t iff vf (α) = t and vf (β) = t,

20. vf (∼tα) = t iff vn(α) = t,

21. vf (∼fα) = t iff vn(α) = t.

A formula α is called L8-valid if vn(α) = t holds for any triplet valuations

vn, vt and vf .
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Note that vn behaves classically with respect to the classical connectives

∧t, ∨t and →. Moreover, note that the following conditions hold: For any

∗ ∈ {n, t, f},

1. v∗(α∧tβ) = v∗(α∨fβ),

2. v∗(α∨tβ) = v∗(α∧fβ),

3. vn(α) = vt(∼tα) = vf (∼fα) = vt(∼fα) = vf (∼tα),

4. vt(α) = vn(∼tα),

5. vf (α) = vn(∼fα).

This semantics implies an 8-valued semantics since the following eight

(= 23) cases can be considered for the triplet valuations vn, vt and vf : for

any formula α,

1. vn(α) = t, vt(α) = t, vf (α) = t,

2. vn(α) = t, vt(α) = t, vf (α) = f ,

3. vn(α) = t, vt(α) = f , vf (α) = t,

4. vn(α) = t, vt(α) = f , vf (α) = f ,

5. vn(α) = f , vt(α) = t, vf (α) = t,

6. vn(α) = f , vt(α) = t, vf (α) = f ,

7. vn(α) = f , vt(α) = f , vf (α) = t,

8. vn(α) = f , vt(α) = f , vf (α) = f .

In order to show a theorem for semantically embedding L8 into LK, we

present the standard semantics for LK.

Definition 3.2 (Semantics for LK). A valuation v is a mapping from

the set of all propositional variables to the set {t, f} of truth values. The

valuation v is extended to the mapping from the set of all formulas to {t, f}
by

1. v(α∧tβ) = t iff v(α) = t and v(β) = t,
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2. v(α∨tβ) = t iff v(α) = t or v(β) = t,

3. v(α→β) = t iff v(α) = f or v(β) = t.

A formula α is called LK-valid if v(α) = t holds for any valuations v.

The following completeness theorem for LK is well-known: A formula

α is LK-valid iff LK ` ⇒ α.

Lemma 3.3. Let f be the mapping defined in Definition 2.4. For any

triplet valuations vn, vt and vf , we can construct a valuation v such that

for any formula α,

1. vn(α) = t iff v(f(α)) = t,

2. vt(α) = t iff v(f(∼tα)) = t,

3. vf (α) = t iff v(f(∼fα)) = t.

Proof. Let Φ be a set of propositional variables, and Φx be the sets

{px | p ∈ Φ} (x ∈ {t, f}) of propositional variables. Suppose that vn, vt

and vf are triplet valuations. Suppose that v is a mapping from Φ∪Φt∪Φf

to {t, f} such that

1. vn(p) = t iff v(p) = t,

2. vt(p) = t iff v(pt) = t,

3. vf (p) = t iff v(pf ) = t.

Then, the lemma is proved by (simultaneous) induction on α.

• Base step:

Case α ≡ p where p is a propositional variable: For vn, vn(p) = t iff

v(p) = t (by the assumption) iff v(f(p)) = t (by the definition of f). For

vt, vt(p) = t iff v(pt) = t (by the assumption) iff v(f(∼tp)) = t (by the

definition of f). For vf , vf (p) = t iff v(pf ) = t (by the assumption) iff

v(f(∼fp)) = t (by the definition of f).

• Induction step:

Case α ≡ ∼tβ: For vn, vn(∼tβ) = t iff vt(β) = t iff v(f(∼tβ)) = t (by

induction hypothesis). For vt, vt(∼tβ) = t iff vn(β) = t iff v(f(β)) = t

(by induction hypothesis) iff v(f(∼t∼tβ)) = t (by the definition of f). For
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vf , vf (∼tβ) = t iff vn(β) = t iff v(f(β)) = t (by induction hypothesis) iff

v(f(∼f∼tβ)) = t (by the definition of f).

Case α ≡ ∼fβ: Similar to Case α ≡ ∼tβ.

Case α ≡ β∧tγ: For vn, vn(β∧tγ) = t iff vn(β) = t and vn(γ) = t iff

v(f(β)) = t and v(f(γ)) = t (by induction hypothesis) iff v(f(β)∧tf(γ)) = t

iff v(f(β∧tγ))) = t (by the definition of f). For vt, vt(β∧tγ) = t iff vt(β) = t

or vt(γ) = t iff v(f(∼tβ)) = t or v(f(∼tγ)) = t (by induction hypothesis)

iff v(f(∼tβ)∨tf(∼tγ)) = t iff v(f(∼t(β∧tγ))) = t (by the definition of f).

For vf , vf (β∧tγ) = t iff vf (β) = t and vf (γ) = t iff v(f(∼fβ)) = t and

v(f(∼fγ)) = t (by induction hypothesis) iff v(f(∼fβ)∧tf(∼fγ)) = t iff

v(f(∼f (β∧tγ))) = t (by the definition of f).

Case α ≡ β∨tγ: Similar to Case α ≡ β∧tγ.

Case α ≡ β∧fγ: Similar to Case α ≡ β∨tγ.

Case α ≡ β∨fγ: Similar to Case α ≡ β∧tγ.

Case α ≡ β→γ: For vn, vn(β→γ) = t iff vn(β) = f or vn(γ) = t iff

v(f(β)) = f or v(f(γ)) = t (by induction hypothesis) iff v(f(β)→f(γ)) = t

iff v(f(β→γ)) = t (by the definition of f). For vt, vt(β→γ) = t iff vn(β) = t

and vt(γ) = t iff v(f(β)) = t and v(f(∼tγ)) = t (by induction hypothesis)

iff v(f(β)∧tf(∼tγ)) = t iff v(f(∼t(β→γ))) = t (by the definition of f).

For vf , vf (β→γ) = t iff vf (β) = f or vf (γ) = t iff v(f(∼fβ)) = f or

v(f(∼fγ)) = t (by induction hypothesis) iff v(f(∼fβ)→f(∼fγ)) = t iff

v(f(∼f (β→γ))) = t (by the definition of f). �

Lemma 3.4. Let f be the mapping defined in Definition 2.4. For any

valuations v, we can construct triplet valuations vn, vt and vf such that for

any formula α,

1. vn(α) = t iff v(f(α)) = t,

2. vt(α) = t iff v(f(∼tα)) = t,

3. vf (α) = t iff v(f(∼fα)) = t.

Proof. Similar to the proof of Lemma 3.3. �

Theorem 3.5 (Semantical embedding). Let f be the mapping defined

in Definition 2.4. For any formula α,

α is L8-valid iff f(α) is LK-valid.
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Proof. By Lemmas 3.3 and 3.4. �

Theorem 3.6 (Completeness). For any formula α,

L8 ` ⇒ α iff α is L8-valid.

Proof. We have:

α is L8-valid

iff f(α) is LK-valid (by Theorem 3.5)

iff LK ` ⇒ f(α) (by the completeness theorem for LK)

iff L8 ` ⇒ α (by Theorem 2.7).

�

.4 Concluding remarks

In this paper, the 8-valued paraconsistent logic L8 instead of the standard

4-valued and 16-valued logics was introduced as a Gentzen-type sequent

calculus. The logic L8 is an extension of Belnap’s and Dunn’s 4-valued log-

ics, and is a simplification of Shramko-Wansing’s 16-valued logics. A triplet

valuation semantics, which has three kinds of valuations vn, vt and vf , was

introduced for L8, and the completeness theorem for this semantics was

proved using two theorems for syntactically and semantically embedding

L8 into positive classical logic. The cut-elimination theorem for this logic

was proved using a theorem for syntactically embedding L8 into positive

classical logic. This logic L8 was also shown to be decidable and paracon-

sistent.

Some related results which have been developed by us are briefly re-

viewed below. A constructive and paraconsistent temporal logic was in-

troduced in [8]. This paper [8] introduces some Gentzen-type and display

sequent calculi for the proposed temporal logic. Some sequent calculi for

Nelson’s paraconsistent 4-valued logic N4 were studied in [11]. This pa-

per [11] shows that a unified embedding-based method is useful for proving

some theorems for N4. A paraconsistent 4-valued linear-time temporal logic

in a similar setting as in N4 was studied in [9]. The 4-valued temporal logic



20 NORIHIRO KAMIDE

introduced in [9] can be modified to the 8-valued setting proposed in the

present paper.

Acknowledgments. We would like to thank the anonymous referees for

their valuable comments.

.References

[1] A. Almukdad and D. Nelson, Constructible falsity and inexact predicates, Journal

of Symbolic Logic 49:1 (1984), 231–233.

[2] O. Arieli and A. Avron, Logical bilattices and inconsistent data, Proceedings of the

9th IEEE Annual Symposium on Logic in Computer Science, IEEE Press, 1994, pp.

468–476.

[3] O. Arieli and A. Avron, Reasoning with logical bilattices, Journal of Logic, Language

and Information 5 (1996), 25–63.

[4] N. D. Belnap, A useful four-valued logic, in: J.M. Dunn and G. Epstein (eds.),

Modern Uses of Multiple-Valued Logic, Reidel, Dordrecht, 1977, pp. 5–37.

[5] J. M. Dunn, Intuitive semantics for first-degree entailment and ‘coupled trees’, Philo-

sophical Studies 29:3 (1976), 149–168.

[6] Y. Gurevich, Intuitionistic logic with strong negation, Studia Logica 36 (1977), 49–

59.

[7] N. Kamide, On natural eight-valued reasoning, Proceedings of the 43rd IEEE Inter-

national Symposium on Multiple-Valued Logic (ISMVL 2013), pp. 231–236.

[8] N. Kamide and H. Wansing, Combining linear-time temporal logic with construc-

tiveness and paraconsistency, Journal of Applied Logic 8 (2010), 33–61.

[9] N. Kamide and H. Wansing, A paraconsistent linear-time temporal logic, Funda-

menta Informaticae 106:1 (2011), 1–23.

[10] N. Kamide and H. Wansing, Completeness and cut-elimination theorems for trilat-

tice logics, Annals of Pure and Applied Logic 162:10 (2011), 816–835.

[11] N. Kamide and H. Wansing, Proof theory of Nelson’s paraconsistent logic: A uniform

perspective, Theoretical Computer Science 415 (2012), 1–38.

[12] D. Nelson, Constructible falsity, Journal of Symbolic Logic 14 (1949), 16–26.

[13] S. P. Odintsov, On axiomatizing Shramko-Wansing’s logic, Studia Logica 91:3

(2009), 407–428.

[14] W. Rautenberg, Klassische und nicht-klassische Aussagenlogik, Vieweg, Braun-

schweig, 1979.

[15] Y. Shramko and H. Wansing, Some useful 16-valued logics: how a computer network

should think, Journal of Philosophical Logic 34:2 (2005), 121–153.



AN EIGHT-VALUED PRACONSISTENT LOGIC 21

[16] Y. Shramko and H. Wansing, Truth and Falsehood. An Inquiry into Generalized

Logical Values, Trends in Logic. Vol. 36, Spinger-Verlag, Dordrecht, 2011, pp. 1–

263.

[17] N. N. Vorob’ev, A constructive propositional calculus with strong negation (in Rus-

sian), Doklady Akademii Nauk SSR 85 (1952), 465–468.

[18] H. Wansing, The logic of information structures, Lecture Notes in Artificial Intelli-

gence 681, Springer-Verlag, 1993, pp. 1–163.

[19] H. Wansing, The power of Belnap: sequent systems for SIXTEEN3, Journal of

Philosophical Logic 39:4 (2010), 369–393.

[20] D. Zaitsev, A few more useful 8-valued logics for reasoning with tetralattice

EIGHT4, Studia Logica 92:2 (2009), 265–280.

Teikyo University,

Faculty of Science and Engineering,

Department of Human Information Systems,

Toyosatodai 1-1, Utsunomiya-shi, Tochigi 320-8551, Japan.

drnkamide08@kpd.biglobe.ne.jp


