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THE COMPLEXITY OF PROBLEMS

CONNECTED WITH TWO-ELEMENT

ALGEBRAS

A b s t r a c t. This paper presents a complete classification

of the complexity of the SAT and equivalence problems for two-

element algebras. Cases of terms and polynomials are considered.

We show that for any fixed two-element algebra the considered

SAT problems are either in P or NP-complete and the equiva-

lence problems are either in P or coNP-complete. We show that

the complexity of the considered problems, parametrized by an

algebra, are determined by the clone of term operations of the al-

gebra and does not depend on generating functions for the clone.

.1 Introduction

One of the oldest and best known problems on the border between math-

ematics and computer science is to decide whether an equation has a so-

Received 25 September 2009

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Portal Czasopism Naukowych (E-Journals)

https://core.ac.uk/display/229250904?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


92 TOMASZ A. GORAZD, JACEK KRZACZKOWSKI

lution. From ancient times mathematicians studied equations of various

forms over integers, real and complex numbers. We call this type of prob-

lems satisfiability problems. One of the first and most well known results

in complexity theory is the NP completeness of the SAT problem - the

satisfiability of Boolean formulas in CNF form. In computer science the

interest in the equation satisfiability problem for finite algebraic structures

has been increasing in recent years. The majority of the papers consider

equations and systems of equations between terms or polynomials over a

finite algebra with a fixed language. There are results concerning groups,

monoids, semigroups, rings or lattices (see [7], [2],[9] or [17]). In [13] Larose

and Zádori consider the complexity of a system of polynomial equations

over arbitrary algebras and give, among others, the complete solution for

algebras in congruence modular varieties.

The term (polynomial) equivalence problem asks if two given terms

(polynomials) define the same function over a fixed algebra. There are

many complexity results for this problem for finite monoids and semigroups

[12], rings [10, 4] and groups [5, 9, 8].

For a fixed algebra the satisfiability problems are in the complexity

class NP and the equivalence problems in the class coNP. One can ask if

for any algebra the considered problem is always in P or NP-complete (P

or coNP-complete)? For example, the problem of the satisfiability of a

system of polynomial equations over a group G is in P if G is abelian and

NP-complete otherwise ([7, 13]).

One of the most widely known subclasses of NP which exhibits such

a dichotomy, is the class of constraint satisfaction problems (CSP) on the

set {0, 1}, see [16]. Recently Bulatov proved the dichotomy for CSP on a

three-element set [3].

In this paper we consider two-element algebras. We give a full classifica-

tion of the term (polynomial) solvability and term (polynomial) equivalence

problems for these algebras. We show the dichotomy for these problems.

In the case of the satisfiability of a system of term (polynomial) equations

apart from showing the dichotomy, which can also be deduced from [13] and

[16], we show that for the NP-completeness we need only two equations.

This can not be obtained using the methods from [13, 16].

In [9] the authors ask if there exists an algebra for which the polynomial

equivalence problem is hard and the polynomial satisfiability problem is in

P. We show infinitely many two-element algebras with this property; one
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of them is the two-element lattice.

We also ask how the complexity of a problem depends on the presenta-

tion of an algebra. We show that in all considered cases the complexity is

representation independent, i.e the complexity of the problem is equal for

any two algebras that generate the same set of term functions.

.2 Preliminaries

A language (or type) of algebras is a set F of function symbols with a

nonnegative integer assigned to each member of F . This integer is called

the arity of f ∈ F .

An algebra of type F is an ordered pair A = (A,F ) where A is a

nonempty set (called universe) and F is a family of finitary operations on

A indexed by the language F such that for any n-ary symbol f ∈ F there is

an n-ary operation fA on A. The fA’s are called fundamental operations of

A. If F = {f1, . . . , fn} it is customary to write (A, f1, . . . , fn) rather than

(A,F ). The subset of n-ary function symbols in F is denoted by Fn. We

consider only algebras with 2 elements. Notice that the set of fundamental

operations does not have to be finite.

For a language F and a set of variables X (|X| = ω) we define T (X),

the set of terms of type F , as the smallest set such that

• X ∪ F0 ⊆ T (X)

• If t1, . . . , tn ∈ T (X) and f ∈ Fn, then the “string” f(t1, . . . , tn) ∈

T (X)

If for an algebra A of type F we additionally admit all constant oper-

ation symbols on A while building terms, we get the polynomials of A.

If A is an algebra of type F , then with terms and polynomials we can

associate operations on the set A in an obvious way. If t is a term (poly-

nomial) in which only the (distinct) variables from {x1, . . . , xn} appear,

then tA(x1, . . . , xn) describes the corresponding n-ary term (polynomial)

operation. The set of term operations on A we denote by Clo(A) and the

set of polynomial operations we denote by Pol(A). Observe that these sets

are clones of operations on A, i.e. sets of operations on A, closed under

composition, and containing the projection operations πn
i (x1, . . . , xn) = xi.
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The variety generated by an algebra A of the type F is the smallest

class of algebras of the type F containing A and closed under subalgebras,

homomorphic images and direct products. We denote such a variety V (A).

If two algebras generate the same variety then these algebras have the same

identities. For more details see [6].

In this paper the main method for proving NP-completeness will be the

rewriting of terms from one language to another. Let t be a term of the

form s(t1, . . . , tk) where s is a function symbol and t1, . . . , tk are terms. Let

w be a term with variables x1, . . . , xl, l ≥ k. A substitution of the function

symbol s in the term t by the term w is the term constructed from w by

substituting every occurrence of xi by the string (ti), 0 ≤ i ≤ k.

Because we are interested in problems over two-element algebras we will

make essential use of the Post classification for clones on the two-element

set. The Hasse diagram of the order on the set of such clones is presented

in the following figure. We use the original Post notation for clones on the

set 2 = {0, 1}, however, we recall them here for the reader’s convenience.

C1 = (2,∧,∨,¬) C3 = (2,−,∨) C4 = (2,∨, ki)

A1 = (2,∧,∨, 0, 1) A3 = (2,∧,∨, 0) A4 = (2,∧,∨)

D3 = (2, d,¬) D1 = (2, d,+3) D2 = (2, d)

L1 = (2,+,¬) L3 = (2,+)

L5 = (2,+3,¬) L4 = (2,+3)

Fm
8

= (2,−, dm) F∞
8

= (2,−)

Fm
7

= (2, ka, dm, 0) F∞
7

= (2, ka, 0)

Fm
6

= (2, ka, dm) F∞
6

= (2, ka)

Fm
5

= (2, ki, dm) F∞
5

= (2, ki)

P6 = (2,∧, 0, 1) P5 = (2,∧, 1)

P4 = (2,∧, 0) P2 = (2,∧)

R13 = (2,¬, 0) R4 = (2,¬)

R11 = (2, 0, 1) R8 = (2, 0)

R1 = (2)

where

x− y = x ∧ ¬y,

ki(x, y, z) = x ∧ (y → z),

ka(x, y, z) = x ∧ (y ∨ z),

+3(x, y, z) = x + y + z ( mod 2),

dm(x0, . . . , xm) =
∨m

i=0(x0 ∧ . . . ∧ xi−1 ∧ xi+1 ∧ . . . ∧ xm), m ≥ 2,
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d = d2.

These describe the central and right-hand side parts of the diagram.

The clones C2, A2, L2, R6, F
α
i and Si are dual to C3, A3, L3, R8, F

α
i+4 and

Pi, respectively, in the sense that an operation f is dual to g if f(x1, . . . xk) =

¬g(¬x1, . . . ,¬xk), i.e. the clone X is dual to Y if the map ¬ : 2 −→ 2 is

an isomorphism of (2,X) onto (2, Y ).

A function f : 2n → 2 is called

• monotone iff

(∀0≤i<n ai ≤ bi) ⇒ f(a0, . . . , an−1) ≤ f(b0, . . . , bn−1),
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• 0-valid iff f(0, . . . , 0) = 0,

• 1-valid iff f(1, . . . , 1) = 1.

The main question considered in this paper is the complexity of the

following problem:

Definition 2.1. For an algebra A the term satisfiability problem

(TERM-SAT(A)) is the decision problem with

Instance: A pair of terms (s, t) with the tables of the fundamental opera-

tions of A corresponding to all function symbols occurring in s and t.

Question: Does a substitution of variables from s and t by values from A

exist such that the values of the functions sA and tA are the same?

The tables of the fundamental operations occuring in the instance of

TERM-SAT(A) and presented in this instance make it possible to consider

algebras with an infinite number of basic operations.

When in Definition 2.1 we replace terms by polynomials, we obtain the

polynomial satisfiability problem (POL-SAT(A)).

We will also consider a set of equations instead of one equation from

the previous definitions. In this case we will get SYS-TERM (SYS-POL),

the problem of satisfiability of a system of equations between terms (poly-

nomials).

The term (polynomial) equivalence problem for an algebra is the prob-

lem of deciding whether two terms (polynomials) define the same function.

We denote these problems TERM-EQ and POL-EQ, respectively.

When describing instances of satisfiability and equivalence problems

we often use t1 = t2 and t1 ≈ t2, respectively. For the complement of

equivalence problems we use t1 6≈ t2.

In this paper we also ask whether the complexity of the considered

problems depends on the representation of an algebra, i.e. if it is the same

for any two algebras with equal termal clones? In general the answer is

negative.

Example 2.2. Consider the smallest non-nilpotent, solvable group S3 =

(S3, ◦). Let s(x, y, z, w) = x◦[[[x, y], z], w]−1 , where [x, y] = x−1◦y−1◦x◦y.

Obviously Clo(S3, ◦) = Clo(S3, ◦, s).
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POL-SAT(S3, ◦) is in P ([9]) but POL-SAT(S3, s, ◦) is NP-complete

([11]).

In order to distinguish cases where the complexity of a problem depends

on the clone of term operations of an algebra, we introduce the following:

Definition 2.3. Consider any decision problem over algebras. Let C

be a clone. We call this problem

• representation-independent for C iff for any algebras A,B such

that Clo(A) = Clo(B) = C the problem for A and the problem for B

are polynomial-time equivalent.

• representation-dependent for C, otherwise.

We say that a problem for a clone C is NP-complete (in P, coNP-complete)

if it is representation-independent for C, and for every algebra A with

Clo(A) = C the problem for A is NP-complete (in P, coNP-complete).

In this paper we will prove that for two-element algebras the problems

TERM-SAT, POL-SAT, SYS-TERM and SYS-POL are representation in-

dependent, moreover they are either NP-complete or in P. Also TERM-EQ

and POL-EQ are representation independent and coNP-complete or in P.

Notice that for a term (polynomial) we can compute the value of the

corresponding function (for given arguments) in polynomial time. Con-

sequently all problems considered in this paper are in NP (satisfiability

problems) or coNP (equivalence problems).

.3 Satisfiablility of an equation

Let us start with the TERM-SAT for primal algebras, i.e. algebras with the

termal clone equal to C1. In these algebras any function can be generated

as a term function.

Lemma 3.1. TERM-SAT for primal algebras is NP-complete.

Proof. Let A be a primal algebra. We will polynomially encode 3-SAT

in TERM-SAT(A).

Notice that in the language of A we can generate the operations ∧, ∨

and ¬ as term functions. We call the corresponding terms t∧(x, y), t∨(x, y)
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and t¬(x), respectively. We can also generate the constant 1 as a term

function.

Let

C1 ∧ C2 ∧ . . . ∧ Cn (1)

be an instance of 3-SAT, Ci = (xi1 ∨ xi2 ∨ xi3) and every xij is a variable

or a negated variable.

Observe that in t∧(x, y) we can have multiple occurrences of x or y.

Hence the replacement of ∧ in (1) by t∧(x, y) step by step from the left to

the right could produce an expression exponentially longer then the input.

To avoid such a situation we use the divide and conquer paradigm in the

following algorithm.

Encode(S)

Input: 3-SAT instance S of the form (1).

Output: A term in the language of A whose term function is equal

to S (identify 0 with false and 1 with true).

if S is of the form C1 then

return C1 after replacing ∨ and ¬ by t∨(x, y) and t¬(x),

respectively
else

let S = S1 ∧ S2 and the numbers of occurrences of ∧ in S1 and

S2, respectively, differ by at most 1.

return t∧(Encode(S1), Encode(S2))

end

Algorithm 1: Encode(S)

Algorithm 1 works in polynomial time. Notice that the depth of the

recursion in the above algorithm is logarithmic in the size of the input.

Hence because |t∧(t1, t2)| = O(|t1|+|t2|) the size of the output is polynomial

in the size of the input.

Now for a 3-SAT instance S the corresponding TERM-SAT(A) instance

is the following:

Encode(S) = 1 (2)

One can see that S is satisfiable iff (2) is. �

There is only one more clone where TERM-SAT in NP-complete. This

is Clo(D3).



COMPLEXITY OF PROBLEMS CONNECTED WITH TWO-ELEMENT ALGEBRAS 99

Lemma 3.2. TERM-SAT for the clone Clo(D3) is NP-complete.

Proof. Let A be an algebra with Clo(A) = Clo(D3). If to the basic

operations of A we add the constant operation 1 we obtain a primal algebra.

Denote the new algebra by A′.

Call ¬ a term in the language of A representing negation.

We will define a reduction from 3-SAT to TERM-SAT(A). Let S be

a 3-SAT instance. First we verify whether S is a tautology. This can

be easily done in a polynomial time. Every tautology we reduce to the

equation x = x.

If S is not a tautology we run Encode(S) (Algorithm 1) over A′ and

we obtain a term t′(x1, . . . , xk). Next in t′(x1, . . . , xk) we replace every

occurrence of the constant 1 by a new variable u. We call the new term

t(x1, . . . , xk, u). Now we reduce S to the following instance of

TERM-SAT(A)

t(x1, . . . , xk, u) = t(x′1, . . . , x
′
k,¬u), (3)

where {x1, . . . , xk} ∩ {x′1, . . . , x
′
k} = ∅.

We have to show that the procedure described above is in fact a reduc-

tion.

One can see that all the above operations can be done in polynomial

time and that the size of t(x1, . . . , xk, u) is at most polynomially larger then

the size of S.

Observe that for every term g in the language of A we have

¬g(x1, . . . , xm) = g(¬x1, . . . ,¬xm) (4)

If S is not satisfiable then ∀(a1,...,ak)∈2k tA(a1, . . . , ak, 1) = 0 and there-

fore from (4) we have that ∀(a1,...,ak)∈2k tA(a1, . . . , ak, 0) = 1. Consequently,

(3) cannot be satisfiable.

Conversely, assume that S is satisfiable and not a tautology.

There are (a1, . . . , ak), (b1, . . . , bk) ∈ 2k such that tA(a1, . . . , ak, 1) = 0

and tA(b1, . . . , bk, 1) = 1. Now, using (4), we have that

tA(a1, . . . , ak, 1) = tA(¬b1, . . . ,¬bk, 0)

Therfore (3) is satisfiable. �

We are now in a position to prove the main result of this section.
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Theorem 3.3. TERM-SAT for two-element clones is representation-

independent. Moreover, it is NP-complete for Clo(C1) and Clo(D3) and

is in P otherwise.

Proof. The NP-complete part comes from Lemma 3.1 and Lemma 3.2.

It remains to consider the following 4 classes of clones.

1. 1-valid, i.e. clones contained in Clo(C2),

2. 0-valid, i.e. clones contained in Clo(C3),

3. monotone, i.e. clones contained in Clo(A1),

4. affine, i.e clones contained in Clo(L1).

Term equations in the first two classes are always satisfiable. In the third

case it is enough to consider only the values of the term functions for

(0, 0, . . . , 0) and (1, 1, . . . , 1). The affine functions are all the functions we

can obtain as polynomial functions over L3. In this case an equation t1 = t2

has a solution iff the equation t1 + t2 = 0 also has a solution. The second

equation does not have any solution iff the term on the left-hand side defines

the constant function 1. To recognize such a situation observe that an

affine function f(x1, . . . , xk) depends on the variable xi iff f(0, 0, . . . , 0) 6=

f(0, 0, . . . , 1, . . . , 0), where 1 is at the ith position. This concludes the

proof. �

Having the characterization of the complexity of TERM-SAT, we can

easily prove the following corollary which describes the complexity of

POL-SAT.

Corollary 3.4. POL-SAT for two-element clones is representation-

independent. Moreover, it is NP-complete for algebras where the polynomial

clone consists all operations and is in P otherwise.

Proof. Let A be a two element algebra. Define A′ by adding the

constant operations to A. Observe that POL-SAT(A) is the same as

TERM-SAT(A′). Therfore, by Theorem 3.3, POL-SAT is representation-

independent.

Moreover Pol(C1) = Pol(D1) = Pol(F∞
1

) = Pol(F∞
5

) and conse-

quently for clones including Clo(D1) or Clo(F∞
1

) or Clo(F∞
5

), POL-SAT

is NP-complete.
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It remains to consider clones contained in Clo(A1) or Clo(L1). In

these cases POL-SAT is in P because Pol(A1) = Clo(A1) and Pol(L1) =

Clo(L1), and therefore for solving POL-SAT we can use algorithms solving

TERM-SAT for algebras with termal clones equal to Clo(A1) or Clo(L1).

�

.4 Satisfiability of a system of equations

In this section we consider the satisfiability of systems of equations between

terms or between polynomials. Larose and Zádori in [13] show a characteri-

zation of the computational complexity of SYS-POL for algebras of a finite

type in congruence modular varieties (Corollary 3.14). Using this informa-

tion and the facts from the Schaefer paper [16] it is possible to characterize

the complexity of SYS-POL for two-element algebras. In this paper we

give a simple direct proof for SYS-TERM and SYS-POL for two-element

algebras, and we show that for the NP-completeness we only need systems

of two equations.

Theorem 4.1. SYS-TERM for two-element algebras is representation-

independent. For an algebra A the problem SYS-TERM(A) is NP-complete

if

• Clo(A) = Clo(2,∧,∨,¬) = Clo(C1)

• Clo(A) = Clo(2, d,¬) = Clo(D3)

• Clo(A) = Clo(2,∧,∨, 0, 1) = Clo(A1)

and is in P otherwise. Moreover for algebras where SYS-TERM is NP-

complete the problem of satisfiability of two equations is also NP-complete.

Proof. The proof of the first two cases of the NP-complete part follows

immediately from Theorem 3.3.

Let Clo(A) = Clo(2,∧,∨, 0, 1). In the language of A we have terms

defining the functions 0, 1,∧,∨. Denote these terms t0(x), t1(x), t∧(x, y),

t∨(x, y), respectively.

Consider a subproblem of 3-SAT where the instances are of the form
∧

(x,y,z)∈Y

(x ∨ y ∨ z) ∧
∧

(x,y,z)∈Z

(¬x ∨ ¬y ∨ ¬z) = 1 (5)
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and Y, Z are finite sets of triples of variables. This problem is NP-complete;

one can prove this using results from [16]. We will show a polynomial time

reduction of this problem to SYS-TERM(A).

Obviously, (5) is satisfiable iff the system
{

∧

(x,y,z)∈Y (x ∨ y ∨ z) = 1
∨

(x,y,z)∈Z(x ∧ y ∧ z) = 0
(6)

has a solution.

Now in order to finish this part of the proof observe that we can con-

struct terms in the language of A equivalent to the terms on the left

hand side of (6) in polynomial time. We can do it using the procedure

Encode(Algorithm 1) for the first term. For the second one use Encode

with ∨, t∨,∧ and t∧ substituted by ∧, t∧,∨ and t∨, respectively.

For the polynomial part of the proof we have to consider algebras with

termal clones that are subclones of Clo(C2), Clo(C3), Clo(L1), Clo(P6)

or Clo(S6).

In the first two cases the systems are always satisfiable. In the third

one we can express every term as +’s of variables or the constant 1 in

polynomial time (see the proof of Theorem 3.3). Next use the Gaussian

elimination in order to solve this system of equations.

Now let A be an algebra with Clo(A) ⊆ Clo(P6). Let t(x1, . . . , xk) be a

term in the language of A. Observe that t(x1, . . . , xk) defines the constant

1 iff tA(0, . . . , 0) = 1 and it defines 0 iff tA(1, . . . , 1) = 0. If tA(x1, . . . , xk)

is not a constant operation then tA(x1, . . . , xk) = x′1 ∧ x′2 ∧ . . . ∧ x′l where

{x′1, x
′
2, . . . , x

′
l} ⊆ {x1, . . . , xk}. One can see that xi ∈ {x′1, x

′
2, . . . , x

′
l} iff

tA(1, . . . , 0 . . . , 1) = 0, where 0 is at the ith position. Using this information

for a given system of equations we can construct an equivalent system

where the terms are constants or conjunction of variables. It can be done

in polynomial time and the size of the new system is at most polynomialy

larger then size of the original one. Now one can see that the last system

has a solution iff it is satisfiable by the valuation w of variables such that

w(x) = 1 iff x occurs in an equation of the form x1 ∧ x2 ∧ . . . ∧ xk = 1

The case of Clo(S6) is symmetric to Clo(P6). �

Corollary 4.2. SYS-POL for two element algebras is representation-

independent. For an algebra A the problem SYS-POL(A) is NP-complete
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if

Clo(F∞
6 ) ⊆ Clo(A) or Clo(F∞

2 ) ⊆ Clo(A) or Clo(D2) ⊆ Clo(A)

and is in P otherwise.

Moreover for algebras where SYS-POL is NP-complete the problem of

satisfiability of two equations is also NP-complete.

Proof. Obviously SYS-POL for an algebra is the same as SYS-TERM

for a new algebra arising from the previous one by adding the constant

operations. Then the corollary is an immediate consequence of Theorem

4.1. �

For brevity, the above corollary can be restated as follows:

Corollary 4.3. For an algebra A the problem SYS-POL(A) is NP-

complete if the variety generated by A is congruence distributive and is in

P otherwise.

.5 Term equivalence

The equivalence problems considered in this section lie in the coNP class.

To show the coNP completeness of a problem we will use polynomial time

reduction to encode in it a coNP-complete problem or we will encode an

NP complete problem in the complement of the considered problem.

Lemma 5.1. For an algebra A with Clo(A) equal to Clo(C1), Clo(D3)

or Clo(A1) the problem TERM-EQ(A) is coNP-complete.

Proof. We use the symbols ¬,∨ for terms with term functions equal to

negation and disjunction, respectively. First observe that for an algebra A

such that TERM-SAT for Clo(A) is NP-complete and there is the negation

in Clo(A) then TERM-EQ for Clo(A) is coNP-complete. This follows

immediately from the fact that the instance

t1 = t2

of TERM-SAT(A) can be reduced to the following instance of the comple-

ment of TERM-EQ(A):

t1 6≈ ¬t2
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Therefore we have coNP-completeness of TERM-EQ for Clo(C1) and

Clo(D3).

Let us now take a look at Clo(A1). From the proof of Theorem 4.1

we know that for an algebra A with Clo(A) = Clo(A1) the subproblem of

SYS-TERM(A) where the instances are of the form

{

t1 = 1

t2 = 0
(7)

is NP-complete. Now, because we have disjunction in the clone we can

reduce (7) to

t1 ∨ t2 6≈ t2

which is an instance of the complement of TERM-EQ(A). Hence TERM-EQ

for Clo(A1) is coNP-complete. �

From now on, for an algebra A we denote by A′ the algebra obtained

by adding the constant operations 0 and 1 to the operations of A. In

the proofs of the following two lemmas we use the symbols ka, d either as

the functions defined below the Post diagram or as terms defining these

functions in the considered algebras; the way we use them will be clear

from the context.

Lemma 5.2. For an algebra A with Clo(F∞
2

) ⊆ Clo(A) or Clo(F∞
6

) ⊆

Clo(A) the problem TERM-EQ(A) is coNP-complete.

Proof. Let A be an algebra with Clo(F∞
6

) ⊆ Clo(A). Observe that

Clo(A′) = Clo(A1) or Clo(A′) = Clo(C1) and therefore TERM-EQ(A′)

is coNP-complete. Now the instance

t1 ≈ t2 (8)

of TERM-EQ(A′) we reduce to the following instance of TERM-EQ(A)

ka(x, t′1, y) ≈ ka(x, t′2, y), (9)

where x, y are new variables and t′1, t
′
2 are obtained from t1, t2, respectively,

by replacing all the occurrences of 1 by x and 0 by y. To show that it

is a reduction observe that ka ∈ Clo(A) and therefore (9) is an instance

of TERM-EQ(A). Now if (9) is true then it is also true after replacing x

and y by 1 and 0, respectively. Because ka(1, t, 0) ≈ t then (8) must be
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true. Conversely, assume that (9) is not true. This is only possible when

x = 1 and y = 0 and consequently (8) is not true. Hence TERM-EQ(A) is

coNP-complete.

The proof for an algebra A with Clo(F∞
2

) ⊆ Clo(A) is symmetrical to

the previous case. �

Lemma 5.3. TERM-EQ for Clo(D1) and Clo(D2) is representation

independent and coNP-complete.

Proof. For an algebra A such that Clo(A) = Clo(D2) or Clo(A) =

Clo(D1) observe that Clo(A′) = Clo(C1) or Clo(A′) = Clo(A1). Hence

TERM-EQ(A′) is coNP-complete. The reduction of TERM-EQ(A′) to

TERM-EQ(A) for an instance t1 ≈ t2 returns d(t′1, x, y) ≈ d(t′2, x, y), where

x, y are new variables and t′1, t
′
2 are obtained from t1, t2, respectively by

replacing all the occurrences of 1 by x and 0 by y. One can see that this is

in fact a reduction, and therefore TERM-EQ(A) is coNP-complete. �

Theorem 5.4. TERM-EQ for two element algebras is representation-

independent. For an algebra A the problem TERM-EQ(A) is coNP-complete

if

Clo(F∞
6 ) ⊆ Clo(A) or Clo(F∞

2 ) ⊆ Clo(A) or Clo(D2) ⊆ Clo(A)

and is in P otherwise.

Proof. The coNP-complete part is a consequence of Lemmas 5.1, 5.2

and 5.3.

For the polynomial part of the lemma we only need to show polynomial

time algorithms for algebras with termal clones equal to Clo(L1), Clo(P6)

or Clo(S6). In the first case every term function can be expressed as a sum

(+) of variables and constants. Having equations between terms in this

form one can easily check their equivalence. All the above operations can

be done in polynomial time (see the proof of Theorem 3.3).

For the second case observe that we can express every term function as

a conjunction of variables or constants (see the proof of Lemma 4.1). Next

it is easy to check the equivalence. All these operations can be done in

polynomial time.

The case of Clo(S6) is symmetrical to the case of Clo(P6). This con-

cludes the proof. �
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Corollary 5.5. POL-EQ for two element algebras is representation-

independent. For an algebra A the problem POL-EQ(A) is coNP-complete

if

Clo(F∞
6 ) ⊆ Clo(A) or Clo(F∞

2 ) ⊆ Clo(A) or Clo(D2) ⊆ Clo(A)

and is in P otherwise.

For brevity, the above lemma and corollary can be restated as follows:

Lemma 5.6. For an algebra A the problems TERM-EQ(A) and

POL-EQ(A) are coNP-complete if the variety generated by A is congru-

ence distributive and is in P otherwise.

If two algebras define the same variety then they must have the same

sets of identities. We can formulate this as follows.

Fact 5.7. Let A and B be algebras of the type F . If V (A) = V (B)

then for terms t1, t2 of type F we have t1 ≈ t2 in A iff t1 ≈ t2 in B.

Therefore as an immediate consequence of the above lemma we have

the following:

Corollary 5.8. Let A be an algebra with 2 or more elements. If A

generates the same variety as a 2-element algebra, then TERM-EQ(A) is

coNP-complete if this variety is congruence distributive and is in P other-

wise.

In [9] (Problem 1.) the authors ask if there exists an algebra A such that

POL-SAT(A) is in P and POL-EQ(A) is coNP-complete. From Corollary

3.4 and Corollary 5.5 we have the following:

Corollary 5.9. For every algebra A such that Clo(F∞
6

) ⊆ Clo(A) ⊆

Clo(A1) or Clo(F∞
2

) ⊆ Clo(A) ⊆ Clo(A1) POL-SAT(A) is in P and

POL-EQ(A) is coNP-complete.
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