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A bstract. Linear-time temporal logics (LTLs) are known to
be useful for verifying concurrent systems, and a simple natural
deduction framework for LTLs has been required to obtain a good
computational interpretation. In this paper, a typed A-calculus
Appy with a Curry-Howard correspondence is introduced for an in-
tuitionistic bounded linear-time temporal logic B[], of which the
time domain is bounded by a fixed positive integer [. The strong
normalization theorem for Agp; is proved as a main result. The
base logic BJl] is defined as a Gentzen-type sequent calculus, and
despite the restriction on the time domain, B[] can derive almost
all the typical temporal axioms of LTLs. The proposed frame-
work allows us to obtain a uniform and simple proof-theoretical
treatment of both natural deduction and sequent calculus, i.e.,
the equivalence between them, the cut-elimination theorem, the
decidability theorem, the Curry-Howard correspondence and the

strong normalization theorem can be obtained uniformly.
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1. Introduction

1.1 Why do we bound the time domain?

Linear-time temporal logics (LTLs) have been studied by many researchers
[8, 12, 25], since LTLs are known to be useful for verifying and specifying
concurrent systems. In this paper, a logic, intuitionistic bounded linear-
time temporal logic BJl], is introduced as a Gentzen-type sequent calculus.
This logic is regarded as a modified sublogic of a constructive temporal
logic proposed in [17].! Although the standard LTLs have an infinite (un-
bounded) time domain, i.e., the set w of natural numbers, the logic B[]
has a bounded time domain which is restricted by a fixed positive integer
[, i.e., the set w; := {x € w | # < l}. Despite the restriction on the time
domain, BJ[l] can derive almost all the typical temporal axioms of LTLs,
such as a time induction axiom. Moreover, B[l] allows us to obtain a uni-
form and simple proof-theoretical treatment of both sequent calculus and
natural deduction, i.e., the equivalence between them, the cut-elimination
theorem, the decidability theorem, the Curry-Howard correspondence and
the strong normalization theorem can uniformly be obtained in a standard
way.

Such a theoretical merit may not be obtained for the standard LTLs
with the unbounded time domain, since the unbounded domain requires
some infinite inference rules. Such infinite rules may not be familiar with
the researchers who study implementing automated reasoning, since these
rules cannot be implemented as they are. Indeed, the replacement of such
infinite rules of certain proof systems by finitely rules is known as an im-
portant issue.

To restrict the time domain in LTLs is not a new idea. Such an idea was
discussed in [4, 6, 7, 13]. For example, by using and introducing a bounded
time domain and the notion of bounded validity in a semantics, bounded
tableauz calculi (with temporal constraints) for propositional and first-order

n [17], two constructive and bounded versions of LTL, which are extensions of in-
tuitionistic logic and Nelson’s paraconsistent logic, were introduced. Cut-free Gentzen-
type sequent calculi, cut-free display calculi, Gentzen-type tree-style natural deduction
systems and complete Kripke semantics were obtained for these logics. However, this
framework does not fit for obtaining a strongly normalizable typed A-calculus with a
Curry-Howard correspondence.
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LTLs were introduced by Cerrito, Mayer and Prand [6, 7]. It is also known
that to restrict the time domain is a technique to obtain a decidable or
efficient fragment of LTLs [13]. Restricting the time domain implies not
only some purely theoretical merits discussed above, but also some practical
merits for describing temporal databases and planning specifications [6, 7],
and for implementing an efficient model checking algorithm called a bounded
model checking [4]. Such practical merits are due to the fact that there are
problems in computer science and artificial intelligence where only a finite
fragment of the time sequence is of interest [6].

1.2 Why do we use intuitionistic logic as a base logic?

In classical logic, the law of excluded middle « V =« is valid. This means
that the information which is represented by classical logic is complete in-
formation. Such a situation representing complete information is plausible
in mathematics world handling eternal truth, but the same situation is
not valid in our real world. We wish to explore the consequences of par-
tial (or incomplete) information about computer and information systems,
and then we are desirable to have a logic which allows us to handle par-
tial information [29]. For this motivation, intuitionistic logic rather than
classical logic is needed as a base logic for temporal reasoning. Indeed, in-
tuitionistic (or constructive) modal and temporal logics have been studied
by many researchers. Constructive concurrent dynamic logic by Wijesekera
and Nerode [29] is an example of such logics. The present paper’s approach
is regarded as one of the approaches dealing with partial information in
temporal reasoning. Although a classical version of BJl] can similarly be
considered, a partial information handling, a simple computational inter-
pretation by natural deduction and a simple Curry-Howard correspondence
cannot be obtained for such a classical version. This is the reason why we
adopt intuitionistic logic as a base logic.

1.3 Sequent calculus

Sequent calculi for LTLs have been introduced and studied by many re-
searchers [1, 15, 16, 18, 23, 24, 26, 27]. A sequent calculus LT, for an until-
free version of LTLs was introduced by Kawai, and the cut-elimination and
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completeness theorems for this calculus were proved [18]. It was also shown
in [18] that (the first-order) LT,, is equivalent to Krdger’s infinitary tempo-
ral logic [20, 26]. A 2-sequent calculus 2Sw for an until-free version of LTLs,
which is a natural extension of the usual sequent calculus, was introduced
by Baratella and Masini, and the cut-elimination and completeness theo-
rems for this calculus were proved based on an analogy between 2Sw and
Peano arithmetic endowed with w-rule [1]. A direct syntactic equivalence
between Kawai’s LT, and Baratella-Masini’s 2Sw was shown by introducing
the translation functions that preserve cut-free proofs of these calculi [15].
Moreover, an embedding from LT, into a sequent calculus for infinitary
logic is presented in [16].

In the present paper, an intuitionistic and bounded version B[l] of
LT,, which has an embedding into intuitionistic logic rather than infini-
tary logic, is studied. Although LT, characterizes the Hilbert-style ax-
iom scheme for the temporal operators G (globally) and X (next): Ga >

7

2 i 4 3 .
(aAXanX“aA--- 0o) where X'a means XX - - - X v, the logic B[l] character-
izes the Hilbert-style axiom scheme: Ga < (a AXaAX2aA---AX ), which
is regarded as a finite approximation of the original one. Then, the follow-
ing very informal correspondences are useful to understand these systems:
Ga in LT, corresponds to the infinite conjunction /\]Oi0 X/ in infinitary
logic, and Ga in BJl] corresponds to the finite conjunction /\é‘:o XJa in
intuitionistic logic.

1.4 Natural deduction

Natural deduction systems and typed A-calculi for LTLs and related modal
logics have recently been studied by many researchers [2, 3, 5, 9, 10, 19, 21,
22, 28, 30] to obtain a basis of staged computation in multi-level programs.

From the purely proof-theoretical point of view, a natural deduction
system PNJ for an intuitionistic LTL, which is called a logic of positions,
was introduced by Baratella and Masini, and the strong normalization the-
orem for PNJ was proved [2]. The system PNJ is based on the notion of
position formulas, and has an induction inference rule concerning a time
induction axiom. A proposed natural deduction system Ngp in the present
paper is a bit similar to a fragment of PNJ, but Ng;; does not use the
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notion of position formulas and the induction inference rule.

An indexed formula based natural deduction PLTL yp for the full clas-
sical LTL with until operator was also studied by Bolotov et al. [5]. The
completeness theorem for PLTLyp was shown by them, but the strong
normalization for it was not shown.

A labelled natural deduction system LN D-K;4.3 for linear temporal
K;4.3 logic was introduced by Indrzejczak [14]. This system is more similar
to labelled tableau systems than to standard natural deduction. In [14], the
completeness, decidability and cut-elimination theorems for LN D-K;4.3
were shown.

From the application point of view, a typed A-calculus \° (with a next-
time operator () for a fragment of an intuitionistic LTL was proposed
by Davies [9] to discuss multi-level binding-time analysis. An extension
MetaML of A° with the addition of the properties of run-time generation
and persistent code was introduced by Taha et al. [28]. An extension AIM
(an idealized MetaML) of MetaML was developed by Moggi et al. [21], and
a refinement ABN of AIM was proposed by Benaissa et al. [3].

An alternative typed A-calculus Al (with an S4-type modal operator
[]) for an intuitionistic S4-modal logic was also introduced by Davies and
Pfenning [10] in order to analyse staged computation. Some type systems
based on Al were studied by Nanevski [22] and Kim et al. [19]. A type sys-
tem A°U that includes both A\° and Al was introduced by Yuse and Igarashi
[30] to handle both persistent code (by []) and ephemeral code (by O).

Although the basic formulation of the proposed calculus Agy is different
from that of A°0, the calculus A[j includes the purely temporal logic part
of A°U since the standard temporal axioms and the characteristic axiom of
2l JOa < Ofla (ie., GXa < XGa) are both provable in B[l]. Tt is also
mentioned that the essential part of Agpy is considerably simpler than el
and other proposals.

1.5 Summary of this paper

In Section 2, B[l] and its properties are discussed. Some typical examples
of provable sequents in B[l] are addressed. The embedding theorem of B[l]
into a sequent calculus for a fragment of intuitionistic logic is presented.
By using this theorem, the cut-elimination and decidability theorems for
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BJ[l] are shown.

In Section 3, natural deduction formulations for BJ[l] are introduced.
First, a tree-style natural deduction system Ny for B([l] is introduced, and
the equivalence between Npp; and B[] is presented. Second, a typed A-
calculus Agp and a type assignment system Tgp are introduced for Ny
in order to observe a Curry-Howard correspondence.

In Section 4, the strong normalization theorem for Agp) is proved by
using a standard method presented in the textbook [11].

In Section 5, we give some comparisons among the systems proposed
in this paper, PNJ by Baratella and Masini, A°l by Yuse and Igarashi and
PLTLyxp by Bolotov et al.

2. Sequent calculus and cut-elimination

Formulas of B[l] are constructed from countably many propositional vari-
ables, — (implication), A (conjunction), X (next) and G (globally). Lower-
case letters p, ¢, ... are used to denote propositional variables, Greek lower-
case letters a, 3, ... are used to denote formulas, and Greek capital letters
I', A, ... are used to represent finite (possibly empty) sequences of formu-
las. For any f € {X,G}, an expression fI" is used to denote the sequence
(fy | v € T'). Parentheses for A are omitted since A is associative. The
symbol = is used to denote the equality of sequences of symbols. The sym-
bol w is used to represent the set of natural numbers. Let [ be a finite
fixed positive integer. Then, the symbol w; is used to represent the set
{i €w|i<1}. An expression X'« for any i € w is defined inductively by
(X% = a) and (X""a = XX"a). Lower-case letters i and j are used to
denote any natural numbers. An expression of the form I' = v where « is
a formula is called a sequent. An expression L .S or - S is used to denote
the fact that a sequent S is provable in a sequent calculus L. A rule R of
inference is said to be admissible in a sequent calculus L if the following
condition is satisfied: for any instance

Sy - S,
S

of R, if L+ 5; for all ¢, then L - S.
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Definition 2.1 (BJ[l]). Let [ be a fixed finite positive integer. The
initial sequents of BJl] are of the form: for any propositional variable p,
Xip = Xip.
The structural rules of B[] are of the form:

I'sa o,X=7vy I'=~y
'Y=~ (cut) a, ' =~y (we)

a,a, ' =~y
a,'=7~y

F7a7ﬂ72:>fy (eX)
IB,0,5 =7 '

(co)

The logical inference rules of B[l] are of the form: for any k € w; and
any positive integer m,

= X'a X8,% Xiq,T = X'
—2a fx =7y (—left) M (—right)
X'(a=p),I'E =7y I' = X' (a—p)
X'a,T X6, T
L ] (Aleftl) ‘ bl =7y (Aleft2)
X(anp),I =~ X (aApB),I'=~y
1“:>on4 I'=X'g (Aright)
I'=X'(aApB)
! l
Xol'=sy (Xleft) % (Xright)
XHma T = 5 I = X*"q
i+k = Xitig L.
X7l 29 (et { o e (Gright).
X'Ga,I'= v I' = X'Ga

Definition 2.2 (LJ). A sequent calculus LJ for the {—, A}-fragment
of intuitionistic logic is obtained from BJ[l] by deleting (Xleft), (Xright),
(Gleft), (Gright), and replacing X* by X°. The modified inference rules for

LJ by replacing ¢ by 0 are denoted by labelling “LJ” in superscript, e.g.,
(—left™).

It is noted that (Gright) has [+ 1 (i.e., finite) premises, e.g., in the case
[ = 3, (Gright) has four premises:
[ =Xa IT'=X"a I'=X" a0 T'= X
I = X'Ga

(Gright).
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In (Gleft), the number & is bounded by [. Then, B[l] has the Hilbert-style
axiom scheme Ga < (a A Xa AX2a A---AXla). By (Xleft) and (Xright),
the nest of the outermost occurrence of X in a formula can be bounded
by I. Indeed, (Xleft) and (Xright) correspond to the Hilbert-style axiom
scheme X*™q  Xla.

It is remarked that for any formula c, the sequent of the form X'a = X'
is provable in B[l]. This can be shown by induction on «. Thus, the se-
quents of the form X’a = X'« can also be regarded as initial sequents.

It is remarked that BJ[l] is regarded as an intuitionistic and bounded
version of Kawai’s sequent calculus LT, for linear-time temporal logic [18].
LT,, has no l-bounded rules such as (Xleft/right), and use w instead of wj.

It is remarked that BJ[l] is just a logic parameterized by a fixed concrete
positive integer [. Thus, before the detailed discussion, we have to fix B[l]
as a concrete logic such as B[5]. Indeed, for example, B[2] is different
from B[1]: p A Xp = Gp is provable in B[1], but it is not provable in B[2].
The unprovability of sequents is guaranteed by the cut-elimination theorem
(Theorem 2.8), which will be proved in this section.

Proposition 2.3. Let m and n be distinct fixed positive integers. The
logics Blm| and B[n| are not theorem-equivalent.

Proof. By Theorem 2.8. (]

An expression a < 3 means the sequents o = [ and 8 = a.

Proposition 2.4. The following sequents are provable in B[l]: for any
formulas o, B, any i € w and any positive integer m,

1. X{(aoB) & XlaoX!B where o € {—, A},
2. X'Ga & GX'a,

3. Ga = Xa,

4. Ga = XGa,

5. Ga = GGa.

6. a,G(a—Xa) = Ga (time induction),

7. XM o Xla (bounded next-time),
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8. Gae Nocjc Xia (bounded globally).

Proof. We show some cases.

(4):

; 2 : 2 I4+1 : I4+1
Xa=Xa ) 22=Xa (qlep) X=X (Cleft)
Ga = Xo Ga = X%« Ga= X"« Gricht

Ga = XGa (Gright).
(5):
: . 5 : ;
Ga = Ga Ga= XGa GS(;:E})(%QGQ - Ga= XGa (Gright)

where - Ga = X!Ga for any i € w; can be shown in a similar way as in

(4).

(6): In the following proofs, the applications of (ex) are omitted.

{a, G(a—>Xo¢5 = X alrew,
a,G(a—Xa) = Ga

(Gright)

where F a,G(a—Xa) = X*a for any k € w; is shown by mathematical
induction on k as follows: the base step is obvious, and the induction step
can be shown by

ind.hyp.
a,G(a—Xa) = XFa XFtlag = XFtlg (left)
e
o, Gla—=Xa), Xk (a—Xa) = XFlg (Gleft)
e
a, Gla—Xa), Gla—Xa) = Xklg (co)
o).
a, G(a—Xa) = Xklq
(7):
Ll Ll
Xa=Xa gy Xa=Xa iy

XHme = Xl Xlq = XiHmg
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(8):
{ onz = onz }ogjgl { Xka = Xka }k€wz
J — (Gleft) L (Aleftl, 2)
{Gajxa}0§j§l R )
: (right) t Nogja Xor = Xlor frcw (Gright).
Ga = N\oj Xa No<j<i X a= Ga
U

Proposition 2.5. The following rule is admissible in cut-free B[l]:

I'=~y

m (Xregu) .

Proof. By induction on the proofs P of I' = v in cut-free B[l]. We
distinguish the cases according to the last inference of P. We show some
cases.

Case (Gleft): The last inference of P is of the form:

Xi*ra, A = 4

. (Gleft).
X'Ga, A =~

By induction hypothesis, we obtain:

XX+, XA = Xy
XX'Ga, XA = Xy

(Gleft).

Case (—left): The last inference of P is of the form:

= Xa XB,A=~y
Xi{(a—=p), I, A = v

(—left).

By induction hypothesis, we obtain:

XIT = XXia  XX/8,XA = Xry
XXt (a—f), XII, XA = Xy

(—left).
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An expression like A{e; | i € w;} where {«; | i € w;} is a multiset means
ag Aag A -+ A aq. For example, A{a, a, 5} means a A A 5.

The following definition of the mapping f is regarded as a finite analogue
of the definition of the mapping of Kawai’s LT, into infinitary logic [16].

Definition 2.6. We fix a countable non-empty set ® of propositional
variables, and define the sets ®; :== {p; | p € ®} (1 <i € w) and &g := P
of propositional variables. The language Ly of B[l] is defined by using @,
—, A, X and G. The language Ly of LJ is defined by using (.. ®;, —
and A.

A mapping f from Ly to Ly; is defined by the following: for any i € w

s

and any positive integer m,
1. f(X%p) := p; € ®; for any p € ® (especially, f(p) := p € By),
2. f(Xi(aopB)) = f(X'a)o f(X'B) where o € {—, A},

1
3. f(XHma) = f(Xla),
£

W

XiGa) = AN{f(XTa) | j € w}.

An expression f(I') denotes the result of replacing every occurrence of a
formula o in T' by an occurrence of f(«).

Strictly speaking, the mapping f is strongly dependent on the time
bound [, i.e., f should be denoted as f;. Indeed, f3(Gp) and f5(Gp) are
different. But, for the sake of brevity, a simple expression f will be used in
the following.

Theorem 2.7 (Embedding). Let T' be a sequence of formulas in Ly,
v be a formula in Ly, and f be the mapping defined in Definition 2.6.

1. Bl FT =~ iff LIF f(T') = f(v).
2. B[l] — (cut) F ' =~ iff LI — (cut) - f(I') = f(v).

Proof. Since the case (2) can be obtained as a subproof of the case
(1), we show only (1).

e (=>): By induction on a proof P of I' = « in BJ[l]. We distinguish
the cases according to the last inference of P, and show some cases.

Case (X'p = X'p). The last inference of P is of the form: Xip = Xip.
In this case, we obtain LJ - f(X'p) = f(X'p), i.e., LI F p; = p; (pi € ®;).
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Case (Xleft). The last inference of P is of the form:

Xlo, T = v

— = T (Xleft).
XHmaJ¥$7( )

By the hypothesis of induction, we have LJ  f(X'a), f(T') = f(v), and
fXla) = f(X*™Ma). Thus, we obtain LI - f(XH™a), f(T) = f(7).
Case (Gleft). The last inference of P is of the form:
Xtho, T =~
XiGa,I' = v

By the hypothesis of induction, we have LJ F f(X™**a), f(T') = f(v), and
hence obtain:

(Gleft).

FX* ), f(0) = f(7)
o (Neft™”)
NFXa) | j €w}, f(T) = f(v)
where A{f(Xta) | j € w} = f(X!Ga), and f(X***a) is in the multiset
{f(X**a) | j € w}. Tt is remarked that the case i > [ is also included

in this proof. In such a case, f(X**a) and A{f(X*a) | j € w;} mean
l

f(Xla) and f(X'a) A f(Xla) A - A f(XLa), respectively.
Case (Gright). The last inference of P is of the form:
{ I'= XZ+']Oé }jEwl

I'= X'Ga

(Gright).

By the hypothesis of induction, we have LJ F f(T) = f(X**a) for all
j € wy. Let ® be the multiset {f(X**a) | j € w;}. We obtain

{ 1) = F(XH0) }yxitiaen
. (Aright™)
TEYX

where \ @ = f(X'Ga).
e (<) : By induction on the proofs @ of f(I') = f(y) in LJ. We
distinguish the cases according to the last inference of ), and show some

cases.



STRONG NORMALIZATION OF A TYPED LAMBDA CALCULUS 41

Case (cut). The last inference of @ is of the form:

) =8 B,fT2)= f(v)
J(T1), f(T2) = f(v)

Since f is in L3, we have the fact 5 = f(/). This fact can be shown by
induction on . Then, by induction hypothesis, we have: B[l] - I'; =
and B[] F 5,y = 7. We then obtain the required fact: B[l] F T';,Ts =~
by using (cut) in BJ[l].

Case (Aright™”). The last inference of Q is of the form:

f0) = fXa) f(D)= fX'B)
FI0) = f(X(anB))

where f(X{(aAB)) = f(Xia)A f(X!B). By the hypothesis of induction, we
have B[] F I' = X‘a and B[l] - T' = X’3. Then we obtain

(cut).

(Aright®/)

I= Xia T = Xg
= X(anp)

(Aright).

O

Theorem 2.8 (Cut-elimination). The rule (cut) is admissible in cut-
free BJl].

Proof. Suppose B[] - I' = ~. Then, we have LJ + f(T') = f(v) by
Theorem 2.7 (1), and hence LJ — (cut) - f(I') = f(v) by the well-known
cut-elimination theorem for LJ. By Theorem 2.7 (2), we obtain B[l] — (cut)
FT = . U

Theorem 2.9 (Decidability). BJ[l] is decidable.

Proof. By Theorem 2.7, the provability of B[] can be transformed into
that of LJ. Since LJ is decidable, BJ[l] is also decidable. O
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3. Natural deduction

3.1 Ny

Definition 3.1 (Ngp;). The inference rules of Ngp; are of the form:
for any k € w; and any positive integer m,

[Xia]
7_){% (—=1) XZ(O[—)@ X'a (—FE)
X" (a—p) X'B
Xa X6 p X@AB gy X@AB) oo
X" (aAB) X'a X'p
Xla XHma
Xlera (XI) XlO[ (XE)
{X"a }iew X!Ga
X'Ga (D) Xitkq (GE).

Any proofs constructed only on an assumption are considered to be axioms.

The terminologies of the standard natural deduction system are used.
The notions of proof (of N B[l]), open and discharged assumptions of proof,
and end-formula of proof are defined as usual. A formula « is said to be
provable in Ny if there exists a proof of Npp with no open assumption
whose end-formula is «.

Let P be a proof. Then, the expression oa(P) denotes the set of open

assumptions of P, and the expression end(P) denotes the end-formula of
P.

Proposition 3.2 (Equivalence between B[l] and Npy)). Let I' be a
sequence of formulas, and {I'} be the set of formulas in T'.

1. If P is a proof in Ngy such that oa(P) = {I'} and end(P) = 3, then
the sequent T' = (3 is provable in BJ[l].

2. If a sequent I = (3 is provable in B[l], then there is a proof Q in Ngy
which satisfies oa(Q) = {T'} and end(Q) = 5.
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Although the reduction relation on the set of proofs of Npp; can nat-
urally be defined and the strong normalization theorem for Ngp; can also
be shown, such a discussion is omitted since the strong normalization the-
orem will be proved for the corresponding typed A-calculus Agp. By the
Curry-Howard correspondence, the strong normalization theorem for Ny
is derived from that of Agp.

3.2 Ay

Terms are constructed from variables, a A-abstraction A, an application op-
erator - (it is always omitted), a pairing function (,), an (I + 1)-ary pairing
function (, ..., ), projection functions 7y, ma, ..., 41, and two new construc-

! concerning X, called time-bounded functions. The intended mean-

XHma)XlOc

tors ¢,
ing of © and ¢! can be presented as the equations: (;~* (LMXLOC)
— MX'@ and (L(L_lMXHmO‘)XlO‘)XHmO‘ = MXHmO‘, which are the ana-
logues of the equations with respect to (,) and m;: (m (MY, NB>O”\ﬁ)O‘ =
M® and <(71'1MO‘/\B)O‘, (WQMQA’B)’B>QA5 = M8 Types are constructed
from atomic types (denoted as p,q,...), —, A, X and G. Variables are
denoted as z,x,,y,..., untyped terms are denoted as M, M,, N, ..., types
are denoted as «, 3,7, ..., and typed terms are denoted as M, Nﬂ, L, ..
Typed terms are sometimes denoted as M, N, L, ... by omitting the types.
It is assumed that in a A-term, the same variables do not occur simulta-
neously as both free and bound variables. It is also assumed that in a
A-term, there are no iterated occurrences of the same bound variable z,
such as -+~ Az®.(--- Az®.(--+)--+)---. An expression [Na/xa]Mﬂmeans,
in a usual sense, the substitution of N% to a free variable 2% in MP.
For the new constructor ¢/ € {1,t71}, we also assume the condition [N/
xa](L’Mﬂ)V = (/ [Na/xa]Mﬂ)'y. To avoid the clash of bound variables by
substitutions, a-conversions are occasionally assumed.
(Untyped) terms are defined as usual, and types are defined below.

Definition 3.3. Types for Agpj are defined inductively as follows.
1. For any atomic type p, X'p is a type.
2. If Xa and X' are types, then X!(avo 3) where o € {—, A} are types.

3. If X'« is a type, then X'Ga is a type.
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. If Xl is a type, then XHa is a type.

Definition 3.4. The degree d(«) of a type « is defined as follows.

1

2

3

. d(X'p) = i+ 1 for any atomic type p.
. d(X¥ (o B)) =i+ d(a)+d(B) where o € {—, A}

L d(X'Ga) =i +1+1+d(a).

It is remarked that d(X'a) < d(Ga) holds, and this fact is critical to
show a key lemma.

Definition 3.5. Let m be an arbitrary positive integer. Typed A-terms

for Agp are inductively defined as follows.

1

2.

Cif 2 X X ig g typed variable, then it is a typed A-term.

it X' and MX'B are typed A-terms, then (AxXiO‘.MXiﬁ)Xi(O‘_}B)
is a typed A-term.

if MXi(a_)ﬁ) and NXiO‘ are typed A-terms, then
(MXZ(O‘_%)NXZO‘)X% is a typed A-term.

it X' and NX'B are typed A-terms, then (MXiO‘, NXZﬂ>Xi(O“\B)
is a typed A-term.

if MXi(aAﬁ) is a typed A-term, then (WlMXi(OU\ﬁ))XiOé
and (ﬂgMXl(O‘AB))XZﬁ are typed \-terms.
it MX'o X e yX e

i i+1
(MEe X" o

are typed A-terms, then
i+l i

. MlX « >X Gajg o typed A-term.

if MX'Ga g 5 typed A-term, then

% % @ i+l
(71'1MX GO‘)X Q. (7TH_1MX GO‘)X T are typed A-terms.

1 l l+m
if MX @ ig a typed A\-term, then (LMX O‘)X % is a typed A-term.

+m I+m 1
it MX " g g typed A-term, then (L_lMX a)X @ is a typed \-
term.
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Definition 3.6 (\gpj). The typed A-calculus Agy is defined by reduc-
tions for the typed A-terms defined in Definition 3.5. In the following, the
transformation process from the left hand side of > to the right hand side
of = is called a reduction, and the term of the left hand side of > is called
a redex.

1. (()\ina.MXZﬂ)X%Q—)ﬁ)NXia)Xlﬂ . [NXia/xXia]MXiﬁ.
2. (mmX'a, NX'BX @rp)X'a . pX'a
3. (mp(MX' @, NX'BYX (@nBnX'B  NX'B,

MXi+k_la with

i i+1 i+l i itk—1
A (7Tk<M3< O‘,MIX a7._.’MlX a>X Ga)X o X

1 < ke Wi+1-
1 I+m 1 1
5. (L_l(LMX O‘)XJr a)X a o MXQ with 1 <m € w.
6. if M > N, then \e. M > \e.N, ML -~ NL, LM -~ LN, (M,L) >
(N,L), (L,M) = (L,N), (.., M,...) = (..., N,..), m;iM > m N, mo M
= TN, mM = 7, N with 2 < k € wjq, M = (N and . 7'M = .7 N.
In the next section, we will prove the strong normalization theorem
for Agpy. Since the framework for Agp) is strongly dependent on the time
bound [, the method for strong normalization proof is not adapted for the
unbounded (infinite-time) version. Such a version is required to use some
infinitely long A-terms. Thus, it is unknown whether the strong normaliza-

tion theorem for such an unbounded version holds or not. This problem is
remained as an open question.

3.3 Tgy
The precise definition of typed A-terms for Tgy is omitted, since it can be

obtained analogously w.r.t. Ag.

Definition 3.7 (Tgy;). The typing rules of Tgy) are of the form: for
any k € w; and any positive integer m,

[x: ?(ia]

M : X (a—p) N:Xa
MN : X5

M ::Xiﬁ
Az.M : X (a—p)

(+17) (—E)
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M :X'a N:X8 N M : XY (a A B)
(M,N) : XY (aAB) ( ) mM : X'« oM : X'

(nE2T)
M : Xla 17 M : XHmg
oM XM, M Xl

{ Mj : Xi-l-jOé }jsz (G[T)
(Mg, My, ..., M;) : X'Ga Tp M = XiFg

Any proofs constructed only on an assumption (x : ) are considered to be

axioms.

4. Strong normalization

The following proof of the strong normalization theorem for Ag; is based
on the technique presented in the textbook [11]. All the definitions and
lemmas presented below are thus similar to the definitions and lemmas
presented in the book [11] for a simply typed A-calculus.

Definition 4.1. A typed A-term is said to be mormal if it contains

no redex. A sequence M, MY, --- of typed M-terms is called a reduction
sequence if it satisfies the following conditions (1) M = M, forall 0 <

and (2) the last typed A-term in the sequence is normal if the sequence is
finite. A typed A-term M% is called strongly normalizable if each reduction
sequence starting from M is terminated.

We now start to prove the strong normalization theorem for Ag). The
proof is similar to that for the simply typed A-calculus with the conjunction
type, A", because the behaviors of the new constructors ¢ and ¢~! are
similar to that of the pairing function (,) and the projection function 7y,
respectively.

In the following, SN means the set of all strongly normalizable typed
A-terms for Agp), and TERM means the set of all typed A-terms for Ag.
In order to show TERM C SN, i.e., the strong normalization theorem for
A, we will define the set RED of reducible terms, and will show TERM
C RED C SN. First, we will show RED C SN by induction on the degree of
a type (Definition 3.4), and second, will show TERM C RED by induction
on the construction of a term.
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Definition 4.2. The set RED~ of reducible terms of type v (for Agp))
is defined by induction on the type « as follows.

. MXip € REDXip if and only if MXip € SN, for any atomic type p.

mX'(@=B) ¢ RED if and only it YNX'® € REDy.,

| - Xamp)
(X (@B NX'ayX'B ¢ REDy: g].

mX @B ¢ REDXi(a/\IB) if and only if (71'1MX (a/\ﬁ))on €

REDy:, and (mMX @) X8 ¢ REDy, 5

MX'Ga ¢ REDyiy, if and only if (WkMXiGO‘)XHkilO‘ €
REDy 41, for all k with 1 <k € w1

I+m I+m 1
MX " ¢ REDyiim, if and only if (' MX ") X'@ € REDy: |
for any positive integer m.

Definition 4.3. A typed \-term M® for Ap[y is said to be neutral it M
is one of the forms x, NP, m; N, mN, 7N with 2 < k € w41, and t !N,

If M® € SN, then an expression v(M®) means the least number which

bounds the length of every reduction sequence begining with M.

The following lemma has the same statements as those in [11], but the

proof is rather different: The division of cases for induction is generalized
with the addition of the expression X,

Lemma 4.4. For all typed \-term M® for AB[1]5 M satisfies the fol-
lowing four conditions.

(CR1)
(CR2)

(CR3)

(CR4)

if M® € REDg, then M® € SN.
if M® € REDq and M® = N%, then N® € REDg,.

if M® is neutral, then VN [if MY = N® and N® € REDy, then
M® € REDg].

if M@ is neutral and normal, then M® € REDy,. It is remarked that
(CRA) is a special case of (CR3).
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Proof. By induction on the degree d(«) of the type a. We consider the
cases for induction: Case a@ = X'p for any atomic type p, case o = X!(8—),
case @ = Xi(ﬁ A7), case a = X!GpA, and case a = X™X'8 where m is a
positive integer. In this case division, all the cases for the forms of types
are covered. In these cases, i in X’ can be 0, and hence these cases include
the cases for A", A special case is the case a = X™X!3 (m: positive
integer), where the m = 0 case is included in the other cases. This special
case is for the given positive integer [. We now show some cases below.

e Case (a = X'p for any atomic type p).

(CR1): Obvious by the definition of REDxip.

(CR2): Suppose that MXP e REDy: and MXP » NX'P By the

definition of RED, we have M X'p € SN. Thus, we also have N X'p € SN.
Therefore we obtain NX P € REDXip by the definition of RED.

(CR3): Suppose that for any neutral M X'p and any N Xip, we have
MXP = NXP and NX'P ¢ REDy: . Then, we have NX'P ¢ SN by the

definition of RED. This means that any terms one step fron M X'P is in SN.
Thus, we have M X'p ¢ SN, and hence M X'p ¢ REDXip by the definition
of RED.

e Case (a = X(3—7)).

(CR1): Suppose MXZ(?_W) € REDXZ'.(ﬁ_W) and take 2X O, Then,
we have the fact that (MXl(ﬁ_W)xXZﬁ)XZ’Y and 7% B have (CR1-4) by
the induction hypothesis with d(Xl(ﬁ—w)) > d(X'y) and d(X(B—7)) >
d(X'8). By (CR4), we have X8 e REDXiﬁ, and by the definition of

RED, we have (MXi(ﬂ_W)xXiﬁ)Xi'Y € REDXil_}/. By (CR1), we obtain

(MX'B _W)xxlﬁ )XY € SN. If there is an infinite reduction sequence start-
ing from M Xl(ﬁ_w), then there is also an inifinite reduction sequence
starting from (M X' (B=m2XBYXY  This is a contradiction. Therefore
MX (B=) € sN.

(CR2): Suppose that MX' B=7 ¢ RED and MX (B=7) o

1_ 1_ X' (B=7)
NX(B=), Then, for any XP ¢ REDX¢5, we have the fact that
X8 and (MXi(B%V)LXiB)XW have (CR1-4) by the induction hy-
pothesis with d(X!(8—v)) > d(X'8) and d(X‘(B—7)) > d(X'y). By
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the definition of RED, we obtain (MXi(B_)V)LXiﬂ)Xi’Y € REDXZ',Y
Then, we have (MXi(ﬁ__W)LXiB)XW - (NXi(B_}V)LXiﬁ)XiV, and
hence (N X'(B=nX'p )XW € REDXZ-,Y by (CR2). Therefore we obtain

NX'(5=7) ¢ REDy. by the definition of RED.

B=m)
(CR3): Suppose that MX' B i neutral and MX B—=N o

NXZ.(B_W) for any NXZ.(B_W) € REDX¢ We take an ar-

. (B—=7)
bitrary pX'B ¢ REDXi 3 By the hypothesis of induction with
d(X'(B—v)) > d(X'8) and d(X'(8—y)) > d(X'y), we have the fact
that PX'8 and (MXZ(ﬁ‘_W)PXZB)Xny have (CR1-4). It is sufficient
to show (Mxl(ﬁ_W)PX%)XZ7 S REDXW’ because this derives the
required fact MXi(ﬁ_W) € REDy. ~ by the definition of RED. We
thus show (MXi(ﬁ_W)PXiB)XiV € REDX¢7 in the following. First,
we consider the case that _(MXi(ﬁ_W)PXZﬂ )Xi7 is normal. In this
case, since (MXZ(BﬁV)PXZﬁ )XZV is neutral, we obtain the required
fact (MXZ(ﬁ_W)PXZB)XI7 € REDXZ'7 by (CR4). Next, we consider
the case that (MXi(B_W)PXiB )Xi7 is not normal. In this case, we
can consider two cases (MXZ(ﬁ_W)PX%)XW P (N‘XZ(ﬁ_W)PXz.ﬁ)XW
and (MX B=NpX'HXy o (X B=2NpXBHXY with PXBP
pX'B , because MX B=7) is neutral. Then, in order to use (_CR?))7
we will show the (CR3)-assumption (*): (NXZ(B_W)PX%)Xny €
REDXZ'7 and (MXZ(ﬁ_W)P’XZﬁ)Xny € REDXW’ by induction on
v(PX_iB). (Case_v(Pﬁ) = 0): In this case, we only have
(MXZ(B_W)PX%)XZT - (NXZ(@_W.)PX%)XW. By the definition of
RED, we obtain (NXZ(ﬁ_W)PXZB)XZV € REDXz‘y. (Case U(PXZB) #
0): The case (MXi(ﬁ_W)PXZﬂ)XiV - (NXi(B_W)PXlﬂ)XW is the
same as the case discussed just above. =~ We consider the case
(MX B=npX Xy (X B=npXBYXy By (CR2), we obtain
pXB e REDXzﬂ. By the hypothesis of (main) induction, we have the fact
that PX'B has (CR1-4). Thus, we obtain PXP ¢ SN by (CR1). Now,
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we have v(PXZﬂ) > v(P’Xzﬂ). Thus, we obtain (MXi(ﬁ_W)P’XZﬂ)Xi’Y c
REDXZ'7 by the hypothesis of induction w.r.t. v(PXZﬁ). Thus, we obtain

the fact (*), and hence obtain the required fact (M X' (B—= pX'B )Xi7 €
REDy:, by (CR3)

o Case (a =X'Gf).

(CR1): Suppose MX'GH ¢ REDy. g Then, by the definition of
RED, (mMX CAX™ 8 ¢ REDy iy g for all k with 1 < k € wiyr.
We have k — 1 < [ and d(X**~18) < d(X’GpS). Hence we can apply

. . . . XzGIB Xi+k_lﬂ
the induction hypothesis of (CR1), and obtain (mM ) € SN.

% i+k—1 @
Moreover, we have U((ﬂ'kMX G’ﬁ)X+ 5) > v(MX Gﬂ), because from
XGH \XG

any reduction sequence M X'Gp - M, -+, one can

construct a reduction sequence (wkMXiGﬂ)XHkilﬁ - (wlex Gﬂ)XHkilﬁ
- (wkMQX Gﬂ)XHkilﬁ —---. So v(MXIGB) is finite, and hence MXGB ¢
SN. . ‘ , .

(CR2): Suppose MX'GB o NX'GB - Then, (wkMX Gﬁ)X R

X'LGB Xi+k71/8 . .
(mp N ) for all k£ with 1 < k € wyy1. By the hypothesis, we
@ % i+k—1
have MX GB ¢ REDXZ-GB, and hence (ﬂkMX Gﬁ)X +' B e REDX&kﬂﬁ
by the definition of RED. We have k — 1 < [ and d(X"™*713) < d(X'Gp).
Hence we can apply the induction hypothesis of (CR2), and then obtain
2 i+k—1 2

(e NX'GHXT 8 ¢ RED Thus, NX'G5 ¢ REDy. 5 by the
definition of RED. .

(CR3): Let MX'GB ig neutral and suppose all the NX GB such

that MXiGﬁ - NXiGB € RED Since MXiGﬁ is neutral,

Xi+k—15.

X'Gp

(WkMXzGﬁ)XzM_lﬂ for all k¥ with 1 < k € w;q; cannot itself be a re-
% i+k—1 % i+k—1

dex. Thus, we obtain (WkMX G'ﬁ)X+ Ce (WkNX G'B)XJr B and
2 i+k—1 i

(WkNX GB)X B € REDXH—k—IIB, because of the hypothesis NX'GB ¢

REDXi-Hc—l/B and the definition of RED. We have that (WkMXiGﬂ)X%Hcfl/B

is neutral and all the typed A-terms one step from (wkMXiGﬂ)XHkilﬁ
are in REDy.ri1 g, and that k — 1 < [ and d(XTrE18) < q(XIGR).
Thus, we can apply the induction hypothesis of (CR3), and obtain

(ﬂkMXiGﬁ)XiM_lﬁ € REDXkalﬁ. Therefore, we obtain MX'GB ¢
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REDXi+k_1ﬁ by the definition of RED.

o Case (o = X"X!8 = X!"™g with a positive integer m).

(CR1): Suppose X8 e REDXHmﬂ- Then, (L*IMXHmﬁ)Xlﬁ €
RED . 3 by the definition of RED. By the induction hypothesis of (CR1),
we obtain (L_lMXHmﬂ)XlB € SN. Moreover, we have v((L_lMXHmﬂ)Xlﬂ)
> v(MXHmﬁ), because from any reduction sequence MXHmﬂ -

XH—m XH—m .
My B = M, B > ---, one can construct a reduction sequence

XX (i XTTAXS (X TTAXIB L s
v(MXHmﬁ) is finite, and hence MX""B e N,

(CR2): Suppose X8 NXTTB, Then, (L*IMXHmﬁ)Xlﬁ -
(L_lNXHmﬁ)Xlﬁ. By the hypothesis, we have MXHmﬂ € REDXHmﬁ,

and hence (L_lMXHmﬂ)XlB € RED by the definition of RED. By the

X'B
I+m l

induction hypothesis of (CR2), we obtain (L_1NX+ B)Xﬂ € REDXzB,
I+m

and hence NX B IS REDXHmﬁ'

I+m I+m

(CR3): Let MX™"B be neutral and suppose all the NXT"B such
I+m I+m I+m

that MXJr B - NXJr B € REDXHmﬁ’ Since MX+ B is neu-

I+m l

tral, (L_lMXJr ﬁ)Xﬁ cannot itself be a redex. Thus, we obtain
I+m 1 I+m 1 I+m l

(L_lMX+ ﬂ)Xﬁ - (L_1NX+ 5)X5 and (L_lNXJr ﬁ)Xﬂ € RED

because of the hypothesis N Xms € RED

X'p
X g and the definition of RED.
Since (1='M Xg )Xlﬂ is neutral and all the typed A-terms one step from

(L_lMXHmﬂ)Xlﬁ are in REDXzﬁ, we can apply the induction hypothesis
of (CR3), and obtain (L_lMXHmﬁ)Xlﬁ € REDXZﬁ' Therefore we obtain

X" B ol
M € RED by the definition of RED.

Xl+m/8
O

By (CR1) of Lemma 4.4, we have RED C SN.

Using (CR1) — (CR4) in Lemma 4.4, we can prove Lemma 4.5. This
lemma is regarded as a generalization of the corresponding reducibility
lemma presented in [11], and is for showing Lemma 4.6. Some statements
of Lemma 4.5 reflect the forms of reductions of Agpj. The statements 1-3
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are the same as those of the corresponding reducibility lemma for ™" if ¢
is 0 . The proof of Lemma 4.5 is also similar to the proof of the reducibility
lemma. By deleting X’ in the proofs of 1-3 in Lemma 4.5, we can obtain
the same proofs as those for A™".

Lemma 4.5. The following conditions hold for Agy.
X'a : X'« ,
1. Ifx 1$ a typed variable, then x € REDX'@

2. For any wa ‘€ REDyig and any lea € REDy.,. if
VXX qaXF e REDy g, then (aX @ MXB)X @20 ¢

3. If MX® € REDy:, and NXB ¢ REDyig,  then

Xa X B\ X (anf) :
(MX'a NXB X anb € REDy: , 5)-
i i+1
4. If ME® € REDy: , MX @ € REDyin,, ...,

i i+l (3
RED then (M .., MX "0 X'GO ¢ REDyi .

41
MXT ¢

Xi+la )

l l l4+m
5. If MX'® € REDyu , then ((MX®)X™"® ¢ RED1vn  for any

positive integer m.

Proof. (1) is obvious by (CR4). (2) and (3) are similar to the re-
ducibility lemmas in [11]. (4) and (5) are similar to (3). We show only (2)
and (5) below. .

o (2). Suppose that for any MXB ¢ REDXZﬂ and any
NX'@ ¢ REDy.  with [NX'a/X X6 ¢ RED, 5 Then,
it is sufficient to show (*): (()\xXzO‘.MXzB)XZ(O‘_)ﬁ)NXZO‘)Xlﬁ €
RED i 3 because (*) and the definition of RED derives the re-
quired fact (A\zX @ MX'B)X'(@=0) ¢ REDxi(a_)B). In order to show
(*), since we have that (()\xxlq.MXlﬁ)X.l(a%ﬂ’)NXza’)Xlﬂz neutral,
((}\xxla.MXlﬂ)Xl(Oc—hB)NXla)XlIB - [NXZa/xXla]MXZﬁ c REDXZﬂ
and (CR3), it is sufficient to show the assumption of (CR3) as (**): for
any LXZﬂ, if ((AmXZO‘.MXlB)Xl(a_)ﬁ)NXZO‘)XZﬁ - LXZﬂ, then LX0 ¢
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REDX%. We have MXzﬂ,NXiO‘ € SN by (CR1) since MXB ¢

v(MXZﬂ) —i—.v(NXi.O‘) as follows. (Case U(Mxiﬁ) + v(.NXiO‘)’: 0): We
have (()\xXZO‘.MXZB)Xl(aﬁﬁ)NXZO‘)XZﬁ - [NXZO‘/:UXZO‘]MX%. By the
hypothesis, we obtain [NXZa/xXlO‘]MXZﬁ € REDXZ-B. (Case U(MXZB) +

and NX'@ ¢ REDy. . We thus show (**) by induction on

v(N Xia) # 0): In this case, we consider the following cases:
(a): ((}\xxia_MXiﬂ)Xi(Oz%ﬂ)NXiOz)Xiﬂ . [NXioz/xXiOz]MXiﬂ.
(b):

with MX'B o ppX'B,
(c):

((}\ina'MXiB)Xi(a%ﬁ)NXia)Xiﬁ o ((AIXZO'MX’ﬂ)X"(a—%)N/Xia)Xiﬁ

with NX'@ - y X - |

For the case (a), we have [NX O‘/:UX O‘]MX B e REDXZﬂ by the hy-
pothesis. We then consider the case (b). Since M X'B ¢ RED~i B we have
MX'B ¢ REDXiﬁ by (CR2). By (CR1), we have MXB e SN, and hence
MXB e gN. Obviously we have U(MXTB) > p(M’XZB). Thus, by the
hypothesis of induction, we obtain ((AszO‘.M’Xzﬁ)Xz(Q%B)NXZO‘)X% €
REDX%. The case (c) is similar to (b). Therefore, we obtain (**),
and hence obtain (*) and the required fact ()\mXiO‘.MXiﬂ)Xi(O‘_)ﬁ) €

1 l I+m
e (5). Suppose MX@ ¢ REDy. . We will show (MX X ¢

l I+m l

REDvt4m , i.e., it is enough to show (HeMmX O‘)i{ y oy Xo ¢ REDy. -
Because of (CR1) and the hypothesis, we have M X'@ ¢ SN. Thus, we can

l 1 I+m 1
consider U(MX @). In the following, we show (L_l(LMX a)X+ a)X e

l l

REDy. , by induction on U(MX @). This typed A-term converts (1) MXa
or (2) (L_l(LNXlO‘)XHmO‘)XlO‘ where MX @ « NX'@ For the case (2), we

l 1 1
obtain NX@ ¢ REDy.: by (CR2), and we have v(MX @) > v(NX ay,
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1 I+m 1
So we obtain (L*I(LNX O‘)X+ O‘)XO‘ € REDy. , by the induction hy-

l I+m l
pothesis. In both cases, the neutral term (L_l(LMX O‘)X O‘)X @ con-

verts to reducible terms only, and by (CR3), it is reducible. Therefore

l I+m
(MX XX € REDy 1
0

An expression [Nlﬂl/xlﬂl, ...,NE"/xf"]MQ denotes the simultaneous
substitution.

Using Lemma 4.5, we can prove the following lemma, which has the
same statement as that in [11].

Lemma 4.6. Let M be a typed \-term for Appy- If Nlﬂ1 € REDﬁl’
- Nnﬂ” € REDg , then [Nlﬁl/mlﬁl,...,NE”/xg”]Ma € REDq.

Proof. By induction on the construction of M. Let
o= [Nlﬂl/xlﬁl, ,Nr'?”/xg”]

Case M = xﬁ' (1 <i<mn)): Obvious, i.e., Uxiﬂi = Niﬁi € REDg .

( 1

(Case MY = 2% and 2@ # mlﬁl, ,xf”) By Lemma 4.5 (1).

(Case MX'@ = (WX B NXNX(B=7): B using Lemma 4.5 (2).

(Case M® = (NB,LW)O‘ where (,) is a pairing (,) or an application):
By the hypothesis of induction, we have o N B € RED B and o L7 € RED~.
We thus obtain cM% = (JNB,UL'Y)O‘ € REDq by Lemma 4.5 (3) or by
the definition.

(Case MY = (Mg*°, M{*, ...,Mlo”>): By using Lemma 4.5 (4). Similar
to the case just above.

(Case MY = (LMXHmO‘)XlO‘): By Lemma 4.5 (5). Similar to the case
above.

(Case M@ = (wMﬁ)O‘ where 7 is 71, 7o, T, with 2 < k € wyyq or ¢ 71):
By the hypothesis of induction, we have oM B € RED 8- This fact derives
(roMB)® € REDq by the definition. Therefore we obtain o(rMP)® €
RED,. O

Theorem 4.7 (Strong normalization). All typed A\-terms for Agp are
strongly normalizable.
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Proof. In Lemma 4.6, taking N; = x4, ..., N, = ,,, we have MY €
RED, for any typed A-term M% for A}, i-e., TERM C RED. Since we
already have RED C SN, we obtain TERM C SN. O

5. Comparisons

5.1 NQBM: An indexed natural deduction system

A new natural deduction system N %[l], which is analogous to the 2-sequent
calculus [1], is presented below. The language of N123[l} and the notations
used are almost the same as those of Npj. An expression o' (« is a formula
and i € w) is called an indezed formula. N2B[l] is defined based on indexed
formulas.

Definition 5.1 (NQBM). The inference rules of N2B[l] are of the form:
for any k € w; and any positive integer m,
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Any proofs constructed only on an assumption are considered to be axioms.

Definition 5.2. Let L; be the set of formulas of NB[l} and Lo be the
set of indexed formulas of N%[l]' A mapping f from Ly to Lo is defined by

f(Xla) := o’ for any formula o.. A mapping g from Ly to L; is defined by
g(a?) := Xia for any formula a.
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Proposition 5.3 (Equivalence between NzBm and Ngyj). NQB[Z] and
Npyy are equivalent, that is, we have the following.

1. Let ' be a set of indexed formulas and B be an indexed formula. If
there is a proof P in N2B[l] such that oa(P) =T and end(P) = 3, then
there is a proof P’ in Ngy such that oa(P') = g(I') and end(P') =
9(B)-

2. Let I be a set of formulas and B be a formula. If there is a proof P
in Ngp such that oa(P) =T and end(P) = 3, then there is a proof
P’ in N2B[l] such that oa(P’) = f(T') and end(P") = f(5).

5.2 PNJ by Baratella and Masini

We give a comparison between Baratella-Masini’s PNJ [2] (for full intu-
itionistic LTL) and the system NQB[[] introduced just above. The base logic
BJ[l] is regarded as a sublogic of PNJ. Thus, we consider only about the
{—=, A, X, G}-fragment of PNJ. We also call it PNJ.

PNJ adopts the notion of position formula. A position formula is an
expression of the form o where « is a formula and s is a position. The
set of positions is the set of all pairs (n,S) where n is a natural number
and S is a finite set of tokens from a denumerable set 7' = {zg, x1,...}. Let
s =(n,S) and t = (m,T) be positions. The following notations are used:

1. s+tfor (n+m,SUT),
2. if T = (), we write s + m for s + t,
3. if t = (0,{z}), we write s + z for s + ¢.

Then, PNJ is defined by the following inference rules:
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where the token z in (IND) does not occur in s or in any of the assumptions
on which a*t{%) depends, with the exception of the discharged assump-
tions o,

The inference rules without {(GI®), (GE®), (IND)} are just the same as
N2B[l] where the position s is replaced by an index i. The differences are
that PNJ uses (IND) and does not use any infinite or many premises rules

like (GI) and (GI?).

5.3 \°l by Yuse and Igarashi

As mentioned before, A°l [30] is an extension (or integration) of Davies’ A\°
[9] and Davies-Pfenning’s Al [10]. The direct comparison between X°l and
the systems proposed in this paper cannot be obtained, since A°U is based
on the different framework of the hypothetical judgments. We thus give a
comparison between their base logics (i.e., Hilbert-style axiomatizations).

Before to compare the systems, we present some inference rules for A°U
as examples. The type judgment is of the form A;T" ™ M : « where A and
I" are persistent context and ordinary context, respectively, and n denotes
the time (or stage). The following are examples of the inference rules with
respect to X and G:

AT HYL M o AT " M : Xa A F"M o
A;T " next M : Xa AT FH prev M : o A;T Fbox M : Ga

AT HFY M :Ga Ayu:"" ;T F*N: 3 (i >0)
A;TF"let box u =; M inNg

In [30], Yuse and Igarashi state that the corresponding base logic for
X°U includes the following axiom schemes and inference rules:

1. G(a—p)—=(Ga—Gp),
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2. X(a—=p) + (Xa—Xp),
3. Ga—a,

4. Ga—GGa,

5. Ga—Xa,

6. GXa < XGa,

OH:# (mp) & (Gness).

The characteristic axiom schemes of A\°l are 2 and 6. The logic B[l] has all
the axiom schemes and inference rules displayed above, and B[] also has
the time induction axiom a—(G(a—Xa)—Ga) and the inference rule of
the form

o
<o (Xness).

Thus, B[l] is strictly stronger than the base logic of X°[.

5.4 PLTLyp by Bolotov et al.

We give a comparison between the natural deduction system PLTLxyp by
Bolotov et al. [5] and the systems presented in this paper. Although
PLTLyp is a full classical system with the until operator, we consider only
the {—, A, X, G}-fragment. We also call it the same name PLTLyp.
PLTLxp uses a labelled formula of the form 4 : «, which is similar to
the indexed formula o* of N%m. PLTLyp includes the following inference

[i:a] i:p
1:a—pf

ira i:p
i:aNf
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ira [i<j] j:a=Xa
1: Ga

(IND)

where ¢, Next and < are certain operators and relation (the precise defini-
tions are omitted here), and the rules (GE®), (XE®) and (IND®) have some
conditions, e.g., in (GEb), 1 < 7 must be the most recent assumption, ap-
plying the rule on the step n of the proof, we discard ¢ < j and all formulas
until the step n.

The use of the operations - and Next and the rule (IND?) is different
from our framework.

As a consequence of the comparisons, the advantage of the proposed
framework is regarded as the simple setting of the systems and the natural
correspondence between sequent calculus and natural deduction.
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