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Gemma ROBLES

PARACONSISTENCY AND CONSISTENCY

UNDERSTOOD AS THE ABSENCE OF THE

NEGATION OF ANY IMPLICATIVE

THEOREM

A b s t r a c t. As is stated in its title, in this paper consistency

is understood as the absence of the negation of any implicative

theorem. Then, a series of logics adequate to this concept of

consistency is defined within the context of the ternary relational

semantics with a set of designated points, negation being modelled

with the Routley operator. Soundness and completeness theorems

are provided for each one of these logics. In some cases, strong

(i.e., in respect of deducibility) soundness and completeness theo-

rems are also proven. All logics in this paper are included in Lewis’

S4. They are all paraconsistent, but none of them is relevant.

.1 Introduction

As it is well-known, in Lewis’ opinion, the following are two basic principles

governing the concept of deducibility:
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1. “Any proposition one chooses may be deduced from a denial of a

tautological or necessary truth” ([4], pp. 250-251).

2. “Tautologies in general are derivable from any premise we please”

([4], p. 251).

The “Principle of excluded middle”

pem. A ∨ ¬A

and the propositions of the form:

A ∧ ¬A

are, according to Lewis, the paradigms of tautologies and contradictory

propositions (i.e., the denials of tautologies), respectively (cf. [4], Chapter

VIII). Therefore, by principle 1 and the “Principle of non-contradiction”,

i.e.,

3. pnc. ¬(A ∧ ¬A).

We have:

4. (A ∧ ¬A) → B

Consequently, none of Lewis’ logics is paraconsistent (cf. Definition 1.6

below).

Now, in [10], a series of paraconsistent logics included in Lewis’ S4

are defined. These logics are adequate to consistency understood as the

absence of the negation of any theorem. The aim of this paper is to build

up a restriction of this series by defining a spectrum of logics adequate to

consistency understood as the absence of the negation of any implicative

theorem. A consequence of this concept of consistency is that principles 1

and 2, which are not valid here, are restricted in the following form:

1′. Any proposition one chooses may be deduced from the denial of any

tautological (or necessary) conditional.

2′. Tautological conditionals are derivable from any premise we please.

Therefore, 4 is unprovable; moreover, the following rule is unprovable:
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5. A ∧ ¬A ⊢ B

Consequently, all logics in this paper are paraconsistent logics (cf. Def-

inition 1.6 below).

In order to develop these notions, we need some definitions.

Let L be a propositional language with at least the connectives → (con-

ditional), ∧ (conjunction) and ¬ (negation), and S be a logic defined on L.

The concept of an S-theory (a theory built upon S) is defined as follows:

Definition 1.1. T is an S-theory iff T is closed under adjunction and

S-entailment; that is, iff (i) if A ∈ T and B ∈ T , then A ∧B ∈ T , and (ii)

if A → B is a theorem of S and A ∈ T , then B ∈ T .

In [8] two senses of a so-called weak-consistency are defined:

Definition 1.2 (Weak consistency, first sense). A theory T is w1-

inconsistent (weak inconsistent in the first sense) iff for some theorem A of

S, ¬A ∈ T . A theory is w1-consistent —weak consistent in the first sense—

iff it is not w1-inconsistent.

Definition 1.3 (Weak consistency, second sense). A theory T is w2-

inconsistent (weak inconsistent in the second sense) iff for some theorem

¬A of S A ∈ T . A theory is w2-consistent —weak consistent in the second

sense— iff it is not w2-inconsistent.

Let us now define a third sense of “weak consistency”, which is the con-

cept of consistency the title of this paper refers to: consistency understood

as the absence of the negation of any implicative theorem.

Definition 1.4 (Weak consistency, third sense). A theory T is w3-

inconsistent (weak inconsistent in the third sense) iff for some theorem

A → B of S ¬(A → B) ∈ T . A theory is w3-consistent —weak consistent

in the third sense— iff it is not w3-inconsistent.

The aim of this paper is to define a series of logics adequate to this sense

of consistency in the ternary relational semantics with a set of designated

points. The logics in this spectrum will include the result of extending

Routley and Meyer’s well-known basic logic B (cf., e.g., [12]) with the

characteristic S4 axiom

B → (A → A)
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Therefore, no logic in this paper is a relevant logic. From another perspec-

tive, all logics in the paper will be included in what from an intuitive point

of view can be described as Lewis’ S4 minus the ECQ (“E contradictione

quodlibet”) axiom

(A ∧ ¬A) → B

On the other hand, these logics are said to be adequate to the concept of

consistency in Definition 1.4 in the sense that the completeness proof can be

carried out only if consistency is understood as stated in this definition. If

consistency is understood in the standard sense (i.e., as the absence of any

contradiction), or as in Definition 1.2 or Definition 1.3, the completeness

proof would fail, at least in the present semantical context, i.e., the ternary

relational semantics with a set of designated points.

Let us now consider the following definition:

Definition 1.5 (Absolute consistency). A theory T is a-inconsistent

(inconsistent in an absolute sense) iff T is trivial, i.e., iff every wff belongs

to T . A theory is a-consistent —consistent in an absolute sense— iff it is

not a-inconsistent.

It will be proved (cf. Proposition 4.5) that any theory built upon any of

the logics contemplated in this paper is w3-consistent iff it is a-consistent.

Next, we turn to a brief discussion on the concept of paraconsistency.

Let � be a relation of consequence, be it defined either semantically or

proof-theoretically. As is known, the standard concept of paraconsistency

can be defined as follows (cf. [7]):

Definition 1.6 (Standard concept of paraconsistency). A logic S is

said to be sc-paraconsistent (paraconsistent in the standard sense) iff the

rule

A ∧ ¬A � B

is not derivable in S.

On the other hand, let us take into account the following definition of

consistency.

Definition 1.7 (Standard concept of consistency). A theory T is sc-

inconsistent (inconsistent in the standard sense) iff A ∧ ¬A ∈ T for some

wff A. A theory is sc-consistent —consistent in the standard sense— iff it

is not sc-inconsistent.
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There can be no doubt whatsoever that the concept of sc-consistency

is at the base of the concept of sc-paraconsistency.

In [9], the concepts of paraconsistency corresponding to the concepts of

w1-consistency and w2-consistency are defined like this (where the symbol

� is used as in [7] quoted above):

Definition 1.8 (w1-paraconsistency). A logic S is w1-paraconsistent iff

the rule

If � A, then ¬A � B

is not derivable in S.

Definition 1.9 (w2-paraconsistency). A logic S is w2-paraconsistent iff

the rule

If � ¬A, then A � B

is not provable in S.

Obviously, if the axiom of weak double negation

A → ¬¬A

is provable in S, then S is w1-paraconsistent iff it is w2-paraconsistent.

Given that this axiom is provable in all logics in this paper, w1-paraconsistency

and w2-paraconsistency will be considered as synonymous, as being co-

extensive concepts in the context of the present paper. However, as re-

gards the relationship between w1-paraconsistency and sc-paraconsistency,

we remark that the two concepts are by no means equivalent. Consider

for instance  Lukasiewicz logics,  L. These logics can be considered as sc-

paraconsistent. Actually, they could belong to one of the groups in which

paraconsistent logics are customarily classified (cf. [7]). But they are not

w1-paraconsistent because the EFQ (“E falso quodlibet”) axioms

¬A → (A → B)

and

A → (¬A → B)

are provable in  Lukasiewicz’s logics. We also remark that  L logics are

adequate to w1-consistency in the sense explained above.

Something similar occurs in the case of the logics in this paper. Consider

the following definition:

Publikacja objęta jest prawem autorskim. Wszelkie prawa zastrzeżone. Kopiowanie i rozpowszechnianie zabronione.  
Publikacja przeznaczona jedynie dla klientów indywidualnych. Zakaz rozpowszechniania i udostępniania serwisach bibliotecznych



152 GEMMA ROBLES

Definition 1.10 (w3-paraconsistency). A logic S is w3-paraconsistent

iff the rule

If � A → B, then ¬(A → B) � C

is not derivable in S.

It will be shown that all logics in this paper are sc-paraconsistent but

that none of them is w3-paraconsistent. That is, they are not paraconsistent

in respect of the concept of consistency to which they are adequate.

The structure of the paper is as follows. In §2, the logic BK2 is defined.

In §3, a semantics for BK2 is provided and soundness of this logic is proved.

In §4-5, it is shown that BK2 is complete in respect of the semantics intro-

duced in §2. In §6, some extensions of BK2 are considered and soundness

and completeness are proved. Finally, in §7, it is proved that all logics in

the paper are sc-paraconsistent but that none of them is w3-paraconsistent.

Strong soundness and completeness of some of the logics here studied are

proved. Negation will be modelled with the Routley operator, which is

adequate to interpreting a De Morgan negation (on the origin of this type

of modelling introduced by the Polish logicians in the fifties of the past

century see [2], sec 3.4). Knowledge of the Routley-Meyer semantics for

relevant logics will be presupposed.

.2 The logic BK2

As is known, Routley and Meyer’s basic positive logic B+ can be axioma-

tized as follows (cf. [1], [11] or [12])

Axioms

A1. A → A

A2. (A ∧B) → A / (A ∧B) → B

A3. [(A → B) ∧ (A → C)] → [A → (B ∧ C)]

A4. A → (A ∨B) / B → (A ∨B)

A5. [(A → C) ∧ (B → C)] → [(A ∨B) → C]

A6. [A ∧ (B ∨ C)] → [(A ∧B) ∨ (A ∧ C)]
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Rules

Modus ponens (MP): (⊢ A → B & ⊢ A) ⇒ ⊢ B

Adjunction (Adj): (⊢ A & ⊢ B) ⇒ ⊢ A ∧B

Suffixing (Suf): ⊢ A → B ⇒ ⊢ (B → C) → (A → C)

Prefixing (Pref): ⊢ B → C ⇒ ⊢ (A → B) → (A → C)

Routley and Meyer’s basic logic B is then the result of adding to B+

the following axioms

A7. A → ¬¬A

A8. ¬¬A → A

and the rule

Contraposition (Con): ⊢ A → B ⇒ ⊢ ¬B → ¬A

Remark 2.1. We note that Meyer and Routley’s original B also con-

tained the principle of excluded middle A ∨ ¬A together with the truth

constant t and the binary connective fusion ◦ (cf. [6]).

The following are some theorems and rules of B (a proof for each one

of them is sketched to their right):

T1. ⊢ A → ¬B ⇒ ⊢ B → ¬A Con, A7

T2. ⊢ ¬A → B ⇒ ⊢ ¬B → A Con, A8

T3. ⊢ ¬A → ¬B ⇒ ⊢ B → A A7, T2

T4. ¬(A ∧B) ↔ (¬A ∨ ¬B) Con, T2

T5. ¬(A ∨B) ↔ (¬A ∧ ¬B) Con, T1

By adding the following axiom

A9. B → (A → A)

to B, we obtain an axiomatization of the logic we will name BK2 where,

in addition to T1-T5, we have:

T6. ⊢ A → B ⇒ ⊢ C → (A → B) A9

T7. (A → B) → [A → (A ∧B)] T6

T8. ⊢ A → B ⇒ ⊢ ¬(A → B) → C T2, T6
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Notice that A1 is not independent within this axiom system and that

T6 is a restricted (to implicative theorems) form of rule K

K. ⊢ A ⇒ ⊢ B → A

which is not derivable in any of the logics in this paper (cf. Appendix).

Remark 2.2. As in [8], the logic BK+, which is the result of adding the

K rule to B+, was defined, the present logic (which contains a restricted

form of K) is labelled “BK2” to distinguish it from BK+ and its extensions.

.3 A semantics for BK2

Next, we provide a semantics for BK2:

Definition 3.1. A BK2-model is a structure 〈K, O, R, ∗, �〉 where O

is a subset of K, R is a ternary relation on K, and ∗ a unary operation on

K subject to the following definitions and postulates for all a, b, c, d ∈ K:

d1. a ≤ b =df (∃x ∈ O)Rxab

d2. a = b =df a ≤ b & b ≤ a

P1. a ≤ a

P2. (a ≤ b & Rbcd) ⇒ Racd

P3. Rabc ⇒ b ≤ c

P4. a = a ∗ ∗

P5. a ≤ b ⇒ b∗ ≤ a∗

Finally, � is a relation from K to the formulas of the propositional

language such that the following conditions are satisfied for all propositional

variables p, wff A, B and a ∈ K

(i). (a ≤ b & a � p) ⇒ b � p

(ii). a � A ∧B iff a � A and a � B

(iii). a � A ∨B iff a � A or a � B

(iv). a � A → B iff for all b, c ∈ K (Rabc & b � A) ⇒ c � B

(v). a � ¬A iff a∗ 2 A
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Validity is defined as follows:

Definition 3.2. A formula A is BK2-valid (�BK2
A) iff a � A for all

a ∈ O in all models.

Then, it is proved:

Theorem 3.3 (Soundness of BK2). If ⊢BK2
A, then �BK2

A.

Proof. It is left to the reader (cf., e.g. [12]). The only difference with

the proof of soundness for B concerns the validity of A9, which is valid by

P3. �

.4 Completeness of BK2 I. The canonical model.

W3-consistency

We begin by recalling some definitions (cf. [1] or [12]).

Definition 4.1.

1. A BK2-theory is a set of formulas closed under adjunction and prov-

able BK2-entailment. That is, a is a BK2-theory if whenever A, B ∈ a,

then A ∧ B ∈ a; and if whenever A → B is a theorem of BK2 and

A ∈ a, then B ∈ a (cf. Definition 1.1).

2. A BK2-theory a is prime if whenever A∨B ∈ a, then A ∈ a or B ∈ a.

3. A BK2-theory is regular iff all theorems of BK2 belong to it.

4. A BK2-theory is empty iff no wff belongs to it.

5. A BK2-theory is w3-consistent iff for no theorem A → B of BK2,

¬(A → B) ∈ a (cf. Definition 1.4).

6. A BK2-theory is a-consistent iff it is not trivial (cf. Definition 1.5).

We can now define the BK2 canonical model:

Definition 4.2. Let KT be the set of all BK2-theories and RT be de-

fined on KT as follows: for all a, b, c ∈ KT and wff A, B, RTabc iff

(A → B ∈ a & A ∈ b) ⇒ B ∈ c. Now, let KC be the set of
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all non-empty, prime, w3-consistent theories, and OC the set of all reg-

ular, prime, w3-consistent theories. On the other hand, let RC be the

restriction of RT to KC and ∗C be defined on KC as follows: for any

a ∈ KC , a∗C = {A | ¬A /∈ a}. Finally, �C is defined as follows: for any

a ∈ KC , a �
C A iff A ∈ a. Then, the BK2-canonical model is the structure

〈

KC , OC , RC , ∗C , �
C
〉

.

Remark 4.3. What distinguishes the BK2 canonical model from those

for standard relevant logics is just one important fact: in the latter, mem-

bers in KC need not be non-empty or regular or consistent in any sense of

the term, and, furthermore, members in OC are not necessarily consistent

in any sense of the term. On the other hand, the BK2 canonical model and

canonical models in [10] are distinguished by the fact that members in OC

are w1-consistent in the latter.

Next, we will provide a lemma on non-empty theories and an easy propo-

sition stating the equivalence between w3-consistency and a-consistency in

the context of KT .

Lemma 4.4. Let a be a non-empty member in KT . Then, a contains

every implicative theorem of BK2.

Proof. Let A → B be a theorem and C ∈ a. Then, A → B ∈ a by T6.

�

Proposition 4.5. Let a ∈ KT . Then, a is w3-inconsistent iff a is

a-inconsistent.

Proof. (1) From right to left, it is immediate. (b) In the inverse

direction it is immediate by T8. �

Given Proposition 4.5, w3-consistency and a-consistency can be consid-

ered as synonymous terms in the context of the present paper. Having

reached this conclusion, another question arise which merits to be dis-

cussed here briefly. What is the relationship between w3-consistency and

sc-consistency (i.e., consistency understood in the standard sense of the

term —cf. Definition 1.6) in the context of the present paper?

Let a be a BK2-theory. It is clear that a can be sc-consistent but w3-

inconsistent, or just the other way around, that is, it can be w3-consistent

and sc-inconsistent. Nevertheless, let us suppose that a is a regular member
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in KT . Then, if a is sc-consistent, a is obviously w3-consistent. The con-

verse, however, does not hold: a may contain all theorems of BK2 and some

contradiction but not necessarily the negation of an implicative theorem.

As regards the relationship between w1-consistency and w3-consistency,

it is evident that the former entails the latter, but not conversely. And this

is the case for regular members in KT . So, this is also the case for any

member in KT .

We shall return to this important matter later on in Remark 4.8 and in

the last section of this paper. We will now prove an important lemma on

w3-consistency and the relation RT , but first let us consider the following:

Lemma 4.6. Let a, b be non-empty elements in KT . The set x = {B |

∃A[A ∈ b & A → B ∈ a]} is a non-empty theory such that RTabx.

Proof. It is easy to prove that x is a theory. Moreover, x is non-empty:

let A ∈ b; by A1 and Lemma 4.4, A → A ∈ a. So, A ∈ x. Finally, RTabx

is immediate by definition of RT . (Cf. Definition 4.2.) �

Suppose that a and b in Lemma 4.6 are w3-consistent. It is clear that the

theory x in this lemma cannot generally be proved w3-consistent. However,

it is proved:

Lemma 4.7. Let a, b be non-empty elements in KT and c a w3-

consistent member in KT such that RTabc. Then, a and b are w3-consistent.

Proof. (1) Suppose a is w3-inconsistent. Now, let C ∈ b and A → B

be a theorem. As a is a-inconsistent (cf. Proposition 4.5), every wff belongs

to it and, then, C → ¬(A → B) ∈ a. So, ¬(A → B) ∈ c, contradicting the

w3-consistency of c.

(2) Suppose b is w3-inconsistent. Then, ¬(A → B) ∈ b, A → B being a

theorem. As a is non-empty, ¬(A → B) → ¬(A → A) ∈ a by Lemma 4.4,

T6 and Con. So, ¬(A → A) ∈ c, which is impossible. �

Remark 4.8. Suppose that c in Lemma 4.6 is sc-consistent. Then,

a and b cannot be shown to be sc-consistent. In order to prove a and b

sc-consistent, the following restriction of the ECQ axiom

(A ∧ ¬A) → (B → C)

or in fact the weaker formula

(A ∧ ¬A) → [B → (A ∧ ¬A)]
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is needed. But these axioms are not derivable in any of the logics in this

paper (cf. Appendix). On the other hand, Lemma 4.7 plays an essential

role in the completeness proof to follow. Actually, its usage is crucial when

proving Lemmas 5.5 and 5.6 and Proposition 6.1, for instance. It is then in

this sense that BK2 (in fact, all its extensions in §6) are said to be adequate

to w3-consistency (cf. §1). However, these logics would not be adequate

to sc-consistency.

.5 Completeness of BK2 II. ∗C-theories. The canonical model

is in fact a model

We first prove a trivial lemma:

Lemma 5.1. The following hold for any wff A and a, b ∈ KC :

1. ¬A ∈ a∗C iff A /∈ a

2. a ∗C ∗C = a

3. a∗C ⊆ b∗C ⇔ b ⊆ a

Proof. 1 follows by A7 and A8; 2 and 3 follow by 1 and definitions.

�

Next, it is proved that ∗C is an operation on KC .

Proposition 5.2. ∗C is an operation on KC .

Proof. Let a ∈ KC . By Con, T4 and T5 a∗C is a prime theory

(cf. [12]). Next, we prove that a∗C is non-empty and w3-consistent. (1)

Suppose a∗C is empty and let A → B be a theorem. Then, A → B /∈ a∗C .

So, ¬(A → B) ∈ a, contradicting the w3-consistency of a. (2) Suppose a∗C

is w3-inconsistent. Then, ¬(A → B) ∈ a∗C , A → B being a theorem. So,

A → B /∈ a (Lemma 5.1(1)), which is impossible by Lemma 4.4. �

In order to demonstrate that the canonical model is actually a model,

we shall start by proving three auxiliary lemmas:

Lemma 5.3. Let a be a non-empty member in KT and A a wff such

that A /∈ a. Then, there is some x in KC such that a ⊆ x and A /∈ x.
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Proof. Build up a prime non-empty theory x such that a ⊆ x and A /∈ x

(cf. [12]). This theory is a-consistent. So, it is w3-consistent (Proposition

4.5). Therefore, x ∈ KC . �

From Lemma 5.3, we obtain the following corollary:

Corollary 5.4. Let A be a wff such that 0BK2
A. Then, there is some

x in OC such that BK2 ⊆ x and A /∈ x.

Lemma 5.5. Let a, b be non-empty elements in KT and c ∈ KC such

that RTabc. Then, there are x, y ∈ KC such that a ⊆ x, b ⊆ y, RTxbc and

RTayc.

Proof. Build up prime non-empty theories x and y such that RTxbc

and RTayc (cf. [12]). By lemma 4.7, x and y are, in addition, w3-consistent.

�

Lemma 5.6. For any a, b ∈ KC , a ≤C b iff a ⊆ b.

Proof. From left to right, it is immediate. So, suppose a ⊆ b. Clearly,

RTBK2aa. Then, by Lemma 5.5 there is some (regular) y in KC such that

BK2 ⊆ y and RCyaa. As y is regular, y ∈ OC . By hypothesis, RCyab.

Then, a ≤C b by d1. �

We can now proceed to prove the following proposition:

Proposition 5.7. The canonical model is in fact a model.

Proof. We have to prove:

1. The set OC is not empty.

2. Clauses (i)-(v) are satisfied by the canonical model.

3. Postulates P1-P5 hold in the canonical model.

1. 1 is immediate by Corollary 5.4.

2. Clause (i) is immediate by Lemma 5.6; clauses (ii), (iii) and (v), and

(iv) from left to right are proved as in the semantics for B (cf., e.g.,

[12]). So, let us prove clause (iv) from right to left. Suppose for

wff A, B and a ∈ KC , A → B /∈ a. We prove that there are x,

y ∈ KC such that RCaxy, A ∈ x and B /∈ y. The sets z = {C |⊢BK2
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A → C}, u = {C | ∃D[D → C ∈ a & D ∈ z]} are theories

such that RTazu. Now, z is w3-consistent: if it is not, then B ∈ z

(Proposition 4.5), i.e., ⊢ A → B, and then, A → B ∈ a (Lemma

4.4), contradicting the hypothesis. Moreover, A ∈ z (by A1). So, u

is non-empty (Lemma 4.6). On the other hand, B /∈ u (if B ∈ u,

then A → B ∈ a, contradicting the hypothesis). Therefore, u is

w3-consistent (Proposition 4.5). Consequently, we have non-empty,

w3-consistent theories z, u such that RTazu, A ∈ z and B /∈ u. Now,

by Lemma 5.3, u is extended to some y ∈ KC such that u ⊆ y and

B /∈ y. Obviously, RCazy. Next, by Lemma 5.5, z is extended to some

x ∈ KC such that z ⊆ x and RCaxy. Clearly, A ∈ x. Therefore, we

have prime non-empty w3-consistent theories x, y such that A ∈ x,

B /∈ y and RCaxy, as it was required.

3. 3 is easy to prove with the assistance of Lemma 5.6: P1 and P2 are

trivial and P3 is easy by Lemma 4.4; Then, P4 and P5 follow by

Lemma 5.1(2) and Lemma 5.1(3), respectively.

�

Then, the completeness of BK2 is immediate by Corollary 5.4 and Propo-

sition 5.7:

Theorem 5.8 (Completeness of BK2). If �BK2
A, then ⊢BK2

A.

.6 Extensions of BK2

Consider the following axioms:

A10. (B → C) → [(A → B) → (A → C)]

A11. (A → B) → [(B → C) → (A → C)]

A12. [A → (A → B)] → (A → B)

A13. [(A → A) → B] → B

A14. (A → B) → [C → (A → B)]

A15. (A → B) → (¬B → ¬A)

A16. A ∨ ¬A
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Axioms A10-A13 are, respectively, the prefixing, suffixing, contraction

and specialized assertion axioms; A14 is a restricted (S4) version of axiom

K; A15 is (one of the forms of) the weak contraposition axiom, and, finally,

A16 is the principle of excluded middle.

Consider now the following definition and semantical postulates:

d3. R2abcd =df (∃x ∈ K)(Rabx & Rxcd)

PA10. R2abcd ⇒ (∃x ∈ K)(Rbcx & Raxd)

PA11. R2abcd ⇒ (∃x ∈ K)(Racx & Rbxd)

PA12. Raaa

PA13. (∃x ∈ K)Raxa

PA14. R2abcd ⇒ Racd

PA15. Rabc ⇒ Rac ∗ b∗

PA16. a ∈ O ⇒ a∗ ≤ a

We prove the following:

Proposition 6.1. Given the logic BK2 and BK2-semantics, PA10-PA16

are the postulates that correspond (c.p) to A10-A16, respectively.

That is to say, given BK2 semantics, A10-A16 are proved valid with

PA10-PA16, respectively; and, given the logic BK2, PA10-PA16 are proved

canonically valid with A10-A16, respectively. (We shall use the abbrevia-

ture “cp” for “corresponding postulate”, i.e., “postulate that corresponds

to (a certain axiom)”).

Proof. That this is so is proved in (or can easily be derived from)

[12], with the exception perhaps of the cases regarding the correspondence

between A12 and PA12 and A13 and PA13, which is proved in [10], Propo-

sition 8. �

Remark 6.2. Notice that PA13 is not the c.p to A13 in relevant logics.

The c.p to A13 is a bit more complicated in those logics (cf., e.g., [12]). On

the other hand, note that in relevant logics, PA12 is the c.p to the modus

ponens axiom [(A → B) ∧ A] → B.

Now, let SBK2 be any extension of BK2 with any selection of A10-

A16. (As above, it is supposed that the rules of BK2 can now be applied

to the theorems of SBK2.) And let SBK2-models be defined, similarly, as
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BK2-models except for the addition of the c.p to the new axioms added.

Furthermore, define SBK2-validity in a similar way to which BK2-validity

was defined. (Cf. Definitions 3.1 and 3.2.) Finally, provide a definition of

the SBK2 canonical model similar to that of the BK2 canonical model (cf.

Definitions 4.1, 4.2). It is clear that from Proposition 6.1 and Theorems

3.3, 5.8, we have:

Theorem 6.3 (Soundness and completeness of SBK2). �SBK2
A iff

⊢SBK2
A.

We shall not study here the different logics definable from BK2 by adding

some (or all) of A10-A16 and the relations that they maintain to each other.

Nevertheless, let us remark that A1, A11, A12 and A14 together with MP

axiomatize the implicative fragment of Lewis’ S4 (cf. [5]), whence it is easy

to see that B+ plus these axioms is a logic deductively equivalent to the

positive fragment of Lewis’ S4, S4+ (cf. [3]). Therefore, BK2 plus A11,

A12, A14, A15 and A16 can intuitively be described as S4+ supplemented

with the double negations axioms (A7, A8), all forms of the De Morgan

laws (T4, T5), all forms of the contraposition axioms (they are easily de-

rived from A15 with A7 and A8) and the principle of excluded middle A16

(equivalently, the principle of non-contradiction ¬(A ∧ ¬A)). This logic

can provisionally be labelled S4K2. Notice that S4K2 plus axiom ECQ (“E

contradictione quodlibet”)

ECQ. (A ∧ ¬A) → B

is easily shown to be deductively equivalent to Lewis’ S4 (cf. [3]). The logic

S4K2 also lacks all forms of the reductio axioms. Actually, we can state the

following:

Proposition 6.4.

1. S4K2 plus any of the formulas and rules that follow (all of them deriv-
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able in S4) is a logic deductively equivalent to S4:

(a). (A ∧ ¬A) → B

(b). (A → ¬A) → ¬A

(c). (¬A → A) → A

(d). ⊢ A → B ⇒ ⊢ (A → ¬B) → ¬A

(e). ⊢ ¬A → B ⇒ ⊢ (¬A → ¬B) → A

(f). ⊢ A → B ⇒ ⊢ (¬A → B) → B

(g). (A → B) → ¬(A ∧ ¬B)

(h). (A → ¬B) → ¬(A ∧B)

(i). [B → (A ∧ ¬A)] → ¬B

(j). [(A → B) ∧ (A → ¬B)] → ¬A

2. None of the formulas (a)-(j) is derivable in S4K2.

Proof.

1. By S4K2 and any of (a)-(j), we have:

(1). (A ∧ ¬A) → ¬(A → A)

By A9, Con and A8,

(2). ¬(A → A) → B

Then, axiom ECQ is immediate by (1) and (2).

2. Cf. Appendix.

�

Therefore, from an intuitive point of view, S4K2 could equivalently be

described as Lewis’ S4 without the reductio axioms.

We end this section with the following remark:

Remark 6.5. The reductio rules in the following forms are derivable

in S4K2:

(⊢ A → B & ⊢ A → ¬B) ⇒ ⊢ ¬A

(⊢ ¬A → B & ⊢ ¬A → ¬B) ⇒ ⊢ A

(⊢ A → B & ⊢ ¬A → B) ⇒ ⊢ B
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.7 SBK2 logics are sc-paraconsistent

In this section SBK2 logics are shown to be sc-paraconsistent.

Consider the following relation of semantical consequence.

Definition 7.1. Let Γ be a set of wffs and A a wff. Then, Γ � A iff

for all a ∈ K in all SBK2-models, if a � Γ, then a � A (a � Γ iff a � B for

every B ∈ Γ).

As in standard relevant logics, we can prove the following lemmas:

Lemma 7.2. (a ≤ b & a � A) ⇒ b � B

Proof. Induction on the length of A (cf., e.g., [12]). �

Lemma 7.3. �SBK2
A → B iff for all a ∈ K in all SBK2-models,

a � A ⇒ a � B

Proof. By using Lemma 7.2, P1 and d1 (cf. §3). �

Then, the meaning of the consequence relation in Definition 7.1 is clear.

Let Γ = {B1, ..., Bm}. By Lemma 7.3, Γ � A iff �SBK2
(B1 ∧ ...∧Bm) → A.

So, the following can be proved without difficulty.

Proposition 7.4. Each SBK2 is sc-paraconsistent.

Proof. We prove that rule ECQ (cf. Definition 1.6)

A ∧ ¬A � B

is not SBK2-valid. Axiom ECQ

(A ∧ ¬A) → B

is not provable in S4K2 (Proposition 6.4), so, neither is it in any of the

SBK2 logics. By the completeness theorem (Theorem 6.3), (A ∧ ¬A) → B

is not valid. By Lemma 7.3, there is some x ∈ K in some SBK2 model such

that x � A ∧ ¬A and x 2 B. Therefore, A ∧ ¬A 2 B by Definition 7.1. �

Nevertheless, we can show that rule ECQ fails according to a stricter,

more adequate (to SBK2 logics) consequence relation. Consider the follow-

ing definition.
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Definition 7.5. Let Γ be a set of wffs. Then, Γ � A iff for all a ∈ O in

all SBK2 models, if a � Γ, then a � A (a � Γ iff a � B for every B ∈ Γ).

Then, it is proved:

Proposition 7.6. Let M be the canonical model. Then, for some x ∈

OC and wff A, B, x � A ∧ ¬A and x 2 B.

Proof. Let pi be the i-th propositional variable. Consider now the

following set of formulas y = {B |⊢SBK2
A & ⊢SBK2

[A∧ (pi ∧¬pi)] → B}.

It is easy to prove that y is a SBK2-theory (it is closed under adjunction

and SBK2-entailment). Moreover, it is regular (it contains all the theorems

of SBK2 by A2), but is sc-inconsistent: (pi ∧ ¬pi) ∈ y. Nevertheless, we

show that y is a-consistent. The rule ⊢SBK2
A ⇒ ⊢SBK2

[A∧(pi∧¬pi)] → C

is not provable in S4K2 (cf. Appendix). So, there is a wff B and a theorem

A such that 0SBK2
[A∧(pi∧¬pi)] → B. By definition of y, B /∈ y (in fact, it

would be easy to select a particular wff B and theorem A. Cf. Appendix).

Therefore, y is a -consistent. Now, by using Lemma 5.3, y is extended to a

(regular) prime, a-consistent theory x such that (pi ∧ ¬pi) ∈ x but B /∈ x.

By definition of the canonical models (cf. Definition 4.2), x � (pi ∧ ¬pi),

x 2 B, whence pi ∧ ¬pi 2 B by Definition 7.5. �

Consequently, it is proved:

Proposition 7.7. All SBK2 logics —BK2 included— are sc-paraconsistent.

Proof. By Proposition 7.6 and Definition 1.6. �

However, in Proposition 7.13 below, it is proved that none of the SBK2

is w3-paraconsistent.

Let us now investigate to which proof-theoretical consequence relation

the semantical relation introduced in Definition 7.5 corresponds. Consider

the following definition.

Definition 7.8. Let Γ be a set of wffs and A a wff. Then, Γ ⊢SBK2
A

iff there is a finite sequence of wffs B1, ...Bm such that Bm is A and for

each i (1 ≤ i ≤ m), one of the following is the case: (1) Bi ∈ Γ (2) Bi is a

theorem (3) Bi is by Adj or by MP.

On the other hand, the set of consequences of a set of wff Γ (CnΓ) is

defined in a classical way as follows:
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Definition 7.9. CnΓ = {A | Γ ⊢SBK2
A}

Then, we immediately have:

Proposition 7.10. For any set of wffs Γ, CnΓ is a SBK2 theory.

Proof. It is clear that CnΓ is closed under adjunction and SBK2-

entailment. �

And, moreover, we have:

Theorem 7.11. If Γ ⊢SBK2
A, then Γ � A.

Proof. Induction on the proof of A from Γ, Γ ⊢SBK2
A. The cases

in which A ∈ Γ and A is by Adj are trivial. So, suppose that A is by

MP. Then, for some wff C, Γ ⊢SBK2
C → A, Γ ⊢SBK2

C. By hypothesis,

Γ � C → A, Γ � C. Now, let a � Γ for some a ∈ O in some SBK2-model.

Then, a � C, a � C → A. By clause (iv) (Definition 3.1), for all x, y ∈ K,

(Raxy & x � C) ⇒ y � A. As a ∈ O, by d1, (x ≤ y & x � C) ⇒ y � A.

By P1, a ≤ a. So, a � A, as it was to be proved. Finally, if A is a theorem

of SBK2, the case follows by Theorem 6.3 (soundness of SBK2). �

Theorem 7.12. If Γ � A , then Γ ⊢SBK2
A.

Proof. Suppose Γ 0SBK2
A. If Γ is empty, then the proof is immediate

by Theorem 6.3. So, suppose that Γ is a non-empty set. Obviously, A /∈

CnΓ. Then, by Lemma 5.3, there is some (regular) x in KC (i.e., some

x ∈ OC) such that CnΓ ⊆ x and A /∈ x. As Γ ⊆ CnΓ, Γ ⊆ x. Now, by

definitions of the canonical model (cf. Definition 4.2), x �
C Γ (i.e., x �

C B

for every B ∈ x) and x 2
C A, i.e., Γ 2 A, as was to be proved. �

Finally, it is proved:

Proposition 7.13. None of the SBK2 logics —BK2 included— is w3-

paraconsistent.

Proof. Suppose A → B is a theorem of SBK2. It is clear that

¬(A → B) ⊢SBK2
C, by T8 (cf. Definition 7.8). Then, SBK2 is not w3-

paraconsistent by Definition 1.10. �

Let us end the paper with some remarks on the consequence relations

just introduced, on consistency, and on paraconsistency.
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Remark 7.14. On Definition 7.8: Suppose that the following two

clauses are added to clauses (1)-(3) in Definition 7.8 (cf. §2): (4) Bi is

by Suf. (5) Bi is by Pref. Then, Theorem 7.11 would not be provable

because not for any a ∈ O in any SBK2 model, a � B → C ⇒ a � (A →

B) → (A → C), a � A → B ⇒ a � (B → C) → (A → C). On the

other hand, suppose that clause (2) in this definition is replaced by (2′):

Bi is an axiom. Then, not all the theorems would necessarily be derivable

from a given set of wff Γ in logics without the prefixing axiom A10 or the

suffixing axiom A11. These are the reasons why clauses (4), (5) and (2′) do

not appear in Definition 7.8. Nevertheless, it is obvious that clause (2) can

be replaced by clause (2′) in the case of any SBK2 logic in which A10 and

A11 are theorems. In this case, a classically defined concept of deducibilty

would result.

Remark 7.15. On the proof-theoretical consequence relation corre-

sponding to the semantical relation in Definition 7.1: consider the following

consequence relation:

Definition 7.16. Let Γ be a set of wffs. Then, Γ ⊢ A iff there is a

finite sequence B1, ..., Bm where Bm is A and for each i (1 ≤ i ≤ m), one

of the following is the case: (1) Bi ∈ Γ (2) Bi is by Adj (3) Bi is by SBK2

-entailment (Bi is by SK2 -entailment iff for some wff C, Γ ⊢ C, C → Bi

being a theorem of SBK2 ).

Now, let � be the consequence relation introduced in Definition 7.1.

The proof of the following theorem is left to reader.

Theorem 7.17. Γ ⊢ A iff Γ � A.

Remark 7.18. Strong soundness and completeness: it is clear that

Theorems 7.11 and 7.12 are a proof of the strong (i.e., in respect of de-

ducibilty) soundness and completeness of each SBK2 logic in which A10

and A11 hold.

Remark 7.19. Adequacy to w1-consistency: in Remark 4.8 it was

noted that SBK2 logics are not adequate to sc-consistency. But, are they

adequate to w1-consistency? In order to prove that they actually are (cf.

Lemma 4.7 and Remark 4.8), the following rules would be needed:

r1. (⊢ A & ⊢ B) ⇒ ⊢ ¬A → (B → C)

r2. (⊢ A & ⊢ B) ⇒ ⊢ ¬A → ¬B
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These rules are not provable in any of the SBK2 logics (cf. Appendix).

Furthermore, they are not even admissible in any SBK2 logics in which

¬(A ∧ ¬A) holds. Otherwise,

(A ∧ ¬A) → ¬(A → A)

is immediate by r2, and then, axiom ECQ

(A ∧ ¬A) → B

is also immediate (cf. Proposition 6.4). Consequently, SBK2 logics in which

A16 (A∨¬A) holds are not adequate to w1-consistency. Regarding the log-

ics without A16 (equivalently, without ¬(A ∧ ¬A)), the question of their

adequacy is left open: are r1 and r2 admissible? If they are, logics with-

out A16 are in principle equivalently adequate to w3-consistency and w1-

consistency.

Remark 7.20. w1-paraconsistency: let S be any logic in which A →

¬¬A and ¬(A ∧ ¬A) hold. It is clear that if S is sc-paraconsistent, then

S is w1-consistent. Therefore, all SBK2 logics in which A16 is a theorem

are w1-paraconsistent in addition to being sc-paraconsistent. Concerning

SBK2 logics without A16, the question of their w1-paraconsistency is left

open.

Finally, a note on rules K and assertion.

Remark 7.21. Rule K

K. ⊢ A ⇒ ⊢ B → A

is not derivable in any of the logics in this paper (cf. Appendix). But in

SBK2 logics with A16, it is not even admissible. Otherwise, axiom ECQ

would be immediate: by K and ¬(A ∧ ¬A), ⊢ ¬B → ¬(A ∧ ¬A). Then,

⊢ (A ∧ ¬A) → B by T3.

Rule assertion

Asser. ⊢ A ⇒ ⊢ (A → B) → B

is derivable in none of the logics in this paper (cf. Appendix). But in SBK2

logics with A16, it is not even admissible because rule K is immediate by

Asser and A9.
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.8 Appendix

Consider the following set of matrices where the designated values are

starred:

→ 0 1 2 3 ¬

0 3 3 3 3 3

1 0 3 3 3 2

*2 0 0 3 3 1

*3 0 0 0 3 0

∧ 0 1 2 3

0 0 0 0 0

1 0 1 1 1

*2 0 1 2 2

*3 0 1 2 3

∨ 0 1 2 3

0 0 1 2 3

1 1 1 2 3

*2 2 2 2 3

*3 3 3 3 3

This set satisfies the axioms and rules of S4K2, but falsifies the fol-

lowing rules and theses (cf. Remark 4.8, Remark 7.19, Remark 7.21 and

Proposition 7.6):

1. (A ∧ ¬A) → B (A = 1, B = 0)

2. (A → ¬A) → ¬A (A = 1)

3. (¬A → A) → A (A = 2)

4. ⊢ A → B ⇒ ⊢ (A → ¬B) → ¬A (A = B = 1)

5. ⊢ ¬A → B ⇒ ⊢ (¬A → ¬B) → A (A = 2, B = 1)

6. ⊢ A → B ⇒ ⊢ (¬A → B) → B (A = 1, B = 2)

7. (A → B) → ¬(A ∧ ¬B) (A = B = 1)

8. (A → ¬B) → ¬(A ∧B) (A = B = 1)

9. [B → (A ∧ ¬A)] → ¬B (A = B = 1)

10. [(A → B) ∧ (A → ¬B)] → ¬A (A = B = 1)

11. ⊢ A ⇒ ⊢ B → A (A = 2, B = 3)

12. ⊢ A ⇒ ⊢ (A → B) → B (A = B = 2)

13. ⊢ A ⇒ ⊢ [A ∧ (pi ∧ ¬pi)] → C (A = 2, pi = 1, C = 0)

14. (A ∧ ¬A) → (B → C) (A = B = 1, C = 0)

15. (A ∧ ¬A) → [B → (A ∧ ¬A)] (A = 1, B = 2)
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16. (⊢ A & ⊢ B) ⇒ ⊢ ¬A → (B → C) (A = B = 2, C = 0)

17. (⊢ A & ⊢ B) ⇒ ⊢ ¬A → ¬B (A = 2, B = 3)

It is proved with this set of matrices that 1-3, 7-10 and 14, 15 are not

theorems of S4K2; and that 4-6, 11-13 and 16, 17 are not derivable rules of

S4K2. But, in addition, it can easily be shown that the rules are not even

admissible: (1) By Proposition 6.4, rules 4, 5 and 6 are not admissible (2)

Let pi be a fixed propositional variable and change A in 11-13, 16 and 17

for ¬(pi ∧ ¬pi) and B in 16 and 17 for pi → pi. Then, it is obvious that

these rules cannot be admissible in S4K2.
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