
Georgia Southern University Georgia Southern University 

Digital Commons@Georgia Southern Digital Commons@Georgia Southern 

Mechanical Engineering, Department of - 
Faculty Publications Mechanical Engineering, Department of 

8-21-2014 

Jet-Impingement Effects of Alumina-Nanofluid on Aluminum and Jet-Impingement Effects of Alumina-Nanofluid on Aluminum and 

Copper Copper 

Gustavo J. Molina 
Georgia Southern University, gmolina@georgiasouthern.edu 

Fnu Aktaruzzaman 
Georgia Southern University, aa04525@georgiasouthern.edu 

Whitney Stregles 
Georgia Southern University 

Valentin Soloiu 
Georgia Southern University, vsoloiu@georgiasouthern.edu 

Mosfequr Rahman 
Georgia Southern University, mrahman@georgiasouthern.edu 

Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/mech-eng-facpubs 

 Part of the Mechanical Engineering Commons 

Recommended Citation Recommended Citation 
Molina, Gustavo J., Fnu Aktaruzzaman, Whitney Stregles, Valentin Soloiu, Mosfequr Rahman. 2014. "Jet-
Impingement Effects of Alumina-Nanofluid on Aluminum and Copper." Advances in Tribology Journal, 
2014. doi: 10.1155/2014/476175 source: https://www.hindawi.com/journals/at/2014/476175/ 
https://digitalcommons.georgiasouthern.edu/mech-eng-facpubs/66 

This article is brought to you for free and open access by the Mechanical Engineering, Department of at Digital 
Commons@Georgia Southern. It has been accepted for inclusion in Mechanical Engineering, Department of - 
Faculty Publications by an authorized administrator of Digital Commons@Georgia Southern. For more information, 
please contact digitalcommons@georgiasouthern.edu. 

https://digitalcommons.georgiasouthern.edu/
https://digitalcommons.georgiasouthern.edu/mech-eng-facpubs
https://digitalcommons.georgiasouthern.edu/mech-eng-facpubs
https://digitalcommons.georgiasouthern.edu/mech-eng
https://digitalcommons.georgiasouthern.edu/mech-eng-facpubs?utm_source=digitalcommons.georgiasouthern.edu%2Fmech-eng-facpubs%2F66&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=digitalcommons.georgiasouthern.edu%2Fmech-eng-facpubs%2F66&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.georgiasouthern.edu/mech-eng-facpubs/66?utm_source=digitalcommons.georgiasouthern.edu%2Fmech-eng-facpubs%2F66&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@georgiasouthern.edu


Research Article
Jet-Impingement Effects of Alumina-Nanofluid on
Aluminum and Copper

Gustavo J. Molina, Fnu Aktaruzzaman, Whitney Stregles,
Valentin Soloiu, and Mosfequr Rahman

Department of Mechanical Engineering, Georgia Southern University, Statesboro, GA 30458-8046, USA

Correspondence should be addressed to Gustavo J. Molina; gmolina@georgiasouthern.edu

Received 29 May 2014; Accepted 5 August 2014; Published 21 August 2014

Academic Editor: Meng Hua

Copyright © 2014 Gustavo J. Molina et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Nanofluids are nanosize-powder suspensions that are of interest for their enhanced thermal transport properties.They are studied as
promising alternatives to ordinary cooling fluids, but the tribiological effects of nanofluids on cooling-system materials are largely
unknown. The authors have developed methodology that uses jet impingement on typical cooling-system materials to test such
effects.Thework is presented of the authors’ research on the interactions of a typical nanofluid (2% volume of alumina nanopowders
in a solution of ethylene glycol in water) which is impinged on aluminum and copper specimens for tests as long as 112 hours. The
surface changes were assessed by roughness measurements and optical-microscope studies. Comparative roughness indicate that
both the reference cooling fluid of ethylene glycol and water and its nanofluid with 2% alumina produce roughness changes in
aluminum (even for the shortest 3-hour test), but no significant roughness differences were observed between them. No significant
roughness changes were observed for copper. Microscopy observations, however, show different surface modifications in both
aluminum and copper by both the nanofluid and its base fluid. The possible mechanisms of early erosion are discussed. These
investigations demonstrate suitable methods for the testing of nanofluid effects on cooling system-materials.

1. Introduction and Literature Review

The concept of nanofluid was proposed in 1995 by Choi and
Eastman [1] and Choi [2] as a suspension of solid nanosize
(1 to 100 nanometers) particles in a carrier liquid. Since then,
nanofluids have been produced for many research purposes
as mixtures (typically up to 5%) of solid metal nanoparticles
(as gold), oxides (as alumina, silica, titanium dioxide, and
copper oxide), carbides, or nitrides nanoparticles and of
carbon nanotubes or nanofibers in continuous and saturated
fluids (as water, ethanol, and ethylene glycol) [3]. Nanofluids
are predicted to have higher thermal conductivity and heat
transfer coefficients than those of the base fluids because
solids have much larger thermal conductivity than those of
carrier fluids, and nanoparticles have a much larger surface-
to-volume ratio and larger mobility than those of larger solid
particles. Therefore, nanofluids are promising as coolants for
critical-cooling systems, as nuclear systems [4], large engine
radiators, and microchips [5]. These and other potential uses

of nanofluids, as applications for enhanced detergency, in the
biomedical field, and as smart fluids, were discussed byWong
and De Leon [5]. Synthesis of nanopowders, preparation of
nanofluids, and nanofluid performance as transport- and
electromagnetically active-media and as media for chemical
reactions have been recently reviewed by Taylor et al. [6].

Thermal and transport properties of nanofluids are pre-
dicted as substantially different from those of the base
fluids, such as their increased thermal conductivity [7] and
larger viscosity than those of the base fluids [7], and an
abnormal convective-heat-transfer coefficient [8, 9]. Mea-
surements of nanofluids’ effective thermal conductivity and
viscosity found them to be substantially higher than those
of the base fluids [10]. The enhancement of heat transfer
coefficient appears to go beyond amere thermal-conductivity
effect because it cannot be predicted by traditional pure
fluid correlations. These abnormal thermal properties may
be partially explained by the very large surface to volume
ratio and high mobility nanosize particles [7, 9], but a full
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understanding of nanofluid thermal properties should also
consider the thermal dispersion and intensified turbulence
brought about by nanoparticle motion [4]. The measured
thermal conductivities of nanofluids strongly depend on
temperature, particle volume fraction, size, shape [9], coat-
ing of nanoparticles [11], type of base fluid [12], and pH
of mixtures [13]. Such dependences and some larger than
expected nanofluid viscosities can be partially explained [14–
16] by aggregation of the nanoparticles, while the kinetics of
deagglomeration may strongly depend also on suspension of
pH [17]. A comprehensive review of heat transfer properties
of nanofluids and their dependence on several factors was
presented by Das et al. [18].

The potential of nanofluids to enhance existing heat-
exchanger systems has prompted experimental work with
traditional radiators. For instance, Leong et al. [19] reported
the heat transfer enhancement of an automotive car radiator
using ethylene glycol with 2% copper as nanofluid (with ethy-
lene glycol as the base fluid for comparison); they observed
that the overall heat transfer coefficient and bulk heat transfer
increased by about 3.8% with the use of the nanofluid com-
pared to the base fluid alone. The work of Peyghambarzadeh
et al. [20] tested five different concentrations for nanofluid
of alumina nanoparticles in water in the range of 0.1 to 1%
volume, as they compare to pure water in an automobile
radiator. Their results demonstrated that the nanofluids with
those low concentrations can enhance heat transfer efficiency
up to 45% in comparison to pure water. Some follow-up
work by the same researchers [21] measured the overall
heat transfer coefficient (according to the conventional 3-
NTU technique) in a car radiator cooled by copper-oxide-
and iron-oxide-nanofluids at concentrations of 0.15, 0.4,
and 0.65 vol.% in water. They found that both nanofluids
produced larger overall heat transfer coefficients (by up to
9%) as compared to those for water and that increasing
the nanoparticle concentration enhanced the heat transfer.
However, increasing the nanofluid inlet temperature led to
lower overall heat transfer. A computational fluid dynamics
simulation [22] of ideal nanofluid cooling in a Cummins
500 hp diesel engine showed that radiator size could be
reduced by 5%.

Many concerns remain about nanofluid effects on
cooling-system materials, particularly wear and erosion, and
there is little understanding of the tribological impact of
nanofluids on typical material surfaces. Initial research at the
US Department of Energy facilities [23] suggested that no
surface change would result to aluminum 3003 jet-impacted
by a SiC-nanofluid jet, for the case of 750 hours of a 2 vol.%
SiC in water nanofluid at 8m/s and impact angle of 30∘.
The follow-up work of Singh [24] with the same methods
found no significant erosion using nanofluids of Cu and
Al oxides in the base fluids ethylene and trichloroethylene
glycols, with velocities of 9m/s and at 90∘ and 30∘ impact
angles: the corresponding erosion rate in vehicle radiator was
extrapolated to be of 0.065 milligrams/year of typical vehicle
operation. Nguyen et al. [25] reported the wear effect on an
aluminum specimen subjected to the impinging of a jet of a
5% alumina-in-water nanofluid at a velocity of 9.6m/s. After
180 hours, a significant total mass loss of 14mgwasmeasured.

Recent experimental research work [26, 27] tested the
material-removal effects on aluminum, copper, and stainless
steel targets of nanofluid jets of TiO

2
, Al
2
O
3
, and ZrO

2
(each

at 9% concentration) and of SiC (at 3% concentration) in
the base fluid of distilled water plus a surfactant, as they
compared to the same materials impacted by a water-only
jet. They measured target thickness differences by scanning
the surface with a profilometer as an estimation of the
wear. While no differences in erosion effects were observed
for stainless steel, some significant increases of erosion (as
compared to base fluid) were observed on aluminum targets
for the TiO

2
, Al
2
O
3
, and ZrO

2
nanofluids (of about three

hundred times the wear removal caused by water) and for
copper only in the case of ZrO

2
nanofluid. No effects were

observed for any target material when impacted by the SiC
nanofluid. From SEM analysis they concluded that, for the
used nanofluids, most of the material would be removed by
mechanical erosion, while,for the water, it would be worn
mainly by intergranular corrosion (around the impurities
of the metal matrix); SiC seemed to cause a very small
corrosion effect, partly counterbalanced in the wear removal
measurement by a deposition of metal oxides.

George et al. [28] recently presented experimental work
on erosion effects of a nanofluid of 0.1%-volume of TiO

2

in distilled water. They tested for up to 10 hours the jet-
impingement effects at different angles on aluminum and
cast iron surfaces, by measuring weight loss, roughness by
speckle interferometry, and hardness after tests. Employed jet
speeds were 5m/sec and 10m/sec. They found that the rates
of erosion reached maxima at a 20∘ angle of impingement
for aluminum and at a 90∘ angle for cast iron. SEM images
and AFM scans were used to identify likely mechanisms
of erosion: corrosion-assisted erosion was the prominent
mode of material removal in cast iron, whereas mild abra-
sive erosion was responsible for the observed aluminum
smoothening upon nanofluid impingement; some degree of
work hardening was observed for both materials.

The authors presented [29] some preliminary work about
the effects of jet-impingement on the roughness change (Ra,
Rz, and Rq) of 3003-T3 aluminum and copper specimens
after 3-, 7-, and 14-hour treatments with suspensions of 2%
nanoalumina in water and in a solution of water plus ethylene
glycol, as they compared to average initial roughness. Some
substantial increases of roughness were found for the alu-
minum specimens, while no significant change was observed
for copper. They also presented [30] dynamic viscosity
measurements, showing that the addition of 2%-volume of
alumina nanopowders in ethylene glycol increased viscosity
by about 30%, while a 5% of nanopowder can almost triple
the viscosity. The authors concluded that a 2%-volume con-
centration seemed to be a reasonable practical compromise
(to enhance overall efficiency of cooling systems) between
the likely improvements of heat transfer versus the increased
viscosity. This paper presents the authors’ recent work on
wear and erosion effects of alumina-nanopowder-nanofluid
jet-impingement on two typical cooling-system materials,
aluminum and copper, for long experiments (up to 112-
hour tests), including microscopy analysis of the impacted
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surfaces, and discussion of possible mechanisms of surface
modification.

2. Experimental Methods and Test Parameters

The authors developed a test rig to explore the possible
erosion effects of some typical nanofluid suspensions impact-
ing some typical cooling-system materials. Figure 1 shows a
schematic and a photograph of the developed test rig.

The test rig of Figure 1 allows controlling a fluid jet, which
impacts a material target (the test specimen); nozzle to target
distance and target angle can be set within wide ranges;
nanofluid is recirculated by the instrument pumpduring each
test; development of the instrument is presented elsewhere
[29, 30]. The recirculation (gear) pump yields a maximum
volume flow of 2.5 liter/minute at nozzle velocity of 10.7m/s.
The tests of this research work employed a commercial mix-
ture of ethylene glycol in water (Prestone Super Tech 50/50
antifreeze/coolant [31]) as reference fluid and the nanofluid
suspension obtained by adding a 2% volume concentration
of alumina nanoparticles in that reference fluid.This mixture
was formulated from a 20%-aluminum-oxide nanopowder
dispersion in water (in which the employed nanopowders
were of 99.99% gamma-alumina, 10 nm original average
particle size before aggregation in a 20% dispersion, pro-
prietary dispersant not disclosed, supplied by US Research
Nanomaterials, Inc).

The jet-impingement tests were carried out for 3, 7, 14,
28, 56, and 112 hours for each of the fluids, where fluid
jets were applied normally (e.g., at 90∘) to test specimen
surfaces, for constant distance from nozzle to target of
1 inch (25.4mm). Test target materials were copper alloy
110 (99.90% electrolytic heat exchanger quality, supplied by
MSC Inc.) and aluminum 3003-T3 alloy (supplied by Kaiser
Aluminum); each specimen was a plate of 3 inch by 2 inch
(50.8mm by 75.4mm), 0.05 inch (1.27mm) thickness.

Each specimen was polished using flexible sand paper
with distilled water in the sequence of 220, 800, and 1200 grit,
to obtain a Ra roughness not greater than 7 𝜇inch. Specimens
were cleaned before tests by ultrasonic method with micro-
90 cleaning solution, and they were rinsed with distilled
water after tests and air-dried before weight and roughness
measurements, which were performed before and after tests.
Assessment of material-removal was carried out by pre- and
posttest weighing of specimens, with a Shimadzu AUW120D
balance of 0.1mg minimum readability in the used range.

Further assessment of surface modifications was car-
ried out by pre- and posttest roughness measurements; the
employed instrument was a Mitutoyo Surfest SJ-201 surface
roughness tester, and the recorded roughness parameters
were Ra, Rq, and Rz. Roughness was measured in two
directions: along the lay (e.g., the predominant polishing
direction) and across it. For the employed measurement
range of 14, 400 𝜇inch (360 𝜇m), the instrument resolution
was of 1 𝜇inch (0.0254𝜇m) [32].

Optical microscopy observations were also carried out
for the impacted material surfaces (of aluminum and cop-
per specimens) before and after the jet-impingement tests

to assess surface modifications and to help elucidate the
mechanisms of material change. A Keyence VHX 1000
Digital Microscope of 54 Megapixel resolution was used.
Surface images were captured by a high resolution zoom lens
VH-Z500R/W for magnifications of 500x to 5000x (in the
sequence 500x, 1000x, 2000x, 3000x, and 5000x). A lower
resolution lens (VH-Z20R) also was used at magnifications
of 20x to 200x (in the sequence 20x, 30x, 50x, 100x, 150x, and
200x). A VH-Z20R lens was employed for capturing images
by three other lens angles (15∘, 45∘, and 90∘).

3. Results and Discussion

Figure 2 presents the measured average Ra roughness for
3003-T3 aluminum specimens before and after 3-, 7-, 14-,
28-, 56-, and 112-hour treatments with (i) the reference
fluid of 50/50% ethylene glycol in water (EG/Water) and
(ii) a nanofluid of 2%-volume of nanoalumina mixed in the
reference fluid (initial values (without treatment) are called
“before test,” while values after each treatment are called “after
test” in following graphs).

The measurements presented in Figure 2 indicate that
aluminum-specimen roughness is affected by the jet-
impingements with both the reference fluid (EG/water)
and its 2%-alumina-nanofluid. For both of them, the Ra
roughness values initially decrease (from the 3-hour test)
showing relatively lower values for 7 and 14 hours, to be
followed by a monotonous increase after 28 hours (and
longer) of testing. Similar trends were observed for the two
other measured roughness parameters, Rq and Rz. Weight
measurements suggested a small increase in weight after
treatments (the highest measured of 5mg) for 3- to 28-hour
tests on aluminum, but no significant weight change was
observed after 28 hours of jet-impingement.

Since the initial roughness for each specimen presented
in Figure 2 was within the 2- to 7-microinch range, each
of the Ra values is normalized and presented in Figure 3.
Normalization of each after-test Ra-value was done by divid-
ing it by the corresponding initial (before-test) Ra for the
corresponding specimen. Figure 3 clearly shows the trends
suggested by Figure 2, of initial roughness increase, followed
by a decrease for 7 and 14 hours and by a monotonous
increase after 28 hours of test. The roughness values increase
up to eightfold for the longest tested time of 112 hours.
The evolution of roughness in Figures 2 and 3 suggests that
some early cleaning of the surface may occur during the first
three hours of test (shown as a small increase of roughness),
while removal of loosematerial (left from previous polishing)
occurs within the first 14 hours. After 28 hours of test,
increased material erosion seems to proceed. Figure 3 also
suggests that there were no significant differences on the
measured roughness values after jet-impingement by the
reference fluid (ethylene glycol/water), compared to those by
its 2%-alumina-nanofluid.

The measured roughness changes for aluminum samples
suggest that significant surface modifications occur when
impinged by a jet of the tested fluids. To study such
modifications, optical microscopy was conducted for all
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Main chamber
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Figure 1: Schematics and photograph of the authors’ test rig to assess nanofluid wear.
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Figure 2: Average Ra roughness for 3003-T3 aluminum before and
after 3-, 7-, 14-, 28-, 56-, and 112-hour treatments with the reference
fluid of 50/50% ethylene glycol in water and with nanofluid of 2%
nanoalumina in reference fluid.

the specimens after and before treatments. Figures 4 and 5
show microscopy images (for 5000x magnification) for the
aluminum specimens before and after jet-treatments with
each corresponding fluid.

Figure 4 allows comparison of before- and after-test
images with reference fluid of 50/50% ethylene glycol and
water (magnification: 5000x) without nanoparticles. After
treatment, polishing scratches have been removed (after test
of 112 hours), and small pitting on average, smaller than 5
micrometers (200microinches) becomes larger (to average
of 5 to 10 micrometers (200 to 400microinches), showing
as circled darker clusters in after-test image); some observed
features also suggest that some larger areas (of about 20
micrometers, not shown in Figure 4) may have started some
“spalling.”

Figure 5 allows comparison of before- and after-test
images with nanofluid of 2% alumina in 50/50% ethylene
glycol and water (magnification: 5000x). After 112-hour
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Figure 3: Normalized Ra roughness for 3003-T3 aluminum before
and after 3-, 7-, 14-, 28-, 56-, and 112-hour treatments with the refer-
ence fluid of 50/50% Ethylene glycol in water and with nanofluid of
2% nanoalumina in reference fluid.

treatment, some polishing scratches remain (as compared to
Figure 4 images, where scratches were fully removed), and
small pitting size is widespread (on average, smaller than
5 micrometers (200microinches, circled in the figure) and
pitting seems like clusters along original scratching lines
(circled in the figure).

Figure 6 presents the typically measured average Ra
roughness for copper alloy 110 before and after 3-, 7-, 14-
, 28-, 56-, and 112-hour treatments with (i) the reference
fluid of 50% ehtylene glycol in water (EG/Water) and (ii)
a nanofluid of 2% volume of nanoalumina mixed in the
reference fluid (initial values (without treatment) are called
“before test,” while values after each treatment are called
“after test” in following graphs). Since the initial roughness
for each specimen presented in Figure 6 was within the 2-
to 4-microinch range, each of the Ra values is normalized
and presented in Figure 7, where normalization of each after-
test Ra-value was done as for data of Figure 3. Measured
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Before After

Figure 4: Optical microscopy images of 3003-T3 aluminum before and after (112-hour) test with (reference fluid, without nanoparticles)
50/50% ethylene glycol/water (magnification: 5000x). Preexisting pitting and enlarged ones after treatment are circled.

Before After

Figure 5: Optical microscopy images of 3003-T3 aluminum before and after (112-hour) test with nanofluid of 2% alumina in 50/50% ethylene
glycol/water (magnification: 5000x). Preexisting pitting and enlarged ones after treatment are circled.

Rq and Rz roughness showed similar trends. No significant
roughness differences weremeasured, but normalized data of
Figure 7 suggests a slight roughness decrease; however, these
small observed differences are roughly within the instrument
resolution of 1 𝜇inch, and they need further experimentation
for validation.

Weight measurements of copper specimens found no
significant weight change after jet-impingements for the
tested fluids and times. To study possible modifications
nondetected by roughness or weight measurements, optical
microscopy was conducted for all the specimens after and
before treatments. Figures 8 and 9 show microscopy images
(for 5000x magnification) for the copper specimens before
and after jet-treatments with each corresponding fluid.

Figure 8 allows comparison of before- and after-test
images with reference fluid of 50/50% ethylene glycol and
water (magnification: 5000x), without nanoparticles. Before
treatment, some limited pitting (circled in “before” image)
and machining scratches were observed, while after 112-hour
treatment polishing scratches have not been removed, and
widespread small-size pitting is observed (some pitting after
treatment seems to cluster around some areas (circled in
“after” image).

Figure 9 allows comparison of before- and after-test
images with nanofluid of 2% alumina in 50/50% ethylene
glycol and water (magnification: 5000x). After 112-hour treat-
ment, polishing scratches were not removed, and preexisting
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Figure 6: Average Ra roughness for alloy 110 copper before and
after 3-, 7-, 14-, 28-, 56-, and 112-hour treatments with the reference
fluid of 50/50% ethylene glycol in water and with nanofluid of 2%
nanoalumina in reference fluid.

pitting (circled in Figure 9) becamemuch larger; some pitting
seems to cluster along original scratching lines (circled in
Figure 9).

The presented studies show that all tested fluids yield
substantial early modifications of the original surfaces, even
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Figure 7: Normalized Ra roughness for alloy 110 copper before and
after 3-, 7-, 14-, 28-, 56-, and 112-hour treatments with the reference
fluid of 50/50% ehtylene glycol in water and with nanofluid of 2%
nanoalumina in reference fluid.

for low-speed jet-impingement and for relatively short times
(compared to operational times of actual cooling systems).
In particular, the microscope imaging studies suggest that
the mechanisms of surface change for the employed low-
speed fluid-impact are different from those reported in
the literature. The fundamental case of high-speed single-
particle erosion on impacted surfaces is well known [33], and
multiple millimeter-size particle impact phenomena have
been extensively studied [34–38], where work hardening and
subsequent spalling after “incubation period” play important
roles in such dry-erosion cases. The observed changes driven
by low-speed-fluid of this study, however, seem to relate to
mild abrasion and to 1 to 10 micrometer-size pitting erosion.

4. Conclusions

The authors developed an instrument to employ a low-
speed jet for the testing of nanofluid interactions with typical
cooling-system material surfaces. This research work shows
the feasibility of using roughness and removed-material (by
weighing)measurements and opticalmicroscopy imaging for
assessing the possible early surface changes.

The low-speed tests with a reference fluid of 50/50%
ethylene glycol in water and with the nanofluid obtained by
adding 2% of alumina in such reference fluid allowed the
study of surface evolution of polished 3003-T3 aluminum
specimens for up to 112 hours of testing. For both fluids Ra
roughness values increased (up to eightfold for the longest
tested time of 112 hours).The evolution of roughness suggests
that cleaning the surface and removing loose material occur
during the first three hours of test, while smoothening
(removing deeper polishing scratch lines) would proceed
within the first 14 hours, followed by increased material
erosion after 28 hours of test.

For the 28- to 112-hour interval of jet-impingement-
test in aluminum there are no significant differences on
the measured roughness values after treatment with the
reference fluid (ethylene glycol/water), compared to the
same treatments with the 2%-alumina-nanofluid. But optical
microscopy imaging (magnification 5000x) showed different
surface-modificationmechanisms:while reference fluid com-
pletely removed polishing scratches and enlarged original
small pitting for the 112-hour test, the 2%-alumina-nanofluid
did not completely remove polishing scratches and it led
to widespread small pitting, which seems to cluster along
some original scratching lines. Since alumina is fairly chem-
ically inert, material removal in this early surface-modifying
mechanism in aluminum should be attributed tomainlymild
abrasion mechanisms, with no significant chemical erosion
component; these mechanisms are in good agreement with
the findings of George et al. [28], which were obtained for
titanium-dioxide nanofluid jet-impinged on aluminum.

The same low-speed tests (with reference fluid of 50/50%
ethylene glycol in water, and with the nanofluid obtained by
adding 2% of alumina in such reference fluid), allowed the
study of surface evolution of polished alloy 110 copper speci-
mens. The two fluids produced neither significant roughness
differences nor significant material removal by weight mea-
surements. But optical microscopy imaging (magnification
5000x) showed that both fluids start surface changes on
copper. While neither fluid treatment removed the initial
polishing scratches, widespread small pitting was observed
for the reference fluid in 112 hours, while preexisting pitting
became much larger for the 2%-alumina-nanofluid in the
same test-time, with some pitting clustering along original
scratching lines. The absense of significant scratching-line
removal in copper suggests that the observed early surface-
modification mechanism should be attributed to mainly
mild erosion, with a likely chemical component. However,
further studies are needed to clearly determine all involved
mechanisms for the materials and fluids tested. The authors
conducted some SEM observations of surfaces; however,
because of the relatively large size of the observed surface
scratches before treatments and of pitting after treatments (in
Figures 4, 5, 8, and 9), SEM images have not been useful to
investigate the phenomena.

Studies of nanoparticles attachment to the surfaces
require further research. Effects of material heating and
cooling (as they may occur in an actual heat-exchanger
system) for longer periods are also the subjects of current
studies. Relative hardness of the nanopowders compared to
that of the impacted surfaces and their work hardening can
be factors in the studied phenomena, and they are included
in the authors’ follow-up current research work.

There are no published studies on the effects of nanopar-
ticle size in erosion rates; the work of Lynn et al. [39] on
micrometer-size-SiC-particle slurry erosion of steel found
that erosion rates decrease with particle size, but these
and other works [40] should not be extrapolated to the
nanometer-size scale, because nanosize-particle aggregation
and clustering are not yet well-understood, and they seem
to be dependent on powder and base-fluid properties. For
instance, a recent paper [41] reports substantial aggregation
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Before After

Figure 8: Optical microscopy images of alloy 110 copper before and after (112-hour) test with (reference fluid, without nanoparticles) 50/50%
ethylene glycol/water (magnification: 5000x). Preexisting pitting and seemingly clustered ones after treatment are circled.

Before After

Figure 9: Optical microscopy images of alloy 110 copper before and after (112-hour) test with nanofluid of 2% alumina in 50/50% ethylene
glycol/water (magnification: 5000x). Preexisting pitting and enlarged ones after treatment are circled.

(up to the micrometer scale) for alpha-alumina–in-water
nanofluids, while gamma-alumina-in-water ones present no
aggregates (or if any, they would be of much less than
micrometer size). Therefore, studies of nanoparticle-size
effects in nanofluid erosion require further research.
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