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ABSTRACT

The objective of this research is to study the formation processes of a pulsed induc-

tive plasma using heavy gases, specifically the coupling of stored capacitive energy into

plasma via formation in a theta pinch coil. To aid in this research, the Missouri Plasmoid

Experiment Mk. I (and later Mk. II) was created.

In the first paper, the construction of differential magnetic field probes are dis-

cussed. The effects of calibration setup on Ḃ probes is studied using a Helmholtz coil

driven by a vector network analyzer and a pulsed-power system. Calibration in a pulsed-

power environment yielded calibration factors at least 9.7% less than the vector network

analyzer.

In the second paper, energy deposition into various gases using a pulsed inductive

test article is investigated. Experimental data are combined with a series RLC model to

quantify the energy loss associated with plasma formation in Argon, Hydrogen, and Xenon

at pressures from 10–100 mTorr. Plasma resistance is found to vary from 25.8–51.6 mΩ

and plasma inductance varies from 41.3–47.0 nH. The greatest amount of initial capaci-

tively stored energy that could be transferred to the plasma was 6.4 J (8.1%) of the initial

79.2±0.1 J.

In the third paper, the effects of a DC preionization source on plasma formation en-

ergy is studied. The preionization source radial location is found to have negligible impact

on plasma formation repeatability while voltage is found to be critical at low pressures.

Without preionization, plasma formation was not possible. At 20 mTorr, 0.20 W of power

was sufficient to stabilize plasma formation about the first zero-crossing of the discharge

current. Increasing power to 1.49 W increased inductively coupled energy by 39%. At

200 mTorr, 4.3 mW was sufficient to produce repeatable plasma properties.
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1. INTRODUCTION

1.1. MOTIVATION

Historically, manned space exploration has been limited to the confines of near-

Earth missions. Food, water, and transit times present significant challenges that inhibit

mankind from pushing farther into space. In order to address and overcome these chal-

lenges, advanced propulsion concepts need to be found that provide significant perfor-

mance increases over today’s space propulsion capabilities.

Pulsed plasma systems show great potential for future space propulsion systems.

However, knowledge gaps in the formation process of heavy-gas plasma present significant

hurdles that must be overcome for the technology to be fully realized. This work is fo-

cused on elucidating the fundamental mechanisms associated with heavy-gas break-down

in a cylindrical pulsed-power theta-pinch device. Specifically, a pulsed inductive test ar-

ticle using a cylindrical theta-pinch coil is designed and constructed to produce plasmas

of interest for interrogation. Calibration techniques of magnetic field probes are explored

in detail to address probe error associated with variations between calibration and pulsed-

power environments. Models are developed in SPICE and fit to experimental discharge

current profiles to quantify the energy deposited into the plasma by the discharge circuit.

Plasma modeling is further refined with the use of axial plasma imaging and an axial array

of radially aligned photomultiplier tubes enabling the determination of plasma thickness

and the interval of time for which plasma is present. Effects of a DC preionization source

voltage and radial location on plasma formation and energy coupling is also investigated.

Once total energy deposited into the plasma is determined, future work can endeavor to

identify and quantify internal plasma loss mechanisms such as excitation, ionization, wall

transport, etc. By studying the loss mechanisms and temporal energy evolution profiles
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associated with pulsed-inductive discharges, current models can be improved to better aid

the design of an advanced plasma propulsion device.

1.2. INDUCTIVELY COUPLED PLASMA

Inductively Coupled plasmas (ICPs) are, most generally, neutral gas that has been

ionized by strong electromagnetic fields produced by driving large currents through an

inductive coil. The inductors have no rigidly defined geometry but typically fall into one

of three categories:

1. cylindrical (θ = 0°)

2. conical (0° < θ < 90°)

3. planar (θ = 90°) .

θ

CL

J

Figure 1.1. Inductor geometry variations relative to half-angle θ .

Large discharge current is achieved by charging a capacitor bank to high voltage and

quickly discharging this energy through the inductive coil. The discharge current~I is dis-

tributed through the coil with current density ~J (Eq.(1.1)). This azimuthal current sheet

produces axial magnetic fields within the coil through Ampère’s Law (Eq.(1.2)) which then

gives rise to a radially varying azimuthal electric field by Faraday’s Law (Eq. (1.3)). When

a quasi-neutral gas is present, the electric field accelerates unbounded charged particles

producing a diamagnetic current within the device. The accelerated charged particles col-

lide with neutrals resulting in either excited species or ionization. This process is typically
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dominated by electron-neutral collisions due to the increased mobility of the electrons rela-

tive to ions which have a larger mass. For devices with small half-angles, the axial magnetic

field confines or “pinches” the plasma giving rise to the name θ -pinch. Figure 1.2 illustrates

the basic device physics of an ICP.

~I =
∫∫

S
~J ·d~S (1.1)∮

C
~B ·d~̀= µ0

∫∫
S

(
~J+ ε0

∂~E
∂ t

)
·d~S (1.2)

~∇×~E =−∂~B
∂ t

(1.3)

Figure 1.2. Physics of an inductively coupled plasma.

1.2.1. Compact Toroid. A Compact Toroid (CT) is defined by a closed magnetic

field structure, independent of the magnetic field of the inductive coil that originally formed
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the plasmoid. [? ] This characteristic allows for CTs to have relatively high plasma β

(Eq. (1.4)) such that the plasma pressure is balanced by the magnetic pressure (β u 1).

β =
nkBT

B2/2µ0
(1.4)

The qualities of magnetic detachment and radial confinement initially spurred interest in

CT plasmas in the fusion community for D-D and D-T reactors and was later adopted by

the spacecraft community as a potential high-power propulsion system using heavier gases

such as Argon and Xenon.

1.2.2. Field Reversed Configuration. Field Reversed Configurations (FRCs) are

one subset of the compact toroid (CT) family of ICPs and is of interest to the propulsion

community. Tuszewski [? ] wrote an extensive review on the state of FRC research in

1988 and Steinhauer [? ] provided an update on the status of FRCs to include recent

achievements in the field. However, for completeness, a brief overview of FRCs is provided

for the reader.

FRCs are characterized by relatively strong poloidal magnetic fields and little or

no toroidal magnetic fields (Bz � Bθ ). FRCs are formed by applying a magnetic field

in the reverse direction of a preexisting field. Typically this is achieved by establishing a

reverse bias magnetic field prior to discharge of the main capacitor banks, although early

experiments succeeded using only a main bank discharge. [? ]

1.2.3. FRC Formation. Other authors describe the FRC formation process in more

detail [? ], but a basic diagram illustrating the various stages has been reproduced from

Ref. [? , Fig. 3] and presented in Fig. 1.3. Neutral gas is fed into a non-conductive in-

sulator, typically quartz, and a bias field is applied through the use of permanent magnets

or a pulsed circuit with a discharge frequency much lower than that of the main discharge

circuit. The gas is ionized and charged particles orbit magnetic field lines of the bias field

effectively “freezing” the bias field into the plasma. The discharge current in the theta-
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(a)

(b)

(c)

(d)

Separatrix

(e)

Figure 1.3. Stages of FRC formation. (a) Bias field applied and plasma ionized.
(b) Applied magnetic field is reversed relative to bias field. (c) Plasma is radially

compressed and plasma field lines “tear” and reconnect. (d) Plasma undergoes axial
contraction. (e) Equilibrium reached and separatrix fully established.

pinch coil is then quickly reversed. The increased diffusion time of the magnetic field into

the plasma results in opposing field lines at the boundary of the plasma volume. The result-

ing electromagnetic forces produce a radially inward (−r̂) force, compressing the plasma.

Increased current densities at the edge of the theta-pinch produce larger field magnitudes re-
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sulting in a magnetic mirror which causes plasma field lines to “tear” away from field lines

of the coil and reconnect to adjacent plasma field lines near the center of the plasmoid. The

plasma then experiences axial contraction in addition to additional radial compression until

an equilibrium is reached (β u 1). [? ]

1.2.4. Pulse Inductive Thruster Research. The Pulsed Inductive Thruster (PIT)

was one of the earliest inductive plasma accelerators (1965) and helped lay the foundation

for modern pulse inductive thrusters. Initial work focused on current sheet microstructure

of a planar accelerator and the plasma acceleration mechanism. [? ] Results with a 20 cm

diameter accelerator showed a specific impulse (Isp) of 1500 s and an efficiency of 11%

when operating on argon. Significant improvements in Isp and efficiency were achieved

with a later 1 m diameter accelerator design. An (Isp) of 2240 s at 50% energy efficiency

was measured for a 7.5 mg impulse bit for a 4 kJ discharge (20 µF at 20 kV) in argon. [?

? ] Tests with the PIT MkV produced (Isp)s of 2000–8000 s with efficiencies between

42–52% and a nominal impulse bit of 0.1 N-s. [? ? ]

The Faraday Accelerator with Radio-frequency Assisted Discharge (FARAD) [? ?

? ? ? ? ? ] incorporated a RF (13.56 MHz) helicon antenna prior to a planar coil to

preionize propellant before main discharge. Using RF preionization, FARAD produced

inductive current sheets with a discharge energy of 44 J at 1.5 kV, substantially lower than

4 kJ necessary for PIT. Difficulties “turning” the ionized gas 90° to disperse over the planar

surface lead to the development of the Conical Theta Pinch FARAD (CTP-FARAD). [? ?

] Initial results indicate that increasing gas pressure eliminates non symmetries present in

current sheets formed at low gas pressures.

1.2.5. FRC Research. FRCs for space propulsion application have been previ-

ously investigated at the University of Washington, University of Alabama-Huntsville, and

at the Air Force Research Laboratory (AFRL) at Edwards Air Force Base. [? ? ? ? ? ? ? ?

] These studies have mainly focused on lower energy FRC formation and translation with

higher atomic mass gases.
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Research performed at the University of Washington has investigated the use of

FRCs for space propulsion and fusion, both individually and as a combined spacecraft sys-

tem. Slough, et.al., have investigated the Propagating Magnetic Wave Plasma Accelerator

(PMWAC) device for space propulsion [? ? ] and also an earth-to-orbit fusion plasmoid

device. [? ] Both of these have similar operating principles. First, a FRC is created. Then

the FRC is accelerated using a magnetic wave created by a sequence of pulsed electromag-

netic coils. If the device is only providing propulsion, then the accelerated FRC is expelled

at high velocity. However, if fusion is desired, then the FRC is compressed to smaller di-

ameter causing the temperature to increase to fusion levels. Power can then be extracted for

use creating the next FRC and the process is repeated. Results showed an ejection velocity

of at least 1.8×105 m/s for each deuterium plasmoid, which yielded a total impulse bit of

0.3 N-s.[? ]

The University of Washington in collaboration with MSNW LLC is also developing

the Electrodeless Lorentz Force (ELF) thruster. The goal of the ELF device is to demon-

strate efficient acceleration of a variety of propellants to high velocities (10–40 km/s) and

operation at high power (e.g. > 100 kW). The device is designed around a conical geom-

etry with a rotating magnetic field current drive to ionize the gas and drive an azimuthal

current to form an FRC. [? ]

Investigations at the University of Alabama-Huntsville and NASA Marshall Space

Flight Center have centered on the Plasmoid Thruster Experiment (PTX) which uses a

conical rather than cylindrical geometry. [? ? ? ? ] This geometry has benefits because the

FRC creation and acceleration occur within the same step. Unlike the PMWAC developed

by Slough, a traveling magnetic wave is not required to accelerate the FRC. Results have

shown electron temperature and density of 7.6 eV, and 5.0× 1013 cm−3 for argon and

23 eV and 1.2×1014cm−3 for hydrogen.[? ] Exit velocities up to 2.0×104 m/s have been

measured.
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The electric propulsion group at Edwards Air Force Base constructed an annular

FRC device called XOCOT. [? ] The XOCOT project primary goal was to develop FRC-

based plasmas at low power with long lifetime for propulsion applications. The program

investigated different charging energies, voltages, and timing, as well as multiple propel-

lants and pre-ionization techniques. Results showed multiple plasma formation and implo-

sions are possible with densities and electron temperature on the order of 3.0×1013cm−3

and 8 eV, respectively. [? ] Current Air Force efforts in collaboration with Michigan

Technological University are focused on understanding and quantifying the acceleration

mechanism, plume profile, and plume energy of an FRC thruster.[? ] XOCOT-T, the most

recent version of the XOCOT experiment, is focused on the translation of FRCs formed

at low voltages (0.5–3.0 kV) on longer time scales. This is accomplished with the use a

three-turn conical outer coil and a pulsed gas puff valve. Several pressures and gas puff

lengths have been investigated to determine optimal formation conditions. [? ]

1.3. DISSERTATION ORGANIZATION

This dissertation is organized primarily around the publication of three journal arti-

cles. Calibration of magnetic field probes was published in Review of Scientific Instruments

and can be found in Sec. 6. Development and implementation of a circuit model in SPICE

for determination of temporal evolutions of plasma energies is presented in Sec. 6 and was

published in IEEE Transactions on Plasma Science. Analysis of DC preionization source

voltage and radial location on plasma formation repeatability and improved circuit model-

ing has been submitted to IEEE Transactions on Plasma Science and can be found in Sec. 6.

Final conclusions are presented in Sec. 3.
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2. EXPERIMENTAL SETUP

2.1. MISSOURI PLASMOID EXPERIMENT

A significant portion of this research involved the design, construction, and testing

of a pulsed-power test article capable of forming a plasma in addition to the development

and implementation of numerous diagnostics. The Missouri Plasmoid eXperiment (MPX)

uses a cylindrical theta-pinch to inductively form plasma. Two variations of MPX were

constructed during the course of this research. The first iteration, MPX Mk. I, used a

0.16 cm thick plate of copper that was rolled into a 17.8 cm diameter 76.2 cm long cylinder

with two 12.7 cm tabs at the cylinder gap. To reduce parasitic inductances, the coil was

mounted directly to the top of the 707 nF discharge capacitor with a GP-14B spark gap

installed between the coil and the capacitor anode. The assembled configuration of MPX

Mk. I is shown in Fig. 2.1. Additional information regarding MPX Mk. I can be found in

Refs. [? ? ? ].

Figure 2.1. Missour Plasmoid eXperiment Mk. I. Theta-pinch coil constructed from single
piece of rolled copper plate and mounted directly to the discharge capacitor to minimize

line lengths and reduce losses.
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The second iteration of MPX (Mk.II) was modeled after the theta-pinch coil used

in AFRL’s Field Reversed Configuration Heating eXperiment (FRCHX). The copper coil

was replaced with an eleven-segment coil constructed from aluminum 7075 donated by

The Boeing Company to the Missouri S&T Department of Mechanical and Aerospace En-

gineering. The segments are constructed in symmetric halves and then bolted together

with two threaded rods. The segments are precision machined to have an ID of exactly

17.78± 0.01 cm, an improvement over the Mk. I coil which suffered from a non-uniform

diameter as a result of the rolling process. Four axial threaded rods are used to align the

assembled segment halves with nylon spacers placed between segments allow for probe

leads to be relieved radially. Radial relief of probe leads reduced the electromagnetic com-

patibility issues encountered in the Mk. I design which ran the probe leads axially along

the quartz tube under the theta-pinch coil.

Relevant dimensions of the quartz tube and MPX Mk. I and II are given in Table 2.1.

Solid model drawings of the Mk. II design and probe layout are shown in Figs. 2.2 and

2.3. Assembled coil is presented in Figs. 2.4 and 2.5. Final MPX Mk. II integrated into

the Aerospace Plasma Laboratory Space and High-Altitude Environment Testing Facility

at Missouri S&T is shown in Fig. 2.6. Additional information regarding MPX Mk. II can

be found in Refs. [? ? ? ]

Table 2.1. Dimensions of MPX Mk. I and Mk. II experiments.

Property Quartz Tube Mk. I Mk. II

Material 214 Quartz Copper Aluminum
Number of Turns N/A 1 1
Number of Segments N/A 1 11
Inner Diameter [mm (in)] 154.5 (6.1) 178 (7.0) 178 (7.0)
Outer Diameter [mm (in)] 161.0 (6.3) 181 (7.1) N/A
Thickness [mm (in)] 3.06 (0.12) 1.59 (0.06) N/A
Length [mm (in)] 915 (36.0) 762 (30.0) 783.5 (30.8)
Inductance [nH] N/A 37.2 36.2
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Figure 2.2. Axial probe array of eleven Ḃ probes and flux loop pairs.

Figure 2.3. Integration of Ḃ probe and flux loop under coil segment with radial relieved
leads
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Figure 2.4. MPX Mk. II fully integrated coil and probe array.

25.40

22.86

⌀17.78

78.35

6.35

5.08

Figure 2.5. MPX Mk. II integrated coil segments. All dimensions in centimeters.

2.2. VACUUM PUMPING SYSTEM AND GAS FLOW CONTROLLER

2.2.1. Space & High-Altitude Environment Testing Facility. Testing was con-

ducted at The Space & High-Altitude Environment Testing Facility located in the Aero-
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capacitor

spark-gap
theta-pinch coil

vacuum facility

baratron

Figure 2.6. Missouri Plasmoid eXperiment Mk. II.

space Plasma Laboratory at Missouri S&T. The 1.8 m diamter 3.0 m long vacuum chamber

uses four 0.89 m Varian NHS-35 diffusion pumps to provide the high throughput required

by large propulsion systems. Each pump has a rated throughput of 50,000 L/s on air,

62,500 L/s on helium. The diffusion pumps are backed by an Edwards EH 4200 roots

blower and a Tokuda KP-7500BG rotary vane pump. A total of ten 40.6 cm flanges are

installed on the vacuum chamber: three are located on each end of the chamber while two

are located on both the top and bottom of chamber. The facility is shown in Fig. 2.7.

2.2.2. Flow Controller. An Alley Cat MC20 flow controller is used to back fill

MPX with various propellants. The flow controller can provide flow rates up to 20 sccm

with an accuracy of ±1.0% for species of interest: argon, xenon, and hydrogen.

2.2.3. Pressure Gauges. The primary diagnostic for measuring vacuum chamber

base pressure is a cold cathode Pirani ACC 2009 full range gauge capable of measuring

pressure from 3.8× 10−6 mTorr to 750 torr with an accuracy of ±30% and repeatability

of ±5%. An Extorr XT100 Residual Gas Analyzer is used to detect various gas species

constituents and is used to detect system leaks.
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Figure 2.7. Aerospace Plasma Laboratory Space & High-Altitude Environment Testing
Facility at Missouri S&T. Ryan Pahl (author) left, Warner Meeks right.

A high accuracy (0.5%) MKS model 626 Baratron gauge connected to a MKS

PDR2000 dual capacitance manometer display is used to measure the fill pressure of MPX

during testing for pressures of 0.01–100 mTorr. For pressures greater than 100 mTorr, a

Varian 0531 thermocouple guage connected to a Kurt J. Lesker KJLC 615 display is pro-

vides pressure readings from 1–2000 mTorr with an accuracy of 10%.

2.3. DATA ACQUISITION

The data acquisition system for MPX utilizes the National Instruments (NI) PXI

platform. A PXI 1000-B modular chassis houses a PXI-8336 PXI-PCI fiber optic commu-

nications module for PC control of the PXI system and provides optical isolation for safety.

Six PXI-5105 modules are used for data acquisition and provide 48 channels of simul-

taneously collected data with 12-bit vertical resolution at 60 MS/s. A custom LabVIEW

program was created that synchronizes the individual cards and allows the user to configure

channel properties independently (i.e., vertical scale, input impedance, etc.). Each channel

uses 50Ω cabling with a 50Ω external termination at the scope to reduce experiment noise

resulting from the pulsed power environment. All probe leads are run through steel elec-
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trical conduit to provide additional shielding against external signals. The data acquisition

system is shown in Fig. 2.8.

Figure 2.8. Data acquisition system.



16

PAPER

I. COMPARISON OF MAGNETIC PROBE CALIBRATION AT NANO AND
MILLITESLA MAGNITUDES

Ryan A. Pahl, Joshua L. Rovey, and David. J. Pommerenke

Missouri University of Science and Technology, Rolla, Missouri, 65401, USA

(Received 8 November 2013; accepted 22 December 2013; published online 17 January 2014)

ABSTRACT

Magnetic field probes are invaluable diagnostics for pulsed inductive plasma de-

vices where field magnitudes on the order of tenths of Tesla or larger are common. Typical

methods of providing a broadband calibration of Ḃ probes involve either a Helmholtz coil

driven by a function generator or a network analyzer. Both calibration methods typically

produce field magnitudes of tens of microTesla or less, at least three and as many as six

orders of magnitude lower than their intended use. This calibration factor is then assumed

constant regardless of magnetic field magnitude and the effects of experimental setup are

ignored. This work quantifies the variation in calibration factor observed when calibrating

magnetic field probes in low field magnitudes. Calibration of two Ḃ probe designs as func-

tions of frequency and field magnitude are presented. The first Ḃ probe design is the most

commonly used design and is constructed from two hand-wound inductors in a differential

configuration. The second probe uses surface mounted inductors in a differential configu-

ration with balanced shielding to further reduce common mode noise. Calibration factors

are determined experimentally using an 80.4 mm radius Helmholtz coil in two separate

configurations over a frequency range of 100 – 1000 kHz. A conventional low magni-
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tude calibration using a vector network analyzer produced a field magnitude of 158 nT

and yielded calibration factors of 15 663± 1.7% and 4920± 0.6% T
V·s at 457 kHz for the

surface mounted and hand-wound probes, respectively. A relevant magnitude calibration

using a pulsed-power setup with field magnitudes of 8.7 to 354 mT yielded calibration fac-

tors of 14 615± 0.3% and 4507± 0.4% T
V·s at 457 kHz for the surface mounted inductor

and hand-wound probe, respectively. Low-magnitude calibration resulted in a larger cali-

bration factor, with an average difference of 9.7% for the surface mounted probe and 12.0%

for the hand-wound probe. The maximum difference between relevant and low magnitude

tests was 21.5%.
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1. INTRODUCTION

Magnetic field (Ḃ) probes are commonly used in pulsed inductive plasma (PIP)

devices to measure time-varying magnetic fields. [? ? ? ? ? ? ? ? ? ] In these

pulsed systems, energy is initially stored as electrical energy in capacitor banks. During

discharge, this energy is converted to electrical and magnetic fields to breakdown a neutral

gas. Two common PIP device applications are nuclear fusion and spacecraft propulsion.

Fusion devices such as the Z-Machine at Sandia National Laboratories [? ] and the Field

Reversed Configuration Heating Experiment (FRCHX) [? ] at the Air Force Research

Laboratories at Kirtland AFB use several MJ of energy per pulse to produce magnetic

fields on the order of Teslas and even as large as 250 T [? ] for magnetically-confined

fusion. Propulsion systems operate at lower energies, using as little as one joule [? ] and

up to a few kJ of stored energy per pulse to produce magnetic fields on the order of tenths

of a Tesla. [? ]

In its simplest form, a Ḃ probe consists of a segment of wire formed into a closed

geometric shape, typically a circle. Per Faraday’s law, when placed in the presence of a

time-varying magnetic field, a voltage is induced in the loop of wire proportional to the

time-varying magnetic field. A brief overview of the Ḃ probe theory is provided in Ref. [?

]. The two calibration methods accepted by the Institute of Electrical and Electronics Engi-

neers (IEEE) for calibration of Ḃ probes are the Helmholtz coil and Transverse Electromag-

netic (TEM) cell. [? ] Helmholtz coils are commonly used due to their ease of construction

and large area of field uniformity. [? ] In a cylindrical region spanning 0.3r axially and

0.3r radially from the center of the Helmholtz coil, field uniformity varies less than 1%. [?

] Additionally, Helmholtz coils can often accommodate larger field magnitudes than TEM

cells but have lower operational frequencies. [? ]

Calibration of Ḃ probes presents a few challenges. The first challenge is the de-

pendence of the probe sensitivity on frequency. Because the probe head is an inductor,
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the probe output voltage will attenuate when driven at higher frequencies as a result of

increased probe reactance. Messer et al. provide a more complete analysis of Ḃ probe sen-

sitivity and incorporate effects of transmission lines on probe response. [? ] An additional

challenge arises when using a Helmholtz coil as a calibration source. The inductance of the

coil windings preclude driving large currents at frequencies of interest for pulsed induc-

tive plasma due to increased impedance at increased frequencies reducing the calibration

field magnitude. Consequentially, calibration of Ḃ probes are often performed at relevant

frequencies but not relevant field magnitudes.

Field magnitudes on the order of 10 µT or less are often used to calibrate probes

intended to measure field magnitudes of 10 mT or greater. In Ref. [? ], the primary ex-

periment is expected to generate fields of 18 mT at 59 kHz. However, calibration is ac-

complished with a field magnitude three orders of magnitude less than the intended field

magnitude. Similarly, Ref. [? ] performs probe calibrations in a Helmholtz coil with

a maximum field magnitude of 60 µT. An experimental field magnitude is not explicitly

given, however, the author cites plasma experiments such as fusion studies and inductively

coupled plasmas as the common applications which have fields often greater than 10 mT.

This work quantifies the error associated with the assumption of a constant calibra-

tion factor when using low-magnitude fields to calibrate Ḃ probes intended for PIP devices.

Two different Ḃ probe configurations are used and their construction outlined in section 2.

Two different setups are used to produce low and relevant magnetic fields for calibration of

the Ḃ probes and are presented in section 3. Initial results are presented in section 4 with a

detailed analysis presented in section 5. Final conclusions are presented in section 6.
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2. PROBE CONSTRUCTION

Special care must be observed in the construction of Ḃ probes for application in PIP

devices due to the presence of large field magnitudes. In particular, the capacitive coupling

due to fluctuations in electrostatic potentials can produce significant probe voltages that

obscure the desired inductive signal and produce significant measurement error. [? ] This

problem is further exacerbated by the presence of plasma in PIP devices. One solution to

this challenge is to use a Ḃ probe in a differential configuration. Differential probes use two

identical Ḃ probes to remove the electrostatic coupling. This is possible because inductive

pickup (differential mode) is dependent on the orientation of the probe in the magnetic

field and capacitive pickup (common mode) remains unchanged with probe orientation.

By using two identical probes with one oriented 180◦ relative to the second, subtracting

the resulting signals removes the capacitive pickup and doubles the inductive pickup. The

work by Franck et al. analyzes the electrostatic rejection of the most common differential

probe configurations. [? ] Work done by Loewenhardt et al. suggests that a center tapped

configuration yields an order of magnitude reduction in capacitive pickup relative to a sim-

ply wound magnetic probe and therefore both probes in this study employ a center tapped

configuration. [? ]

Two Ḃ probe variations were constructed for the purposes of this study. The first

is a configuration commonly used when constructing Ḃ probes and consists of two sets

of ten turns of number 32 American Wire Gauge (AWG) enameled copper (magnet) wire

wrapped around a 4.88 mm diameter dowel rod. The magnet wire has a polyester insu-

lation with a polyamideimide overcoat and conforms to the ANSI/NEMA MW-35C/73C

standards. The 32 AWG wire has a diameter of 0.23 mm, yielding a mean probe diameter

of 5.11 mm. This gives a nA (turns-area) constant of 205× 10−6 turns-m2. The probe

calibration factor from Faraday’s law is defined as the inverse of the nA constant, giving

a theoretical probe calibration factor of 4876 T
V·s . Terminating the probe into a 50 Ω load
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necessitates doubling the probe sensitivity giving 9770 T
V·s into 50 Ω. Each probe head has

approximately 177 mm of twisted leads that are then connected to twelve centimeters of

RG-58/U coaxial cable and terminated with SMA connectors. The second probe design

uses two Coilcraft 1008CS-102XFLB surface mounted inductors (SMIs). The inductors

have a rated tolerance of 1% with a self inductance of 963 nH at 1 MHz and a self resonant

frequency of 290 MHz. The manufacture provided nA constant of 154× 10−6 turns-m2

gives a theoretical calibration factor of 6494 T
V·s or 12987 T

V·s into 50 Ω. The SMIs are

soldered to a custom printed circuit board with two 22.8 cm leads constructed of 1.2 mm

diameter semi-rigid coaxial cable and terminated with SMA connectors. Shielding of in-

ductive probes has been well studied [? ? ? ] and has been shown to reduce the electrostatic

noise on the probe. A good example of an electrostatically shielded probe is presented by

Biloiu et al. [? ] For additional shielding, the SMI probe is wrapped in a single layer of

copper tape. Solder is used to secure the copper tape to the probe and electrically connect

the shield to the ground conductor of the semi-rigid coaxial cables. A gap is added to the

center of the shield structure on the back of the probe head. This balances and thus can-

cels currents generated by the electrostatic noise on the probe shield. Figure 2.1 shows a

comparison of the two probes in this study. The SMI is shown prior to the addition of the

copper tape shielding.

Figure 2.1. Photo showing SMI (left) and hand-wound probe (right) for comparison.
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3. EXPERIMENTAL SETUP

Two experimental setups are used in this work. First, a network analyzer is used to

provide a low magnitude frequency domain calibration. This is one of the most commonly

employed calibration setups and can produces fields as high as tens of µT (dependent on

Helmholtz coil geometry) over a wide range of frequencies. The second method uses a

pulsed-power RLC discharge at high voltage at select frequencies to provide relevant field

magnitudes at select relevant frequencies. The same Helmholtz coil, probe cables, and

attenuators are used for both calibration setups. The only change was replacing the high

voltage capacitor and spark gap with the network analyzer. This minimizes the impact that

the test setup has on the results.

The single-turn loops of the Helmholtz coil used in testing are constructed of a one

turn aluminum ring with a cross-section of 6.0 mm × 6.4 mm. Measured from the center

of the ring cross-sections, the diameter of the Helmholtz coil is 160.8 mm and the distance

between the rings is 80.7 mm. A large non-conductive slug is placed in the center of the

Helmholtz coil to ensure probe placement remains constant within the Helmholtz field. The

machined probe holder ensures that the sensing region of the probe is perpendicular to the

center axis of the probe holder. The larger slug then ensures that the probe holder is axially

aligned at the center of the Helmholtz field. A test of the Helmholtz field uniformity is

performed and compared to simulations in EMC Studio [? ] with results shown in Fig. 3.1.

Helmholtz theory predicts a peak field of 221.9 mT at 39.7 kA current for a discharge

frequency of 88 kHz. Simulation gives a max field of 219.6 mT, a percent difference of

1.06%.

3.1. LOW MAGNITUDE CALIBRATION

An Agilent Technologies E5071C network analyzer was used to perform low mag-

nitude frequency domain measurements from 100 – 1000 kHz. Sweeps were conducted
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Figure 3.1. Comparison of measured Helmholtz coil field to simulation conducted in
EMC Studio. Experimental data collected with the hand-wound probe using the pulsed

power setup at 13 kV and 88 kHz.

with a 30 Hz filter and results averaged over two tests. The output power was set at the

maximum 10 dBm. Calibration of the network analyzer was performed prior to testing

using a Hewlett Packard 85033D 3.5 mm calibration kit. The network analyzer produced

a driving current of approximately 28.3 mA into the Helmholtz coil resulting in a field

magnitude of 158.2 nT.

3.2. RELEVANT MAGNITUDE CALIBRATION

PIP devices typically have fields greater than 10 mT. To achieve magnetic fields on

that order of magnitude, a pulsed power RLC circuit was used. To achieve discharges at

multiple frequencies, multiple capacitor banks were used in combination with two different

series inductors. Table 3.1 lists the combination of capacitor and inductor values used and

the resulting discharge frequency. Galvanized steel with a width of 80 mm and a thickness

of 1.2 mm was used as transmission line in the experiment. An EG&G GP-41B triggered

spark gap was used as the switch in the RLC circuit. A Pearson 1049 current monitor was
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Table 3.1. Capacitance and inductance values used in generating relevant magnetic fields
for calibration of Ḃ probe.

Frequency [kHz] Capacitance Inductance
Target Actual [µF] [µH]

50 50 1.005 9.40
100 88 7.190 0.00
100 98 0.275 9.40
250 240 1.005 0.00
500 457 0.275 0.00
750 799 0.056 0.00

1000 1089 0.027 0.00

used to measure the discharge current with a rated accuracy of +1/-0%. The 9.4 µH induc-

tor used to modify discharge frequency was constructed by wrapping ten turns of 12 AWG

magnet wire around a section of 89 mm diameter PVC pipe. To prevent arcing, a wind-

ing pitch of 4.2 mm was used and the inductor was potted in epoxy to hold the coil shape

during testing. Using the method outlined by Lundin [? ], the calculated inductance of the

Helmholtz coil was 268 nH. Modeling in SPICE [? ] indicates the parasitic capacitance

to be less than one percent of the total circuit capacitance value. The stray inductance of

the circuit is approximately 200 nH. Per IEEE std 1309-2005, the Helmholtz coil must be

operated in a volume with a minimum radius of 6.7r, where r is the Helmholtz coil radius,

devoid of conductors which may perturb the field geometry. [? ] For electrical shield-

ing of the high field magnitude tests, the Helmholtz coil was placed in a cylindrical metal

enclosure with a radius of 0.91 m and a length of 3.0 m.

3.3. DATA ACQUISITION

All data in the relevant magnitude calibration were acquired using a PXI-5105 12-

bit digitizer. The probes were connected to two 6.1 m RG-400/U cables. The two cables

were extended horizontally from the centerline axis of the Helmholtz coil away from the
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probes. After 0.61 m (as per the 6.7r requirement) the cables enter rigid conduit to provide

additional shielding in the pulsed-power environment as the probe leads are brought outside

of the shielded enclosure. Each probe lead then enters two Bird 25-A-MFN-10 attenuators

connected in series to provide 20 dB total signal attenuation. A 33 cm long section of

RG-223/U cable brings the signal to the PXI-5105 digitizer where they are terminated with

external 50 Ω terminators. The Pearson 1049 output signal is treated similarly, however

the conduit covers the full length of transmission line inside the shielded enclosure as the

current monitor is sufficiently far from the Helmholtz coil and does not violate the 6.7r

requirement.
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4. RESULTS

This section presents the results of the low magnitude and relevant magnitude cali-

brations. Results from the low magnitude testing are presented in section 4.1 while relevant

magnitude results are presented in section 4.2.

4.1. LOW MAGNITUDE CALIBRATION

Calibration factors from the low magnitude magnetic field tests using the dual port

network analyzer are determined by converting scatter parameters from frequency domain

to time domain for direct comparison to relevant magnitude tests. This is accomplished

by using the S11 reflection parameter to determine the coil inductance and driving current

over the tested frequency domain. The voltage induced on the Ḃ probe on channel 2 by

driving the Helmholtz coil on channel 1 is calculated from the S21 transmission param-

eter. The resulting calibration factors are presented in Table 4.1 at the same frequencies

Table 4.1. Results from low magnitude frequency domain Helmholtz calibration.

Frequency
[kHz]

Probe Calibration Factor
[ T

V·s
]

SMI Hand-Wound

100 15 411±7.2% 4860±1.7%
240 15 510±2.2% 4883±0.8%
457 15 663±1.7% 4920±0.6%
799 15 905±0.8% 4977±0.3%

1000 16 047±0.8% 5010±0.2%

that are used for the relevant magnitude calibrations. Calibration factors are calculated by

averaging the results of the A and B halves of the probes and applying a linear fit to the
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data. The resulting linear regressions calculated for the SMI and hand-wound probes are

kSMI = 15 340+0.708 f and kHW = 4843.3+0.167 f , respectively, where f is the frequency

in kHz. Reported uncertainty is calculated by averaging the deviation from the linear re-

gression of the ten points to the left and to the right of the frequency of interest. Hardware

limitations of the network analyzer limited the lowest frequency to 100 kHz, slightly higher

than either the 88 or 98 kHz used in the relevant magnitude calibration. Calculations for

converting the network analyzer results to time domain calibration factors are presented in

the Appendix. At 100 kHz, the measured probe inductances are 1.14 µH and 0.85 µH for

the SMI and hand-wound probes, respectively, and .95 µH and 0.68 µH at 1000 kHz. The

measured SMI inductance differs from manufacture provided values of 0.96 µH at 1000

kHz by only 1.6%.

4.2. RELEVANT MAGNITUDE CALIBRATION

For relevant magnitude calibration, the magnitude of the magnetic field is calculated

using the Helmholtz equation,

BH(t) =
(

4
5

) 3
2 µ0nI(t)

r
(4.1)

where µ0 is the permeability of free space, n is the number of turns of wire per coil, I is

the current, and r is the radius of the Helmholtz coil. The Helmholtz field in Eq. 4.1 is

calculated using the current measured from the Pearson current monitor. The pulsed power

circuit used discharge voltages ranging from 13 to 23 kV to provide a range of relevant

field magnitudes for calibration of the Ḃ probes. Table 4.2 provides the peak magnetic field

obtained for a given frequency at a specified discharge voltage. Using the peak magnetic

field values given in Table 4.2 and the corresponding peak of the integrated Ḃ signal, a

calibration factor was calculated.
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Table 4.2. Peak magnetic fields produced during relevant magnitude testing for a given
discharge voltage.

Frequency
[kHz]

Peak Magnitude [mT]
(Discharge Voltage [kV])

Minimum Maximum

50 21.5 (13) 35.5 (21)
88 245 (13) 354 (18)
98 10.8 (13) 18.3 (21)

240 84.8 (13) 131 (19)
457 43.5 (13) 83.0 (23)
799 14.4 (13) 25.3 (21)

1089 8.7 (13) 16.4 (21)

Five tests were performed at each field magnitude for a given frequency and cali-

bration values for a given discharge frequency are averaged over the voltage domain tested.

The standard deviation is reported as the probe uncertainty. The resulting calibration values

are shown in Table 4.3.

Table 4.3. Results from relevant magnitude time domain Helmholtz calibration.

Frequency
[kHz]

Probe Calibration Factor
[ T

V·s
]

SMI Hand-Wound

50 14 532±0.6% 4529±0.8%
88 14 566±0.1% 4482±0.1%
98 14 374±1.5% 4385±5.4%

240 14 459±0.4% 4476±0.3%
457 14 615±0.3% 4507±0.4%
799 14 352±0.7% 4412±2.2%

1000 13 408±2.4% 4123±3.1%
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5. ANALYSIS

Low magnitude calibration results in larger calibration factors than relevant mag-

nitude calibration. The percent difference between relevant magnitude and low magnitude

calibration factors is shown in Table 5.1 (relative to the relevant magnitude). The 100 kHz

Table 5.1. Percent difference of relevant magnitude and low magnitude calibration factors
for SMI and hand-wound probes.

Frequency
[kHz]

Percent Difference [%]

SMI Hand-Wound

88 5.8±7.7 8.4±2.0
98 7.2±10 10.8±8.4

240 7.3±2.8 9.1±1.2
457 7.2±2.1 9.2±1.0
799 10.8±1.7 12.8±2.9

1089 19.7±3.9 21.5±4.2

Avg. 9.7±4.6 12.0±3.3

low magnitude calibration factor is used for both the 88 and 98 kHz relevant magnitude

comparison, and the 1000 kHz low magnitude calibration factor is used for the 1089 kHz

relevant magnitude comparison. The average percent difference between low magnitude

and relevant magnitude calibration factors is 9.7±4.6% and 12.0±3.3% for the SMI and

hand-wound probes, respectively.

In relevant magnitude testing, the largest variations in calibration factors were ob-

served at frequencies where the common mode component of the signals was most substan-

tial. At 50 kHz, the hand-wound probe measured a 19.8 V common mode signal, 13 times

larger than the 1.52 V differential signal. The hand-wound probe measured common mode

signals at least 570% greater than the differential mode signal for the 50, 98, and 1000 kHz
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tests and equivalent signal magnitudes at 799 kHz. The SMI probe experienced lower ratios

of common mode to differential mode signals: 1.3 at 50 kHz and 1.2 at 98 kHz. The SMI

probe recorded lower common mode voltages and common mode to differential mode ra-

tios than the hand-wound probe at all frequencies. The SMI probe recorded common mode

voltages of one volt or less for all frequencies except 240 kHz. These low common mode

signals contribute to the lower measurement uncertainty for the SMI probe compared to the

hand-wound probe at relevant magnitude tests. This illustrates the necessity of shielding

Ḃ probes in the high-noise environments encountered in PIP devices. The addition of a

balanced shield on the SMI probe resulted in substantially less common mode noise.

Linear regressions of frequency domain probe response data yield slopes of 19.6

and 19.7 dB
decade for the hand-wound and SMI probes, respectively, compared to the ideal

response of 20 dB
decade . Correlation to the data is poor at low frequencies do to large un-

certainties and produces the non-ideal response. Time domain tests exhibited non-ideal

behavior at 799 and 1089 kHz. Rather than increasing with frequency, the calibration fac-

tors of the SMI and hand-wound probes decrease after 457 kHz. Based on the Helmholtz

Equation (Eq. 4.1), there are two possibilities: reduction in current magnitude or increased

probe response due to noise. Calibration of the current monitor indicates the sensitivity

only varied by 1.8% over the frequency domain tested. This suggests that the decrease in

Ḃ calibration factors at 799 and 1089 kHz is primarily due to a probe response above what

a purely differential signal should produce. Fitting linear regressions to the data from 88

to 457 kHz, approximations to a theoretical calibration factor can be extrapolated. From

the extrapolated results, the common mode signal contributed an additional 2.5% and 9.4%

to the calibration factor at 799 and 1089 kHz, respectively, for the SMI probe compared to

3.6% and 11.1% for the hand-wound probe. Furthermore, the presence of unmitigated com-

mon mode noise explains the trend that all relevant magnitude calibration tests produced

smaller calibration factors than those calculated at low magnitude. This further highlights
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the need to calibrate probes in an environment similar to the environment of the primary

experiment.
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6. CONCLUSIONS

Calibration of two different magnetic fields probes at low (158.2 nT) and relevant

(8.7 – 354 mT) field magnitudes at relevant frequencies of 100 to 1000 kHz for pulsed in-

ductive plasmoid devices are presented. Calibration at relevant magnetic field magnitudes

resulted in a lower calibration factor than low magnitude tests and increased measurement

uncertainty at higher frequencies. Calibration at low magnitudes may produce an “abso-

lute” calibration but it leaves the experimenter ignorant of potential signal contributions

from common mode sources which may obscure the intended differential field measure-

ment significantly at relevant magnitudes. In this work, despite the efforts taken to enhance

probe and cable shielding and mitigate common mode signals, average variations between

relevant and low magnitude tests still yielded a variation of 9.7±4.6% for the SMI probe

and 12.0±3.3% for the hand-wound probe. An experimentalist using a typical hand-wound

Ḃ probe can expect errors greater than 10.0% at low frequencies (less than 500 kHz for the

probes tested) and greater than 20% at higher frequencies (1000 kHz or greater) if common

the mode contribution is not quantified when operating in a pulsed-power environment.
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APPENDIX

VNA CONVERSION CALCULATIONS

Both the source (RS) and load (RL) impedance is assumed to be 50 Ω. To deter-

mine the current in the Helmholtz coil, the input power must be converted from dBm to

Watts using Eq. 1 and the S reflection and transmission parameters converted from dB to

magnitudes using Eq. 2.

P = 10
dBm−30

10 (1)

|Sxy|= 10
Sxy [dB]

20 (2)

The complex form of Sxy is calculated using Eq. 3

Sxy = |Sxy|e jθxy (3)

where θxy is the phase of the Sxy parameter in radians. Finally, the Sxy parameter is con-

verted to a complex impedance using Eq. 4.

Zxy = RS
1+Sxy

1−Sxy
(4)

From the complex impedance, the Helmholtz coil inductance can be calculated using the

complex impedance calculated from S11.

LHelm =
Im(Z11)

ω
(5)

Using the power and source impedance, the source voltage output from the network ana-

lyzer can be calculated.

VS = 2
√

PRS (6)
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Using the source voltage and source resistance with the Helmholtz coil inductance, the

driving current can be calculated.

IC =
VS

RS + jωL
(7)

Finally, the Helmholtz equation is used to determine the magnetic field.

BHelm =

(
4
5

) 3
2 µ0nIC

r
(8)

The probe response is calculated in Eq. 9 using the reflection parameter S21.

VR = |S21|
√

PRL (9)

In time domain, the probe response is typically integrated as shown in Eq. 10.

a =
∫ t

0
V (t ′)dt ′,0, t (10)

An identity of the Fourier Transform allows for the same operation to be performed in

frequency domain:

FFT(a) = FFT
(∫ t

0
V (t ′)dt ′,0, t

)
=

VR

jω
(11)

Finally the calculated magnetic field is divided by the probe response to get the calibration

factor.

k =
∣∣∣∣BH

a

∣∣∣∣ (12)
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ABSTRACT

Current profiles of a cylindrical ringing theta-pinch are compared to SPICE sim-

ulations of an established circuit model and a least squares estimate is performed to de-

termine plasma resistance and inductance for argon, hydrogen, and xenon plasmas with

prefill pressures ranging from 10–100 mTorr. Plasma resistance is found to vary from

25.8–51.6 mΩ with the lowest resistance occurring at 10 mTorr. Argon and xenon follow a

similar trend with the xenon resistance averaging 4.2 mΩ (12.3%) larger than argon from

40–100 mTorr. Hydrogen resistance is found to increase rapidly as prefill pressure increases

above 40 mTorr. Calculated plasma resistivity of 214–429 Ω-µm agrees with established

literature. Plasma inductance varies from 41.3–47.0 nH and is minimized at 30 mTorr for

argon and hydrogen while xenon inductance is minimized at 20 mTorr. Hydrogen yields

the highest inductance, averaging 1.9 nH (4.5%) more than argon over the pressure range

tested. Temporal evolution of the energy partitioning into capacitive, inductive, and resis-

tive loads is presented. Plasma inductive energy is found to be maximized when discharge

current reaches its peak negative value of −23.5 kA. Xenon shows the greatest amount of

inductive energy storage with a peak of 6.4 J (8.1%) of the initial 79.2±0.1 J while argon

dissipates the least energy through ohmic losses at most pressures. Hydrogen has the least

inductive energy storage at all pressures and greatest ohmic losses above 60 mTorr. Xenon

presents the largest ohmic losses over the 10–60 mTorr range.
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1. INTRODUCTION

Pulsed inductive plasma (PIP) devices have garnered much attention in recent years

in the fusion [? ? ? ? ? ] and spacecraft [? ? ? ] communities. Of primary inter-

est to the fusion community is deuterium, while the propulsion groups investigate heavier

gases such as argon and xenon. However, the initial energy conversion process presents a

substantial knowledge gap. Capacitors initially store energy which is then pulsed through

strategically arranged inductive coils generating large currents that induce strong magnetic

fields and opposing plasma currents. During a discharge, energy is divided between ca-

pacitive and inductive loads with energy being deposited into the plasma through mutual

inductance coupling with the theta-pinch coil. Joule heating of the experiment and plasma

losses (radiation, joule heating, wall transport, etc.) eventually dissipate all energy from

the system. Of primary interest to both communities is understanding and controlling the

energy coupling of the external circuit with the plasma.

This paper compares discharge current profiles of a cylindrical theta-pinch device

with SPICE simulations to elucidate the temporal evolution of the energy coupling and

losses associated with the gases of primary interest to the fusion and spacecraft communi-

ties over an applicable pressure range of 10–100 mTorr. Resulting plasma inductance and

resistance values can be used to determine optimum operating pressures or gas species.

Future studies can then explore the benefits of external circuit parameters, preionization

voltage and position, gas injection, and charge voltage.

Section 2 of this paper details the experimental setup and test parameters. The

circuit model used in this paper is presented in Sec. 3. Experimental results are presented

in Sec. 4 with detailed simulation results and energy analysis discussed in Sec. 5. Final

conclusions are presented in Sec. 6.
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2. EXPERIMENTAL SETUP

To study the energy mechanisms associated with heavy-gas PIP devices, a series

of tests were conducted using argon, hydrogen, and xenon gases at different fill pressures.

Vacuum and fill pressures from 10–100 mTorr are presented. This section details the ex-

periment setup and diagnostics used to obtain the data presented in this paper.

2.1. MISSOURI PLASMOID EXPERIMENT

The Missouri Plasmoid Experiment (MPX) Mk. II is a pulsed inductive test ar-

ticle located at the Aerospace Plasma Laboratory at Missouri S&T. MPX consists of a

high-voltage capacitor and a single-turn eleven-segment theta-pinch coil. Each segment

of the theta-pinch coil is constructed from aluminum 7075 and consists of two identi-

cal segment halves which are bolted together during assembly using two 0.95 cm diam-

eter threaded rods. The resulting coil segment has a diameter measuring 17.8 cm and a

thickness of 6.67 cm. The eleven segments are mounted horizontally and connected with

four 1.27 cm diameter threaded rods. Nylon spacers machined to a 5.0 mm thickness

are inserted between coil segments to allow for radial relief of magnetic diagnostics. The

total length of the assembled theta-pinch coil is 78.35 cm. Aluminum plates measuring

78.35 cm × 12.7 cm × 0.64 cm are bolted to the theta-pinch coil to provide an interface

for integrating the remaining MPX components. Four bolts per coil segment are used to

attach the aluminum plates to the theta-pinch coil to reduce joint resistance and inductance.

A grade 214 quartz tube insulator is placed inside the theta-pinch coil and serves as

the vacuum vessel for plasma formation. The quartz tube has an inner diameter of 15.5 cm

and outer diameter of 16.1 cm and a length of 90 cm. Acrylic plates are located at both

ends of the theta-pinch coil to ensure the quartz tube remains center aligned within the

theta-pinch coil. The south end of the quartz tube is mated to the Missouri S&T vacuum

facility [? ] with a Duniway VBJG-7 L-gasket. An aluminum flange is mated to the north
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end of the quartz tube using an identical L-gasket. Gas inlet and pressure gauge ports

are located on the north flange. A MKS model 626 Baratron pressure gauge measures fill

pressures of 0.01–100 mTorr.

A 0.707 µF capacitor is positioned approximately 20 cm from the edge of the theta-

pinch coil. The Maxwell 33934 capacitor is rated for 70 kV and has a series inductance of

50 nH. A Excelitas GP-12B spark gap and TR-1700 trigger transformer are used to initiate

the discharge of MPX. The adjacent electrode of the spark gap is connected to the anode of

the capacitor and the opposite electrode is connected to the theta-pinch coil using a copper

busbar. A second copper busbar is used to connect the capacitor cathode to the theta-

pinch coil and passes through the center of a Pearson 4418 current monitor to measure

discharge current. An acrylic insert is press-fit into the center of the current monitor to

provide high voltage insulation and ensure the current monitor remains centered about the

capacitor cathode. A tungsten electrode is inserted on the south flange and connected to

a high voltage supply. This pre-ionization (PI) stage is set to 1.7 kV and provides seed

electrons to assist the breakdown process. The MPX theta pinch coil and fully integrated

system are shown in Fig. 2.1. More information regarding the triggering system and MPX

diagnostics can be found in Refs. [? ? ].
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Figure 2.1. (a) Missouri Plasmoid Experiment (MPX) Mk. II theta pinch coil (units in cm)
and (b) fully integrated MPX experiment attached to Missouri S&T Aerospace Plasma

Laboratory vacuum facility.
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3. CIRCUIT MODEL

This section presents the circuit model used to determine the partitioning of the

MPX discharge energy. The determination of the MPX circuit parameters are discussed as

well as the methodology for determining the equivalent circuit values for the plasma.

3.1. CIRCUIT DIAGRAM

A common circuit representation of a pulsed inductive device is illustrated in Fig. 3.1a [?

? ? ? ] with an equivalent circuit given in Fig. 3.1b [? ? ] to simplify analysis with SPICE.

Unlike previous models [? ? ], the primary and secondary inductances (Lp and Ls) are not

C

Rp L0

LpV0
-

+

M

ip

S

Ls Rsis

(a)

C

Rp L0 Lp - M

V0
-

+

Ls - M

M Rsisip

S

(b)

Figure 3.1. (a) Circuit model of a pulsed inductive device. (b) Equivalent circuit replacing
inductors with a T network (Refs. [? ? ])

assumed equivalent due to the cylindrical geometry of MPX and the presence of a quartz
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tube insulator. The primary inductance is calculated using Eq. (9) in [? ] yielding 36.2 nH.

A few assumptions are made to calculate the mutual inductance:

1. plasma is a single-turn solenoid (N2=1)

2. plasma and theta-pinch coil are equal length

3. plasma radius is same as quartz tube inner radius

4. plasma thickness is small

Mutual inductance of coaxial solenoids of equal length can then be solved using Eq. (36)

in [? ] giving a mutual inductance of 27.4 nH. Unlike [? ? ? ? ? ], the plasma is not

axially translated away from the device therefore no z dependence is considered in this

model. Additionally, all circuit parameters are assumed constant over the discharge period

and no radial compression of the plasma is assumed.

3.2. SIMULATION METHODOLOGY

The primary circuit parameters are found using vacuum test results and assuming

a simple series RLC circuit model. Values of R, L, and C are iterated and the resulting

current is compared to the MPX discharge current. Using a least squares estimate (LSE),

the values of R, L, and C best approximating the vacuum discharge are 40.5 mΩ, 183.2 nH,

0.707 µF, respectively. Parasitic inductance L0 is calculated by subtracting the primary

inductance from the series inductance solution giving 147.0 nH. These values are used for

all subsequent plasma simulations to calculate plasma resistance and inductance.

The plasma resistance and inductance (Rs and Ls) are solved using SPICE [? ]

simulations. A script is written in Python that iterates Rs and Ls values. For a given com-

bination of circuit values, the script produces the necessary netlist and runs SPICE through

batch command. The SPICE simulation returns the primary and secondary currents shown
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in Fig. 3.1b and the primary current is then compared to the first 30 µs of the MPX dis-

charge using a LSE. The combination of secondary circuit elements yielding the least error

are presented as the effective plasma resistance and inductance.
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4. EXPERIMENTAL RESULTS

This section presents the data from the single diagnostic used in this paper. MPX

discharge current results are presented in both time and frequency domain. Data results

from typical vacuum and plasma shots are presented. Vacuum tests are conducted at a

pressure of 0.01 mTorr while plasma shots have prefills of argon, xenon, or hydrogen rang-

ing from 10–100 mTorr and result in the formation of a plasma.

The Pearson 4418 current monitor measures the time-varying discharge current of

MPX and all tests had an initial voltage of 15.0 kV±0.3%. In the vacuum case, a maximum

current of 26.7 kA is measured. Plasma tests yield higher peak currents with a maximum

of 27.5 kA observed for all three gas species. Fast-Fourier transform (FFT) and short-

time Fourier transform (STFT) using MATLAB’s built-in spectrogram function are used

to analyze the current profile in frequency domain. FFT results show primary discharge

frequencies of 442.6 and 465.4 kHz for the vacuum and plasma cases, respectively. For

the STFT, a window length of 257 data points (14.3% of record length) with 95% overlap

is used with a sampling frequency of 60 MHz and 216 frequency points. The resulting

spectrograms for the vacuum and plasma cases are presented in Figs. 4.1c and 4.1d, re-

spectively. The STFT requires a full time window of data (4.29 µs in this case) before

the frequency spectrum can be calculated. Because no waveform data are available before

t = 0, the frequency spectrum for the first half-window cannot be determined and the spec-

trograms in Figs. 4.1c and 4.1d necessarily start at t = 2.14 µs. The spectrograms indicates

that the initial frequencies of vacuum and plasma discharges were 441.8± 1.8 kHz and

463.3± 2.5 kHz, respectively. Plasma tests see the primary discharge current decrease at

an earlier time than what is observed in vacuum tests.

The 5.3% increase in discharge frequency observed in Fig. 4.1b is combined with

an increased dampening ratio resulting in a reduced number of current oscillations before

returning to a quiescent state. Rather than having a single discharge frequency, a clear
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Figure 4.1. MPX discharge current measured with Pearson 4418 current monitor. Vacuum
and plasma discharges are presented with time domain results in (a) and frequency domain

results in (b-d). (b) Fast-Fourier transform of the full discharge, (c) spectrogram of
vacuum test, and (d) spectrogram of typical plasma discharge. Illustrated plasma case

taken with a 10 mTorr argon prefill.

broadening in the frequency domain is observed in both the vacuum and plasma cases.

When plasma is present, the peak intensity of the FFT is reduced to 57.8% of the vacuum

peak intensity and has a full-width half-max of 61.1 kHz compared to 44.9 kHz for the

vacuum case, an increase of 36.1%.
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5. DISCUSSION

Argon, hydrogen, and xenon gases are tested from 10–100 mTorr in 10 mTorr in-

crements with each test condition repeated five times. The experimental discharge currents

have a variation of ±2%. Values of Rs and Ls are simulated to a resolution of 0.1 mΩ

(0.4%) and 0.1 nH (0.2%), respectively.

5.1. CURRENT COMPARISON

Examples of vacuum and plasma simulation currents are plotted against MPX pri-

mary discharge current in Fig. 5.1. By assuming time-invariant circuit parameters, the

simulation does not match the primary discharge current exactly. The simulation over-

predicts the peak discharge current magnitude by 3.7± 0.2% on the vacuum tests and an

average of 5.0±0.6% on plasma tests. The largest error in current magnitudes observed in

the first 60% of the discharge occurs at approximately 40% of the full discharge time. The

full discharge time is defined as the time required for the current to return to a quiescent

state. For the vacuum and plasma tests, the full discharge times are 30.0 and 22.7 µs, re-

spectively. For vacuum, the maximum error is 8.4% at 11.9 µs and 8.5% at 9.2 µs for a

80 mTorr argon plasma. Between 40–60% of the full discharge time, the deviation between

simulation and experimental current magnitude decreases. In the last 40% of the discharge,

the primary circuit resistance Rp increases rapidly as the spark gap switch opens, further re-

ducing agreement. However, 98.6% of the initial energy has been dissipated through ohmic

losses in the first 60% of the discharge. The poor model agreement during the last 40% of

the discharge therefore has negligible impact on the results presented in this paper. Using

a FFT, the center frequency of the MPX discharge can be compared to the resonant fre-

quency of the simulation solution. The vacuum tests presented 442.6 kHz center discharge

frequency compared to 441.3 kHz in simulations, a difference of 0.3%. Plasma tests agree

with simulation with an average difference of 0.8%. All three gases show best frequency
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Figure 5.1. Comparison of (a) vacuum and (b) plasma simulation currents with measured
MPX discharge current. Illustrated plasma case taken with a 10 mTorr prefill of argon.

agreement at 30 mTorr. Hydrogen produced the best frequency agreement with an average

simulated frequency of 460.4 kHz±0.3% compared to a average MPX discharge frequency

of 463.7 kHz±0.3%, a difference of 0.7%. No direct methods of measuring plasma cur-

rent were implemented during testing therefore errors relative to the simulated secondary

current could not be quantified.
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5.2. SIMULATION RESULTS

The circuit parameters calculated from the LSE SPICE analysis are plotted as func-

tions of pressure in Fig. 5.2. Plasma resistance is due to the collisionality of the plasma. For
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Figure 5.2. Resulting plasma (a) resistance and (b) inductance from LSE analysis of
circuit simulations and MPX discharges from 10–100 mTorr.

all three gases, the plasma resistance is found to vary between 25.8 and 51.8 mΩ. These
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results agree with the 10–100 mΩ [? ] estimate presented in literature. Over the pressure

range tested, the resistance of argon, hydrogen, and xenon increased by 56.7%, 94.2%,

and 77.0%, respectively. Assuming a long annular cylinder of plasma with a thickness

of 5 mm (from [? ]), the resistivity for the 10 and 100 mTorr argon prefills are 214 and

429 Ω-µm, respectively, in agreement with the literature. [? ? ] The pressure dependence

of the xenon resistance closely matches that of argon but averages 4.0 mΩ (12.5%) higher

from 40–100 mTorr. The resistance of hydrogen is comparable to argon and xenon from

10–40 mTorr, but increases faster than the other gases after 40 mTorr.

The inductance of all three species varies from 41.3–47.0 nH. Inductance is mini-

mized at 30 mTorr for argon and hydrogen while xenon is minimized at 20 mTorr. From

30–50 mTorr, the inductance of xenon closely matches that of argon, varying by an av-

erage of 0.5%. After 50 mTorr, the inductance of argon and xenon deviate with xenon

averaging a 0.8 nH (1.9%) increase over argon with the exception of 80 mTorr when ar-

gon inductance exceeds xenon by 0.5 nH (1.2%). The inductance of hydrogen is largest

of the three species tested with an average increase of 1.1 nH (2.6%) from 20–60 mTorr

and 2.6 nH (6.0%) from 70–100 mTorr, relative to argon. After 60 mTorr, the pressure de-

pendence on hydrogen inductance increases 284% and 147% faster than argon and xenon,

respectively, and xenon increases 55% faster than argon.

5.3. ENERGY ANALYSIS

During the MPX discharge (t > 0), the energy initially stored in the capacitor is

distributed between capacitive and inductive elements in the primary and secondary circuits

or dissipated through resistance as shown in Eq. (5.1)

1
2CV 2

0 = 1
2CV 2

p (t)+
∫ t

0 I2
p (τ)Rpdτ +

∫ t
0 I2

s (τ)Rsdτ

+1
2L0I2

p (t)+
1
2LpI2

p (t)− IpIsM+ 1
2LsI2

s (t) .
(5.1)



50

Using the results from the circuit simulations, the temporal evolution of the energy parti-

tioning can be calculated. The results of a 10 mTorr argon prefill are shown in Fig. 5.3b.
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Figure 5.3. Temporal evolution of energy partitioning in capacitive, inductive, and ohmic
loads for (a) vacuum and (b) plasma tests. Illustrated plasma case taken with a 10 mTorr

prefill of argon.



51

The inductive energy plotted is the summation of the energies stored in all four inductive

loads. The ohmic energy is split into the contribution from the MPX circuit and the plasma;

in the case of a 10 mTorr argon prefill (Fig. 5.3b), 15.9 J (20.1%) of the initial energy is

dissipated by the plasma.

Variation between the experimental and theoretical currents shown in Fig. 5.1b re-

sult in total energies that drop below the initial 79.2 J stored in the capacitor. This is a result

of attempting to fit constant value circuit parameters to a dynamic system. The plasma pa-

rameters produced from the LSE analysis combined with the simulated currents produce a

total energy that exactly equals the initial energy at all times. However, simulated primary

currents over predict the experimental currents at early times resulting in a small deficit

in the total energy relative to the initial energy. For vacuum tests, the maximum deficit

was 6.9± 0.3% of the initial energy compared to 9.2± 0.9% for plasma tests. At later

times, 5.1 µs for vacuum and 3.77 µs for plasma tests, the simulated primary current under

predicts the experimental current resulting in a total energy that exceeds the initial energy.

The simulated current starts to over predict current at later times, 18.6 µs for vacuum and

13.4 µs for plasma tests, but by this point over 98% of the initial energy has been ohmi-

cally dissipated regardless of which current is considered. The simulated current dissipates

an additional 0.12 J (0.16%) of the initial energy relative to the experimental current for a

given solution of plasma circuit parameters. An increase in total energy deficit is observed

for plasma tests because the plasma current is directly proportional to the primary circuit

current. Therefore the over prediction of the simulation current has a compounding effect.

The inductor models the energy stored within plasma and the resistance models the

energy dissipated by the plasma and other loss mechanisms. These two contributions are

shown in Figs. 5.4 and 5.5, respectively.

Inductive energy for argon is presented in Fig. 5.4a at select pressures. The resulting

maximum energy for all gases and pressures are plotted in Fig. 5.4b. All three gases show

maximum inductively stored energy occurs at time 1.6 µs at 30, 20, and 10 mTorr for
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Figure 5.4. (a) Temporal evolution of plasma inductive energy and (b) maximum inductive
energy stored in plasma as a function of gas species and prefill pressure.

argon, hydrogen, and xenon, respectively. The temporal evolution of the energy dissipated

through ohmic heating is presented for select prefill pressures of argon in Fig. 5.5a and for

all gas species and pressures in Fig. 5.5b. All three species show increased ohmic energy

dissipation as pressure increases. At 100 mTorr 25.3%, 26.7%, and 26.3% of the initially

stored energy is dissipated by argon, hydrogen, and xenon, respectively.
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Figure 5.5. (a) Temporal evolution of energy resistively dissipated by plasma and (b) total
dissipated energy as a function of gas species and prefill pressure.
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6. CONCLUSIONS

A simple method of estimating inductively coupled plasma parameters using SPICE

has been presented. Simulations indicate that inductive energy deposited into the plasma

initially increases with pressure to a local maximum for argon and hydrogen and then de-

crease significantly with increasing prefill pressure. Test with xenon suggests that the max-

imum deposited inductive energy occurs with a prefill pressure between zero and 10 mTorr.

For all three gases, simulations show increased energy ohmically dissipated by the plasma

as prefill pressure is increased. The presence of a local maximum in inductively cou-

pled plasma energy suggests a potential optimum design condition may exist for each gas

species depending on intended application. For example, experiments where plasma com-

pression is used to generate fusion may observe the greatest performance with a 20 mTorr

hydrogen prefill and a compression timing of 1.6 µs as this would maximize the amount of

energy in the plasma.

Simulated properties have shown to be in agreement with established literature with

plasma resistivity varying between 214 and 429 Ω-µm. Temporal evolution of the plasma

indicates that 8.1% or less of the initial energy is inductively stored in the plasma while

15.0–21.2 J (18.8–26.7%) of the initial energy is dissipated through plasma ohmic losses.

Inductive energies are maximized at three quarters of the first discharge cycle when cur-

rent is most negative. More inductively coupled energy is stored in argon for pressures of

30 mTorr and above while xenon averages 2.2% more energy than argon and 6.5% more

than hydrogen from 10–20 mTorr. Hydrogen yields the largest plasma inductance over the

tested pressure range.
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ABSTRACT

The effects of DC preionization voltage and radial location on plasma formation

repeatability are presented for argon prefills of 20–200 mTorr with a discharge energy of

79.5 J at 15 kV. Current profiles of a ringing theta-pinch are compared to circuit simulation

in SPICE to estimate plasma resistance and inductance and quantify plasma formation un-

certainty. Plasma thickness is calculated using axial imaging and experiment geometry and

used to determine the mutual inductance coupling of the plasma and the theta-pinch coil.

At all pressures tested, plasma formation failed to occur in the absence of DC preionization.

At pressures less than 100 mTorr, preionization voltage has a significant impact on plasma

formation, repeatability, and energy coupling into the plasma. At 20 mTorr, 0.20 W of DC

power is sufficient to stabilize plasma formation at the first zero-crossing of the current.

With 1.5 W an additional 39% of inductive energy is coupled into the plasma. Increasing

pressure also increased plasma repeatability and resulted in a convergence of plasma circuit

parameters.
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1. INTRODUCTION

Pulsed inductive plasma (PIP) devices have garnered much attention in recent years

in the fusion [? ? ? ? ? ] and spacecraft [? ? ? ] communities. Of primary inter-

est to the fusion community is deuterium, while the propulsion groups investigate heavier

gases such as argon and xenon. However, the initial energy conversion process presents a

substantial knowledge gap. Capacitors initially store energy which is then pulsed through

strategically arranged inductive coils generating large currents that induce strong magnetic

fields and opposing plasma currents. During a discharge, energy is divided between ca-

pacitive and inductive loads with energy being deposited into the plasma through mutual

inductance coupling with the theta-pinch coil. Joule heating of the experiment and plasma

losses (radiation, joule heating, wall transport, etc.) eventually dissipate all energy from

the system. Of primary interest to both communities is understanding and controlling the

energy coupling of the external circuit with the plasma.

This paper investigates the effects of DC preionization (PI) source location and

voltage on argon plasma formation over a pressure range of 20–200 mTorr. SPICE simu-

lations are used to analyze experiment discharge current profiles and determine equivalent

circuit parameters of the plasma. Improvements over previous work [? ] are achieved with

photomultiplier tubes which allow for a subset of the discharge current corresponding to

plasma presence to be used in the SPICE model. Furthermore, plasma thickness is deter-

mined from axial imaging which is then used to calculate the mutual inductance between

the plasma and theta-pinch coil.

Section 2 of this paper details the experimental setup and test parameters. The

circuit model used in this paper is presented in Sec. 3. Experimental results are presented in

Sec. 4 with detailed simulation results discussed in Sec. 5. Final conclusions are presented

in Sec. 6.
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2. EXPERIMENTAL SETUP

To analyze the effects of a DC PI source on pulsed inductive plasma formation, a

series of experiments were conducted. The tests were performed using the Missouri Plas-

moid Experiment (MPX Mk. II) and Missouri S&T Space and High-Altitude Environment

Testing Facility (Fig. 2.1) with argon prefills ranging from 20–200 mTorr. More detailed

information on the MPX Mk. II geometry, discharge characteristics, and diagnostics can be

found in Refs. [? ] and [? ].

capacitor

spark-gap
theta-pinch coil

vacuum facility

baratron

Figure 2.1. Missouri Plasmoid Experiment (MPX) Mk. II attached to Space and
High-Altitude Environment Testing Facility in the Missouri S&T Aerospace Plasma

Laboratory.

Two DC PI sources were placed at experiment radii corresponding to r = 0.0R

and r = 0.8R, where R is the radius of the quartz tube. The DC sources are driven by a

Matsusada RB10-10P power supply with a maximum output of 1 mA at 10 kV. Five DC

voltages are used for each probe at each pressure tested. The voltage range is bracketed

by the lowest stable output of the preionization circuit (400 V) and the breakdown voltage

of the prefill gas. Once the upper and lower bounds were determined, the voltage range
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was divided evenly into fifths. The resulting upper and lower bounds of the voltage range

associated with each prefill pressure are tabulated in Table 2.1. Both the 100 and 200 mTorr

Table 2.1. Voltage and current of DC preionization source at the lowest and highest
voltage settings. Reported error is one standard deviation of the measured value.

Pressure
[mTorr]

Setting 1 Setting 5

Voltage [V] Current [mA] Voltage [V] Current [mA]

20 398±0.6% (10.8±1.9%) 1498±0.4% (998±2.7%)
40 417±8.9% (10.9±2.7%) 800±0.1% (942±3.3%)
60 401±0.4% (10.8±0.0%) 599±0.2% (745±1.7%)
80 400±0.0% (10.8±0.0%) 559±0.2% (845±1.1%)

100 399±0.3% (10.8±0.0%) 556±0.3% (1117±0.1%)
150 399±0.2% (10.8±0.0%) 589±0.3% (83.8±5.6%)
200 401±0.2% (10.8±0.0%) 567±0.3% (179±3.5%)

pressures presented a challenge at the highest voltage. The initial target for these two

pressures was 600 V and thus 50 V increments. However, during testing the highest value

that could be consistently achieved without breaking down the gas was less than 600 V. For

these two pressures, the voltage increment is 50 V even though the 600 V upper limit was

not achieved.
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3. CIRCUIT MODEL

This section presents the SPICE circuit model used to elucidate equivalent plasma

circuit parameters. The determination of the MPX circuit parameters are discussed as well

as the methodology for determining mutual inductance and the equivalent circuit values for

the plasma.

3.1. CIRCUIT DIAGRAM

A common circuit representation of a pulsed inductive device coupled to a plasma

through a mutual inductance is illustrated in Fig. 2(b) of Ref [? ]. Unlike previous mod-

els [? ? ], the primary and secondary inductances (Lp and Ls) are not assumed equivalent

due to the cylindrical geometry of MPX and the presence of a quartz tube insulator which

provides a stand-off from the wall of the inductor. The inductance of the theta-pinch coil

(primary inductance) is calculated using Eq. (9) in [? ] yielding 36.2 nH. A few assump-

tions are made to calculate the mutual inductance:

1. plasma is a single-turn solenoid (N2=1)

2. plasma and theta-pinch coil are equal length

3. plasma outer radius is same as quartz tube inner radius

The mutual inductance of coaxial solenoids of equal length can then be solved using

Eq. (36) in Ref. [? ] once plasma thickness is known. This is determined using axial

imaging with a Canon EOS Rebel XT with a focal length of 50 mm, a f-stop of 10, an ISO

of 100, and an exposure length of 1 second. Plasma images are processed with the Python

PIL library to determine the plasma geometry. This process in discussed in greater detail

in Sec. 4.2.
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3.2. SIMULATION METHODOLOGY

To determine equivalent circuit parameters of the plasma, SPICE simulations are

used for a given Rs and Ls. The resulting primary circuit current is compared to MPX

discharge currents and the Nelder-Mead simplex [? ] method is used to minimize the

error function in a least-squares sense to determine Rs and Ls. To better approximate the

plasma parameters, eight Ocean Optics 200 µm fiber optic patch cables were placed in the

gaps between coil segments 2–10 looking in the r̂ direction and connected to Hamamatsu

HC120-05 photomultiplier tubes (PMTs) to determine the time interval for which plasma is

present. The SPICE simulation fits only the discharge current in this time interval. Python

is used to produce the necessary SPICE netlist for the updated Rs and Ls from each iteration

of the simplex method and call SPICE through batch command.

Primary circuit values were found using vacuum test results and a simplified se-

ries RLC model. The values of R, L, and C best approximating the vacuum discharge are

40.4 mΩ, 185.1 nH, 707 nF, respectively. Parasitic inductance L0 is calculated by subtract-

ing the primary inductance (theta-pinch coil) from the series inductance solution giving

148.8 nH.
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4. EXPERIMENTAL RESULTS

This section presents a subset of the data collected from the various diagnostics used

in this paper. Argon prefill pressure is varied from 0–100 mTorr in 20 mTorr increments and

then in 50 mTorr increments from 100–200 mTorr. Discharge current for a typical MPX

shot is presented in Fig. 4.1 along with the resulting PMT signals. Due to axial variations

in plasma formation, the 8 PMT signals are summed to give a global plasma initiation time.

4.1. DISCHARGE CURRENT
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Figure 4.1. Discharge current and summation of all 8 PMT outputs for test 1405160015.
20 mTorr argon discharge with a DC preionization voltage of 1500 V at 980 µA.

It is apparent in Fig. 4.1 that plasma formation occurs at the first zero-crossing

(1.2 µs) of the discharge current and has fully decayed by 12.9 µs. The SPICE model

discussed in Sec. 3.2 attempts to fit the discharge current in this time interval. For 20 mTorr

prefills, the lowest two PI voltages resulted in significant fluctuations in plasma formation

time with breakdown occurring between the second and fifth zero-crosses of the discharge

current. At higher PI voltage the plasma breakdown time became more repeatable and
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always occurred at the first zero-cross. Higher pressures showed greater repeatability over

the full range of PI voltages. Prefill pressures of 60, 80, and 100 mTorr had a single test start

at the second zero-cross. This occurred at the lowest PI voltage for the 60 and 80 mTorr

tests and at the second lowest voltage for the 100 mTorr test. At 150 mTorr, a single test

showed plasma formation occurring at the beginning of the discharge. Plasma formation

near magnetic field nulls is observed in literature and discussed in more detail in Refs. [? ]

and [? ]. Discharge current profiles and plasma simulation currents are discussed in detail

in Ref. [? ].

4.2. PLASMA THICKNESS

Two image processing examples used to estimate average plasma thickness are

shown in Fig. 4.2 illustrating the image mask for tests at 20 and 200 mTorr, the highest

voltage settings, and at r = 0.0R. The plasma image is first converted to an 8-bit grayscale

image with a pixel intensity varying from 0 ≤ i ≤ 255. A transparent mask is generated

from pixels with an intensity of i≥ 165 which identifies the region of plasma activity. Due

to obstructions in the image due to probe cables and solenoid isolation valve (lower-right

corner), only the top-half of the image mask is used to determine average plasma thickness.

The ratio of pixels at or above the intensity threshold to the maximum possible number of

pixels is proportional to the cross-sectional area of the plasma relative to the cross-sectional

area of the quartz tube. Using the experiment geometry, the plasma thickness is then easily

determined from trigonometry. At low pressures the plasma shape appears amorphous with

aberrations becoming more pronounced at increased PI voltage. As pressure increases, the

plasma takes on an annular shape.



64

(a) (b)

(c) (d)

Figure 4.2. Original plasma images and masks for pixel intensities i≥ 165. 20 mTorr
argon prefill is shown in (a) with corresponding mask in (b). Similarly, a 200 mTorr argon

prefill is presented in (c) and (d).
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5. DISCUSSION

Results of SPICE simulation are presented in this section. Plasma resistance and

inductance circuit parameters are presented for only the lowest and highest values of PI

voltages for a given pressure. The remaining PI voltages fall between the two extreme and

offer no additional insight.

5.1. PLASMA THICKNESS

The plasma thickness for the highest and lowest PI voltages are presented in Fig. 5.1.

For pressures less than 100 mTorr, plasma geometry is highly dependent on PI voltage.
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Figure 5.1. Plasma thickness of argon prefills from 20–200 mTorr for lowest and highest
PI voltage.

Higher voltages consistently provided larger plasma volumes with a high degree of repeata-

bility. At 20 mTorr, the highest PI voltage yielded plasma thicknesses of 19.7± 0.7 mm

and 19.8± 0.8 mm for r = 0.0R and r = 0.8R, respectively, compared to 12.4± 4.2 mm

and 4.6±5.2 mm for the lowest PI voltage. As argon prefill pressure is increased, plasma

formation becomes more repeatable and at 100 mTorr, plasma formation repeatability ap-
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pears to be independent of PI voltage. As prefill pressure increases, the plasma thick-

ness for the low and high PI voltages start to converge and plasma thickness dependence

on PI voltage decreases with increased pressure. At 200 mTorr, the lowest PI voltage

yielded average plasma thicknesses of 6.2± 0.6 mm and 6.9± 0.4 mm for r = 0.0R and

r = 0.8R, respectively, compared to 7.3± 0.5 mm and 7.9± 0.4 mm for the highest PI

voltage. The r = 0.0R data are easily modeled with a double exponential regression yield-

ing tplasma = 11.91e−0.0024p +18.54e−0.0397p mm for the highest PI voltage, where p is the

prefill pressure measured in mTorr. Ignoring the outlier at 80 mTorr, the plasma thickness

at the lowest PI voltage is modeled by tplasma = 9.071e−0.0022p +14.27e−0.0681p mm.

From Rosa and Grover (Ref. [? ]),

M ∝ 〈rplasma〉2 = (1−〈tplasma〉)2,

therefore decreasing plasma thickness corresponds to larger average plasma ring radius

and thus increased mutual inductance. Regression lines are fit to the mutual inductance

as functions of pressure and are shown in Eq. (5.1). The experiment geometry limits the

plasma mutual inductance to a maximum of 27.2 nH for an infinitely thin plasma at the

wall of the quartz insulator; however, this was not observed in the pressure range tested.

M(p) =

 2.190ln(620.4p) : 20≤ p≤ 80

8.361×10−3 p+22.95 : 80 < p≤ 200
(5.1)

5.2. SIMULATION RESULTS

The uncertainty of circuit parameters calculated from the SPICE analysis are plot-

ted as functions of pressure in Figs. 5.2a and 5.2c. Plasma resistance and inductance un-

certainty are calculated as the percentage of the standard deviation relative to the mean

value and are given in Figs. 5.2a and 5.2c. Plasma energy terms are calculated using the
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methods presented in Ref. [? ]. Plasma total ohmic and peak inductive energies are pre-

sented in Figs. 5.2b and 5.2d. For all PI voltages and locations, plasma resistance increased
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Figure 5.2. Results of SPICE simulation using Nelder-Mead Simplex method. (a) plasma
resistance uncertainty, (b) plasma ohmic energy, (c) plasma inductance uncertainty, and

(d) plasma inductive energy.

with argon fill pressure due to the increased collisionality of the plasma. The uncertainty

of the plasma resistance is largest for low fill pressures and decreases with increased gas

pressure. Plasma formation repeatability shows a significant dependence on PI voltage at

low pressures and less dependence at pressures greater than 100 mTorr. For the r = 0.0R

location, plasma resistance increased 309% and 123% for the lowest and highest PI volt-

ages, respectively, as fill pressure increased from 20–200 mTorr. Larger PI voltages yield

increased plasma resistances from 20–100 mTorr at which point the resistance converges
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with variations of 4–6% at 200 mTorr. This appears counter intuitive at first as one would

expect hotter plasmas to have lower plasma resistances. However, the simulated resistance

is analogous to the loss mechanisms of the plasma rather than a simple indication of plasma

energy or temperature. Tests with high PI voltage dissipate larger plasma current than tests

using lower PI voltages which induce significantly smaller plasma currents. At 20 mTorr,

the highest PI voltage had a peak plasma current of 26.4±0.7 kA while the lowest PI volt-

age produced 17.1±3.5 kA. The peak plasma current for the largest PI voltages at r = 0.0R

can be modeled by the logarithmic regression: Is = 46.74−2.899ln(48.08p) kA.

Plasma inductance shows a high degree of uncertainty at low PI voltages and low

prefill pressures while the largest PI voltages exhibit a logarithmic dependence on prefill

pressure with uncertainties remaining below 5% for all but r = 0.8R test at 20 mTorr.

Plasma inductance increases an average of 61.8% for the largest PI voltage while the lowest

PI voltage resulting in an average increase of only 22.4% from 20–200 mTorr. Fig. 5.2d

shows plasma inductive energy is relatively unchanged from 20-100 mTorr for the highest

PI voltage with an average value of 7.5± 2.7% J and 7.3± 1.6% J for the r = 0.0R and

r = 0.8R locations, respectively. Lower PI voltages at low pressures result in poor energy

coupling of the discharge circuit into the plasma. At 20 mTorr, 39% less energy is coupled

into the plasma for the lowest PI voltage relative to the highest. However, by 100 mTorr,

the inductive energy dependence on PI voltage is negligible.
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6. CONCLUSIONS

Circuit parameter uncertainty for an inductively coupled argon plasma have been

determined through SPICE simulations for a range of applicable pressures, DC preioniza-

tion voltages, and locations. Plasma formation is sporadic for 20 mTorr prefills at the two

lowest PI voltages but stabilizes as PI voltage or prefill pressure increases such that plasma

initiation occurs at the first zero-crossing of the discharge current. At prefill pressures

≥ 100 mTorr, PI voltage was found to have minimal impact on discharge repeatability.

Over the pressure range tested, varying PI location from the center of the quartz tube to

near the wall had negligible effect on plasma geometry, repeatability, or equivalent circuit

parameters. This suggests that location of the DC PI source is inconsequential, it is only

critical that the PI is present. Tests also indicate minimal power is needed to insure repeat-

able plasma formation. 0.20 W of DC power is sufficient to stabilize plasma formation

timing and 1.49 W provides repeatable plasma properties at 20 mTorr. For systems operat-

ing at higher pressures significantly less power is needed. At 200 mTorr, 4.3 mW is needed

to produce repeatable plasma properties. Without PI voltage, plasma formation was not

possible.
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SECTION

3. CONCLUSIONS

The main emphases of this dissertation are: construct a pulsed inductive test arti-

cle, develop high accuracy magnetic probes, quantify the energy coupling of the discharge

circuit into the inductively coupled plasma, and quantify the effects of DC preionization

on plasma formation repeatability. The Missouri Plasmoid eXperiment was constructed

to satisfy the first requirement and the two iterations of MPX have been presented and

discussed. Three journal papers are presented to address the remaining elements of this

dissertation. The first paper focused on the construction and calibration of a magnetic field

probe. Two differential Ḃ probes were presented. A custom Ḃ probe is constructed as an

improvement over the most commonly used probe construction method. Two methods of

probe calibration are presented, one at low field magnitudes in a vector network analyzer

and a second method using a pulsed power Helmholtz coil. Calibration in the VNA yielded

“absolute” calibration factors but tests performed in the pulsed power environment yielded

variations in calibration factors of 9.7± 4.6% for the custom SMI probe and 12.0± 3.3%

for the hand-wound probe relative to the VNA. Even following best practices, calibration

factors for Ḃ probes are found to vary more than 20% at frequencies greater than 1 MHz

relative to the two calibration methods presented.

The second journal paper presented in this dissertation addressed the temporal evo-

lution of the energy coupling and deposition of the pulsed circuit with the inductively cou-

pled plasma. Discharge current profiles are fit to SPICE simulations and a least squares

estimate is applied to determine the plasma resistance and inductance. Simulated plasma

currents are used to determine the temporal evolution of the energy coupling and losses.

Three gas species are tested; argon and xenon for propulsion applications and hydrogen
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to relate the results to the extensive data available in the fusion community. For prefill

pressures of 10–100 mTorr, plasma resistances were found to vary from 25.8–51.6 mΩ

while inductance varied from 41.3–47.0 nH. Inductively coupled energy is maximized at

3/4 of the initial discharge period. The greatest amount of energy coupled into the plasma

is 6.4 J (8.4%) of the initial 79.2± 0.1 J. The presence of plasma results in 15.0–21.2 J

(18.8–26.7%) of the initially stored energy to be ohmically dissipated through the plasma.

The final journal paper quantifies the effects of DC preionization voltage and radial

location on plasma formation repeatability. Tests are conducted with argon prefill pressures

of 20–200 mTorr with a discharge energy of 79.5 J at 15.0±0.01 kV. SPICE simulations are

fit to discharge currents; however two improvements are incorporated into the experiment

to improve accuracy of results. An axial array of photomultiplier tubes are located between

coil segments and provide plasma ignition and decay times. Axial imaging of the plasma

and experimental geometry are used to approximate plasma thickness and thus the mutual

inductance coupling of the plasma to the theta-pinch coil. Nelder-Mead simplex algorithm

is incorporated into the model to minimize the error function in the least squares sense.

Plasma formation was found to be impossible with the given geometry over the pressure

range tested without preionization. Adding minimal PI resulted in plasma formation but

yielded poor repeatability at low pressures. A DC power of 0.20 W was found to be suffi-

cient to stabilize plasma formation at the first zero-crossing of the current while a power of

1.49 W increased inductively coupled plasma energy by 39% at 20 mTorr. For argon pres-

sures greater than 100 mTorr, PI voltage has minimal impact on discharge repeatability. At

200 mTorr, 4.3 mW is sufficient to produce repeatable plasma formation. Radial variation

of PI source had negligible affect on plasma formation properties or associated energies.

These results suggest that location of PI is not as important as simply having a PI giving

the experimentalist greater flexibility in experiment design.
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APPENDIX

PYTHON CODES

MAKE_CIR.PY

############################################################################

################################# MAKE_CIR #################################

############################################################################

# This function creates a netlist (.CIR) which can be ran through transient

# solver of NGSPICE. The user passes the initial conditions, circuit

# elements, and time window. If an initial current is provided, the code

# determines the appropriate current for each inductor in the circuit.

# Code writes following three values to file: time, primary current, and

# secondary voltage. No values are returned to the calling function.

#

# Input Variables:

# V0 - Initial voltage [V]

# I0 - Initial current [A]

# C - Capacitance [F]

# Rp - Primary Resistance [Ohm]

# L0 - Paras./Stray Ind. [H]

# Lp - Primary Inductance [H]

# M - Mutual Inductance [H]

# Ls - Sec./Plasma Ind. [H]

# Rs - Sec./Plasma Res. [Ohm]

# w - Discharge Freq. [rad/s]

# t_start - Start time [s]

# t_stop - Stop time [s]

# t_inc - Max time step [s]

#

# Output Variables:

# None

#

# Dependencies: numpy

#

def make_cir(V0, I0, C, Rp, L0, Lp, M, Ls, Rs, w, t_start, t_stop, t_inc):

# Use T-network transformation for two inductors with a coupled
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# mutual inductance.

LpM = Lp-M

LsM = Ls-M

# Deterine impedance of each secondary element.

Z_M = 0 + 1j*w*M

Z_LsM = 0 + 1j*w*LsM

# Use current divider network to determine initial current on

# T-network inductors.

I0_M = I0*np.abs(Z_LsM/(Z_LsM+Z_M))

I0_LsM = I0*np.abs(Z_M /(Z_LsM+Z_M))

# Create a file for writing and write each line necessary for NGSPICE

.

f = open("python.cir", "w")

f.write("Simulation of complex RLC circuit based on work by Polzin (

Ref. 101, 123) Lovberg and Dailey (Ref. 124)\n")

f.write(" \n")

f.write("Cp 0 1 %s IC=%s\n" % (C, -V0))

f.write("Rp 1 2 %s\n" % (Rp))

f.write("L0 2 3 %s IC=%s\n" % (L0, I0))

f.write("LpM 3 4 %s IC=%s\n" % (LpM, I0))

f.write("LM 4 0 %s IC=%s\n" % (M, I0_M))

f.write("LsM 4 5 %s IC=%s\n" % (LsM, I0_LsM))

f.write("Rs 5 0 %s\n" % (Rs))

f.write(" \n")

f.write(".options CHGTOL = 1e-16 NOPAGE NOACCT NOMOD\n") # NOPAGE

removes extra headers that ngspace adds

f.write(".width out = 512 \n")

f.write(".tran %s %s %s uic\n"%(t_inc, t_stop, t_start))

f.write(".print tran i(L0) v(5)\n")

f.write(".end\n")

f.close()

return

############################################################################
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NGSPICE.PY

############################################################################

################################# NGSPICE ##################################

############################################################################

# This function reads in the netlist created by the function MAKE_CIR and

# calls NGSPICE through batch command. The output data are written to a

# .TXT file. Data are then read in and the passed secondary resistance is

# used to calculate seconday current. Three values are

#

# Input variables:

# Rs - Sec./Plasma Res. [Ohm]

#

# Dependencies: numpy, os

#

def ngspice(Rs):

os.system('ngspice -b python.cir > python.txt')

# Data starts on line 13.

testdata = np.genfromtxt('python.txt',dtype='float',skip_header=12)

t = testdata[:,1]

Ip = testdata[:,2]

v6 = testdata[:,3]

Is = v6/Rs

return t, Ip, Is

############################################################################
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AUTO_CROP.PY

############################################################################

################################ AUTO_CROP #################################

############################################################################

# This function takes an image and uses a pixel threshold to crop the image

# around the plasma. The pixel intensity defaults to 180 but can be

# overridden by a user specified value. The code then attempts to fit the

# image to a size of 315 x 315 pixels which can be overridden by a user

# specified tuple so that all images returned by this function are the same

# size. The image DPI is set by defining a final image size as a x,y tuple.

# The default image size is 315 x 315 pixels but can be overridden by a user

# defined tuple.

#

# Input Variables:

# im - Python image object [-]

# threshold - Threshold of pixel intensity [optional] [-]

# crop_size_px - Desired image size as a tuple [optional]

# [(pixel, pixel)]

# final_size_px - Desired image size as a tuple [optional]

# [(pixel, pixel)]

#

# Output Variables:

# image_resized - Python image object [-]

#

# Dependencies: numpy, PIL.Image

#

def auto_crop(im, threshold = 180, crop_size_px = (315, 315), \

final_size_px = (315, 315)):

# Create a copy of the image. Text is added to the copied image to

# preserve the original.

image = im.copy()

# Convert image to grey scale.

grey = image.convert("L")

# Create a transparency mask and invert. Set points that have a value

# greater than "threshold" to "255" which is white.

mask = Image.eval(grey, lambda(x):255-x)

mask = mask.point(lambda i: i < threshold and 255)

# Get the minimum and maximum pixel values

extrema = mask.getextrema()

# If the both the minimum and maximum pixel intensities are "0", then

# no light was detected above the set intensity threshold. Return a
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# new blank image desired image size.

if extrema[0] == 0 and extrema[1] == 0:

print "\tImage contains no pixel luminocity. Either test had

no plasma of the threshold is set too low."

image_crop = Image.new("RGB", final_size_px, (0, 0, 0))

else:

# Save mask if desired. Useful for debugging

##mask.save(pic_crop_dir+pic_date+pic_num+"_mask.JPG")

##mask.show()

# Get boundary of mask that is not black and save in tuple

# "box"

box = mask.getbbox()

# The cropped images might vary in size from test to test so

# box may be less than intended image size "crop_size_px". If

# the cropped region is smaller, determine how many pixels

# needed to be added to the right AND left "delta_x" of the

# image, and also images to be added to the top AND bottom

# "delta_y" of the image.

if (box[2]-box[0]) <= crop_size_px[0]:

delta_x = (crop_size_px[0]-(box[2]-box[0]))/2.0

else:

delta_x = 0

# Get number of pixels to add to image height

if (box[3]-box[1]) <= crop_size_px[1]:

delta_y = (crop_size_px[1]-(box[3]-box[1]))/2.0

else:

delta_y = 0

# Create a new box tuple that is the same size as defined by

# "crop_size_px".

x0 = int(box[0] - np.floor(delta_x))

x1 = int(box[2] + np.ceil(delta_x))

y0 = int(box[1] - np.floor(delta_y))

y1 = int(box[3] + np.ceil(delta_y))

box2 = x0, y0, x1, y1

# Crop image to new box dimensions

image_crop = image.crop(box2)

# Show cropped JPG image. Useful for debugging

##image_crop.show()

# Change image dpi
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image_resized = image_crop.resize(final_size_px, Image.ANTIALIAS)

return image_resized

############################################################################
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GET_M.PY

############################################################################

################################## GET_M ###################################

############################################################################

# This function takes in a shot number and optionally a pixel intensity

# threshold and returns plasma mutual inductance and thickness using axial

# imaging with a Canon Rebel XT. Pixel count at the given threshold are

# compared to the total possible number of pixels. This ratio is equal to

# ratio of areas which can then be used to determine thickness of plasma

# sheet.

#

# Input Variables:

# shotnum - Shot number of current test [-]

# threshold - Threshold of pixel intensity [optional] [-]

#

# Output Variables:

# M - Mutual Inductance [H]

# t_plasma - Plasma Thickness [m]

#

# Dependencies: numpy, PIL.Image

#

def GET_M(shotnum, threshold = 120):

# Define directory where test data are stored.

dir_data = <redacted for privacy>

# Define directory where cropped images are stored.

pic_dir = dir_data+"2014/05-16-2014/JPG/Auto-Cropped/"

shotnum_str = str(shotnum)

# Define picture name. Photos stored in the following format:

# YYMMDDSSSS_crop.JPG

pic_name = "140516"+shotnum_str[6:]+"_crop.JPG"

# Open image

image = Image.open(pic_dir+pic_name)

# Save mask of cropped image. Useful for debugging.

grey = image.convert("L")

mask = Image.eval(grey, lambda(x):255-x)

mask = mask.point(lambda i: i < threshold and 255)

# Only top half of image is useful. Crop out lower half.

box2 = 0, 0, 1050, 561

mask2 = mask.crop(box2)
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# Get the number of pixels in mask by converting mask to numpy array

# and using binary logic

tmp_pixels = np.asarray(mask2)

num_pixels = (tmp_pixels > 0).sum()

# Determined using Inkscape (and ruler). Out of the 1050 px wide

# image, the aluminum retaining ring has a diameter of 970 px for

# a radius of 485 px. But the solenoid obstructs the view. Using

# Inkscape, it looks the the solenoid blocks from 237 degrees to

# 347 degrees. This leaves an angle of 250 degrees

# (~1.3889*pi radians). Therefor:

# max_num_pixels = R^2/2*(1.3889*pi).

# The retaining ring has a diameter of 5.75 in (0.14605 m)

R_aluminum_ring = 0.14605/2

max_num_pixels = 361845#517287

# Distance from vacuum chamber end-to-end is 12 ft (3.6576 m)

len_chamber = 3.6576

# Thickness of flanges is 1" (0.0254 m)

len_flange = 0.0254

# The distance from the end of the flange to MPX is 1.5" (0.0381 cm)

len_chamber_to_MPX = 0.0381

# Sensor size of the Canon Rebel Digital Camera (0.0222 m x 0.0148 m)

##camera_sensor_width = 0.0222

##camera_sensor_height = 0.0148

# Distance from camera to aluminum ring is:

# len_flange + length_chamber

# Only one flange distance is used since aluminum ring sits at front

# of north flange.

##len_camera_to_ring = len_flange+len_chamber

# based on camera sensor and geometery, about 7 cm farther than

# what was measured.

len_camera_to_ring = 3.9066

# Total length to end of MPX theta-pinch coil is:

#

# len_flange + len_chamber + len_flange + len_chamber_to_MPX

# + len_MPX_coil

#

len_total = len_flange + len_chamber + len_flange + \

len_chamber_to_MPX + len_MPX_coil
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# Radius from center of tube to beginning of plasma. Based on:

#

# A_r/A_R = [(R^2-r^2)*(theta_2-theta_1)]/[R^2*(theta_2-theta_1)]

# = (R^2-r^2)/R^2

# --> r^2 = R^2*(1-A_r/A_R)

#

# This is the apparent thickness of the plasma. But this is over

# exagerated due to depth of experiment into the picture. This must

# be accounted for using geometry.

r_center_to_plasma_at_ring = np.sqrt(R_aluminum_ring**2* \

(1-1.*num_pixels/max_num_pixels))

# Once the distance from center of quartz tube to start of plasma

# radius is known, the angle this makes to the camera can be

# calculated using len_camera_to_ring:

#

# tan(theta) = r_center_to_plasma_at_ring/len_camera_to_ring

#

# The angle itself is not important but is used based on rules of

# similar triangles to determine the actual distance from center of

# quartz tube to plasma at the end of the theta-pinch coil. This will

# give an indication of total plasma thickness.

#

# tan(theta) = r_center_to_plasma_at_ring/len_camera_to_ring

# = r_center_to_plasma_at_end/len_total

#

# and r_center to_plasma_at_end = r_quartz - r_plasma therefor solve

# for r_plasma:

# r_plasma = r_quartz - len_total*r_center_to_plasma_at_ring/

# len_camera_to_ring

# where r_quartz = 3.04 in (7.725) cm

t_plasma = r_quartz - 1.*len_total*r_center_to_plasma_at_ring/ \

len_camera_to_ring

# Put in a catch for dark images. If plasma thickness is less than

# zero, setthickness thickness to 1 mm

if t_plasma <= 0: t_plasma = 0.001

## Now use actual plasma thickness to calculate mutual inductance. ##

# Based on papaer of standards by Rosa and Grover. Ref 127.

#

# M = 4*pi*a^2*n1*n2*(l-2*A*alpha)

# where r = sqrt(l^2+A^2) and

# alpha = (A-r+l)/(2*A)-(a^2)/(16*A^2)*(1-A^3/r^3)

# -(a^4)/(64*A^4)*(1/2+2*A^5/r^5-5/2*A^7/r^7)
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#

# Use the averate plamsa radius: a = r_plasma_avg = r_quartz-

# t_plasma/2

#

a = r_quartz-t_plasma/2

# Turn density of theta pinch coil [turns/cm]

n1 = 1/len_MPX_coil

# Turn density of plasma; assumed to be same length as theta pinch

# [turns/cm]

n2 = 1/len_MPX_coil

# Inner radius of theta pinch; assumed to be radius of primary

inductor [cm]

A = 0.1778/2

# Distance parameter used in Rosa and Grover

r = np.sqrt(len_MPX_coil**2+A**2);

# Magnetic Permeability of free space [H/m]

u0 = 4*np.pi*1e-7

alpha = (A-r+len_MPX_coil)/(2*A)-(a**2)/(16*A**2)* \

(1-np.power(A, 3)/np.power(r, 3)) - \

(np.power(a, 4))/(64*np.power(A, 4))* \

(1/2+2*np.power(A, 5)/np.power(r, 5) - \

5/2*np.power(A, 7)/np.power(r, 7));

M = u0*np.pi*a**2*n1*n2*((len_MPX_coil-2*A*alpha))

# Return mutual inductance and plasma thichness. Convert plasma

# thickness to [m] since the rest of the code uses mks units.

return M, t_plasma

############################################################################



83

FILTER_RYAN.PY

############################################################################

############################### FILTER_RYAN ################################

############################################################################

# This function takes in an array and applies a filter operation. The

# Buttord method is used to generate the necessary parameters for a

# butterworth filter with the desired characteristics. The function defaults

# to a low-pass filter but the user can manually specify band pass

# frequency, stop band frequency, max ripple, attenuation at stop band, and

# filter type.

#

# Input Variables:

# shotnum - Shot number of current test [-]

# threshold - Threshold of pixel intensity [optional] [-]

# plot - Boolean. If `1', plot results. [optional] [-]

# Wp - Pass band frequency [optional] [rad/s]

# Ws - Stop band frequency [optional] [rad/s]

# gpass - Max ripple in pass band [optional] [dB]

# gstop - Attenuation at stop band [optional] [dB]

# filt_type - Type of filter to apply [optional] [-]

#

# Output Variables:

# data_filt - Filtered data [-]

#

# Dependencies: numpy.array, scipy.signal

#

def filter_ryan(data, sample_rate = 60e6, Wp = 5e6, Ws = 10e6, gpass = 3, \

gstop = 40, filt_type = 'low'):

from scipy import signal

from numpy import array

# Read in data and convert to numpy array.

data = array(data, dtype = float)

# Read in sample rate and convert to integer.

sample_rate = int(sample_rate)

# Nyquist frequency

nyquist = sample_rate/2

# Read in and convert pass band (rad/s) to float.

Wp = float(Wp)

# Read in and convert stop band (rad/s) to float.

Ws = float(Ws)
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# Read in and convert pass band allowed ripple (dB) to float.

gpass = float(gpass)

# Read in and convert stop band attenuation ripple (dB) to float.

gstop = float(gstop)

# Use scipy's buttord to determine order and normalized frequency to

# be then feed into butterworth filter.

N, Wn = signal.buttord(Wp/nyquist, Ws/nyquist, gpass, gstop)

# Use scipy's butterworth filter to generate filter coefficients.

b, a = signal.butter(N, Wn, filt_type)

# Use scipy's filtfilt function to do a forward and backward filter

# using the b and a coefficients fround from butterworth filter. The

# filtfilt filter should not produce any phase delay.

data_filt = signal.filtfilt(b, a, data)

return data_filt
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FIND_PEAKS.PY

############################################################################

################################ FIND_PEAKS ################################

############################################################################

# This function attemps to determine the peaks and troughs of corresponding

# to the data passed to it.

# Filter settings

#

# Input Variables:

# current_data - Array of data, typically discharge current [-]

# num_pks - Number of peaks to find [optional] [-]

# plotter - Boolean. If `1', plot results. [optional] [-]

# sample_rate - Sample rate of DAQ system [optional] [Sample/s]

#

# Output Variables:

# tmp_idx - Array of indices corresponding to peaks and troughs of

# current_data [-]

#

# Dependencies: numpy, filter_ryan, matplotlib.pyplot

#

def find_peaks(current_data, num_pks = 20, plotter = 0, sample_rate = 60e6):

stop_interval = num_pks

# Define filter settings

Wp = 10e6 # Pass band [rad/s]

Ws = 15e6 # Stop band [rad/s]

gpass = 3 # Maximum ripple in pass band [db]

gstop = 40 # Attenuation in stop band [dB]

filt_type = 'low' # Type of filter [-]

# Apply low-pass filter to data

current_data_filt = filter_ryan(current_data, \

sample_rate = sample_rate, Wp = Wp, Ws = Ws, \

gpass = gpass, gstop = gstop, filt_type = filt_type)

# Create empty array to store indices

tmp_idx = np.zeros((stop_interval+1, ), dtype = int)

for j in range(0, stop_interval):

tmp_idx[j+1] = tmp_idx[j]+(np.power(-1, j)* \

current_data_filt[tmp_idx[j]:]).argmax()

# Plot if flag is true

if plotter:

fig, ax = plt.subplots()

ax.plot(range(0,len(current_data)), current_data, 'k', \

label = 'Original Data')
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ax.plot(range(0,len(current_data_filt)), current_data_filt, \

'b', label = 'Filtered Data')

ax.plot(tmp_idx, current_data_filt[tmp_idx], 'ro', \

label = 'Peaks')

ax.legend(loc = 'best', shadow = True)

plt.show()

# Return the indices of the peaks/troughs

return tmp_idx[1:]

############################################################################
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FFT_RYAN.PY

############################################################################

################################# NGSPICE ##################################

############################################################################

# This function takes in an array of points and performs a fast-Fourier

# transform (FFT) on the data. The program returns the FFT of the data and

# the corresponding frequency range.

#

# Input variables:

# data - Array of points [-]

# smaple_rate - Sampling rate of DAQ [Sample/s]

#

# Output Variables:

# xf - Array of frequency values [Hz]

# yf - Array of points corresponding to FFT(data) [-]

#

# Dependencies: scipy.fftpack.fft, numpy.array, np.linspace, np.abs

#

def fft_ryan(data, sample_rate = 60e6):

from scipy.fftpack import fft

from numpy import array, linspace, abs

# Convert data to numpy array

y = array(data, dtype = float)

sample_rate = int(sample_rate)

# Number of samples

N = len(y)

# Take FFT

yf = fft(y)

# Since returned array is symmeric, take only last half of array

yf = 2.0/N * abs(yf[0:N/2])

# Calculate frequency data

xf = linspace(0.0, sample_rate/2, N/2.0)

return xf, yf

############################################################################
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CIRCUIT_MODELING.PY

############################################################################

############################ CIRCUIT_MODELING ##############################

############################################################################

# This function determines the interval of the discharge current where

# plasma is present and attemps to fit the discharge current waveform using

# SPICE simulation. The Nelder-Mead Simplex method is applied to the

# resulging error function to determine the circuit parameters that best

# approximate the plasma discharge.

#

# Input Variables:

# shotnum - Shot number of current test [-]

# threshold - Threshold of pixel intensity [optional] [-]

# plot - Boolean. If `1', plot results. [optional] [-]

#

# Output Variables:

# None

#

# Dependencies: numpy, PIL.Image, GET_M, filter_ryan, find_peaks,

# MDSPlus.Tree, MDSPlus.Data, make_cir, ngspice,

# scipy.interpolate.InterpolatedUnivariateSpline,

# scipy.interpolate.interp1d,

# scipy.optimize.fmin, matplotlib.pyplot

#

def Circuit_Modeling(shotnum, threshold = 120, plot = 0):

print "Shotnum:", shotnum, "\nThreshold:", threshold

print "Plasma interval: %s - %s" % plasma_interval[shotnum]

# Define discharge capacitor capacitance [F]

C = 707e-9

# Define vacuum shots. The first three tests (`0000', `0001', and

# `0002') were intensional vacuum shots; however three tests at 20

# mTorr failed to produce plasma: (`0019', `0020', and `0021').

if shotnum in [1405160000, 1405160001, 1405160002, 1405160019, \

1405160020, 1405160021]:

M = 0

t_plasma = 0

else:

M, t_plasma = GET_M(shotnum, threshold)

# Primary (theta-pinch) inductance. Determined from

# Ref. 045 [Lundin].

Lp = 36.24e-9 # [H]

# Parasitic/stray inductance. Determined from fitting vacuum
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# discharge current to simple RLC circuit model and subtracting

# primary inductance.

L0 = 185.078683333e-09-Lp # [H]

# Primary circuit series resistance. Determined from

# fitting vacuum discharge current to simple RLC circuit

# model.

Rp = 0.0403857165333 # [Ohm]

# Time step between data points acquired by PXI-5105 DAQ cards

# with a sampling rate of 60 MS/s .

dt = 1/60e6 # [s]

# Data are stored using MDSplus data structure (mdsplus.org). Read

# in data as "ReadOnly" to protect original data.

tree = Tree(tree_name, shotnum, "ReadOnly")

# Retrieve necessary data from MDSplus tree.

pressure = tree.getNode('\PRESSURE').data()

pi_rogo = tree.getNode('\PI_ROGO:CAL_SIG')

num_pts = tree.getNode('\PI_ROGO:NUM_PTS').data()

sample_rate = tree.getNode('\PI_ROGO:SAMPLE_RATE').data()

dt = tree.getNode('\PI_ROGO:TIME_STEP').data()

# Need to average all eight PMT channels to get global plasma

# ignition time. Preallocate space and read in each channel.

pmt_sum = np.zeros((pi_rogo.data().size), dtype=float)

for j in range(1,9):

pmt_sum = pmt_sum+tree.getNode('\PMT_%i:CAL_SIG' % j).data()

# Filter PMT data using a low-pass filter.

pmt_sum_filt = filter_ryan(pmt_sum, \

sample_rate = sample_rate, Wp = Wp, Ws = Ws, \

gpass = gpass, gstop = gstop, filt_type = filt_type)

# Filter Current data so that peaks are easier to find.

current_filt = filter_ryan(pi_rogo.data(), \

sample_rate = sample_rate, Wp = Wp, Ws = Ws, \

gpass = gpass, gstop = gstop, filt_type = filt_type)

# Find peaks/troughs of filtered current data. Need to go one past

# the last value since this code uses peaks of current, not zero

# crosses.

peaks = find_peaks(current_filt, int(plasma_interval[shotnum][1])+1)

# The time region of interest is indicated by 'plasma_interval'. Use

# this interval and the peak data to bracket the current waveform
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# which is then used with ngspice model. Interval data saved in CSV

# file: "Plasma_interval.csv".

filehandle = open("Plasma_interval.csv", "r")

plasma_interval = dict()

for line in filehandle:

line_entries = line.split(",")

plasma_interval[int(line_entries[0])] = \

(line_entries[1], line_entries[2])

if int(plasma_interval[shotnum][0]) == 0:

idx_start = peaks[int(plasma_interval[shotnum][0])]

else:

idx_start = peaks[int(plasma_interval[shotnum][0])-1]

idx_stop = peaks[int(plasma_interval[shotnum][1])]

# Get subset of time and current corresponding to PMT activity.

time = pi_rogo.dim_of().data()[idx_start:idx_stop]- \

pi_rogo.dim_of().data()[idx_start]

current = pi_rogo.data()[idx_start:idx_stop]

# Find ideces of 'time' that will give the first and last zero

# crossings of the current which correspond to plasma activity

# based on PMT signals. Spice simuations are still done from

# current peak prior first zero cross through the current peak

# after the last zero cross. The LSE uses the time bracket

# associated with 't0_first' and 't0_last' which better

# correspond to plasma activity.

t0_first = np.abs(pi_rogo.data()[peaks[0]:peaks[1]]).argmin()

t0_last = np.abs(pi_rogo.data()[peaks[-2]:peaks[-1]]).argmin() + \

(peaks[-2]-peaks[0])

# Peak current

I0 = current[0]

# Determine center frequency of discharge using FFT. Pad with zeros

# if necessary to get desired resolution. With 18,000 data points,

# frequency resuloution is ~3.3 kHz. With a padding of 2^3*num_pts,

# resolution improves to ~0.4 kHz or ~0.2 kHz at 2^4 num_pts.

tmp = np.zeros((np.power(2,4)*num_pts), dtype = float)

tmp[:len(time)] = current

freq, yf = fft_ryan(tmp)

w = 2*np.pi*freq[yf.argmax()]

# The Nelder-Mead method called by fmin requires a function to

# evaluate. This subfunction takes in the current guess `X' which is
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# an array containing the secondary resistance and inductance and

# returns the sum of squares of the residuals (error). This function

# will call "make_cir" to create a netlist and then "ngspice" to

# evaluate the netlist and carry out the simulation in SPICE.

def Z(X):

Rs = X[0] # [Ohm]

Ls = X[1] # [H]

make_cir(0, I0, C, Rp, L0, Lp, M, Ls, Rs, w, time[0], \

time[-1], t_inc = dt)

t, Ip, Is = ngspice(Rs)

# Linearly intertopate function. Caution: interp1d can not

# extrapolate values. Using InterpolatedUnivariateSpline

# instead. The SPICE code will sometimes produce time arrays

# that will not let it be linearly interpolated with the time

# array without some extrapolation required.

order = 1

s = InterpolatedUnivariateSpline(t, Ip, k=order)

i_guess = s(time)

# ngspice starts current at zero to account for transients.

# For the purposes of this code, it needs to start at

# I0 = I_max otherwise there is significant error on the

# first point. Therefore, set the first value of the

# simulated current equal to the second value so that it

# starts at a non-zero value.

i_guess[0] = i_guess[1]

Z = np.sum(((i_guess[t0_first:t0_last] - \

current[t0_first:t0_last])/ \

len(i_guess[t0_first:t0_last]))**2)

return Z

# Use a simple RLC circuit for vacuum tests.

if pressure < 5:

ii = shotnum-1405160000

# Time at which discharge current has returned to zero.

t_end = 30e-6 # [s]

idx_zero = np.abs(pi_rogo.dim_of().data()-0).argmin()

idx_end = np.abs(pi_rogo.dim_of().data()-t_end).argmin()

# To fit the vacuum cases, need to shift current data to get

# rid of initial negative pulse.

# This section of code was manually extracted by plotting
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# individual tests and determining offset values.

# 0000: -1.718e-7 [s]

# 0001: -1.711e-7 [s]

# 0002: -2.026e-7 [s]

vac_offset = (1.718e-7, 1.711e-7, 2.026e-7)

t_tmp = pi_rogo.dim_of().data()[idx_zero:idx_end+1] - \

vac_offset[ii]

i_actual = pi_rogo.data()[idx_zero:idx_end+1]

V0 = tree.getNode('\PI_VOLT').data()*1e3

# The Nelder-Mead method called by fmin requires a function to

# evaluate. This subfunction takes in the current guess `X'

# which is an array containing the series resistance and

# inductance and returns the sum of squares of the residuals

# (error) using an analytical solution of a series RLC

# circuit.

def Z_RLC (X):

R = X[0] # [Ohm]

L = X[1] # [H]

# Discharge freqency [rad/s]

Wn_guess = np.sqrt(1/(L*C)-(R/(2*L))**2)

i_guess = V0/(Wn_guess*L)*np.exp(-(R*t_tmp)/(2*L))* \

np.sin(Wn_guess*t_tmp)

Z_RLC = np.sum((i_guess-i_actual)**2)

return Z_RLC

# Use Nelder-Mead Simplex method to determine circuit values

# that best match discharge current in least squares sense.

X0 = [50e-3, 180e-9]

xopt = fmin(Z_RLC, X0, ftol=1e6, xtol=1e-6, maxiter=200, \

maxfun=400)

print "\nR:\t%1.3f mOhm\nL:\t%1.3f nH\n" % \

(xopt[0]*1e3, xopt[1]*1e9)

Rp = R = xopt[0]

L = xopt[1]

L0 = L-Lp

# Create a tuple of circuit parameters:

# (C, Rp, L0, Lp, M, Ls, Rs, t_plasma, error)

circuit_params = (C, Rp, L0, Lp, 0, 1e6, 1e6, 0, Z(xopt))

Wn_guess = np.sqrt(1/(L*C)-(R/(2*L))**2)

i_guess = V0/(Wn_guess*L)*np.exp(-(R*t_tmp)/(2*L))* \
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np.sin(Wn_guess*t_tmp)

# Create an expression for the time array.

expr_time = Data.compile( \

"MAKE_RANGE($1, ($2-1)*$3+($1), $3)", t_tmp[0] + \

vac_offset[ii], len(t_tmp), dt)

# Set secondary current to zero since there is no plasma on

# vacuum shots.

Ip = i_guess

Is = np.zeros((t_tmp.shape), dtype = int)

# If boolean flag `plot' is true, plot simulated current vs.

# recorded discharge current

if plot:

R = xopt[0]

L = xopt[1]

Wn_guess = np.sqrt(1/(L*C)-(R/(2*L))**2)

i_guess = V0/(Wn_guess*L)*np.exp(-(R*t_tmp)/(2*L))* \

np.sin(Wn_guess*t_tmp)

plt.plot(t_tmp, i_actual, 'k', t_tmp, i_guess, 'r')

plt.show()

# If not a vacuum test, use Nelder-Mead simplex method and iterate

# through plasma resistance and inductance values with SPICE

# simulations.

else:

X0 = [10e-3, 45e-9]

xopt = fmin(Z, X0, ftol = 1e2, xtol = 1e-6, maxiter = 200, \

maxfun = 400)

Rs = xopt[0]

Ls = xopt[1]

print "\nRs:\t%1.3f mOhm\nLs:\t%1.3f nH\n" % \

(xopt[0]*1e3, xopt[1]*1e9)

# Re-run once more to get current data for the calculated

# circuit parameters.

make_cir(0, I0, C, Rp, L0, Lp, M, Ls, Rs, w, time[0], \

time[-1], t_inc = dt)

t, Ip, Is = ngspice(Rs)

# Use linear interpolation to match SPICE time base with
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# measured data time base.

f = interp1d(t, Ip, kind = 'linear', axis = -1, \

copy = True, bounds_error = True, fill_value = np.nan)

f2 = interp1d(t, Is, kind = 'linear', axis = -1, \

copy = True, bounds_error = True, fill_value = np.nan)

# Round-off error will sometimes result in time[-1] > t[-1]

# by ~1e-12. If this occurs, and error is small, set the last

# time point equal to the last time point in the simulation

# and try again.

try:

ip_guess = f(time)

is_guess = f2(time)

except:

if time[-1]-t[-1] <= 1e-11: time[-1] = t[-1]

ip_guess = f(time)

is_guess = f2(time)

# SPICE always returns an initial value of zero which is not

# physical. Set initial value to the second value in array.

ip_guess[0] = ip_guess[1]

is_guess[0] = is_guess[1]

Ip = ip_guess

Is = is_guess

# Create a tuple of circuit parameters:

# (C, Rp, L0, Lp, M, Ls, Rs, t_plasma, error)

circuit_params = (C, Rp, L0, Lp, M, Ls, Rs, t_plasma, Z(xopt))

# Create an expression for the time array

expr_time = Data.compile( \

"MAKE_RANGE($1, ($2-1)*$3+($1), $3)", \

time[0]+pi_rogo.dim_of().data()[idx_start], \

len(ip_guess), dt)

# If boolean flag `plot' is true, plot simulated current vs.

# recorded discharge current

if plot:

fig, ax = plt.subplots()

ax.plot(pi_rogo.dim_of().data(), pi_rogo.data(), 'k', \

label = 'PI Rogo')

ax.plot(time[t0_first:t0_last] + \

pi_rogo.dim_of().data()[idx_start], \

current[t0_first:t0_last], 'm', \

label='Plasma Interval')
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ax.plot(time+pi_rogo.dim_of().data()[idx_start], Ip, \

'r', label='Ip')

ax.plot(time+pi_rogo.dim_of().data()[idx_start], Is, \

'b', label='Is')

ax.plot(pi_rogo.dim_of().data(), \

pmt_sum_filt/np.max(pmt_sum_filt)*I0, 'g', \

label='Summed PMTs')

ax.legend(loc='best', shadow = True)

ax.axis([-1e-6, 30e-6, -25e3, 30e3])

plt.show()

return 1

############################################################################
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