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Atomic structure and magnetism of ordered and disordered
Al0.5Fe0.52xMnx alloys

V. G. Harris,a) D. J. Fatemi, and K. B. Hathaway
U.S. Naval Research Laboratory, Washington, DC 20375

Q. Huang
National Institute of Standards and Technology, NIST Center for Neutron Research, Gaithersburg,
Maryland 20899 and Department of Materials and Nuclear Engineering, University of Maryland,
College Park, Maryland 20742

Amitabh Mohan and Gary J. Long
Department of Chemistry, University of Missouri-Rolla, Rolla, Missouri 65409-0010

The equiatomic FeAl alloy has been modified by partial substitution of Mn for Fe, and its magnetic
and structural properties investigated by neutron diffraction~ND!, x-ray absorption fine structure
~XAFS! spectroscopy, Mo¨ssbauer spectroscopy~MS!, and SQUID magnetometry both for the
ordered~B2! and disordered states. The unit cell volume is measured to increase linearly with Mn
concentration. XAFS measurements indicate local structural displacements occur at the Mn sites in
both ordered and disordered states that may act to frustrate long-range magnetic order~LRMO!.
Although MS and ND show no evidence of LRMO, SQUID magnetometry indicates an induced
movement in the ordered state that increases with disorder but does not saturate at fields up to 5
T. © 1999 American Institute of Physics.@S0021-8979~99!15408-2#

Although magnetism in FeAl alloys has been investi-
gated extensively over many years, it is not yet clear whether
their complex magnetic behavior is better described by itin-
erant or local exchange interactions. Increasing substitution
of Al into bcc Fe is known to produce an orderedB2 phase,
with the Al atoms all on the same cubic sublattice, from a
few percent Al until the ordered CsCl structure is reached for
FeAl. The magnetic moment decreases proportionally to the
amount of Al dilution up to about 20 at %, then falls off
rapidly, going to zero at 35% Al.1 Antiferromagnetism was
proposed to explain the lack of ferromagnetism, and the ob-
served high field susceptibilities for alloys with greater than
33% Al,2 but antiferromagnetic order was not observed by
polarized neutron experiments.3,4 However, local antiferro-
magnetic interactions have been used to explain the behavior
of low temperature magnetoresistance in FeAl.5

The relatively short second near neighbor spacings be-
tween Fe–Fe pairs argue for some degree of itinerancy and
magnetic order due tod electron overlaps~the same overlaps
which give strong negative second neighbor exchange inter-
actions in bcc Fe!. On the other hand, a statistical model
based in its simplest form on local moments has been used
successfully to describe the magnetization produced in alloys
with greater than 30% Al by the intentional introduction of
disorder.6 Cold worked disordered samples show ferromag-
netism up to the 50–50 FeAl composition with the moment
falling rapidly to zero for more Al-rich alloys.6

Working from an itinerant rigid-band picture we have
tried to push the equiatomic FeAl alloy toward magnetic
ordering by substituting manganese for iron. Mn is almost
midway between Fe and Al in size~atomic radii for Fe, Mn,
and Al are 1.26, 1.35, and 1.43 Å, respectively! so it might

be expected to expand the lattice and narrow thed bands,
enhancing the tendency toward exchange splitting of these
bands. Mn, with one fewerd electron than Fe, should also
move the Fermi level to lower energy more toward the center
of the d band density of states. Recent band structure
calculations,7 which predict only weak ferromagnetism for
FeAl, indicate that this would place the Fermi energy in a
region of higher density of states, also increasing the ten-
dency toward magnetic ordering.

Pseudobinary alloys of Al0.5Fe0.52xMnx (x50.05, 0.1,
0.15! were arc melted~AM ! from elemental constituents
having 99.99% purity or better. Equal portions of the arc-
melted alloys were annealed~ANN! at 800 °C for 8 h to
promote further chemicalorder, or high-energy ball milled
~BM! for a period of 5 h~in air! to promote chemicaldisor-
der. These samples were characterized using neutron diffrac-
tion, x-ray absorption fine structure~XAFS! spectroscopy,
Mössbauer spectroscopy~MS! SQUID magnetometry to de-
termine their long-range-order properties, element-specific
atomic structure, and local magnetic properties, respectively.

The neutron powder diffraction intensity data were col-
lected using the BT-1 high-resolution powder diffractometer
located at the reactor of the NIST Center for Neutron Re-
search. A Cu~311! monochromator was employed to pro-
duce a monochromatic neutron beam wavelength of
1.5401~1! Å. Collimators with horizontal divergences of 158,
208, and 78 of arc full width at half maximum were used
before and after the monochromator, and after the sample,
respectively. The intensities were measured in steps of 0.05°
in the 2u range 3°–168°. Data were collected at room tem-
perature for all samples and at 8 K for thex50.1 ball-milled
sample to elucidate the structure and to detect any possible
magnetic ordering. The structure refinements were carried
out with the Rietveld profile fitting method using the pro-a!Electronic mail: harris@anvil.nrl.navy.mil
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gram GSAS.8 The neutron scattering amplitudes used in the
calculations are 0.345, 0.954, and20.344 (310212cm) for
Al, Fe, and Mn, respectively.

XAFS measurements where performed on the NRL
beamline, X23B, at the National Synchrotron Light Source
~Brookhaven National Laboratory!. XAFS data collection
was performed in transmission mode under ambient condi-
tions. The extended fine structure was analyzed using stan-
dard procedural steps9 leading to the Fourier transformation
of the data to radial coordinates.

The Mössbauer spectra were obtained on a constant-
acceleration spectrometer which used a room temperature
rhodium matrix Co57 source and was calibrated at room tem-
perature witha-Fe foil. Spectra were fit using the method of
Le Caer10 in which a linearly correlated distribution between
the isomer shift and the quadrupole splitting is given by:d
5a^DEQ&1b, wherea is unitless andb is in mm/s. The fits
use 20 component doublets each of which has a linewidth of
0.23 mm/s, the instrumental linewidth of the spectrometer.

Magnetic measurements were performed at temperatures
ranging from 5 to 300 K and at fields of 0–5 T using SQUID
magnetometer.

Rietveld analysis of the powder neutron diffraction pat-
terns acquired for the AM samples reveals pure phase alloys
that are approximately 98% chemically ordered where~Fe,
Mn! and Al exist in a CsCl-type structure~space group:
Pm3m). Significant particle broadening was observed for
the ball-milled samples. Unit cell volumes are found to in-
crease linearly with increasing Mn content from 24.995 Å3

for x50.05 to 25.369 Å3 for x50.15. After a heat treatment
at 800 °C for a period of 8 h, the ordering improved to 99%
and the unit cell volume increased by approximately 0.3%.

The ball milling acted to reduce the chemical order to,5%,
while the unit cell volume increased 0.9% from the arc-
melted state. No evidence of either ferro- or antiferromag-
netic long-range order was observed in the neutron diffrac-
tion experiments.

Fourier transformed~FT! Fe and MnK EXAFS collected
from all AM and BM samples are presented in Figs. 2 and 3,
respectively. The environment of the Fe atoms in the AM
samples show characteristics of a body-centered structure,
namely the near-neighbor~NN! peak centered;2.05 Å and
the next near neighbor~NNN! ~i.e., lattice parameter site!
centered;2.65 Å. These values are offset from their true
bond distances~calculated at 2.539 and 2.932 Å, respec-
tively! by a unique electron phase shift intrinsic to XAFS.
The slight shoulder appearing on the lowr side of the NN
peak may be an artifact of the Fourier transformation, or in

FIG. 1. ~a! Fourier transformed Fe EXAFS data for arc-melted~AM ! and
ball-miled ~BM! samples. Ak range of 3–14 Å21 with a k3 weighting was
employed in the Fourier transformation.~b! Fourier transformed Mn
EXAFS data for AM and BM samples. Ak range of 3–12 Å21 with a k3

weighting was employed in the Fourier transformation. Error bars on the
data reflect both the data collection statistics and the uncertainty introduced
to the data from the procedural steps leading to and including the Fourier
transformation.

FIG. 2. Mössbauer spectra collected for thex50.05 andx50.15 samples
after arc-melting and ball-milling at 78 and 295 K. On the right-hand side of
the figure are the quadrupole splitting distributions.

FIG. 3. Magnetization vs applied field for the Al0.5Fe0.45Mn0.05 alloy in the
ordered and disordered states.
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fact may signal a splitting of the NN shell from a local dis-
tortion. The FT profile for the Fe atoms does not change
appreciably with increasing Mn content. Similar data col-
lected from the BM samples are plotted on the same axes of
this plot. The amplitude of the FT peaks for these samples is
greatly reduced due to the reduction in chemical order and
the introduction of static spatial disorder. One profound de-
velopment is the splitting of the NN peak. This is too large to
be an artifact and must be interpreted as arising from a bi-
modal distribution of NN bonds. Such a bimodal distribution
may arise from the dilation or contraction of bonds between
like and unlike atom pairs. Because the neutron diffraction
did not reveal any distortion of the cubic unit cell, this local
distortion is not translated to the average periodic structure.

In comparing the FT Mn EXAFS data to the Fe data of
Fig. 1 one sees that the NN and NNN peaks are not resolved
in the Mn profiles but are instead incorporated into a very
large broad peak centered;2.1 Å. This is also the reason
that the amplitude of this peak is larger than the NN peak in
the Fe FT profiles. The peak centered near 4.6 Å in both the
Fe and Mn profiles is a signature peak of a body-centered
cubic structure and arises in part both from direct scattering
events between the absorber and the body-diagonal site, and
from multiple scattering MS events from the collinear ar-
rangement between the absorber, body-centered, and body-
diagonal atoms. This peak amplitude is reduced in the Mn
data relative to the Fe. One possible explanation for this is
that the collinear MS amplitude is diminished in the Mn
environment due to either isotropic strain or atomic displace-
ments in its local environment.

When one considers only the Mn data of Fig. 2 one sees
that the general features of the profile do not change appre-
ciably with Mn content. After ball milling the average Mn
environment experiences a large amplitude reduction which
is similar to that of Fe in Fig. 1. The NN peak of the Mn
profile reveals a pronounced splitting which results from in-
creased atomic disorder with increasing Mn content. This
splitting can be attributable to a large local tetragonal distor-
tion around the Mn sites or to local bond contraction and
dilation similar to that proposed for the Fe data in Fig. 1.

Figure 3 is a plot of Mo¨ssbauer spectra collected for the
x50.05 and 0.15 alloys in the AM and BM states. The cor-
responding quadrupole splitting distributions are presented
on the right hand side of Fig. 3. All of the remaining spectra
were virtually identical in appearance to those shown in Fig.
3 and none of the samples exhibit the presence of any mag-
netic order between 295 and 78 K. For all the compounds the
average isomer shifts and their temperature dependence are
typical of these alloys and systematically increase in the or-
der ball-milled,arc melted,annealed. The increase is real
and corresponds to a significant decrease in thes electron
density at the iron-57 nucleus in the order ball milled,arc
melted,annealed. These changes must reflect short-range
changes in the local bonding environment at the iron because
there is no correlation with the changes in the unit cell vol-
ume. Further there are no differences observed for the differ-
ing amounts of Mn present. As expected, the average quad-

rupole splitting increases on cooling. There is no systematic
trend with the amount of Mn present, but for all three differ-
ent amounts of Mn present the average quadrupole splitting
decreases in the order: ball milled.arc melted.annealed.
Again this is a real and significant increase and indicates, as
expected, that the local site symmetry at the iron is the most
symmetric in the annealed samples, less symmetric in the arc
melted samples, and least symmetric in the milled samples.

From the linear correlation between the average isomer
shift and the quadrupole splitting, as expected for a cubic
material, the intercept corresponding to the average quadru-
pole splitting is ;0 mm/s. This follows from the normal
behavior of the isomer shifts and the uniform trend in the
average quadrupole splitting.

Magnetization versus applied field measurements were
collected at 300 K for the Al0.5Fe0.45Mn0.05 sample before
and after ball milling~see Fig. 3!. The magnetization does
not achieve saturation in fields up to 5 T. The magnetization
of the milled, or disordered, sample is nearly an order of
magnitude larger than the precursor. This is likely due to the
increase in magnetic near neighbors and next near neighbors.
It is interesting to note that the Al0.5Fe0.5 alloy has been
reported to be nonmagnetic at all temperatures3,4 and be-
comes ferromagnetic only after cold working.6 In this case,
we have shown that even small amounts of Mn substitution
for Fe are effective in providing the system an enhanced
susceptibility. In the disordered state none of the alloys stud-
ied here are ferromagnetic but exhibit some degree of en-
hanced susceptibility with a larger moment than the ordered
alloys. Experiments to better understand the enhanced sus-
ceptibility in these substituted alloys are in progress.

In summary, our attempt to produce a magnetically or-
dered alloy by substitution of up to 30% Mn for Fe in or-
dered and disordered FeAl alloys was unsuccessful, as the
Mössbauer and neutron diffraction results do not show either
ferromagnetic or antiferromagnetic order. A possible reason
for this is the introduction of local atomic displacements
around both Fe and Mn sites as indicated by the shifts in NN
peaks shown in the EXAFS results. These local distortions
are much more pronounced after ball milling. Experiments to
determine if there is enhanced susceptibility in these substi-
tuted alloys are in progress.
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