
Schedae Informaticae Vol. 24 (2015): 63–71
doi: 10.4467/20838476SI.15.006.3028

Incoherent Dictionary Learning for Sparse Representation in
Network Anomaly Detection

Tomasz Andrysiak, Lukasz Saganowski
UTP University of Science and Technology

Institute of Telecommunications
ul. Kaliskiego 7, 85-789 Bydgoszcz, Poland

e-mail: tomasz.andrysiak@utp.edu.pl, lukasz.saganowski@utp.edu.pl

Abstract. In this article we present the use of sparse representation of a signal

and incoherent dictionary learning method for the purpose of network traffic

analysis. In learning process we use 1D INK-SVD algorithm to detect proper

dictionary structure. Anomaly detection is realized by parameter estimation

of the analyzed signal and its comparative analysis to network traffic profiles.

Efficiency of our method is examined with the use of extended set of test traces

from real network traffic. Received experimental results confirm effectiveness of

the presented method.

Keywords: dictionary learning, sparse representation, anomaly detection.

1. Introduction

Dynamic and continuous development of local and global information systems re-
quires proper protection against cybercriminal attacks. In their attempts, they apply
more and more excellent techniques of penetration and hacking infrastructures of net-
work systems. Most often, it is realised by dynamically spreading network malware.
Growing threat and universality of using information resources stimulate ongoing de-
velopment of safety and protection network systems [1]. Essential mechanisms of
safety supervision over computer networks are Intrusion Detection/Prevention Sys-
tems (IDS/IPS). Their action consists in monitoring and detecting attacks directed
onto resources of computer systems. The main aim of IDS systems is detecting success-
ful attacks. However, they are also applied in monitoring and registering of attempts

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Portal Czasopism Naukowych (E-Journals)

https://core.ac.uk/display/229244714?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

64

to break securities of an attacked computer system [2, 3]. IDS intrusion detection
systems can be classified as belonging to one of two groups using diverse techniques
of threat identification. One is based on detection of known attacks with the use of
defined and specific features, named signatures. The other uses the idea of monitoring
normal work of a given system in order to detect anomalies that may be indicative
of an intruder. It allows for detecting attempts of intrusion consisting of numerous
network connections [4]. Primary advantage of methods based on anomaly detection
is their ability to indicate unknown attacks. The above mentioned approach uses
knowledge of not how a particular attack looks like, but what does not correspond
to specified network traffic norms. Therefore, IDS/IPS systems based on the use of
anomalies are more effective in comparison with systems applying signatures while
detecting unknown, new types of attacks. In this article we present the use of incoher-
ent dictionary learning method and sparse representation of a signal for specific time
series describing the analysed network traffic. Anomaly detection is realized by esti-
mated parameters of the sparse representation of a signal and comparative analysis
to network traffic profiles [5]. This paper is organized as follows: after the introduc-
tion, in Section 2, the sparse representation of a signal for date traffic prediction is
described in details. Then, in Section 3 the incoherent dictionary learning method
based on 1D INK-SVD algorithm estimation is shown. Implementation details and
experimental results are described in Section 4. Conclusions are given thereafter.

2. Sparse representation of a signal

The difficulty of locating the sparse representation of a signal in a specific overcomplete
dictionary might be described in the following way: sparse representation is searching
for the sparse explanation of decomposition coefficients C, standing for the signal S,
over the redundant dictionary, where the balance is smaller than a given constant T ,
and it can be presented as:

min ‖c‖0 subject to
∥∥∥∥S −

∑K−1

k=0
ckdk

∥∥∥∥ < ε, (1)

where ‖·‖0 is the l0 norm figuring up the nonzero items of a vector, ck ∈ C representing
a set of projection coefficients and dk are the elements of the redundant dictionary
D. It is difficult to obtain the outcome of the equation (1) because of its specification
of combinational optimization. We can find the best possible solutions to the issues
by iterative methods, e.g. the matching pursuit algorithm, as well as the orthogonal
pursuit algorithm. The matching pursuit (MP) algorithm is proposed in [6]. The goal
of the above mentioned is to approximate to the input signal S by sequential choice
of vectors from the dictionary D. The algorithm proceeds greedy tactics in which the
basis vector best aligned with the residual vector is selected at each iteration. Signal
S can be noted down as the weighted sum of these items

65

S =
∑n−1

i=0
cidi + rns, (2)

where rns is residual in an n-term total. The orthogonal matching pursuit (OMP)
algorithm is an upgrade of MP algorithm and is presented in [7, 6]. Resemblance
between two algorithms has a greedy structure, however, what concerns discrepancies
is that OMP algorithm requires selected atoms to be orthogonal in each decomposition
stage. The algorithm chooses ϕp in the pth iteration by spotting the vector best
aligned with the residual gained by projecting rps onto the dictionary elements, that
is

ϕp = arg maxi∈Φp
|〈rps, di〉| , ϕp /∈ Φp−1 (3)

and
cp =

〈
rp−1s, dϕp

〉
, (4)

where Φp = {ϕ1, ϕ2, ..., ϕp−1, ϕp} is the index vector and Dp = {dϕ1
, dϕ2

, ..., dϕp
} is

the columns of the dictionary Dp. The initial set of value is Φ0 = ∅ and D0 = ∅.
The complication with the re-selection is to be omitted with the stored dictionary. If
ϕp /∈ ϕp−1 then the index set is updated as Φp = Φp−1 ∪ ϕp and Dp = Dp−1 ∪ dϕp .
In other case, Φp = Φp−1 and Dp = Dp−1. The residual rps is calculated as

rps = rp−1s−Dp

(
DT
pDp

)−1
DT
p r

p−1s, (5)

where DT
pDp is the Gram matrix. The algorithm concludes when residual of a signal

is smaller than adequate limit

‖rps‖ < th, (6)

where th is the approximation error.
The final complication of OMP can be diminished by using the Cholesky Fac-

torization, the QR Factorization, or the Matrix Inversion Lemma [8, 9, 10]. In our
practical realization we use a progressive Cholesky upgrade process to diminish the
effort connected with the matrix inversion.

3. Dictionary learning

A dictionary learning problem for sparse approximation is finding the best dictionary
D to represent the signal S as sparse composition, by solving

minD,C

{
‖S −DC‖2F

}
subject to ∀i ‖ci‖ 0 ≤ T, (7)

where ‖·‖2F is the Frobenius norm and T is a fixed and predetermined number of
nonzero entries. The commonly applied strategy to solve this problem is to start with
an initial dictionary and alternate between the fallowing steps: sparse approximation
and dictionary update [11].

66

3.1. The 1D K-SVD algorithm for search dictionary of signal

Many dictionary learning algorithms follow an iterative solution that alternates be-
tween update of D and C to minimize the cost function 7. In our work we use the
1D K-SVD algorithm. This solution is efficient for adapting dictionaries in order to
achieve sparse signal representations [12].

The algorithm iterates in two steps:
The Sparse Approximation Step: Provided D is fixed. We use the orthogonal

matching pursuit algorithm (mentioned in section 2) to estimate M sparse coefficients
ci for each sample of signal S, by approximation of the solution of

minC

{
‖si −Dci‖2F

}
subject to ‖ci‖0 ≤ T, i = 1, 2, ...M, (8)

where si is a sample of signal S.
The Dictionary Update Step: Provided both C and D are fixed. We focus on an

atom dk of the dictionary and its corresponding sparse vector ckT (i.e. row k of ckT),
the corresponding objective function in 7 can be written as:

‖S −DC‖2F =

∥∥∥∥S −
∑K

j=1
djc

j
T

∥∥∥∥
2

F

=

=
∥∥∥
(
S −

∑
j 6=k

djc
j
T

)
− dkckT

∥∥∥
2

F
=
∥∥Ek − dkckT

∥∥2

F
, (9)

where Ek indicates the representation error of the sample of signal after removing the
kth atom and its fixed. The next steps of the dictionary update stages are:

• Define the set of indexes that use the atom dk , which means the case ckT (i) is
non-zero as

ωk =
{
i|1 ≤ i ≤M, ckT (i) 6= 0

}
. (10)

• Define the matrix Ωk as a matrix with ones on the (ωk(i), i) − th entries and
zeros elsewhere.

• Then compute

Ek = S −
∑

j 6=k
djc

j
T (11)

and restrict Ek by choosing the columns corresponding to ωk so that we obtain
ERk .

• Finally, apply SV D to decompose ERk = U∆V T and update dk to be first
column of U and coefficient vector ckT to be first column of V multiplied by
∆(1, 1).

All dictionary atoms are updated is this way. Iterating through the two steps
will produce dictionary that approximates given signal S sparsely and accurately.
A detailed description of the presented algorithm can be found in the work of [11, 12].

67

3.2. An incoherent dictionary learning problem

The coherence µ(D) of a dictionary D measures the maximal correlation of different
atoms

µ (D) = maxdi,dj∈D i6=j

∣∣∣∣
〈

di
|di|2

,
dj
|dj |2

〉∣∣∣∣ , (12)

where µ is the function, and is valued between 0 and 1. The minimum is reached for
an orthogonal dictionary and the maximum µ0 for a dictionary containing at least
two collinear atoms. The general problem of the incoherent dictionary learning is to
find the closest dictionary D̂ to a given dictionary D̄, with a coherence lower than
a given µ0. The dictionary D̄ is described as

D̂ = arg minD∈Γ

∥∥D − D̄
∥∥2

F
(13)

and

Γ = {D|µ (D) ≤ µ0 ∧ ‖di‖2 = 1, i ∈ {1, ...,M}} . (14)

A good strategy for this problem can be pursued by including a decorrelation step
to the iterative scheme in section 3.1. At each iteration of the dictionary learning
algorithm consisting of sparse approximation followed by dictionary update, we add
the following optimization problem

D̂ = arg minD∈Γ µ (D) (15)

and
Γ′ =

{
D|
∥∥D − D̄

∥∥2

F
≤ θ ∧ ‖di‖2 = 1, i ∈ {1, ...,M}

}
, (16)

where θ is the unknown minimum value reached by the criterion (13). In our imple-
mentation we solve the problem by inserting a decorrelation step in the K-SVD loop
after the dictionary update. The modified algorithm is called the Incoherent – KSVD
INK-KSVD. For more information about this algorithm, please see [13].

4. Experimental results

In this section we compare results achieved for INK-KSVD and KSVD based anomaly
detection to SNORT [14] based preprocessor which we proposed in [3]. Preprocessor
uses DWT – Discrete Wavelet Transform (Mallat implementation [6, 15]) for anomaly
detection.

Efficiency of INK -KSVD based anomaly detection algorithm was evaluated by
simulating different real world attacks on test LAN network. We used Kali Linux [16]
distribution in order to simulate different attacks such as: Application specific DDos,
various port scanning, DoS, DDoS, Syn Flooding, pocket fragmentation, spoofing and

68

Table 1. Network traffic features used for experiments.

Feature Traffic feature description

f1 number of TCP packets

f2 in TCP packets

f3 out TCP packets

f4 number of TCP packets in LAN

f5 number of UDP datagrams

f6 in UDP datagrams

f7 out UDP datagrams

f8 number of UDP datagrams
in LAN

f9 number of ICMP packets

f10 out ICMP packets

f11 in ICMP packets

f12 number of ICMP packets in LAN

f13 number of TCP packets with
SYN and ACK flags

Feature Traffic feature description

f14 out TCP packets (port 80)

f15 in TCP packets (port 80)

f16 out UDP datagrams (port 53)

f17 in UDP datagrams (port 53)

f18 out IP traffic [kB/s]

f19 in IP traffic [kB/s]

f20 out TCP traffic (port 80) [kB/s]

f21 in TCP traffic (port 80) [kB/s]

f22 out UDP traffic [kB/s]

f23 in UDP traffic [kB/s]

f24 out UDP traffic (port 53) [kB/s]

f25 in UDP traffic (port 53) [kB/s]

others. We used the same set of attacks as in [3] in order to compare INK-KSVD
based solution to algorithms based on KSVD and DWT [3]. In order to classify
anomalies we create profiles of normal traffic behavior based on network traffic features
with assumption that there is no attack in this traffic. For algorithms evaluation 25
traffic features was extracted from network traffic (see Table 1). Traffic features
are represented as one dimensional – 1D vector of values. In Tables 2 and 3 there
are results of DR detection rates and FP false positive, respectively. We can see
that for a given test, INK-KSVD give us better results in comparison to KSVD and
DWT based anomaly detection methods. We can notice that detection rate and false
positive strongly depend on given traffic feature. Attack has got direct impact only
on selected traffic features from Table 1. f9 and f10 features give us the best results.
DR [%] for f9 and f10 changes in boundaries 90.73− 98.43 in turn FP [%] changes in
boundaries 0.32− 5.12.

Additionally, we tested our method with basic traffic base [17] for evaluating
algorithm performance. In Table 4 there are results of detection rate for two testing
days.

69

Table 2. Detection Rate DR [%] for a given network traffic features.

Feature KSVD INK-KSVD Mallat

f1 5.26 8.26 5.26

f2 5.26 12.52 10.52

f3 0.00 12.52 10.52

f4 15.78 10.52 10.52

f5 10.52 14.52 10.52

f6 0.00 0.00 0.00

f7 0.00 0.00 0.00

f8 25.22 35.24 31.58

f9 90.73 98.43 94.73

f10 83.68 96.43 94.73

f11 7.24 10.26 5.26

f12 80.42 85.95 78.95

f13 10.52 14.22 10.52

Feature KSVD INK-KSVD Mallat

f14 0.00 8.26 5.26

f15 0.00 14.22 10.52

f16 0.00 0.00 0.00

f17 5.26 8.26 5.26

f18 10.52 14.52 10.52

f19 5.26 8.22 5.26

f20 10.52 15.24 5.26

f21 12.26 14.24 10.52

f22 0.00 0.00 0.00

f23 0.00 0.00 0.00

f24 0.00 0.00 0.00

f25 5.26 8.24 0.00

Table 3. False Positive FP [%] for a given network traffic features.

Feature KSVD INK-KSVD Mallat

f1 5.46 4.23 7.43

f2 5.17 4.84 7.99

f3 5.45 4.22 7.96

f4 5.44 4.02 6.06

f5 5.64 4.23 5.62

f6 3.96 3.02 4.14

f7 5.18 3.50 5.33

f8 5.24 4.24 8.28

f9 7.68 6.12 9.13

f10 1.22 0.32 0.48

f11 5.12 4.12 12.06

f12 6.34 4.20 4.34

f13 5.23 4.56 7.07

Feature KSVD INK-KSVD Mallat

f14 4.58 3.26 7.48

f15 4.86 3.52 7.17

f16 0.02 0.02 0.02

f17 0.40 0.25 0.39

f18 4.80 3.72 8.74

f19 5.24 4.46 8.36

f20 4.52 3.18 8.50

f21 4.23 3.12 7.09

f22 3.46 2.52 3.08

f23 4.82 2.82 3.07

f24 0.02 0.00 0.00

f25 0.37 0.03 0.02

70

Table 4. Detection Rate for W5D5 (Week5, Day5) and W5D1 DARPA [17] trace.

Network Traffic DR[%] DR[%] DR[%] DR[%]

Feature KSVD INK-KSVD KSVD INK-KSVD

W5D5 W5D5 W5D1 W5D1

icmp flows/min. 64.7 95.60 94.52 95.42

icmp in bytes/min. 79.14 92.22 93.15 98.42

icmp in frames/min. 85.29 94.28 93.15 94.82

icmp out bytes/min. 79.41 85.25 89.04 98.12

icmp out frames/min. 88.23 94.85 75.34 94.22

tcp flows/min. 48.52 85.28 63.01 98.63

tcp in bytes/min. 55.88 92.64 90.41 94.25

tcp in frames/min. 60.29 90.72 97.26 98.54

tcp out bytes/min. 36.76 94.25 84.93 96.54

tcp out frames/min. 38.23 85.24 89.04 96.54

udp flows/min. 85.29 98.25 90.41 96.64

udp in bytes/min. 76.47 100.00 87.67 98.82

udp in frames/min. 85.29 98.75 68.49 100.00

udp out bytes/min. 89.7 96.22 98.63 100.00

udp out frames/min. 91.17 100.00 98.63 100.00

5. Conclusions

In this article we describe the complete procedure of building sparse representation
of a signal and propose to identify anomalies based on network traffic prediction. In
learning processes we apply modified 1D INK-SVD algorithm to detect incoherent
dictionary on the basis of network traffic which does not contain anomalies. The
classification is performed with the use of normal network traffic profiles and sparse
representation parameters of the analyzed signal.The computed results clearly showed
that abnormal activities included in the traffic signal can be detected by the proposed
methods.

6. References

[1] Choraś M., Saganowski L., Renk R., Ho lubowicz W., Statistical and signal-based
network traffic recognition for anomaly detection. Expert Systems, 2012, 29(3),
pp. 232–245.

[2] Garcia-Teodoro P., Diaz-Verdejo J., Maciá-Fernández G., Vázquez E., Anomaly-
based network intrusion detection: Techniques, systems and challenges. Comput-

71

ers & security, 2009, 28(1), pp. 18–28.

[3] Saganowski L., Goncerzewicz M., Andrysiak T., Anomaly detection preprocessor
for snort ids system. In: Image Processing and Communications Challenges 4.
Springer 2013, pp. 225–232.

[4] FP7 INTERSECTION Project, Deliverable d.2.1: Solutions for securing hetero-
geneous networks: A state of the art analysis.

[5] Hwang K., Cai M., Chen Y., Qin M., Hybrid intrusion detection with weighted
signature generation over anomalous internet episodes. Dependable and Secure
Computing, IEEE Transactions on, 2007, 4(1), pp. 41–55.

[6] Mallat S.G., Zhang Z., Matching pursuits with time-frequency dictionaries. Signal
Processing, IEEE Transactions on, 1993, 41(12), pp. 3397–3415.

[7] Pati Y.C., Rezaiifar R., Krishnaprasad P., Orthogonal matching pursuit: Re-
cursive function approximation with applications to wavelet decomposition. In:
Signals, Systems and Computers, 1993. 1993 Conference Record of the Twenty-
Seventh Asilomar Conference on, IEEE, 1993, pp. 40–44.

[8] Davis G., Mallat S., Avellaneda M., Adaptive greedy approximations. Construc-
tive approximation, 1997, 13(1), pp. 57–98.

[9] Tropp J.A., Greed is good: Algorithmic results for sparse approximation. Infor-
mation Theory, IEEE Transactions on, 2004, 50(10), pp. 2231–2242.

[10] Gribonval R., Fast matching pursuit with a multiscale dictionary of Gaussian
chirps. Signal Processing, IEEE Transactions on, 2001, 49(5), pp. 994–1001.

[11] Elad M., From Exact to Approximate Solutions. In: Sparse and Redundant
Representations: From Theory to Applications in Signal and Image Processing.
Springer, New York, 2010 pp. 79–109.

[12] Aharon M., Elad M., Bruckstein A., K-svd: An algorithm for designing over-
complete dictionaries for sparse representation. Signal Processing, IEEE Trans-
actions on, 2006, 54(11), pp. 4311–4322.

[13] Barchiesi D., Plumbley M.D., Learning incoherent dictionaries for sparse ap-
proximation using iterative projections and rotations. Signal Processing, IEEE
Transactions on, 2013, 61(8), pp. 2055–2065.

[14] Snort – intrusion detection system. https://www.snort.org/, Accessed: 2014-12-
30.

[15] Dainotti A., Pescapé A., Ventre G., Wavelet-based detection of dos attacks. In:
Global Telecommunications Conference, 2006. GLOBECOM’06. IEEE, IEEE,
2006, pp. 1–6.

[16] Kali linux. https://www.kali.org/, Accessed: 2014-12-30.

[17] Defense advanced research projects agency darpa intrusion detection evaluation
data set. http://www.ll.mit.edu/mission/communications/ist/corpora/ideval
/data/index.html, Accessed: 2014-12-30.

