
Schedae Informaticae Vol. 24 (2015): 41–51
doi: 10.4467/20838476SI.15.004.3026

Effectiveness of Unsupervised Training
in Deep Learning Neural Networks

Andrzej Rusiecki1, Miros law Kordos2
1Wroclaw University of Technology

Faculty of Electronics
ul. Wybrzeże Wyspiańskiego 27, 50-370 Wroc law, Poland

e-mail: andrzej.rusiecki@pwr.edu.pl
2University of Bielsko-Bia la

Department of Computer Science
ul. Willowa 2, 43-309 Bielsko-Bia la, Poland

e-mail: mkordos@ath.bielsko.pl

Abstract. Deep learning is a field of research attracting nowadays much atten-

tion, mainly because deep architectures help in obtaining outstanding results on

many vision, speech and natural language processing – related tasks. To make

deep learning effective, very often an unsupervised pretraining phase is applied.

In this article, we present experimental study evaluating usefulness of such ap-

proach, testing on several benchmarks and different percentages of labeled data,

how Contrastive Divergence (CD), one of the most popular pretraining methods,

influences network generalization.

Keywords: neural networks, deep learning, restricted Boltzmann Machine, con-

trastive divergence.

1. Introduction

Many complicated machine learning tasks, including computer vision, natural lan-
guage processing, speech recognition, etc. require representing high-level abstractions
[1,2]. The recent researches demonstrated that these representations can be obtained
by deep learning methods, designed to establish deep structures. Deep learning al-
gorithms very often match or even outperform the state-of-the-art results on many
sophisticated benchmarks [3].

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Portal Czasopism Naukowych (E-Journals)

https://core.ac.uk/display/229244637?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


42

Deep architectures [4], such as artificial neural networks with many hidden layers,
usually need to be trained in two stages. The first part of the training process is
so-called pretraining, which aims typically at building deep feature hierarchy, and is
performed in an unsupervised mode. The latter stage is supervised fine tuning of the
network parameters.

Optimizing a training criterion for deep architectures is a very difficult task.
As it was experimentally demonstrated [4], for hundreds random initializations, the
gradient-based training process may lead to hundreds different local minima. This
is why an additional mechanism to regular optimization is required. The network is
initialized with the use of unsupervised algorithm, which helps in obtaining better
generalization after the network is learned.

There are several hypothesis concerning network pretraining [5]. It is often noticed
that unsupervised pretraining helps in extracting important features from the data,
as well as in setting initial conditions for the supervised algorithm in the region in
the parameter space, where better local optimum may be found. Some hypothesis
claim that the pretraining phase is a kind of very particular regularization, which
is performed not by changing the optimized criterion or introducing new restriction
for the parameters, but by creating a starting point for the optimization process.
Regardless of the reason, unsupervised pretraining helps in creating efficient deep
architectures.

Hence, the deep learning scheme is usually as follows: greedy, layer-wise unsuper-
vised pretraining precedes classic supervised network training. Each layer is trained
separately, based on the output signals of the previous layer. Because only inputs are
used and no target values for the layers are required, such unsupervised learning may
be performed without labeled data (in this phase of training even unlabeled exam-
ples can be used). Depending on the architecture, two main algorithms are applied.
The most popular Deep Belief Networks consisting of Restricted Boltzmann Machines
(RBM) are trained layer-by-layer with so-called Contrastive Divergence and its vari-
ants [6–8], while Stacked Autoencoders and Stacked Denoising Autoencoders [4] are
made of feedforward layers previously trained to reconstruct their inputs. Because
of limited amount of space in the paper we decided to focus only on Contrastive
Divergence pretraining.

It is not clear, however, when applying unsupervised pretraining indeed increases
network performance (defined here as its generalization ability). Previous experi-
ments suggest that, in certain conditions, when we consider shallow architecture, or
a network with relatively small hidden layers, using unsupervised pretraining may
even disturb in classifying new patterns. In this study we intend to examine how the
unsupervised pretraining with Contrastive Divergence influences network accuracy
for several classification tasks and formulate conclusions concerning its applicability
in deep learning. The efficiency of Autoencoder based pretraining was evaluated by
Erhan et al. in [3, 9].

Another problem with Deep Neural Network is the vanishing gradient problem.
That is when the number of layers increase, the gradient in the lower layers during
the backpropagation phase get so small that the network can no longer be efficiently
trained. And this is also an important reason why the unsupervised pretraining is
used: to lead the network weight to such a point fwim which the gradient-based
training will be possible. According to the experiments we conducted, the backprop-



43

agation algorithm cannot train the network of more than about six hidden layers.
The Levendberg-Marquardt (LM) algorithm and also non-gradient based methods
could train in our tests even networks with 10 hidden layers. However, all they turn
quite impractical for big networks and big datasets, because their complexity grows
approximately quadratically with the number of training vectors and weights in the
network.

2. Contrastive Divergence and Restriced Boltzmann Machines

Restricted Boltzmann Machines (RBM) belong to stochastic neural network, where
there is some randomness incorporated in the neurons responses. An RBM consists
of a layer of visible neurons and a layer of hidden neurons. The layers are connected
in the same way as in a multilayer perceptron network, however the connections are
bidirectional and symmetric and there are no connections between neurons of the same
layer (formally RBMs create a bipartite graph). This feature is used in the Contrastive
Divergence algorithm, where during the learning the signals get propagated in both
directions. Deep belief networks are formed by stacking RBMs. First the RBMs are
trained one by one with CD and only the last layer of the network is trained with
a supervised algorithm, as Resilient Backpropagation (Rprop) [10]. After the initial
unsupervised pretraining, the network is learned with standard learning algorithms
used for Multilayer Perceptron (MLP) networks.

Contrastive Divergence (CD) is a method for estimating parameters of Markov
Random Fields (MRFs) [11]. The approximation is performed by approximating
the gradient of the log-likelihood based on a short Markov chain. In the field of
neural networks it was applied and then popularized by Hinton [6] as a method of
unsupervised training of Restricted Boltzmann Machines. Although CD performs
quite well in empirical studies, it is little known about its theoretical convergence
properties.

Contrastive divergence can be implemented in the following way: let W be the
matrix of weights of the dimension I × J , where I is the number of visible neurons
and J the number of hidden neurons. The state of each hidden neuron Sj is formed
by multiplication of each input by weight, summation over all inputs and application
of this sum as an argument of nonlinear sigmoidal function:

Xj =
∑

i

(SiWij +R);Sj = (1 + exp(−A ∗Xj))
−1 (1)

where R is random number from normal distribution with zero mean. The general
procedure of Contrastive Divergence is described in Algorithm 1. CDp and CDn

are matrices. To apply the algorithm one needs to specify α. This hyperparameter
may potentially influence the convergence of the training procedure. To overcome
the problem of choosing proper learning rate, often adapting schemes are used, not
only for the CD but also for denoising autoencoders [12]. However, in our study, we
decided to use the value of α chosen empirically. In Table 7 one may notice that for



44

exemplary training task, performances obtained for several values of the learning rate
were rather similar, so in this case, the method is not very sensitive to the changes of
α in a reasonable (known from the previous research [6]) range.

Algorithm 1 Contrastive Divergence

for eh = 1 . . . numEpochs do
for v = 1 . . . numV ectors do

use vector V to set the states of visible neurons
for n = 0 . . . numSteps do

calculate the response of hidden neurons (with eq.1) and if n=0 calculate
SiSj0
use the calculated values to reconstruct the state of visible neurons
CDp = CDp + SiSj0/N
CDn = CDn − SiSj0/N

end for
update network weights W = W + α(CDp − CDn) +momentum ·W
if the signals Si changed between two epochs less than some threshold then
terminate the training

end for
end for

3. The Scope of the Study

The purpose of the study was to evaluate how the theory of unsupervised pretraining
presented in the introduction applies in practice by evaluating the usefulness of unsu-
pervised pretraining with Contrastive Divergence (CD), depending oh the percentage
of the labeled data we have access to, the network architecture and the amount of
layers that are pretrained with CD. When all the hidden layers have been pretrained,
then we additionally train the output layer with Rprop [10], before training the whole
network with Rprop. Finally the whole network is trained (fine-tuned with Rprop).
The pretraining sometimes improved the results (mostly in the case of higher number
of hidden layers and in the case, where the labels were not available for each training
vector) and sometimes it worsen them. For the cases where the results with and
without pretraining were similar we propose to pretrain only the first hidden layer.
The experimental results confirmed this to be a good solution.



45

4. Experimental Evaluation

4.1. Datasets

It is reasonable to use deep architectures if the problem is difficult, so we run the tests
on three handwritten digit recognition tasks: the Pen-Based Recognition of Handwrit-
ten Digits Data Set (Penbased, 16 attributes, 10 classes), the Optical Recognition of
Handwritten Digits Data Set (Optdigits, 1024 attributes, 10 classes), and part of
the MNIST Data Set (only the part of the set usually used for testing was used,
666 attributes after reduction, 10 classes) [13]. Two benchmarks come from the UCI
Repository [14], and the MNIST is a standard (and historical) benchmark to test
deep architectures. The software used in the experiments is created in C#, and the
Accord.NET and AForge.NET libraries are used. The datasets and the software can
be obtained from [15].

4.2. Experiments

In the experiments we evaluated how the unsupervised pretraining improves the clas-
sification results depending on several factors. The considered factors were:

1. The properties of the data. We used three different datasets, with 10 classes
and number of attributes in the wide range, described in section 4.1. The origin
of the benchmarks is digits recognition, so we may assume that the problem is
well-defined and the classes mostly do not overlap.

2. The network training method. The tested network were trained with or with-
out unsupervised pretraining. These two learning phases were performed on
different amounts of available training data.

3. The architecture. We decided to test deep architectures consisting of up to six
hidden layers, as well as shallow nets with one hidden layer. Several sizes of
hidden layers were also tested.

4. The amount of available labeled data vs. the amount of unlabeled data. Several
combinations of percentages of data taken from labeled and unlabeled training
set were examined.

We tested Deep Belief Networks consisting of stacked Restricted Boltzmann Ma-
chines trained with Contrastive Divergence, with α = 0.1 (although we tried α from
0.05 to 0.4 – see Table 7), momentum = 0.5 and 300 epochs. The top layer was
trained with Resilient Backpropagation (Rprop) with 150 epochs. Then the whole
network was further trained in the supervised mode also with Rprop.

The vectors used for unsupervised and supervised training and for tests were se-
lected from the original datasets in the following way: first the vectors were randomly



46

permutated. Then 25% of vectors were placed in the test set and 75% in the training
set. Some of the vectors from the training set were used for unsupervised training
(or no unsupervised training was performed). Then the labels were removed from the
part of the training data, and the remaining 75%, 25%, 8% or 3% of the vectors were
used for supervised training.

In the tables, the number after U represents the percentage of the training set
used for unsupervised learning (L is used instead of U in the cases where only the
first layer was trained with CD) and the number after S represents the percentage of
the training set used for supervised learning. For instance: S25-U75-T25 means that
unsupervised learning was performed on a stack of RBMs, trained with Contrastive
Divergence on 75% of the whole dataset (100% of the training data), and the top
layer was trained with Rprop on 25% of the data and after that the whole network
was trained with Rprop on the same 25% of the data. Finally the network was tested
on the test data (another 25% of the vectors) and the classification accuracy obtained
on the test data was reported in the tables. The first row of each table describes the
networks’ architectures, i.e. the numbers of hidden neurons (not including input and
output layers). Because of limited space in the article we do not present dispersion of
the results in the tables. Such dispersions were in the range 1%−1.5%, and 4 outliers
(when a network didn’t learn) were removed out of hundreds of simulations.

Table 1. Classification results for Penbased dataset with bigger networks.

Met./Net Size 100 100-100 100-100- 100-100- 100-100- 100-100-
-100 -100-30 -100-100 100-100-30

S75-U75-T25 94.76 97.76 94.40 98.51 98.62 97.78
S75-T25 94.76 98.73 98.44 98.36 97.85 96.04
S25-U75-T25 94.25 94.93 97.60 97.49 97.42 94.03
S25-U25-T25 94.47 97.96 94.14 97.34 97.27 94.29
S25-T25 94.10 94.69 96.54 96.07 97.78 95.78
S08-U75-T25 93.52 93.20 92.83 93.34 96.12 92.03
S08-U25-T25 93.20 93.89 92.83 93.78 95.16 91.85
S08-U08-T25 93.45 93.27 93.60 95.45 94.98 87.81
S08-T25 93.27 93.56 92.72 94.98 94.07 89.48
S03-U75-T25 90.76 93.81 92.14 90.98 91.16 84.53
S03-U25-T25 93.23 93.34 93.01 93.05 94.94 90.03
S03-U08-T25 90.94 89.70 89.52 88.39 89.85 86.11
S03-U03-T25 91.05 89.37 92.47 87.66 89.99 84.25
S03-T25 91.08 89.77 88.25 89.56 88.76 84.53

4.3. Results

Looking at the Table 2 for Penbased benchmark one may notice that the best per-
formance without pretraining was achieved by 3-layer network. 2-layer and 4-layer



47

networks also perform better than regular shallow network. However, a network hav-
ing 6 hidden layers presents the lowest classification accuracy. If we consider networks
pretrained with the CD, it is clear that this methods only slightly improves the per-
formance for deep structures. Moreover, when the unsupervised phase is performed
on smaller training set it may even worsen the results. In the Table 1 we may observe
that deep networks with more hidden units achieve similar performance. This time
two-layer network is slightly outperformed by nets with 4 hidden layers. However,
the overall performance doesn’t seem to depend on the last hidden layer size. In this
case, the results obtained for 30 (potential bottleneck) and 100 neurons in the last
hidden layer are very similar.

Table 2. Classification results for Penbased dataset.

Meth./Net Size 60 60-45 60-45-30 60-45-30-25 60-45-30-25-20-15
S75-U75-T25 94.51 98.33 98.07 98.29 95.71
S75-T25 94.61 98.33 98.65 97.27 89.30
S75-L75-T25 94.65 95.05 97.85 98.47 94.72
S25-U75-T25 94.07 93.41 97.56 96.11 88.90
S25-U25-T25 94.18 94.10 97.56 96.03 91.81
S25-T25 94.14 94.25 97.49 95.85 80.24
S25-L75-T25 94.18 94.00 97.71 94.65 88.76
S25-L25-T25 94.14 94.21 93.56 96.91 93.41
S08-U75-T25 93.09 93.41 94.10 94.00 87.01
S08-U25-T25 93.12 96.32 91.59 92.65 88.61
S08-U08-T25 93.12 96.98 96.14 94.58 89.12
S08-T25 93.01 93.12 94.65 93.67 88.46
S08-L75-T25 93.30 92.65 94.51 91.19 87.70
S08-L25-T25 92.83 92.79 91.56 90.14 87.19
S08-L08-T25 92.87 92.58 95.38 93.49 84.68
S03-U75-T25 91.08 88.54 91.30 88.32 75.87
S03-U25-T25 92.83 92.61 95.41 92.54 82.28
S03-U08-T25 90.14 89.59 87.74 84.75 68.34
S03-U03-T25 90.65 90.25 90.07 86.24 71.11
S03-T25 89.88 89.05 90.10 87.23 73.44
S03-L75-T25 89.59 90.32 87.45 86.64 73.69
S03-L25-T25 92.69 93.52 94.65 93.78 84.43

For the Optdigits data, the best performance for the purely supervised algorithm
was obtained for the network with 3 hidden layers (Table 3). When the network
is trained only on the part of labeled examples, the unsupervised phase increases
its performance for deeper network architectures. If we consider bigger networks
with more hidden units (Table 4), the performances for networks with or without
pretraining are better than in the latter case. The best results are achieved for two
and three hidden layers. For such networks, using unsupervised phase increasing the
classification rates significantly when only small amount of labeled data is used (S03).



48

Table 3. Classification results for Optdigits dataset.

Meth./Net Size 300 300-150 300-150-50 300-150-50-30 300-150-50-
-30-20-15

S75-U75-T25 91.3 90.91 92.56 92.36 90.02
S75-T25 91.32 91.74 92.91 90.91 88.15
S25-U75-T25 78.72 86.78 91.77 89.10 76.45
S25-U25-T25 76.24 86.16 89.19 84.27 74.75
S25-T25 80.17 89.46 90.09 87.10 82.34
S08-U75-T25 71.90 81.20 85.86 83.43 68.87
S08-U25-T25 66.74 79.93 81.26 79.28 64.86
S08-U08-T25 64.67 76.03 76.03 70.01 63.92
S08-T25 74.17 81.82 84.15 81.22 76.60
S03-U75-T25 49.17 58.06 63.02 53.93 48.07
S03-U25-T25 54.96 78.95 79.99 76.62 55.01
S03-U08-T25 58.72 66.54 68.11 65.55 57.93
S03-U03-T25 52.69 60.95 63.22 58.47 52.56
S03-T25 55.58 55.17 62.19 51.86 49.04

Table 4. Classification results for Optdigits dataset with bigger networks.

Meth./Net Size 1000 1000-700 1000-700-100 1000-700- 1000-700-500-
-100-30 -250-100-30

S75-U75-T25 94.21 96.07 94.83 95.45 88.84
S75-T25 94.42 95.66 96.07 95.45 89.05
S25-U75-T25 88.43 92.56 91.94 91.12 82.64
S25-U25-T25 91.32 92.15 91.94 86.98 83.26
S25-T25 86.16 92.98 93.60 90.50 70.87
S08-U75-T25 83.88 87.81 86.98 81.61 76.86
S08-U25-T25 84.09 85.74 88.22 82.23 46.49
S08-U08-T25 85.12 89.46 85.33 81.20 70.04
S08-T25 84.09 86.98 85.54 83.26 71.07
S03-U75-T25 67.77 70.87 71.28 62.60 38.64
S03-U25-T25 81.82 85.54 85.54 80.99 69.83
S03-U08-T25 65.50 75.00 71.07 59.50 49.86
S03-U03-T25 69.63 69.83 65.91 50.62 46.12
S03-T25 65.70 71.90 69.21 70.04 43.39

Similar results were obtained for a part of the MNIST dataset (Table 5). For
bigger networks, unsupervised pretraining phase helps in obtaining higher accuracy.
Better performance is obtained for the nets with more neurons in the hidden layers
(Table 6). Highest classification rates are achieved by the architectures with 3 or 4
hidden layers.



49

Table 5. Classification results for MNIST dataset.

Meth./Net Size 300 300-150 300-150-50 300-150-50-30 300-150-50-
-30-20-15

S75-U75-T25 92.78 92.91 93.16 90.34 87.47
S75-T25 93.52 93.98 94.25 93.08 91.33
S25-U75-T25 87.48 88.22 90.02 88.95 87.76
S25-U25-T25 87.45 89.50 90.02 87.51 85.12
S25-T25 93.56 93.95 93.80 91.68 89.16
S08-U75-T25 86.95 87.07 87.12 86.03 86.72
S08-U25-T25 80.88 80.84 81.25 80.54 75.92
S08-U08-T25 81.86 81.34 81.89 80.25 78.12
S08-T25 92.80 93.07 93.87 92.27 90.00
S03-U75-T25 87.02 88.15 89.05 86.41 85.50
S03-U25-T25 79.49 79.86 80.85 78.66 76.80
S03-U08-T25 81.32 80.88 81.16 79.67 78.14
S03-U03-T25 79.16 79.60 79.48 78.72 74.89
S03-T25 92.60 93.11 93.80 92.16 88.55

Table 6. Classification results for MNIST dataset with bigger networks.

Meth./Net Size 1000 1000-700 1000-700-500 1000-700- 1000-700-500-
-500-200 -400-300-100

S75-U75-T25 94.14 94.99 95.22 95.01 92.22
S75-T25 94.16 95.05 95.08 94.73 90.92
S25-U75-T25 92.99 93.35 93.87 92.48 90.05
S25-U25-T25 93.44 93.97 94.01 93.23 88.98
S25-T25 93.87 93.70 94.90 93.22 89.22
S08-U75-T25 88.16 88.86 89.82 89.10 88.14
S08-U25-T25 87.03 87.45 87.55 86.94 86.70
S08-U08-T25 88.11 88.12 89.13 88.06 86.22
S08-T25 88.53 90.12 91.27 90.15 86.49
S03-U75-T25 81.95 81.88 81.55 88.55 76.16
S03-U25-T25 80.51 79.88 80.88 79.36 71.15
S03-U08-T25 82.16 82.33 82.17 81.18 79.15
S03-U03-T25 82.45 81.60 81.48 80.44 78.12
S03-T25 82.09 80.64 80.92 81.83 76.90

5. Conclusions

Based on the experiments we can conclude that the unsupervised pretraining with
Contrastive Divergence usually helps in big, deeper networks, with many hidden lay-
ers, and does not improve or even worsen the results in shallow architectures. This



50

Table 7. Classification rates for different α (Penbased dataset, hidden layers: 100-
100-100-100-100-30).

Meth./α 0.05 0.1 0.2 0.4
S75-U75-T25 97.45 96.91 97.05 96.72
S25-U75-T25 94.80 94.54 95.34 93.20
S25-U25-T25 95.20 94.83 93.70 86.90
S08-U75-T25 91.30 90.14 91.52 90.17
S08-U25-T25 87.99 90.05 92.25 92.72
S08-U08-T25 90.25 91.74 89.88 90.32
S03-U75-T25 80.71 80.97 82.06 76.82
S03-U25-T25 82.17 90.65 90.90 90.21
S03-U08-T25 84.10 75.25 77.80 81.73
S03-U03-T25 82.79 82.39 77.26 76.38

is not because Contrastive Divergence did not work. Just on the contrary: it worked
very well and reduced the error an order of magnitude or more. The cause was rather
that Rprop worked exceptionally well and in many cases was able to reach the good
solution even without any pretraining. When the training set consists of labeled and
unlabeled examples, then it is reasonable to apply unsupervised phase to build the
representation based on the whole data available. We propose to make the degree
of the unsupervised training dependant on the network size. The bigger and deeper
the network, the pretraining should be stronger, for moderate depth networks it may
comprise only the first or first and second hidden layer. For the shallower networks,
with one or two hidden layers, pretraining is not recommended, even if there are miss-
ing labels in the part of the data. We are planning to perform much more experiments
to formulate more detailed conclusions.

6. References

[1] Bengio Y., Lamblin P., Popovici D., Larochelle H., et al., Greedy layer-wise
training of deep networks. Advances in neural information processing systems,
2007, 19, pp. 153.

[2] Salakhutdinov R., Hinton G., Semantic hashing. In: Proceedings of the 2007
Workshop on Information Retrieval and applications of Graphical Models (SIGIR
2007), 2007.

[3] Erhan D., Bengio Y., Courville A., Manzagol P.A., Vincent P., Bengio S., Why
does unsupervised pre-training help deep learning? The Journal of Machine
Learning Research, 2010, 11, pp. 625–660.



51

[4] Vincent P., Larochelle H., Lajoie I., Bengio Y., Manzagol P.A., Stacked denoising
autoencoders: Learning useful representations in a deep network with a local
denoising criterion. The Journal of Machine Learning Research, 2010, 11, pp.
3371–3408.

[5] Bengio Y., Learning deep architectures for ai. Foundations and trends® in
Machine Learning, 2009, 2(1), pp. 1–127.

[6] Carreira-Perpinan M.A., Hinton G., On contrastive divergence learning. In: AIS-
TATS. vol. 10., Citeseer, 2005, pp. 33–40.

[7] Hinton G.E., Salakhutdinov R.R., A better way to pretrain deep boltzmann ma-
chines. In: Advances in Neural Information Processing Systems, 2012, pp. 2447–
2455.

[8] Tieleman T., Hinton G., Using fast weights to improve persistent contrastive
divergence. In: Proceedings of the 26th Annual International Conference on
Machine Learning, ACM, 2009, pp. 1033–1040.

[9] Erhan D., Manzagol P.A., Bengio Y., Bengio S., Vincent P., The difficulty of
training deep architectures and the effect of unsupervised pre-training. In: In-
ternational Conference on artificial intelligence and statistics, 2009, pp. 153–160.

[10] Riedmiller M., Braun H., A direct adaptive method for faster backpropagation
learning: The RPROP algorithm. In: Neural Networks, 1993., IEEE Interna-
tional Conference on, IEEE, 1993, pp. 586–591.

[11] Sutskever I., Tieleman T., On the convergence properties of contrastive diver-
gence. In: International Conference on Artificial Intelligence and Statistics, 2010,
pp. 789–795.

[12] Geras K.J., Sutton C., Scheduled denoising autoencoders. arXiv preprint
arXiv:1406.3269, 2014.

[13] LeCun Y., Bottou L., Bengio Y., Haffner P., Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 1998, 86(11), pp. 2278–2324.

[14] Blake C., Merz C.J., {UCI} repository of machine learning databases, 1998.

[15] Software and datasets used in the paper. http://www.kordos.com/datasets, Ac-
cessed: 2014-12-30.


