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Abstract. We present some typical algorithms used for finding global min-

imum/maximum of a function defined on a compact finite dimensional set,

discuss commonly observed procedures for assessing and comparing the algo-

rithms’ performance and quote theoretical results on convergence of a broad

class of stochastic algorithms.
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1. Introduction

One of the most common problems in applied mathematics is how to find approxima-
tion of an optimal solution of a function defined on some subset of finite dimesnional
space. In particular, optimization problems lie at the heart of most machine learn-
ing approaches. There exists a lot of numerical optimization procedures. Even fifty
years ago most of them were deterministic methods. However, with the spread of
computers, stochastic methods have appeared and in recent years we have been
witnessing an explosion of heuristic stochastic algorithms. Generally a heuristic is
understood to be a rule of thumb learned from experience but not always justified
by an underlying theory. Actually, we will consider metaheuristic which designates
a computational method that optimizes a problem by iteratively trying to improve
a candidate solution. While the performance of some of metaheuristics applied
to specific instances looks good and is experimentally confirmed, theoretical back-
ground is definitely behind.
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The paper is addressed to computer scientists and mathematicians who have been
not yet familiar with the stochastic optimization. So our first goal is to demonstrate
a few stochastic algorithms and quote some results on their convergence, Then, to
mention the problem of experimental comparative study of such algorithms with
machine learning perspective. And in Section 5, to present some theoretical results
on convergence of a broad class of Markov type algorithms to the optimal solution
based mostly on the author’s and his coworkers papers: [3], [8], [7], [9], [10], [11],
[13], [14], [15]. We complete the paper with a list of R packages designated for
stochastic optimization. We recommend books [5] and [17] for further reading on
meataheuristics. Many recent information and materials about the subject can be
also found at http://coco.gforge.inria.fr, see Section 4 for more details about that
page.

Given set A ⊂ Rn and continuous function f : A −→ R denote A? = arg min f =
{a ∈ A : f(a) ≤ f(x) for all ∈ A}. If A is compact, then A? is nonempty. We want
to find points that approximate A?. As a metaheuristics generate random points,
these points are considered as realisations of some random vectors, and then we are
interested in convergence of a sequence of n-dimensional random vectors, say Xt,
to A?. If all Xt are defined on the same probability space, say, Xt : Ω −→ A, we
consider here two types od such convergence. Stochastic convergence, i.e.

∀ε > 0 Prob(dist(Xt, A
∗) < ε) −→ 1, as t −→∞,

and almost sure convergence, i.e.

Prob (Xt −→ A?, as t −→∞) = 1,

i.e.
Prob ({ω ∈ Ω: dist(Xt(ω), A?) −→ 0, as t −→∞}) = 1,

where dist(x,K) denotes the distance x from K.

2. Simple Random Search Algorithms

In this Section we present a collection of typical and simple stochastic algorithms
of global optimizations. Our presentation starts from the simplest algorithm and
gradually becomes more advanced.

Pure Random Search

Most natural seems to be Pure Random Search (PRS). We quote it in a standard
context. Namely, we assume that that f : A −→ R is continuous where A is the unit
cube, i.e. A = [0, 1]n ⊂ Rn.
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Algorithm

0 Set t = 0. Generate a point x0 from the uniform distribution on A.

1 Given xt, generate yt from the uniform distribution on A.

2 If f(yt) < f(xt), then let xt+1 = yt.

3 Increase t := t+ 1 and go to Step 1.

Let Xt, t = 0, 1, 2, . . . be random vectors which realizations are generated by
PRS. The following rather obvious and well-known result can be proved by using
probabilistic arguments like Borel-Cantelli Lemma, see [10] for a detailed proof.

Theorem 1
Prob (Xt −→ A?, as t −→∞) = 1.

Accelerated Random Search

Accelerated Random Search1 (ARS), see [1], is a variant of PRS: the search is
confined to shrinking neighborhoods of a previous record-generating value, with the
search neighborhood reinitialized to the entire space when a new record is found. Lo-
cal minima are avoided by including an automatic restart feature which reinitializes
the search neighborhood after some number of shrink steps have been performed.

As above we assume that f : A −→ R is continuous and A = [0, 1]n ⊂ Rn. Fix
c > 1 (a shrinking factor) and ρ > 0 (a precision threshold).

Algorithm

0 Set t = 1 and r1 = 1. Generate x1 from the uniform distribution on A.

1 Given xt ∈ A and rt ∈ (0, 1], generate yt from the uniform distribution on
B(xt, rt) ∩A, where B(x, r) is the ball of radius r centered at x.

2 If f(yt) < f(xt), then let xt+1 = yt and rt+1 = 1.

3 If f(yt) ≥ f(xt), then:

(a) If rt ≥ ρ, put xt+1 = xt and rt+1 = rt/c.

(b) If rt+1 < ρ, put rt+1 = 1.

4 Increase t := t+ 1 and go to Step 1.

Let Xt, t = 0, 1, 2, . . . be random vectors which realizations are generated by
ARS. We quote two results on convergence of ARS.
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Theorem 2 ([15]) Assume, that for any c ∈ R the level cirve lc = {x ∈ A : f(x) =
c} has its Lebesgue measure 0. Then:

Prob (Xt −→ A?, as t −→∞) = 1.

Theorem 3 ([1]) Assume that f has finitely many global minima. Let {Mt} be the
record sequence produced by ARS above, i.e. Mt = min{f(Xs) : s = 1 . . . t}. and
analogously let {M̃t} be the record sequence produced by PRS. Given a contraction

factor c > 1 and a precision threshold ρ ∈ (0, 1), let m = | ln ρ|
ln c . For each positive

integer C < cm

3m there exists a positive integer tC , depending only on C, such that
for each t > tC :

E(Mt) ≤ E(M̃tC ).

The above theorem says, that one can choose the shrinking factor and the preci-
sion constance such that eventually ARS will require less steps than PRS to attain
an approximation of the solution which is at leat of the sam quality.

More interesting properties of ARS, comparisons with other algorithms as well
as some its applications can be found in [1].

Hybrid and Multistart algorithms

Hybrid algorithms being still stochastic take advantage of some deterministic meth-
ods used for local optimization and this sometimes speeds up the convergence. Let
ϕ : A −→ A be such a method and assume that ϕ(f(x)) ≤ f(x) for all x ∈ A. We
assume that A ⊂ Rn is a compact set. Consider Borel probabilistic measures µ0, ν
on the set A.

Algorithm

0 Set t = 0. Generate a point x0 from the distribution µ0 on A.

1 Given point xt, generate yt ∈ A according to the distribution ν.

2 Apply ϕ to yt.

3 If f(ϕ(yt)) < f(xt), then xt+1 = ϕ(yt).

3 Increase t := t+ 1 and go to Step 1.

More general is Multistart algorithm.
Let M be the set of all Borel probabilistic measures on A. We consider the weak

topology on M .
Let µ0 ∈ M and let k, m be natural numbers. Let Φ denote a set of local

methods, let N ⊂ M be compact and let N0 be a closed subset of N , such that for
any ν ∈ N0, ν(G) > 0 for any open neighborhood G of the set A?.
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Algorithm

0 Let t = 0. Choose an initial population, i.e. a simple sample of points from A
distributed according to µ0:

x = (x1, . . . , xm) ∈ Am.

1 Given t-th population x = (x1, . . . , xm) ∈ Am generate independently k points
yi ∈ A according to a distribution νti ∈ N each, i = 1, . . . , k. Let y =
(y1, . . . , yk) ∈ Ak.

2 Apply ϕti ∈ Φ to xi , i = 1, . . . ,m.

3 Sort the sequence (ϕti(x1), . . . , ϕtm(xm), y1, . . . , yk) using f as a criterion to
get

(x̄1, . . . , x̄m+k) with f(x̄1) ≤ · · · ≤ f(x̄m+k).

4 Form the next population with the first m points

x̄ = (x̄1, . . . , x̄m)

5 Increase t := t+ 1, let x = x̄ and go to Step 1.

There is a number of local methods available. For example, a classical one is the
gradient method. It requires differentiability of the objective function f and still
it is quite effective in finding local minima attained at interior points of the set A.
If f is not a smooth function or its local minimum point is at the boundary of A,
then more sophisticated methods can be used, see [6], [12] and survey paper [18].
The Algorithm above admits application of various methods at the same time or just
one method with various parameters (like a step size or a number of steps taken).
Obviously, the identity map is a local method.

Let f̂ : Am −→ R be defined as f̂(x) = f(x1). Let us note that Â? = A?×Am−1
is the set of global minimums of f̂ .

The following theorem gives sufficient conditions for almost sure convergence of
the above algorithm to the set of solutions of the global minimization problem.

Theorem 4 ([9]) Let {Xt : t = 1, 2, 3, . . . } be the sequence generated by the Algo-
rithm, where X0 = (X1

0 , . . . , X
m
0 ) is a random vector with distribution (µ0)m. Let

for each t = 1, 2, 3, . . . , Yt = (Y 1
t , . . . , Y

k
t ) be independent random vectors, and in-

dependent of X0, distributed according to νt1 × · · · × νtk with νti ∈ N . Assume
that:

(z1) for any c ∈ R and ν ∈ N , ν(lc) = 0.

(z2) There exists t0 such that for any t ≥ 1 there is 0 ≤ s ≤ t0 and some 1 ≤ j ≤ k
with ν(+s)j ∈ N0.

Then,
Prob (Xt −→ Â?, as t −→∞) = 1. (1)
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3. Simulated Annealing

Simulated annealing originates from the analogy between the physical annealing
process and the problem of finding minimal argument for discrete minimization
problems. The physical annealing process is known in condensed matter physics
as a thermal process for obtaining low energy states of a solid in a heat bath. In
optimization Simulated Algorithm (SA) contains a probabilistic mechanism to escape
a global minimum.

Let as above f : A −→ R be a continuous function, where A ⊂ Rn is a compact
set. Let B ⊂ Rd. Let M > 0 and [0,M ] 3 βt satisfies lim

t−→∞
βt = 0. We are given

Borel measures µ0 on A and ν B and a measurable operator Q : A×B −→ A.

Algorithm

0 Set t = 0. Generate a point x0 from the distribution µ0 on A.

1 Given xt generate point z ∈ B according to distribution ν.

2 If f(Q(xt, z)) ≤ f(xt), then xt+1 = f(Q(xt, z)).

3 If f(Q(xt, z)) > f(xt), then generate point r ∈ (0, 1) according to the uniform
distribution. If

r ≤ exp

(
− f(Q(xt, z))− f(xt)

βt

)
,

xt+1 = f(Q(xt, z)).

4 Increase t := t+ 1 and go to step 2.

The essence of the Algorithm is to create an opportunity to substitute the ap-
proximation with the next approximation even if the new one is worse, the chance
of such action decreases with time, but can be zoomed, where the approximation is
only slightly better than the the new one.

Let Xt be random vectors which realizations are generated by SA. The following
theorem on convergence might be found in [15], see also [10]. For a similar result
with a different proof we refer to [4] and [19]

Theorem 5 Assume that for all x ∈ A, ν(Df◦Q(x)) = 0, where Df◦Q(x) consists
of z ∈ B such, that f ◦Q is not continuous at point (x, z). Assume also, that for all
x ∈ A \A?,

ν({z ∈ B : f(Q(x, z)) < f(x)}) > 0. (2)

Then,

∀ε > 0 Prob(dist(Xt, A
∗) < ε)

t−→∞−→ 1 and E(f(Xt))
t−→∞−→ min

A
f.
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4. Evaluating stochastic algorithms

In the previous Sections we have presented just few stochastic optimization algo-
rithms. Our choice depended on two criteria, simplicity of presentation and existing
theoretical results on the convergence. Yet, there exist hundreds of another stochas-
tic algorithms:

Evolutionary Algorithms (EA) including

Genetic Algorithms (GA),

Particle Swarm Optimization (PSO),

Ant Colony Optimization (ACO),

Artificial Bee Colony (ABC),

Grenade Explosion Method (GEM),

Covariance Matrix Adaptation (CMA),

Markov Chain Monte Carlo (MCMC),

Differential Evolution (DE),
and more. They are still being improved and the new algorithms are still being
invented. Any of them has a number of particular versions. Also, the majority of
algorithms depends on some parameters, finite dimensional (like ARS above did on
shrinking and precision constants), and infinite dimensional (like Multistart above
did on the choice of a measure and a local method), and the suitable choice of
them may essentially results in good or poor performance of the algorithm. And
what is important, the concept of good or pure performance is not always clear
but depends on the specific situation in which the algorithm is used. In fact, in
online optimization encountered, for example, in robot localization, load balancing,
services composition for business processes or updating information we would prefer
short time criterion than accuracy. For example, in [3] a problem of fast short time
interval prediction during aircraft landing is discussed, when optimization process
has to be as quick as possible. On the other hand, in design optimization, creating
long-term schedules or data mining, when optimization processes would usually be
carried out only once in a long time, the accuracy and certainty of the result is then
crucial.

According to [2] desirable properties of an optimization algorithm from the Ma-
chine Learning perspective are: good generalization, scalability to large problems,
good performance in practice in terms of execution times and memory requirements,
simple and easy implementation of algorithm, exploitation of problem structure fast
convergence to an approximate solution of model, robustness and numerical stabil-
ity for class of machine learning models attempted, theoretically known convergence
and complexity.

Therefore there is need to make it possible to asses quality of a given algorithm
and to compare it with the others according to some of the above factors. Hence,
numerous empirical studies have attempted to show the effectiveness of some par-
ticular optimization algorithms. A common practise is to run the algorithms on
some already known test (benchmark) functions or on a collections of such functions
known as suites or testbeds and compare the results. A typical paper presenting
a new, just developed, algorithm contains comparative experimental result taking
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into accounts some already known algorithms and suitable chosen test suite. No need
to add that such comparison in many cases could favor our algorithm. Generally,
empirical and experimental approaches to comparing algorithms have many disad-
vantages, especially when the algorithms are designed to be robust, general purpose
optimization tools. One obvious danger with empirically evaluating algorithms is
that the resulting conclusions depend as much on what problems are used for testing
as they do on the algorithms that are being compared. This can have the side effect
that algorithms are designed and tuned to perform well on a particular test suite;
the resulting specialization may or may not translate into improved performance on
other problems or applications.

So, there are attempts to workout the methodology to specify evaluation goals,
comparison criteria and to construct test suites and to examine the role of test suites
as they have been used to evaluate optimization algorithms, see for example [16].

COCO (COmparing Continuous Optimisers) is a platform for systematic and
sound comparisons of real-parameter global optimisers. COCO provides bench-
mark function testbeds and tools for processing and visualizing data generated by
one or several optimizers. The COCO platform has been used for the Black-Box-
Optimization-Benchmarking (BBOB) workshops that took place during the GECCO
conference in 2009, 2010, 2012, and 2013. The next edition is going to take place
as a special session in May 2015 during the next IEEE Congress on Evolutionary
Computation (CEC’2015) in Sendai, Japan. The COCO source code is available at
the downloads page at http://coco.gforge.inria.fr.

On the other hand, mathematical theory concerning stochastic optimization al-
gorithms are quite limited. As we have seen in the above two Sections there are some
results on convergence, see also Section 5, and almost no results on the convergence
rate. There are also results that partially justify a particular algorithm, but most
of them are far from mathematical accuracy. However, we have to admit, that from
practical point of view the problem of convergence may be not a crucial matter.
It seems that more important would be to know how fast a particular algorithm
converges to the optimal solution. Unfortunately, this aspect from the theoretical
point of view is even worse examined. Still, we believe that the tools used for prov-
ing convergence, mentioned roughly in the Section following, could be also used in
estimation of convergence rate.

5. Markov type algorithms

The algorithms presented in Section 2 and Section 3, and in fact, many more algo-
rithms are instances of a general stochastic algorithm, which mathematical model is
described by the following Markov type recurrent formula:

Xt = Tt(Xt−1, Yt), for t = 1, 2, 3 . . .. (3)

Here Xt, for t ≥ 0 denote random variables corresponding to successive outcomes
of the algorithm and Yt are vectors responsible for randomness in steps 1, 2, 3, . . ..
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Tt define the mechanism of the algorithm itself.
More formally, we are given two sets A ⊂ Rn, B ⊂ Rd, measurable operators

Tt : A×B −→ A, for t = 1, 2, 3 . . . , a probability space (Ω,Σ,Prob), random vector
X0 : Ω −→ A distributed according to some measure µ0, and sequence of random
vectors Yt : Ω −→ B distributed according to some measures νt. We assume that
X0, Y1, Y2, Y3, . . . are independent. Then equation (3) determines random vectors
X1, X2, X3, . . ..

For example, if we put A = B = [0, 1]n, take µ0, νt for all t as the Lebesgue
measure and:

Tt(x, y) =

{
x, if f(y) ≥ f(x)
y, if f(y) < f(x),

then we get PRS.
To get the hybrid algorithm in the form stated in Section 2 we have νt = ν and

specify T as:

Tt(x, y) =

{
x, if f(ϕ(y)) ≥ f(x)
ϕ(y), if f(ϕ(y)) < f(x),

For the multistart algorithm define Tt : Am ×Ak −→ Am as:

Tt(x, y) = x̄,

where x̄ was defined in step 4 of the Algorithm. Instead of measures µ0 and νt we
use the product measures µm0 and νk respectively. Let us note, that the construction
of x̄ may depend on t as in any step we can choose different local methods. Hence,
in this case Tt essentially depends on t.

In the SA case we encounter two random mechanism. Define Tt as:

Tt(x, z, r) =





Q(x, z), if f(Q(x, z)) ≤ f(x),

Q(x, z), if f(Q(x, z)) > f(x) ∧ r ≤ exp
(
− f(Q(xt,z))−f(xt)

βt

)
,

x, otherwise.

So, Tt : A× (B × [01, 1]) −→ A. νt = ν × λ is the product measure, where λ is the
Lebesgue measure on the the unit interval.

Tar lowski in [15] proved that ARS and evolutionary strategy ES(µ/% + λ) are
instances of (3), see also. [10]. Similar result for PSO can be found in [11] and for
GEM in [13]. Actually, the vast part of modern stochastic algorithm seems to be of
the form (3). We can then await some general results concerning system (3) which
imply particular results for specific algorithms. We present one of such results and
it implies convergence of PRS, Theorem 1 and multistart, Theorem 4. We refer to
[15] for more, even stronger, results concerning system (3) and corresponding proofs
of convergence for particular instances including ARS, GEM and ES(µ/%+ λ), see
also [10].

Denote M(A) and M(B) the sets of all probability Borel measures on A and B
respectively. They are topological spaces with the weak topology. By T we denote
the space of the all measurble operators T : A×B −→ A equipped with the topology
of uniform convergence.
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Theorem 6 ([9]) Assume that A is a compact set. Let U ⊂ T ×M(B) be a compact
set. Assume that for any u = (T, ν) ∈ U :

(A) For any x0 ∈ A, there is a Borel set DT (x0) ⊂ B with ν (DT (x0)) = 0, such
that T is continuous in (x0, y), for any y /∈ DT (x0).

(B) For any x ∈ A? and y ∈ B, T (x, y) ∈ A?.

(C1) For any x ∈ A \A?:

∫

B

f(T (x, y)) ν(dy) ≤ f(x). (4)

(C2) There is a closed set U0 ⊂ U such that for any (T, ν) ∈ U0 and x ∈ A \A?:

∫

B

f(T (x, y)) ν(dy) < f(x). (5)

Let {ut = (Tt, νt) : t ≥ 1} ⊂ U satisfy the following:

(U0) There is t0 ≥ 1 such that for any t ≥ 1 there is s ≤ t0 with ut+s ∈ U0.

Then, for every ε > 0:

lim
t→∞

Prob (dist(Xt, A
?) < ε) = 1. (6)

Assume additionally

(D) For any t ≥ 1, x ∈ A and y ∈ B: f(Tt(x, y)) ≤ f(x).

Then,

Prob (Xt −→ A?, as t −→∞) = 1. (7)

One can release the assumption of compactness of the set A assuming (D) and:

(E) There exists r > min f such that set Ar := {x ∈ A : f(x) ≤ r} is compact and
suppµ0 ⊂ Ar.

In fact, by (D) Tt(Ar × B) ⊂ Ar. Clearly, µ0 is a probability measure on Ar and
A? ⊂ Ar. Hence, we may apply Theorem 6 to set Ar.

The proof of the above Theorem is done in [9] and its main idea is to consider
a nonautonomous dynamical system on the space of measures M(A) given by the
Foias operators identified by pairs (Tt, νt) from U . The orbit of µ0 coincides with the
sequence of successive distributions µt0 of Xt. Our assumptions guarantee existence
of a suitable Liapunov function, which by a modification of the Liapunov Theorem
implies attractiveness of the set consisting of the all probability measures supported
on A?, and then stochastic convergence (6). Almost sure convergence (7) follows
from a simple observation that stochastic convergence together with monotocinity
imply almost sure convergence.
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6. Stochastic algorithms in R

There are a lot of computer packages designated to run optimization algorithms,
stochastic global optimization algorithm including. In particular, environment R
makes it possible to access a variety of packages designated for stochastic optimiza-
tion. Among them are:

• GenSA – Generalized Simulated Annealing,

• DEoptim – Differential Evolutionary Optimization,

• soma – Self-Organising Migrating Algorithm,

• rgenoud – GENetic Optimization Using Derivatives,

• cmaes – Covariance Matrix Adapting Evolutionary Strategy,

• mco – Multi Criteria Optimisation,

• mcga – Machine Coded Genetic Algorithm,

• emoa – Evolutionary Multiobjective Optimisation Algorithms,

• soobench – Single Objective Optimization Benchmark Functions.
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